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Abstract
Learning from large-scale and high-dimensional data still remains a computationally chal-
lenging problem, though it has received increasing interest recently. To address this issue,
randomized reduction methods have been developed by either reducing the dimensionality
or reducing the number of training instances to obtain a small sketch of the original data. In
this paper, we focus on recovering a high-dimensional classification/regression model from
random sketched data. We propose to exploit the intrinsic sparsity of optimal solutions and
develop novel methods by increasing the regularization parameter before the sparse regular-
izer. In particular, (i) for high-dimensional classification problems, we leverage randomized
reduction methods to reduce the dimensionality of data and solve a dual formulation on the
random sketched data with an introduced sparse regularizer on the dual solution; (ii) for
high-dimensional sparse least-squares regression problems, we employ randomized reduc-
tion methods to reduce the scale of data and solve a formulation on the random sketched data
with an increased regularization parameter before the sparse regularizer. For both classes of
problems, by exploiting the intrinsic sparsity of the optimal dual solution or the optimal pri-
mal solution we provide formal theoretical guarantee on the recovery error of learned models
in comparison with the optimal models that are learned from the original data. Compared
with previous studies on randomized reduction for machine learning, the present work enjoy
several advantages: (i) the proposed formulations enjoys intuitive geometric explanations; (ii)
the theoretical guarantee does not rely on any stringent assumptions about the original data
(e.g., low-rankness of the datamatrix or the data are linearly separable); (iii) the theory covers
both smooth and non-smooth loss functions for classification; (iv) the analysis is applicable
to a broad class of randomized reduction methods as long as the reduction matrices admit
the Johnson–Lindenstrauss type of lemma. We also present empirical studies to support the
proposed methods and the presented theory.
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1 Introduction

As the scale and dimensionality of data continue to grow in many applications (e.g., bioin-
formatics, finance, computer vision, medical informatics) (Sánchez et al. 2013; Mitchell
et al. 2004; Simianer et al. 2012; Bartz et al. 2011), it becomes critical to develop efficient
and effective algorithms to solve big data machine learning problems. Randomized reduc-
tion methods for large-scale and high-dimensional (LSHD) data analytics have received a
great deal of attention in recent years (Mahoney and Drineas 2009; Shi et al. 2012; Paul
et al. 2013; Weinberger et al. 2009; Mahoney 2011). By either reducing the dimensionality
(referred to as feature reduction) or reducing the number of training instances (referred to as
instance reduction), the resulting problem has a smaller size of training data that is not only
memory-efficient but also computation-efficient. While randomized instance reduction has
been studied a lot for least-squares regression (Drineas et al. 2008, 2006, 2011; Ma et al.
2014; Zhou et al. 2007), randomized feature reduction is more popular for linear classifi-
cation (Blum 2005; Shi et al. 2009a, 2012; Paul et al. 2013; Weinberger et al. 2009) (e.g.,
random hashing is a noticeable built-in tool in Vowpal Wabbit,1 a fast learning library, for
solving high-dimensional problems.). In this paper, we focus on the applications of random-
ized reductionmethods to high-dimensional classification and sparse least-squares regression
problems.

Previous results are limited on theoretical properties of randomized reduction methods for
high-dimensional classification problems and sparse least-squares regression problems. In
particular, for high-dimensional classification problems, previous results on the preservation
of margin (Blum 2005; Balcan et al. 2006; Shi et al. 2012; Paul et al. 2013) and the recovery
error of themodel (Zhang et al. 2014) rely on strong assumptions about the data. For example,
both Paul et al. (2013) and Zhang et al. (2014) assume the data matrix is of low-rank, and
Blum (2005), Balcan et al. (2006), Shi et al. (2012) make a assumption that all examples in
the original space are separated with a positive margin (with a high probability). Another
analysis in Zhang et al. (2014) imposes an additional assumption that the weight vector for
classification is sparse. These assumptions are too strong to hold in many real applications.
Zhou et al. (2007) studied randomized reduction for �1 regularized least-squares problem
and analyzed the sparsitency (i.e., the recovery of the support set) and the persistency (i.e.,
the generalization performance). However, their result is asymptotic, which only holds when
the number of instances approaches infinity, and requires strong assumptions about the data
matrix and other parameters.

To address these limitations, we propose to explore the intrinsic sparsity of the problem,
i.e., the sparsity of the optimal dual solution for classification problems and the sparsity
of the optimal model for sparse regression problems. To leverage the sparsity, we propose
novel formulations for both classes of problems by introducing or strengthening the sparse
regularizer. In particular, for LSHD classification problems we propose a sparse regularized
dual formulation on the dimensionality-reduced data by leveraging the (near) sparsity of the
optimal dual solution (i.e., the number of (effective) support vectors is small compared to
the total number of examples). For large-scale sparse least-squares regression problems, we
analyze a modified formulation on the scale-reduced data by increasing the regularization
parameter before the sparse regularizer of the model. We develop novel theoretical analysis
on the recovery error of learned high-dimensional models.

Compared with previous works (Blum 2005; Balcan et al. 2006; Shi et al. 2012; Paul et al.
2013; Zhang et al. 2014; Zhou et al. 2007), the presented theoretical results enjoy several

1 http://hunch.net/~vw/.
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advantages: (i) our analysis demands amilder assumption about the data; (ii) our analysis cov-
ers both smooth and non-smooth loss functions for classification and both the �1 regularizer
and the elastic net regularizer for sparse regression; (iii) our analysis is applicable to a broad
class of randomized reduction methods unlike that most previous works focus on random
Gaussian projection; (iv) our results directly provide guarantee on a small recovery error of
the obtained model, which is critical for subsequent analysis, e.g., feature selection (Guyon
et al. 2002; Brank et al. 2002) and model interpretation (Rätsch et al. 2005a; Sonnenburg and
Franc 2010; Ratsch et al. 2005b; Sonnenburg et al. 2007; Ben-Hur et al. 2008). To elaborate
on the last point, when exploiting a linear model to classify people into sick or not sick based
on genomic markers, the learned weight vector is important for understanding the effect of
different genomic markers on the disease and for designing effective medicine (Jostins and
Barrett 2011; Kang et al. 2011). In addition, the recovery could also increase the predictive
performance, in particular when there exists noise in the original features (Goldberger et al.
2005).

The remainder of the paper is organized as follows. We review more related work in
Sect. 2. We present preliminaries in Sect. 3 and the main results in Sect. 4. We present
randomized reduction methods in Sect. 5, and discuss optimization and time complexity in
Sect. 6.We present the proofs in Sect. 7. Experimental results are presented in Sect. 9. Finally,
we conclude in Sect. 10. Proofs of some technical lemmas are presented in the “Appendix”.

2 Related work

2.1 Random projection for high-dimensional learning

Random projection has been employed for addressing the computational challenge of high-
dimensional learning problems, including the classification problems (Balcan et al. 2006)
and the regression problems (Maillard and Munos 2009). If let x1, . . . , xn ∈ R

d denote a
set of instances, by random projection we can reduce the high-dimensional features into a
low dimensional feature space by x̂i = Axi ∈ R

m , where A ∈ R
m×d is a random projection

matrix. Several works have studied some theoretical properties of classification in the low
dimensional space. For example, Paul et al. (2013) considered the following problem and its
random sketched (RS) counterpart:

w∗ = arg min
w∈Rd

1

n

n
∑

i=1

�(w�xi , yi ) + λ

2
‖w‖22,

RS: min
u∈Rm

1

n

n
∑

i=1

�(u�x̂i , yi ) + λ

2
‖u‖22,

where yi ∈ {1,−1} and �(z, y) = max(0, 1 − yz) is the hinge loss. Paul et al. showed that
the margin and minimum enclosing ball in the reduced feature space are preserved to within
a small relative error provided that the data matrix X ∈ R

n×d is of low-rank. Zhang et al.
(2013) studied the problem of recovering the original optimal solution w∗ and proposed a
dual recovery approach, i.e., using the learned dual variable in the reduced feature space
to recover the model in the original feature space. They analyzed a recovery error under
the low-rank assumption of the data matrix. In the extended version Zhang et al. (2014) also
considered a case when the optimal solutionw∗ is sparse and the datamatrix is approximately
low rank. They established a recovery error in the order of O(

√
s/m‖w∗‖2), where s is either
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the rank of the data matrix or the sparsity of the optimal primal solution. In Blum (2005),
Balcan et al. (2006), Shi et al. (2012), the authors have shown that the classification margin
in the reduced feature space is approximately preserved provided that the original data is
linearly separable by a large margin (with a high probability). However, in practice these
conditions for classification problems are usually too strong to hold, i.e., the optimal model
w∗ is not necessarily sparse and the data matrix is not necessarily low rank and the data is
not necessarily linearly separable.

Recently, Pilanci and Wainwright (2015) studied a random sketched quadratic convex
program over an arbitrary convex set, which is closely related to the present work. The
original problem and the random sketched problem are given by

w∗ = argmin
w∈C f (w) � ‖Xw − y‖22, RS: ŵ∗ = argmin

w∈C ‖A(Xw − y)‖22.

The framework includes least-squares regression, sparse constrained least-squares regres-
sion, a dual formulation of a particular form of SVM, and etc. The established a relative
approximation error in terms of the objective function, i.e., f (ŵ∗) ≤ (1 + δ)2 f (w∗) by
leveraging the Gaussian width of the intersection between the transformed tangent cone and
the Euclidean ball. For sparse constrained least-squares regression and a particular form of
SVM, they also exploit the sparsity of the optimal solution for developing theGaussianwidth.
There are some key differences between our work and Pilanci and Wainwright (2015): (i)
we focus on regularized formulations instead of constraint formulations; Regularized for-
mulations are attractive because they can be solved with less efforts than the constrained
formulations (e.g., the �1 regularizer can be handled by soft-thresholding with O(d) time
complexity with d being the dimensionality of the variable, while projection onto the �1 con-
straint needs O(d log(d)) time complexity); (ii) we propose modified formulations on the
random sketched data by introducing or strengthening the sparse regularizer, which yields
improved recovery results; (iii) we also explore the strong convexity of the objective function
to develop stronger theoretical guarantee; (iv) our analysis focuses on the recovery error of
high-dimensional models instead of the relative optimization error in terms of the objec-
tive function. Notably, a small optimization error in the objective value does not necessarily
indicate a small recovery error on the solution.

2.2 Approximate least-squares regression

In numerical linear algebra, one important problem is the over-constrained least-squares
problem, i.e., finding a vector w∗ such that the Euclidean norm of the residual error ‖Xw −
y‖2 is minimized, where the data matrix X ∈ R

n×d has n � d . The exact solver takes
O(nd2) time complexity. Tremendous studies have been devoted to developing and analyzing
randomized algorithms for finding an approximate solution to the above problem in o(nd2)
(Drineas et al. 2006, 2008, 2011; Boutsidis et al. 2009; Mahoney 2011; Halko et al. 2011).
These works share the same paradigm by applying an appropriate random matrix A ∈ R

m×n

to both X and y and solving the induced subproblem, i.e., ŵ∗ = argminw∈Rd ‖A(Xw−y)‖2.
Relative-error bounds for ‖y− Xŵ∗‖2 and ‖w∗ − ŵ∗‖2 have been developed. Nevertheless,
sparse regularized least-squares regression with random sketched data has not been studied
much except for Zhou et al. (2007) and Pilanci and Wainwright (2016). Zhou et al. (2007)
focuses on asymptotic analysis of sparsitency (i.e., the recovery of the support set) and the
persistency (i.e., the generalization performance). Pilanci and Wainwright (2016) studied
the unconstrained and sparse-constrained least-squares problems under sketched data. In
particular, they established a lower bound on the statistical error of any estimator based on

123



Machine Learning (2020) 109:899–938 903

the sketched data (AX , Ay), which is sub-optimal comparedwith the estimator that is directly
learned from (X , y). Hence, they proposed an iterative Hessian sketch method based on the
data (AX , X�y) to learn a solution that is statistically optimal. It is worth mentioning that the
difference between this work and Pilanci andWainwright (2016) is that we focus on learning
from the sketched data (AX , Ay), and the statistical error of the model learned from the
sketched data (AX , Ay) by our method matches the lower bound established in Pilanci and
Wainwright (2016). It indicates that our method is statistically optimal among all methods
that learn a sparse solution based on the sketched data (AX , Ay).

2.3 Sparse recovery analysis

The LASSO problem has been one of the core problems in statistics and machine learning,
which is essentially to learn a high-dimensional sparse vector u∗ ∈ R

d from (potentially
noise) linear measurements y = Xu∗ + ξ ∈ R

n . A rich theoretical literature (Tibshirani
1996; Zhao and Yu 2006; Wainwright 2009) describes the consistency, in particular the sign
consistency, of various sparse regression techniques. A stringent “irrepresentable condition”
has been established to achieve sign consistency. To circumvent the stringent assumption,
several studies (Jia and Rohe 2012; Paul et al. 2008) have proposed to precondition the data
matrix X and/or the target vector y by PX and Py before solving the LASSO problem
with a particular preconditioning matrix P ∈ R

n×n . The oracle inequalities of the solution
to LASSO (Bickel et al. 2009) and other sparse estimators (e.g., the Dantzig selector of
Candes and Tao 2007) have also been established under restricted eigen-value conditions
of the data matrix X and the Gaussian noise assumption of ξ . The focus in these studies
is on when the number of measurements n is much less than the number of features, i.e.,
n 	 d . Different from these work, we consider that both n and d are significantly large2 and
design fast algorithms for solving the sparse least-squares problem approximately by using
random sketched data AX ∈ R

m×d and Ay ∈ R
m×1 with m 	 n. The analysis is centered

on the recovery error of the learned model with respect to the optimal solution to the original
problem. For problems that are not strongly convex, we also use the restricted eigen-value
conditions of the data matrix to establish the recovery error.

2.4 Randomized reduction by Johnson–Lindenstrauss (JL) transforms

The JL transforms refer to a class of transforms that obey the JL lemma (Johnson and
Lindenstrauss 1984), which states that any N points in Euclidean space can be embedded
into O(ε2 log N ) dimensions so that all pairwise Euclidean distances are preserved upto
1± ε. Since the original Johnson–Lindenstrauss result, many transforms have been designed
to satisfy the JL lemma, including Gaussian random matrices (Dasgupta and Gupta 2003),
sub-Gaussian random matrices (Achlioptas 2003), randomized Hadamard transform (Ailon
and Chazelle 2006), sparse JL transforms by random hashing (Dasgupta et al. 2010; Kane and
Nelson 2014). The analysis presented in this work builds upon the JL lemma and therefore
our method can enjoy the computational benefits of sparse JL transforms, i.e., less memory
and fast computation. More details of these transforms will be given later.

2 This setting recently receives increasing interest (Yen et al. 2014).
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3 Preliminaries

Let ‖ · ‖2 and ‖ · ‖1 denote the Euclidean norm (�2 norm) and �1 norm, respectively. Denote
by ∂ f (w) and ∇ f (w) the subgradient and gradient of a non-smooth function and a smooth
function, respectively. A function f (w) : Rd → R is aG-Lipschitz continuous function w.r.t
‖ · ‖2, if

| f (w1) − f (w2)| ≤ G‖w1 − w2‖2,∀w1,w2 ∈ R
d .

A convex function f (w) : D → R is β-strongly convex w.r.t ‖ · ‖2, if for any α ∈ [0, 1] and
∀w1,w2 ∈ D

f (αw1 + (1 − α)w2) ≤ α f (w1) + (1 − α) f (w2) − 1

2
α(1 − α)β‖w1 − w2‖22,

where β is called the strong convexity modulus of f . The strong convexity is also equivalent
to

f (w1) ≥ f (w2) + 〈∂ f (w2),w1 − w2〉 + β

2
‖w1 − w2‖22,∀w1,w2 ∈ D.

A function f (w) : D → R is L-smooth w.r.t ‖ · ‖2, if it is differentiable and its gradient is
L-Lipschitz continuous, i.e.,

‖∇ f (w1) − ∇ f (w2)‖2 ≤ L‖w1 − w2‖2,∀w1,w2 ∈ D,

or equivalently

f (w1) ≤ f (w2) + 〈∇ f (w2),w1 − w2〉 + L

2
‖w1 − w2‖22,∀w1,w2 ∈ D.

Given a convex function f (w), its convex conjugate function f ∗(u) is defined as

f ∗(u) = max
w∈Dw�u − f (u).

It is known that the convex conjugate of a L-smooth function is 1/L strongly convex, and
vice versa (Kakade et al. 2009).

We write f = O(g) if there exists a constant C > 0 such that f ≤ Cg, write f = Ω(g)
if there exists a constant c > 0 such that f ≥ cg, and write f = Θ(g) if there exist constants
0 < c ≤ C such that cg ≤ f ≤ Cg. A vector w ∈ R

d is said to be s-sparse if it has at most
s non-zero entries.

Let (xi , yi ), i = 1, . . . , n denote a set of training examples, where xi ∈ R
d denotes the

feature vector, yi denotes the label. Assume both n and d are very large. For classification,
we consider yi ∈ {1,−1}, and for regression we consider yi ∈ R. Let X = (x1, . . . , xn)� =
(x̄1, . . . , x̄d) ∈ R

n×d denote the data matrix and y = (y1, . . . , yn)�. In this paper, we focus
on learning a linear model w ∈ R

d from training examples that makes a prediction by w�x.
For classification, the problem of interest can be cast into a regularized minimization:

wc∗ = arg min
w∈Rd

1

n

n
∑

i=1

�(yiw�xi ) + λ

2
‖w‖22, (1)

where �(z) is a convex loss function suited for classification (e.g., hinge loss �(z) =
max(0, 1 − zy) or the squared hinge loss �(z) = max(0, 1 − z)2) and λ is a regulariza-
tion parameter. Using the conjugate function, we can turn the problem into a dual problem:
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α∗ = arg max
α∈Rn

−1

n

n
∑

i=1

�∗
i (αi ) − 1

2λn2
αT X X�α, (2)

where �∗
i (α) is the convex conjugate function of �(z). Given the optimal dual solution α∗,

the optimal primal solution can be computed by wc∗ = − 1
λn X

�α∗.
For regression, we consider the sparse regularized least-squares regression (SLSR) prob-

lem:

wr∗ = arg min
w∈Rd

1

2n
‖Xw − y‖22 + R(w), (3)

where R(w) is a sparsity-inducing norm. In the sequel, we consider twowidely used sparsity-
inducing norms: (i) R(w) = γ ‖w‖1, the �1 norm that leads to a formulation also known as
LASSO (Tibshirani 1996); (ii) R(w) = λ

2‖w‖22 +γ ‖w‖1, the mixture of �1 and �2 norm that
leads to a formulation known as the Elastic Net (Zou and Hastie 2003).

Several remarks are in order. Firstly, we will abuse the same notation w∗ to denote the
optimal solution to the classification problem or the SLSR problem when it is clear from the
context. Secondly, the dual formulation in (2) for classification and the SLSR problem (3)
share a similar structure that consists of a quadratic term and a (strongly) convex term, which
allows us to derive similar theoretical guarantee on the recovery error of α∗ for classification
and ofwr∗ for SLSR. In particular, when the loss function �(z, y) is a smooth function (e.g., the
squared hinge loss), its conjugate function is strongly convex.When R(w) = λ

2‖w‖22+τ‖w‖1
with λ > 0, it is strongly convex. Thirdly, we assume α∗ andwr∗ are sparse. The sparsity of α∗
is implicit in many large-scale high-dimensional classification problems, which is indicated
by that the number of the support vectors is usually much less than the total number of
examples. The sparsity of wr∗ is explicit induced by the sparsity-inducing regularizer R(w).
We will also consider the case when α∗ is nearly sparse.

Let A ∈ R
m×N denote a random reduction matrix from a distribution that satisfies the JL

lemma stated below.

Lemma 1 (JL Lemma) For any integer N > 0, and any 0 < δ < 1/2, there exists a
probability distribution on m × N real matrices A such that for any fixed x ∈ R

N with a
probability at least 1 − δ, we have

∣

∣‖Ax‖22 − ‖x‖22
∣

∣ ≤ c

√

log(1/δ)

m
‖x‖22, (4)

where c is a universal constant.

We will discuss several random matrices A that satisfy the above assumption in more details
in Sect. 5.

4 Main results

Although the analysis for the classification problem share many similarities to that for the
SLSR problem, we will state the results and analysis separately for the sake of clarity.

4.1 Classification

For LSHD data, directly solving (1) or (2) is very expensive. We address the computational
challenge by employing randomized reduction methods to reduce the dimensionality. Let
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x̂1, . . . , x̂n denote the random sketched data of the training examples, where x̂i = Axi ∈ R
m .

With the random sketched data, a conventional approach is to solve the following reduced
primal problem

min
u∈Rm

1

n

n
∑

i=1

�(yiu�x̂i ) + λ

2
‖u‖22, (5)

or its the dual problem

α̂∗ = arg max
α∈Rn

−1

n

n
∑

i=1

�∗
i (αi ) − 1

2λn2
αT
̂X̂X�α, (6)

where ̂X = (̂x1, . . . , x̂n)� ∈ R
n×m . Zhang et al. (2014) proposed a dual recovery approach

that constructs a recovered solution by ŵ∗ = − 1
λn

∑n
i=1 [̂α∗]ixi and proved the recovery

error for random projection under the assumption of low-rank data matrix or sparse w∗. One
deficiency with the simple dual recovery approach is that it fails to capture that data in the
reduced feature space could become difficult to be separated, especially when the reduced
dimensionality m is small. As a result, the magnitude of the dual solution may become
larger, causing many non-support vectors (of the original problem) to be support vectors,
which could further result in the corruption in the recovery error. That is also the reason that
the original analysis of dual recovery method requires a strong assumption of data (i.e., the
low rank assumption). In this work, we plan to address this limitation in a different way,
which allows us to relax the assumption significantly.

To reduce the number of or the contribution of training instances, which are non-support
vectors in the original optimization problem but are transformed into support vectors due to
the reduction of dimensionality, we employ a simple trick that adds a sparse regularization on
the dual variable to the reduced dual problem. In particular, we solve the following problem:

α̃∗ = arg max
α∈Rn

−1

n

n
∑

i=1

�∗
i (αi ) − 1

2λn2
αT
̂X̂X�α − 1

n
τ‖α‖1, (7)

where τ > 0 is a regularization parameter, whose theoretical value will be revealed later.
Given α̃∗, we can recover a model in the original high-dimensional space by

w̃∗ = − 1

λn
X�α̃∗. (8)

Geometric Explanation by Reduced Margin: To further understand the added sparse
regularizer, we consider SVM, where the loss function can be either the hinge loss (a
non-smooth function) �(z) = max(0, 1 − z) or the squared hinge loss (a smooth func-
tion) �(z) = max(0, 1 − z)2. We first consider the hinge loss, where �∗

i (αi ) = αi yi for
αi yi ∈ [−1, 0]. Then the new dual problem is equivalent to

max
α◦y∈[−1,0]n

1

n

n
∑

i=1

−αi yi − 1

2λn2
αT
̂X̂X�α − τ

n
‖α‖1.

Using variable transformation −αi yi → βi , the above problem is equivalent to

max
β∈[0,1]n

1

n

n
∑

i=1

βi (1 − τ) − 1

2λn2
(β ◦ y)T ̂X̂X�(β ◦ y).
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Changing into the primal form, we have

max
u∈Rm

1

n

n
∑

i=1

�1−τ (u�x̂i yi ) + λ

2
‖u‖22, (9)

where �γ (z) = max(0, γ − z) is a max-margin loss with margin given by γ . It can be
understood that adding the �1 regularization in the reduced problem of SVM is equivalent to
using a max-margin loss with a smaller margin, which is intuitive because examples become
difficult to separate after dimensionality reduction and is consistent with several previous
studies that the margin is reduced in the reduced feature space (Blum 2005; Shi et al. 2012).
Similarly for squared hinge loss, the equivalent primal problem is

max
u∈Rm

1

n

n
∑

i=1

�21−τ (u
�x̂i yi ) + λ

2
‖u‖22, (10)

where �2γ (z) = max(0, γ − z)2. Although adding a sparse regularizer on the dual variable is
intuitive and can be motivated from previous results, we emphasize that the proposed sparse
regularized dual formulation provides a new perspective and bounding the dual recovery
error ‖α̃∗ − α∗‖ is a non-trivial task. We first state our main result in Theorem 1 for smooth
loss functions.

Theorem 1 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies the

JL lemma. Let α̃∗ be the optimal dual solution to (7). Assume α∗ is s-sparse,maxi ‖xi‖2 ≤ R
and �(z) is L-smooth. If we set

τ = Θ

(

R‖w∗‖2
√

log(2n/δ)

m

)

≥ 2cR‖w∗‖2
√

log(2n/δ)

m
,

then we have

‖α̃∗ − α∗‖2 ≤ O

(

LR‖w∗‖2
√
s

√

log(2n/δ)

m

)

, (11)

‖α̃∗ − α∗‖1 ≤ O

(

LR‖w∗‖2s
√

log(2n/δ)

m

)

, (12)

where c is the quantity that appears in the Lemma 1.

Remark 1 The smooth loss function that can yield a sparse α∗ includes the squared hinge loss
�(z) = max(0, 1 − z)2 and the ε-insensitive loss. From the proof, we will see that the value
of τ depends on the order of ‖(XX� − ̂X̂X�)α∗‖∞, which we can bound without using any
assumption about the data matrix. In contrast, previous bounds (Zhang et al. 2013, 2014;
Paul et al. 2013) depend on ‖XX� − ̂X̂X�‖2, which requires the low rank assumption on
X . The result in the above theorem indicates the recovery error of the obtained dual variable
will be scaled as

√
1/m in terms of m - the same order of recovery error as in Zhang et al.

(2013, 2014) that assumes low rank of the data matrix.

Remark 2 We would like to make a connection with LASSO for sparse signal recovery. In
sparse signal recovery under noise measurements f = Uw∗ + e, where e denotes the noise in
measurements, if a LASSO minw 1

2‖Uw − f‖22 + λ‖w‖1 is solved for the solution, then the
regularization parameter λ is required to be larger than the quantity ‖U�e‖∞ that depends
on the noise in order to have an accurate recovery (Eldar and Kutyniok 2012). Similarly in
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our formulation, the added �1 regularization τ‖α‖1 is to counteract the noise in ̂X̂X� as
compared with XX� and the value of τ is dependent on the noise.

Next, we present the results for non-smooth loss functions. Compared with a smooth loss
function that renders the objective function (7) strongly convex, the convex conjugate of a
non-smooth function is not strongly convex. To address this limitation, we can explore the
restricted strong convexity of the quadratic term with respect to sparse solutions. To this end,
we introduce the restricted eigen-value conditions similar to those used in the sparse recovery
analysis for LASSO (Bickel et al. 2009; Xiao and Zhang 2013). In particular, we introduce
the following definition of restricted eigen-values.

Definition 1 Given an integer s > 0, we define

Kn,s = {α ∈ R
n : ‖α‖2 ≤ 1, ‖α‖1 ≤ √

s}.
We say that XX� ∈ R

n×n satisfies the restricted eigenvalue condition at sparsity level s if
there exist positive constants ρ+

n,s and ρ−
n,s such that

ρ+
n,s = sup

α∈Kn,s

α�XX�α

n
, ρ−

n,s = inf
α∈Kn,s

α�XX�α

n
. (13)

We also define another quantity that measures the restricted eigen-value of XX� − ̂X̂X�,
namely

σn,s = sup
α∈Kn,s

|α�(XX� − ̂X̂X�)α|
n

. (14)

The lemma below shows that σn,s can be bounded by ˜O(ρ+
n,s

√
s/m).

Lemma 2 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies the

JL lemma. With a probability 1 − δ, we have

σn,s ≤ 16cρ+
n,s

√

(log(2/δ) + 2s log(27n/s))

m
,

where c is the quantity that appears in Lemma 1.

Theorem 2 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies the

JL lemma. Let α̃∗ be the optimal dual solution to (7). Assume α∗ is s-sparse,maxi ‖xi‖2 ≤ R,
the data matrix X X� satisfies the restricted eigen-value condition at sparsity level 16s and
σn,16s < ρ−

n,16s . If we set

τ = Θ

(

2cR‖w∗‖2
√

log(2n/δ)

m

)

≥ 2cR‖w∗‖2
√

log(2n/δ)

m
,

then we have

‖α̃∗ − α∗‖2 ≤ O

(

λ

(ρ−
n,16s − σn,16s)

R‖w∗‖2
√
s

√

log(2n/δ)

m

)

,

‖α̃∗ − α∗‖1 ≤ O

(

λ

(ρ−
n,16s − σn,16s)

R‖w∗‖2s
√

log(2n/δ)

m

)

,

where c is the quantity that appears in Lemma 1.
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Remark 3 Compared to smooth loss functions, the smoothness constant L is replaced by
̂L = λ

(ρ−
n,16s−σn,16s )

for the non-smooth loss functions, and there is an extra condition σn,16s <

ρ−
n,16s . In light of Lemma 2, the condition implies that m ≥ Ω

(

(

ρ+
n,16s

ρ−
n,16s

)2

s log(n/s)

)

.

Finally, we present the recovery error of the recovered high-dimensional model w̃∗.

Theorem 3 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies the

JL lemma. Let w̃∗ be the recovered primal solution in (8). Define L̃ = L if the loss function
is L-smooth, otherwise L̃ = λ

(ρ−
n,16s−σn,16s )

. Assume α∗ is s-sparse, maxi ‖xi‖2 ≤ R, and

σn,16s < ρ−
n,16s if the loss function is non-smooth. If we set

τ = Θ

(

2cR‖w∗‖2
√

log(n/δ)

m

)

≥ 2cR‖w∗‖2
√

log(n/δ)

m
,

then we have

‖w̃∗ − w∗‖2 ≤ O

⎛

⎝

√

ρ+
n,16s

λ
√
n

L̃ R‖w∗‖2
√
s

√

log(n/δ)

m

⎞

⎠ ,

where c is the quantity that appears in Lemma 1.

Remark 4 To understand the order of the recovery error, we consider a smooth loss function
with L being a constant. According to the learning theory, the optimal λ can be in the order
of 1/

√
n (Sridharan et al. 2008). In addition,

√
ρn,16s ≤ R. Thus, the recovery error is in

the order of O(R2‖w∗‖2√s/m) for a smooth loss function. We can compare this recovery
error with that derived in Zhang et al. (2014) for smooth loss functions, which is in the order
of O(

√
r/m‖w∗‖2) with r being the rank of the data matrix. The two errors have the same

scaling in terms of m. The error bound in Zhang et al. (2014) depends on the rank of the data
matrix, while that in Theorem 3 depends on the sparsity of the optimal dual solution α∗ to the
original problem. For real LSHD data, the sparsity of optimal solution α∗ is usually much less
than n, however, the rank of the data matrix is not necessarily much less than n in particular
when the dimensionality is very high, which renders the proposed dual-sparse recovery more
attractive. In experiments, we will show that the proposed dual-sparse recovery gives smaller
error than the ordinary dual recovery approach on real datasets.

4.2 Sparse regularized least-squares regression (SLSR)

Recall the problem of SLSR

w∗ = arg min
w∈Rd

1

2n
‖Xw − y‖22 + λ

2
‖w‖22 + γ ‖w‖1, (15)

where λ ≥ 0. Although many optimization algorithms have been developed for solving (15),
they could still suffer from high computational complexities for large-scale high-dimensional
data due to (i) an O(nd) memory complexity and (ii) an O(nd) iteration complexity.

To alleviate the two complexities, we consider using the JL transform to reduce the scale
of data. In particular, we let A ∈ R

m×n denote a random reduction matrix corresponding to
a JL transform, then we compute a sketched data by ̂X = AX ∈ R

m×d and ŷ = Ay ∈ R
m ,

and then solve the following problem:
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ŵ∗ = arg min
w∈Rd

1

2n
‖̂Xw − ŷ‖22 + λ

2
‖w‖22 + (γ + τ)‖w‖1, (16)

where τ > 0 is added to strengthen the sparse regularizer, whose theoretical value is exhibited
later. We emphasize that to obtain a bound on the optimization error of ŵ∗, i.e., ‖ŵ∗ −w∗‖,
it is important to increase the value of the regularization parameter before the �1 norm.
Intuitively, after compressing the data the optimal solution may become less sparse, hence
increasing the regularization parameter can pull the solution towards closer to the original
optimal solution.

Geometric Interpretation by Optimality Condition. We can explain the added parameter
τ from a geometric viewpoint, which sheds insights on its theoretical value. Without loss of
generality, we consider λ = 0. Since w∗ is the optimal solution to the original problem, then
there exists a sub-gradient g ∈ ∂‖w∗‖1 such that

1

n
X�(Xw∗ − y) + γ g = 0.

Since ‖g‖∞ ≤ 1, therefore w∗ must satisfy 1
n ‖X�(Xw∗ − y)‖∞ ≤ γ . Similarly, the com-

pressed problem (16) also defines a domain of the optimal solution ŵ∗, i.e.,

̂Dw =
{

w ∈ R
d : 1

n
‖̂X�(̂Xw − ŷ)‖∞ ≤ τ + γ

}

. (17)

It turns out that σ is added to ensure that the original optimal solutionw∗ lies in ̂Dw provided
that σ is set appropriately, which can be verified as follows:

1

n

∥

∥

∥

̂X�(̂Xw∗ − ŷ)
∥

∥

∥∞ = 1

n

∥

∥

∥X�(Xw∗ − y) + ̂X�(̂Xw∗ − ŷ) − X�(Xw∗ − y)
∥

∥

∥∞

≤ 1

n
‖X�(Xw∗ − y)‖∞ + 1

n

∥

∥

∥

̂X�(̂Xw∗ − ŷ) − X�(Xw∗ − y)
∥

∥

∥∞

≤ γ + 1

n
‖X�(A�A − I )(Xw∗ − y)‖∞.

Hence, if we set τ ≥ 1
n ‖X�(A�A− I )(Xw∗ −y)‖∞, it is guaranteed thatw∗ also lies in ̂Dw.

Lemma 5 in Sect. 7 provides an upper bound of 1
n ‖X�(A�A − I )(Xw∗ − y)‖∞, therefore

exhibits a theoretical value of τ .
Next, we present the theoretical guarantee on the recovery error of the obtained solution

ŵ∗.We use the notation e to denote Xw∗−y = e and assume ‖e‖2 ≤ η.We abuse the notation
R to denote the upper bound of column vectors in X , i.e., max1≤ j≤d ‖x̄ j‖2 ≤ R where x̄ j

denotes the j-th column of X . We first present the result for the elastic net regularizer, which
is a strongly convex function.

Theorem 4 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies the

JL lemma. Let w∗ and ŵ∗ be the optimal solutions to (15) and (16) for λ > 0, respectively.
Assume w∗ is s-sparse and max j ‖x̄ j‖2 ≤ R . If we set

τ = Θ

(

ηR

n

√

log(2d/δ)

m

)

≥ 2cηR

n

√

log(2d/δ)

m
.

Then with a probability at least 1 − δ, we have

‖ŵ∗ − w∗‖2 ≤ O

(

ηR
√
s

nλ

√

log(2d/δ)

m

)

, ‖ŵ∗ − w∗‖1 ≤ O

(

ηRs

nλ

√

log(2d/δ)

m

)

,
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where c is the quantity that appears in Lemma 1.

Remark The order of τ is derived by bounding 1
n ‖X�(A�A − I )e‖∞ that will be exhibited

later. The upper bound of the recovery error exhibits several interesting properties: (i) the term

of
√

s2/p log(d/δ)
m for p-norm error bound occurs commonly in theoretical results of sparse

recovery (Koltchinskii 2011); (ii) the term of R/λ is related to the condition number of the
optimization problem (15), which reflects the intrinsic difficulty of optimization; and (iii)
the term of η/n is related to the empirical error of the optimal solution w∗. This term makes
sense because if η = 0 indicating that the optimal solution w∗ satisfies Xw∗ − y = 0, then it
is straightforward to verify that w∗ also satisfies the optimality condition of (16) for τ = 0.
Due to the uniqueness of the optimal solution to (15), thus ŵ∗ = w∗.

Next, we present the result for random sketchedLASSO. Since the objective is not strongly
convex, we explore the restricted strong convexity with respect to sparse vectors, i.e, the
restricted eigen-value condition. Different from that the classification problem, here we
assume the restricted eigen-value condition for the matrix X�X .

Definition 2 Given an integer s > 0, we define

Kd,s = {w ∈ R
d : ‖w‖2 ≤ 1, ‖w‖1 ≤ √

s}.
We say that X�X ∈ R

d×d satisfies the restricted eigenvalue condition at sparsity level s if
there exist positive constants ρ+

d,s and ρ−
d,s such that

ρ+
d,s = sup

w∈Kd,s

w�X�Xw
n

, ρ−
d,s = inf

w∈Kd,s

w�X�Xw
n

. (18)

Note that the above definitions ofρ+
d,s andρ−

d,s are little different fromρ+
n,s andρ−

n,s . Similar to

before, we define another quantity that measures the restricted eigen-value of X�X − ̂X�
̂X ,

namely

σd,s = sup
w∈Kd,s

|w�(X�X − ̂X�
̂X)w|

n
. (19)

A similar lemma to Lemma 2 hold for σd,s and ρ+
d,s defined here.

Lemma 3 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies the

JL lemma. With a probability 1 − δ, we have

σd,s ≤ 16cρ+
d,s

√

(log(2/δ) + 2s log(27d/s))

m
,

where c is the quantity that appears in Lemma 1.

Theorem 5 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies

the JL lemma. Assume X�X satisfies the restricted eigen-value condition at sparsity level
16s. Let w∗ and ŵ∗ be the optimal solutions to (15) and (16) with λ = 0, respectively, and
Λ = ρ−

d,16s − 2σd,16s . If we set

τ = Θ

(

ηR

n

√

log(2d/δ)

m

)

≥ 2cηR

n

√

log(2d/δ)

m
,
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Assume Λ > 0, then with a probability at least 1 − δ, we have

‖ŵ∗ − w∗‖2 ≤ O

(

ηR
√
s

nΛ

√

log(2d/δ)

m

)

, ‖ŵ∗ − w∗‖1 ≤ O

(

ηRs

nΛ

√

log(2d/δ)

m

)

,

where c is the quantity that appears in Lemma 1.

Remark Note that λ in Theorem 4 is replaced by Λ in Theorem 5. In order to make the result

to be valid, we must have Λ > 0, i.e., m ≥ Ω

(

(

ρ+
d,16s

ρ−
d,16s

)2

s log(d/s)

)

. In addition, if the

conditions in Theorem 5 hold, the result in Theorem 4 can be made stronger by replacing λ

with λ + Λ.

Remark Under a standard statistical model that the noise in the observation follows a Gaus-
sian distribution the above result indicates the proposed method based on the sketched
data (AX , Ay) is statistically optimal. In particular, if we assume there exists u∗ such that
y = u�∗ x+ε, where ε ∼ N (0, σ 2). It was proved that under appropriate conditions (restricted
isometry property of the data matrix X ), any sparse estimator w̃ based on the sketched data
(AX , Ay) cannot be better than O(

s log(d/s)
m ) (Pilanci and Wainwright 2016). Under the con-

dition that the entries in X is bounded and the Gaussian noise in the observations e we have
R ∼ O(

√
n) andη ∼ O(

√
n). Thus, the above result indicates that‖ŵ∗−w∗‖22 ≤ O(

s log(d)
m ),

which further implies that the statistical error of ŵ∗ will be dominated by O(
s log(d)

m ) since

the statistical error of w∗ is O(
s log(d)

n ) (Bickel et al. 2009). Therefore, the proposed method
is statistically optimal up to a logarithmic factor among all methods that learn sparse solution
from the sketched data (AX , Ay).

5 Randomized reduction by JL transforms

In this section, we review several classes of random reduction matrices A ∈ R
m×N and their

JL-type lemmas.

5.1 subGaussian random projection

subGaussian random projection has been employed widely for dimension reduction. The
projection operator A is usually sampled from sub-Gaussian distributions with mean 0 and
variance 1/m, e.g., (i) Gaussian distribution: Ai j ∼ N (0, 1/m), (ii) Rademacher distribu-
tion: Pr(Ai j = ±1/

√
m) = 0.5, (iii) discrete distribution: Pr(Ai j = ±√

3/m) = 1/6 and
Pr(Ai j = 0) = 2/3. The last two distributions for dimensionality reduction were proposed
and analyzed in Achlioptas (2003). The following lemma is the general JL-type lemma for
A with sub-Gaussian entries.

Lemma 4 (Nelson 2015) Let A ∈ R
m×N be a random matrix with subGaussian entries of

mean 0 and variance 1/m . For any given x ∈ R
N with a probability 1 − δ, we have

∣

∣‖Ax‖22 − ‖x‖22
∣

∣ ≤ c

√

log(1/δ)

m
‖x‖22.

where c is some small universal constant.
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5.2 Subsampled randomized Hadamard transform (SRHT)

Randomized Hadamard transform was introduced to speed up random projection, reduc-
ing the computational time3 of random projection from O(Nm) to O(N log N ) or even
O(N logm). The projection matrix A is of the form A = PHD, where

– D ∈ R
N×N is a diagonal matrix with Dii = ±1 with equal probabilities.

– H is the N × N Hadamard matrix (assuming N is a power of 2), scaled by 1/
√
N .

– P ∈ R
m×N is typically a sparse matrix that facilities computing Px. Several choices of

P are possible (Ailon and Chazelle 2009; Nelson 2015; Tropp 2011). Below we provide
a JL-type lemma for subsampled randomized Hadamard transform.

Lemma 5 (Boutsidis and Gittens 2013) Let A =
√

N
m PHD ∈ R

m×N be a subsampled
randomized Hadamard transform with P being a random sampling matrix with or without
replacement. For any given x with a probability 1 − δ, we have

∣

∣‖Ax‖22 − ‖x‖22
∣

∣ ≤ c

√

log(1/δ) log(N/δ)

m
‖x‖22,

where c is some small universal constant.

Remark 5 Compared to subGaussian random projection, there is an additional
√

log(N/δ)

factor in the upper bound. So directly using the SRHT transform will blow up the recov-
ery error by a logarithmic factor of

√

log(d/δ) for classification and a logarithmic factor
of
√

log(n/δ) for SLSR. However, this additional factor can be removed by applying an

additional random projection. In particular, if we let A =
√

N
m P ′PHD ∈ R

m×N , where

P ∈ R
t×N is a random sampling matrix with t = m log(N/δ) and P̂ ∈ R

m×t is a random
projection matrix that satisfies Lemma 4, then we have the same order as that in Lemma 4.
Note that the projection by P̂ only involves marginal computation when m 	 N . Please
refer to Nelson (2015) for more details.

5.3 Random hashing

Another line ofwork to speedup randomprojection is randomhashingwhichmakes the reduc-
tion matrix A much sparser and takes advantage of the sparsity of original high-dimensional
vectors. It was introduced in Shi et al. (2009b) for dimensionality reduction and later was
improved to an unbiased version by Weinberger et al. (2009) with some theoretical anal-
ysis. Dasgupta et al. (2010) provided a rigorous analysis of the unbiased random hashing.
Recently, Kane and Nelson (2014) proposed two new random hashing algorithms with a
slightly sparser random matrix A. Here we provide a JL-type lemma for the random hashing
algorithm in Kane and Nelson (2014). Let hk(i) : [n] → [m/s], k = 1, . . . , s denote s
independent random hashing functions (assuming m is a multiple of s) and let

A =

⎛

⎜

⎜

⎜

⎜

⎝

H1D1

H2D2

·
·

HsDs

⎞

⎟

⎟

⎟

⎟

⎠

∈ R
m×N (20)

3 Refers to the running time of computing Ax.
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be a random matrix with a block of s random hashing matrices, where Dk ∈ R
N×N is

a diagonal matrix with each entry sampled from {−1,+1} with equal probabilities, and
Hk ∈ R

m/s,N with [Hk] j,i = δ j,hk (i). Note that A is a sparse matrix with the sparsity of each
column being s. The lemma below states the JL-type result for the random hashing matrix
given in (20).

Lemma 6 Let A be given in (20). If s = Θ(
√

m log(1/δ)) with a probability 1 − δ, we have

∣

∣‖Ax‖22 − ‖x‖22
∣

∣ ≤ c

√

log(1/δ)

m
‖x‖22.

If s = 1, the with a probability 2/3 we have

∣

∣‖Ax‖22 − ‖x‖22
∣

∣ ≤ c

√

1

m
‖x‖22,

where c is a universal constant.

Remark 6 The first inequality is a result in Kane and Nelson (2014). The second inequality
is proved in Nelson and Nguyen (2012). If using one block of random hashing matrix for
A, then the high probability error bounds become a constant probability error bounds. In
practice, we find that using one block random hashing performs as well as Gaussian random
projection.

5.4 Random sampling

Last we discuss random sampling and compare with the aforementioned randomized reduc-
tion methods.

Lemma 7 Let A =
√

d
m P ∈ R

m×d be a scaled random sampling matrix where P ∈ R
m×d

samples m coordinates with or without replacement. Then with a probability 1− δ, we have

∣

∣‖Ax‖22 − ‖x‖22
∣

∣ ≤ c

√
d‖x‖∞
‖x‖2

√

log(1/δ)

m
‖x‖22,

where c is a universal constant.

Remark 7 Compared with other three randomized reduction methods, there is an additional
‖x‖∞
‖x‖2

√
d factor in the upper bound, which could result in a much larger recovery error. That

is why the randomized Hadamard transform was introduced to make this additional factor
close to a constant.

6 Optimization and time complexity

In this section, we discuss the optimization for solving the original problems and the random
sketched problems, and the time complexities for the proposed randomized methods. There
are many optimization algorithms that can be used to solve the original formulations in (1)
or (2) or (3), including stochastic dual coordinate ascent for solving the dual formulation
(SDCA) (Shalev-Shwartz and Zhang 2013b), stochastic variance reduced gradient (SVRG)
(Johnson and Zhang 2013), stochastic average gradient algorithm (SAGA) (Defazio et al.
2014), accelerated stochastic proximal coordinate gradient method (APCG) (Lin et al. 2014),
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and many other variants (Shalev-Shwartz and Zhang 2013a, 2014; Xiao and Zhang 2014).
Next, we focus on the APCG algorithm since (i) it can be applied to solving the sparse
regularized dual formulation in (7) and the SLSR formulation in (16); (ii) it is applicable
for both strongly convex objective functions and non-strongly convex objective functions;
(iii) it achieves the state-of-the art iteration complexities for both problems. We restrict the
discussion to the strongly convex objective functions (i.e., the loss functions are smooth for
classification and the regularizer for SLSR includes the �2 norm). In particular, we assume
the loss functions for classification �(z) is L-smooth. In the following discussion, we make
no assumption about the sparsity of the data.

First, we note that the optimization problems in (2), (7), (15) and (16) can be written as
the following general form:

min
u∈RN

F(u) � 1

2n
u�C�Cu + β

2
‖u‖22

︸ ︷︷ ︸

f (u)

+
N
∑

i=1

φi (ui )

︸ ︷︷ ︸

Ψ (u)

, (21)

where C ∈ R
M×N and φi (ui ) is a convex function. In particular,

– For (2), we have N = n, M = d , u = α ∈ R
n , C = X� ∈ R

d×n , β = λ
L , and

φi (αi ) = λ(�∗
i (αi ) − 1

L α2
i )

– For (7), we have N = n, M = m, u = α ∈ R
n , C = ̂X� ∈ R

m×n , β = λ
L , and

φi (αi ) = λ(�∗
i (αi ) − 1

L α2
i + τ |αi |)

– For (15), we have N = d, M = n, u = w ∈ R
d , C = X ∈ R

n×d , β = λ, and
φi (wi ) = γ |wi | − 1

nwi [X�y]i
– For (16), we have N = d, M = m, u = w ∈ R

d , C = ̂X ∈ R
m×d , β = λ, and

φi (wi ) = (γ + τ)|wi | − 1
nwi [̂X�ŷ]i

Assume that max j ‖C∗ j‖2 ≤ Rc whereC∗ j denotes the j-th column. By the specific form
of f (u) in (21), we can show that

|∇i f (u + eiδ) − ∇i f (u)| ≤
(

R2
c

n
+ β

)

|δ|, ∀ δ ∈ R, i = 1, . . . , n, u ∈ R
N ,

where ei is the basis vector whose all coordinates are zero except that the i-th coordinate
is 1. By definition, this means the coordinate-wise Lipschitz continuity constant for each

coordinate of f (u) is R2
c
n + β. Knowing this constant and the strong convexity parameter β

of f (u), APCG method can be formulated as Algorithm 1.
The direct implementation of APCG requires updating full-dimensional vectors such

as v(k), w(k+1) and u(k+1) at each iteration. Moreover, the ik th coordinate of the gradient

∇i f (u) = CT∗i Cu
n + βui so that its direct computation requires taking a full-dimensional

inner product of vectors per iteration. Hence, the complexity of each iteration Algorithm 1 is
O(N ) at least if thematrixCTC can be pre-computed and stored inmemory. In order to avoid
these full-dimensional updates, the authors in Lin et al. (2014) proposed a change of variables
scheme so that APCG can be represented equivalently by transformed variables which can
be updated in only one dimension at each iteration and allows a low-cost computation of
∇i f (u). We present this efficient implementation of APCG in Algorithm 2.

According to Lin et al. (2014), the transformed variables x(k) and y(k) in Algorithm 2 are
related to the original variables in Algorithm 1 as follows

u(k) = ρkx(k) + y(k), v(k) = ρk+1x(k) + y(k), w(k) = −ρkx(k) + y(k),
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Algorithm 1 APCG for β > 0

input: u(0) ∈ dom(Ψ ), convexity parameter β > 0 and a constant Rc such that max j ‖C∗ j‖2 ≤ Rc .

initialize: set w(0) = u(0) and θ = 1
N

√

nβ

R2c+nβ
.

iterate: repeat for k = 0, 1, 2, . . .

1. Compute v(k) = u(k)+θw(k)

1+θ
.

2. Choose ik ∈ {1, . . . , n} uniformly at random and compute

w(k+1) = argminu∈RN L(u), where

L(u) =
{

Nθ
2

(

R2c
n + β

)

∥

∥u − (1 − θ)w(k) − θv(k)
∥

∥

2 + ∇ik f (v(k))(uik − v
(k)
ik

) + φik (uik )
}

.

3. Set u(k+1) = v(k) + Nθ(w(k+1) − w(k)) + Nθ2(w(k) − v(k)).

Algorithm 2 Efficient implementation of APCG for β > 0

input: u(0) ∈ dom(Ψ ), convexity parameter β > 0 and a constant Rc such that max j ‖C∗ j‖2 ≤ Rc .

initialize: set x(0) = 0, y(0) = u(0), p(0) = 0, q(0) = Cu(0), θ = 1
N

√

nβ

R2c+nβ
and ρ = 1−θ

1+θ
.

iterate: repeat for k = 0, 1, 2, . . .

1. Choose ik ∈ {1, . . . , n} uniformly at random and compute the coordinate gradient

∇(k)
ik

= 1

n

(

ρk+1CT∗ik p
(k) + CT∗ik q

(k)
)

+ β
(

ρk+1x(k)
ik

+ y(k)
ik

)

.

2. Compute

h(k)
ik

= argminh∈R
{

Nθ

2

(

R2
c
n

+ β

)

h2 + ∇(k)
ik

h + φik

(

−ρk+1x(k)
ik

+y(k)
ik

+h
)

}

.

3. Let x(k+1) = x(k) and y(k+1) = y(k), and update

x(k+1)
ik

= x(k)
ik

− 1 − Nθ

2ρk+1
h(k)
ik

, y(k+1)
ik

= y(k)
ik

+ 1 + Nθ

2
h(k)
ik

,

p(k+1) = p(k) − 1 − Nθ

2ρk+1
C∗ik h

(k)
ik

, q(k+1) = q(k) + 1 + Nθ

2
C∗ik h

(k)
ik

.

output: u(k+1) = ρk+1x(k+1) + y(k+1)

where ρ is defined as in Algorithm 2. The auxiliary vectors p(k) and q(k) are introduced in
order to compute ∇ik f (v

(k)) efficiently. In fact, according to Lin et al. (2014), p(k) and q(k)

satisfy

p(k) = Cu(k), q(k) = Cv(k),

in each iteration. Since v(k) = ρk+1x(k) + y(k), we have

∇ik f (v
(k)) = 1

n
CT∗ik C(ρk+1x(k) + y(k)) + β(ρk+1x (k)

ik
+ y(k)

ik
) = ∇(k)

ik
,

where ∇(k)
ik

is defined as in Algorithm 2. These observations verify that Algorithm 2 and
Algorithm 1 are essentially equivalent.
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Note that the complexity for computing ∇(k)
ik

and updating p(k) and q(k) are both O(M)

while the complexity for computing h(k)
ik

and updating x(k) and y(k) are only O(1). Hence,
the per-iteration complexity of Algorithm 2 is only O(M), lower than that of Algorithm 1.

The iteration complexity of APCG for solving (21) is stated in the following proposition.

Proposition 1 Assume thatmax j ‖C∗ j‖2 ≤ Rc where C∗ j denotes the j-th column. Then the
iteration complexity of APCG for finding u such that E[F(u)] − F∗] ≤ ε is bounded by

O

⎛

⎝N + N

√

R2
c

nβ

⎞

⎠ log(1/ε),

and the time complexity of APCG is bounded by

O

⎛

⎝NM + NM

√

R2
c

nβ

⎞

⎠ log(1/ε).

Suppose the loss function � in (5) is not L-smooth. Its conjugate function �∗ is not 1
L -

strongly convex. Then, (2) and (7) can be still formulated as (21) but with β = 0 and
φi (αi ) = λ�∗

i (αi ). Besides, if the parameter λ = 0 in (15) and (16), we will β = 0 in
the corresponding formulation of (21). In either case, (21) is no longer a strongly convex
optimization problem. However, both Algorithm 1 and Algorithm 2 can be still adapted for
solving (21)with similar updating steps except that the parameter θ will varywith the iteration
number k. As showed in Lin et al. (2014), if β = 0, the iteration complexity of APCG for
finding u such that E[F(u)] − F∗] ≤ ε is bounded by

O

⎛

⎝N

√

R2
c

nε

⎞

⎠ ,

and the per-iteration cost with an implementation similar to Algorithm 2 is still O(M).
Next, we analyze the total time complexities for the optimizing original formula-

tions (2), (15) and for the proposed formulations (7) and (16).

6.1 Optimization time complexity for classification

We first consider the time complexity for optimizing the original formulation (2) and
the proposed formulation (7) for classification. For the original formulation, Rc = R �
max1≤i≤n ‖xi‖2, the time complexity is

O

⎛

⎝nd + nd

√

R2L

nλ

⎞

⎠ log(1/ε). (22)

In contrast, for the proposed formulation (7) with a high probability 1 − δ,

Rc = max
1≤i≤n

‖̂xi‖2 = max
1≤i≤n

‖Axi‖2 = max
1≤i≤n

‖Axi‖2 ≤ max
1≤i≤n

√

(1 + εm)‖xi‖2
= √

(1 + εm)R,
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where εm = c
√

log(n/δ)/m according to Assumption 1. By assuming that m is sufficiently
large such that εm ≤ 1, then the time complexity is

O

⎛

⎝nm + nm

√

R2L

nλ

⎞

⎠ log(1/ε) = O

⎛

⎝

m

d

⎡

⎣nd + nd

√

R2L

nλ

⎤

⎦

⎞

⎠ log(1/ε). (23)

Compared to time complexity in (22) for solving the original formulation, the time complexity
for solving the proposed formulation on the random sketched data is scaled roughly by
m/d 	 1 with a high probability.

6.2 Optimization time complexity for SLSR

Next, we analyze and compare the time complexity of optimization for (15) and (16). For (15),
Rc = R � max1≤ j≤d ‖x̄ j‖2, where x̄ j denotes the j-th column of the data matrix X .
Therefore the time complexity of APCG becomes

O

⎛

⎝nd + nd

√

R2

nλ

⎞

⎠ log(1/ε). (24)

For (16), with high probability 1 − δ, we have

Rc = max
1≤ j≤d

‖Ax̄ j‖2 ≤ max
1≤ j≤d

√

1 + εm‖x̄ j‖2 = √

1 + εm R,

where εm = O(
√

log(d/δ)/m). Let m be sufficiently large, we can conclude that Rc for ̂X
is O(R). Therefore, the time complexity of APCG for solving (16) is

O

⎛

⎝md + md

√

R2

nλ

⎞

⎠ log(1/ε) = O

⎛

⎝

m

n

⎡

⎣nd + nd

√

R2

nλ

⎤

⎦

⎞

⎠ log(1/ε)

Hence, we can see that the optimization time complexity of APCG for solving (16) can be
reduced upto a factor of 1 − m

n , which is substantial when m 	 n.

6.3 Total amortized time complexity and parallel computation

The total time complexity for the proposed randomized methods consists of the optimiza-
tion time for the reduced formulations, and the extra time for randomized reduction and
dual recovery if a high-dimensional model in the original feature space is required in the
classification problem, i.e.,

Total Time = timeproc + timeopt ,

where timeopt refers to the optimization time for solving the reduced formulations and
timeproc refers to the extra processing time of reduction and recovery if necessary. The
recovery time is O(nd) for the proposed randomized algorithm for classification. Among all
randomized reduction methods, the transformation using the Gaussian random matrices is
the most expensive that takes O(mnd) time complexity when applied to X ∈ R

n×d , while
subsampled randomized Hadamard transform and random hashing can reduce it to ˜O(nd)

and O(nnz(X)), respectively, where ˜O(·) suppresses only a logarithmic factor and nnz(X)

denotes the number of non-zeros entries in X . Although the extra computational time still

123



Machine Learning (2020) 109:899–938 919

scales as nd in the worst case comparable to that for optimizing the original optimization
problems, the computational benefit of the proposed randomized algorithms can become
more prominent when we consider the amortizing time complexity and parallel computation
to speed up reduction and recovery. In particular, in machine learning, we usually need to
tune the regularization parameters (aka cross-validation) to achieve a better generalization
performance. Let B denote the number of settings for the regularization parameters, and K
denote the number of nodes (cores) for performing the reduction (and recovery if necessary),
then the total amortized time complexity of one node (core) becomes

Total Amortized Time = timeproc
K

+ B · timeopt .

In comparison, the total amortized time complexity for solving the original formulations
is B · Timeopt . According to the analysis in previous subsections, timeopt is m/n 	 1 or
m/d 	 1 times of Timeopt , hence the total amortized time complexity of the proposed
randomized methods using parallel computation can be substantially reduced. Note that here
we do not consider the parallel optimization that includes communication time between
different nodes (cores), rendering the analysis of optimization time much more involved.

7 Proofs

In this section, we present proofs for the main results.

7.1 Proof of Theorem 1

Denote by S the support set of α∗ and by Sc its complement. Define

Δ = 1

λn
(XX� − ̂X̂X�)α∗. (25)

Let F̂(α) be defined as

F̂(α) = 1

n

n
∑

i=1

�∗
i (αi ) + 1

2λn2
αT
̂X̂X�α + τ

n
‖α‖1.

Since α̃∗ = argmin F̂(α) therefore for any g∗ ∈ ∂‖α∗‖1

0 ≥F̂ (̃α∗) − F̂(α∗) ≥ (̃α∗ − α∗)�
(

1

n
∇�∗(α∗) + 1

λn2
̂X̂X�α∗

)

+ τ

n
(̃α∗ − α∗)�g∗

+ 1

2nL
‖α̃∗ − α∗‖22,

where we used the strong convexity of �∗
i and its strong convexity modulus 1/L . By the

optimality condition of α∗, we can have

0 ≥ (α∗ − α̃∗)�
(

1

n
∇�∗(α∗) + 1

λn2
XX�α∗

)

. (26)

Combining the above two inequalities we have

0 ≥(̃α∗ − α∗)�
1

n
Δ + τ

n
(̃α∗ − α∗)�g∗ + 1

2nL
‖α̃∗ − α∗‖22.
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Since the above inequality holds for any g∗ ∈ ∂‖α∗‖1, if we choose [g∗]i = sign([̃α∗]i ), i ∈
Sc, then we have

(̃α∗ − α∗)�g∗ ≥ −‖[̃α∗]S − [α∗]S‖1 + ‖[̃α∗]Sc‖1.
Combining the above inequalities leads to

(τ + ‖Δ‖∞)‖[̃α∗]S − [α∗]S‖1 ≥(τ − ‖Δ‖∞)‖[̃α∗]Sc‖1 + 1

2L
‖α̃∗ − α∗‖22. (27)

Assuming τ ≥ 2‖Δ‖∞, we have

3τ

2
‖[̃α∗]S − [α∗]S‖1 ≥ τ

2
‖[̃α∗]Sc‖1 + 1

2L
‖α̃∗ − α∗‖22. (28)

Then

‖α̃∗ − α∗‖22 ≤ 3τ L‖[̃α∗]S − [α∗]S‖1
‖[̃α∗]Sc‖1 ≤ 3‖[̃α∗]S − [α∗]S‖1.

(29)

Therefore,

‖[̃α∗ − α∗]S‖21 ≤ s‖α̃∗ − α∗‖22 ≤ 3τ Ls‖[̃α∗]S − [α∗]S‖1,
leading to the result

‖[̃α∗]S − [α∗]S‖1 ≤ 3τ Ls.

Combining this inequality with inequalities in (29) we have

‖[̃α∗]Sc‖1 ≤ 9τ Ls

‖α̃∗ − α∗‖2 ≤ 3τ L
√
s. (30)

and

‖α̃∗ − α∗‖1 ≤ ‖[̃α∗]Sc‖1 + ‖[̃α∗]S − [α∗]S‖1 ≤ 12τ Ls. (31)

To complete the proof of Theorem 1, we need to bound ‖Δ‖∞, i.e., the value of τ .

Lemma 8 Let A ∈ R
m×d be a random matrix such that Assumption 1. Then with a high

probability 1 − δ we have

‖Δ‖∞ ≤ cR‖w∗‖2
√

log(2n/δ)

m
,

where R = maxi ‖xi‖2.
Proof Let εm,δ = c

√

log(1/δ)/m.

1

λn
(̂X̂X� − XX�)α∗ = 1

λn
(X A�AX� − XX�)α∗

= 1

λn
X(A�A − I )X�α∗ = X(I − A�A)w∗,

where we use the fact w∗ = − 1
λn X

�α∗. Then

1

λn
[(̂X̂X� − XX�)α∗]i = x�

i (I − A�A)w∗.
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Therefore in order to bound ‖Δ‖∞, we need to bound x�
i (I − A�A)w∗ for all i ∈ [n]. We

first bound for individual i and then apply the union bound. Let x̃i and w̃∗ be normalized
version of xi and w∗, i.e., x̃i = xi/‖xi‖2 and w̃∗ = w∗/‖w∗‖2. By Assumption 1, with a
probability 1 − δ,

(1 − εm,δ)‖̃xi + w̃∗‖22 ≤ ‖A(̃xi + w̃∗)‖22 ≤ (1 + εm,δ)‖̃xi + w̃∗‖22,
and with a probability 1 − δ,

(1 − εm,δ)‖̃xi − w̃∗‖22 ≤ ‖A(̃xi − w̃∗)‖22 ≤ (1 + εm,δ)‖̃xi − w̃∗‖22.
Then with a probability 1 − 2δ, we have

x̃�
i A�Aw̃∗ − x̃�

i w̃∗ = ‖A(̃xi + w̃∗)‖22 − ‖A(̃xi − w̃∗)‖22
4

− x̃�
i w̃∗

≤ (1 + εm,δ)‖̃xi + w̃∗‖22 − (1 − εm,δ)‖̃xi − w̃∗‖22
4

− x̃�
i w̃∗

≤ εm,δ

2
(‖̃xi‖22 + ‖w̃∗‖22) ≤ εm,δ,

and

x̃�
i A�Aw̃ − x̃�

i w̃∗ = ‖A(̃xi + w̃∗)‖22 − ‖A(̃xi − w̃∗)‖22
4

− x̃�
i w̃∗

≥ (1 − εm,δ)‖̃xi + w̃∗‖22 − (1 + εm,δ)‖̃xi − w̃∗‖22
4

− x̃�
i w̃∗

≥ −εm,δ

2
(‖̃xi‖22 + ‖w̃∗‖22) ≥ −εm,δ.

Therefore with a probability 1 − 2δ, we have

|x�
i A�Aw∗ − x�

i w∗| ≤ ‖xi‖2‖w∗‖2 |̃x�
i A�Aw̃∗ − x̃�w̃∗| ≤ ‖xi‖2‖w∗‖2εm,δ.

Then applying union bound, with a probability 1 − 2nδ,

‖Δ‖∞ ≤ cR‖w∗‖2
√

log(1/δ)

m
,

or with a probability 1 − δ

‖Δ‖∞ ≤ cR‖w∗‖2
√

log(2n/δ)

m
.

��
To finish the proof of Theorem 1, we can combine the above Lemma with the inequalities
in (31) and (30) by noting the value of τ .

7.2 Proof of Theorem 2

Following the same proof of Theorem 1, we first notice that inequality (27) holds for L = ∞,
i.e.,

(τ + ‖Δ‖∞)‖[̃α∗]S − [α∗]S‖1 ≥(τ − ‖Δ‖∞)‖[̃α∗]Sc‖1.
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Therefore if τ ≥ 2‖Δ‖∞, we have

‖[̃α∗]Sc‖1 ≤ 3‖[̃α∗]S − [α∗]S‖1.
As a result,

‖α̃∗ − α∗‖1
‖α̃∗ − α∗‖2 ≤ ‖[̃α∗]S − [α∗]S‖1 + ‖[̃α∗]Sc‖1

‖α̃∗ − α∗‖2 ≤ 4‖[̃α∗]S − [α∗]S‖1
‖α̃∗ − α∗‖2 ≤ 4

√
s.

By the definition of Kn,s , we have
α̃∗ − α∗

‖α̃∗ − α∗‖2 ∈ Kn,16s . To proceed the proof, there exists

g̃∗ ∈ ∂ |̃α∗|1 such that

0 ≥(̃α∗ − α∗)�
(

1

n
∇�∗(̃α∗) + 1

λn2
̂X�

̂X α̃∗
)

+ τ

n
(̃α∗ − α∗)�g̃∗.

Adding the above inequality to (26), we have

0 ≥ (α∗ − α̃∗)�
(

1

n
∇�∗(α∗) − 1

n
∇�∗(̃α∗)

)

+ (α∗ − α̃∗)�
(

1

λn2
X�Xα∗ − 1

λn2
̂X�

̂X α̃∗
)

+ τ

n
‖[̃α∗]Sc‖1 − τ

n
‖[̃α∗]S − [α∗]S‖1 .

By convexity of �∗ we have

(α∗ − α̃∗)�
[

1

n
∇�∗(α∗) − 1

n
∇�∗(̃α∗)

]

≥ 0.

Thus, we have

τ ‖[̃α∗]S − [α∗]S‖1 ≥ τ ‖[̃α∗]Sc‖1 + (α∗ − α̃∗)�
(

1

λn
X�X − 1

λn
̂X�

̂X

)

α∗

− (α∗ − α̃∗)�
(

1

λn
X�X − 1

λn
̂X�

̂X

)

(α∗ − α̃∗)

+ 1

λn
(α∗ − α̃∗)�X�X(α∗ − α̃∗).

Since

(α∗ − α̃∗)�Δ ≥ −‖Δ‖∞‖α∗ − α̃∗‖1,
and τ ≥ 2‖Δ‖∞ and by the definition of ρ−

s , σs , we have

3τ

2
‖[̃α∗ − α∗]S‖1 ≥ τ

2
‖[̃α∗]Sc‖1 + ρ−

16s − σ16s

λ
‖α̃∗ − α∗‖22.

This is similar to the inequality (28). Then the conclusion follows the same analysis as before.

7.3 Proof of Theorem 4

Define

q = 1

n
X�(A�A − I )e, e = Xw∗ − y. (32)
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First, we note that

ŵ∗ = arg min
w∈Rd

1

2n
‖̂Xw − ŷ‖22 + λ

2
‖w‖22 + (γ + τ)‖w‖1

= arg min
w∈Rd

1

2n

(

w�
̂X�

̂Xw − 2w�
̂X�y

)

+ λ

2
‖w‖22 + (γ + τ)‖w‖1

︸ ︷︷ ︸

̂F(w)

,

and

w∗ = arg min
w∈Rd

1

2n
‖Xw − y‖22 + λ

2
‖w‖22 + γ ‖w‖1.

By optimality of ŵ∗ and the strong convexity of ̂F(w), for any g ∈ ∂‖w∗‖1 we have

0 ≥ ̂F(ŵ∗) − ̂F(w∗) ≥ (ŵ∗ − w∗)�
(

1

n
̂X�

̂Xw∗ − 1

n
̂X�ŷ + λw∗

)

+ (γ + τ)(ŵ∗ − w∗)�g + λ

2
‖ŵ∗ − w∗‖22. (33)

By the optimality condition of w∗, there exists h ∈ ∂‖w∗‖1 such that

1

n
X�Xw∗ − 1

n
X�y + λw∗ + γ h = 0. (34)

By utilizing the above equation in (33), we have

0 ≥(ŵ∗ − w∗)�q + (ŵ∗ − w∗)�
[

(γ + τ)g − γ h
]+ λ

2
‖ŵ∗ − w∗‖22. (35)

Let S denote the support set of w∗ and Sc denote its complement set. Since g could be any

sub-gradient of ‖w‖1 at w∗, we define g as gi =
{

hi , i ∈ S
sign(ŵ∗i ), i ∈ Sc . Then we have

(ŵ∗ − w∗)�
[

(γ + τ)g − γ h
] =

∑

i∈S
(ŵ∗i − w∗i )(τhi )

+
∑

i∈Sc

(ŵ∗i − w∗i )(τ sign(ŵ∗i ) + γ (sign(ŵ∗i ) − hi ))

≥ −τ‖[ŵ∗ − w∗]S‖1 +
∑

i∈Sc

τ sign(ŵ∗i )ŵ∗i

+
∑

i∈Sc

γ (sign(ŵ∗i ) − hi )ŵ∗i

≥ −τ‖[ŵ∗ − w∗]S‖1 + τ‖[ŵ∗]Sc‖1,
where the last inequality uses |hi | ≤ 1 and

∑

i∈Sc
(sign(ŵ∗i ) − hi )ŵ∗i ≥ 0. Combining the

above inequality with (35), we have

0 ≥ − ‖ŵ∗ − w∗‖1‖q‖∞ − τ‖[ŵ∗ − w∗]S‖1 + τ‖[ŵ∗]Sc‖1 + λ

2
‖ŵ∗ − w∗‖22.

By splitting ‖ŵ∗ − w∗‖1 = ‖[ŵ∗ − w∗]S‖1 + ‖[ŵ∗ − w∗]Sc‖1 and reorganizing the above
inequality we have

λ

2
‖ŵ∗ − w∗‖22 + (τ − ‖q‖∞)‖[ŵ∗]Sc‖1 ≤ (τ + ‖q‖∞)‖[ŵ∗ − w∗]S‖1. (36)

123



924 Machine Learning (2020) 109:899–938

If τ ≥ 2‖q‖∞, then we have

λ

2
‖ŵ∗ − w∗‖22 ≤ 3τ

2
‖[ŵ∗ − w∗]S‖1 (37)

‖[ŵ∗]Sc‖1 ≤ 3‖[ŵ∗ − w∗]S‖1. (38)

Note that the inequality (38) hold regardless the value of λ. Since

‖[ŵ∗ − w∗]S‖1 ≤ √
s‖[ŵ∗ − w∗]S‖2,

‖ŵ∗ − w∗‖2 ≥ max(‖[ŵ∗ − w∗]S‖2, ‖[ŵ∗]Sc‖2),
by combining the above inequalities with (37), we can get

‖ŵ∗ − w∗‖2 ≤ 3τ

λ

√
s, ‖[ŵ∗ − w∗]S‖1 ≤ 3τ

λ
s,

and

‖ŵ∗ − w∗‖1 ≤ ‖[ŵ∗]Sc‖1 + ‖[ŵ∗ − w∗]S‖1
≤ 3‖[ŵ∗ − w∗]S‖1 + ‖[ŵ∗ − w∗]S‖1
≤ 12τ

λ
s.

We can then complete the proof of Theorem 2 by noting the upper bound of ‖q‖∞ in the
following lemma and by setting γ according to the Theorem.

Lemma 9 Let A ∈ R
m×n be a random matrix such that Assumption 1. With a probability at

least 1 − δ, we have

‖q‖∞ ≤ cηR

n

√

log(2d/δ)

m
,

where R = max j ‖x̄ j‖ and c is the quantity that appears in Assumption 1.

The lemma can be proved similarly as the Lemma 8.

7.4 Proof of Theorem 5

When λ = 0, the reduced problem becomes

ŵ∗ = arg min
w∈Rd

1

2n
‖̂Xw − ŷ‖22 + (γ + τ)‖w‖1

︸ ︷︷ ︸

̂F(w)

. (39)

Recall the original optimization problem:

w∗ = arg min
w∈Rd

1

2n
‖Xw − y‖22 + γ ‖w‖1.

From the proof of Theorem 4, we have

‖[ŵ∗]Sc‖1 ≤ 3‖[ŵ∗ − w∗]S‖1, and
‖ŵ∗ − w∗‖1
‖ŵ∗ − w∗‖2 = 4‖[ŵ∗ − w∗]S‖1

‖ŵ∗ − w∗‖2 ≤ 4
√
s.
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Thus ŵ∗−w∗‖ŵ∗−w∗‖2 ∈ Kd,16s . Then we proceed our proof as follows. Sincew∗ optimizes F(w∗),
we have for any g ∈ ∂‖ŵ∗‖1

0 ≥ F(w∗) − F(ŵ∗) ≥ (w∗ − ŵ∗)�
(

1

n
X�Xŵ∗ − 1

n
X�y + γ g

)

+ 1

2n
(w∗ − ŵ∗)�X�X(w∗ − ŵ∗).

Since ŵ∗ optimizes ̂F(w), by the first order optimality condition there exists h ∈ ∂‖ŵ∗‖1
such that

0 ≥ (ŵ∗ − w∗)�
(

1

n
̂X�

̂Xŵ∗ − 1

n
̂X�ŷ

)

+ (γ + τ)(ŵ∗ − w∗)�h.

Combining the two inequalities above we have

0 ≥ (w∗ − ŵ∗)�
(

1

n
X�Xŵ∗ − 1

n
X�y − 1

n
̂X�

̂Xŵ∗ + 1

n
̂X�ŷ

)

+ (ŵ∗ − w∗)�(γ h + τh − γ g)

+ 1

2n
(w∗ − ŵ∗)�X�X(w∗ − ŵ∗)

= (w∗ − ŵ∗)�
(

1

n
X�Xw∗ − 1

n
X�y − 1

n
̂X�

̂Xw∗ + 1

n
̂X�ŷ

)

+ (ŵ∗ − w∗)�(γ h + τh − γ g)

+ 1

2n
(w∗ − ŵ∗)�X�X(w∗ − ŵ∗)

+ (w∗ − ŵ∗)�
(

1

n
X�X(ŵ∗ − w∗) − 1

n
̂X�

̂X(ŵ∗ − w∗)
)

= (w∗ − ŵ∗)�
(

1

n
X�Xw∗ − 1

n
X�y − 1

n
̂X�

̂Xw∗ + 1

n
̂X�ŷ

)

+ (ŵ∗ − w∗)�(γ h + τh − γ g)

+ 1

2n
(w∗ − ŵ∗)�X�X(w∗ − ŵ∗)

+ (w∗ − ŵ∗)�
(

1

n
X�X − 1

n
̂X�

̂X

)

(ŵ∗ − w∗).

By setting gi = hi , i ∈ S and following the same analysis as in the proof of Theorem 4, we
have

(ŵ∗ − w∗)�(γ h + τh − γ g) ≥ −τ‖[ŵ∗ − w∗]S‖1 + τ‖[ŵ∗]Sc‖1.
As a result,

0 ≥ − ‖ŵ∗ − w∗‖1‖q‖∞ − τ‖[ŵ∗ − w∗]S‖1 + τ‖[ŵ∗]Sc‖1 + ρ−
d,16s

2
‖ŵ∗ − w∗‖22

− σd,16s‖ŵ∗ − w∗‖22.
Then we arrive at the same inequality as in (36) with λ replaced by ρ−

d,16s − 2σd,16s . Then
the same analysis will follow to prove Theorem 5.
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Table 1 Statistics of datasets Name #Training #Testing #Features

RCV1 677,399 20,242 47,236

KDD 8,407,752 748,401 29,890,095

Splice 1,000,000 4,627,840 12,495,340

E2006-tfidf 16,087 3308 150,360

8 Extensions

8.1 Recovery error with nearly sparse dual solution for classification

In this section, we provide a theoretical result on the recovery error for the nearly sparse
optimal dual variable α∗. We state the result for smooth loss functions. To quantify the near
sparsity, we let αs∗ ∈ R

n denote a vector that zeros all entries in α∗ except for the top-s
elements in magnitude and assume αs∗ satisfies the following condition:

∥

∥

∥

∥

∇�∗(αs∗) + 1

λn
X X�αs∗

∥

∥

∥

∥∞
≤ ξ, (40)

where ∇�∗(α) = (∇�∗
1(α1), . . . , ∇�∗

n(αn))
�. The above condition can be considered as a

sub-optimality condition (Boyd andVandenberghe 2004) of αs∗ measured in the infinite norm.
For the optimal solution α∗ that lies in the interior of its domain, we have∇�∗(α∗)+ 1

λn X X�
α∗ = 0.

Theorem 6 Let A ∈ R
m×d be a random matrix sampled from a distribution that satisfies

the JL lemma. Let α̃∗ be the optimal dual solution to (7). Assume α∗ is nearly s-sparse
such that (40) holds, maxi ‖xi‖2 ≤ R and �(z) is L-smooth. If we set τ ≥ 2

λn ‖(XX� −
̂X̂X�)α∗‖∞ + 2ξ , then we have

‖α̃∗ − αs∗‖2 ≤ 3τ L
√
s, ‖α̃∗ − αs∗‖1 ≤ 12τ Ls.

Remark 8 The proof appears in “Appendix A”. Compared to Theorem 1 for exactly sparse
optimal dual solution, the dual recovery error bound for nearly sparse optimal dual solution
is increased by 6L

√
sξ for �2 norm and by 24Lsξ for �1 norm.

9 Numerical experiments

In this section,weprovide experimental results to complement the theoretical analysis.Weuse
four datasets for our experiments, whose statistics are summarized in Table 1. Among them,
RCV1, KDD and Splice are for the classification task and E2006-tfidf is for the regression
task.

9.1 Classification

Wefirst study the recovery error for classification.We use the RCV1-binary data (Lewis et al.
2004) to conduct the study. The data contains 697, 641 documents and 47, 236 features. We
use a splitting 677, 399/20, 242 for training and testing. The feature vectors were normalized
such that the �2 norm is equal to 1.We only report the results using random hashing as in (20)
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Fig. 1 Recovery error for squared hinge loss. From left to right:
‖[̃α∗]Sc ‖1‖[̃α∗]S−[α∗]S‖1 versus τ , ‖α̃∗−α∗‖2‖α∗‖2 versus

τ , and ‖w̃∗−w∗‖2‖w∗‖2 versus τ
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Fig. 2 Same curves as in Fig. 1 but for non-smooth hinge loss

since it is the most efficient, while other randomized reduction methods (except for random
sampling) have similar performance. For the loss function, we use both the squared hinge
loss (smooth) and the hinge loss (non-smooth). We aim to examine two questions related
to our analysis and motivation (i) how does the value of τ affect the recovery error? (ii)
how does the number of samples m affect the recovery error? We vary the value of τ among
0, 0.1, 0.2, . . . , 0.9, the value ofm among 1024, 2048, 4096, 8192, and the value of λ among
0.001, 0.00001.Note that τ = 0 corresponds to the dual recovery approachproposed inZhang
et al. (2013). The results averaged over 5 random trials are shown in Fig. 1 for the squared
hinge loss and in Fig. 2 for the hinge loss.We first analyze the results in Fig. 1.We can observe
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that when τ increases the ratio of ‖[̃α∗]Sc ‖1
‖[̃α∗]S−[α∗]S‖1 decreases indicating that the magnitude of

dual variables for the original non-support vectors decreases. This is intuitive and consistent
with our motivation. The recovery error of the dual solution (middle) first decreases and then
increases. This can be partially explained by the theoretical result in Theorem 1. When the
value of τ becomes larger than a certain threshold making τ > ‖Δ‖∞ hold, then Theorem 1
implies that a larger τ will lead to a larger error. On the other hand, when τ is less than the
threshold, the dual recovery error will decrease as τ increases, verifying that adding a sparse
regularizer is very important. In addition, the figures exhibit that the thresholds for larger
m are smaller which is consistent with our analysis of ‖Δ‖∞ = O(

√
1/m). The difference

between λ = 0.001 and λ = 0.00001 is because that smaller λ will lead to larger ‖w∗‖2.
In terms of the hinge loss, we observe similar trends, however, the recovery is much more
difficult than that for squared hinge loss especially when the value of λ is small.

Next, we compare the classification performance of different randomized methods. We
compare the proposed randomized method by solving a sparse regularized dual formulation
and recovering a high-dimensional model by dual recovery (referred to as DSRR), and the
previous random projection with dual recovery (referred to as RPDR), and the standard
random projection approach (referred to as RP) that learns a low-dimensional model from
random sketched data. For eachmethod, we use three randomized reductionmethods, namely
random Gaussian projection (RG), random hashing (RH) and random sampling (RS). Note
comparing to RS that does not satisfy the JL lemma in general allows us to verify that the JL
property is very important for maintaining good performance. The loss function is fixed to the
hinge loss, the regularization parameter is set to 10−5, and the sparse regularization parameter
in DSRR is set to 0.9. We test on two data sets, namely RCV1 used in the first experiment and
Splice site data (Sonnenburg and Franc 2010). For Splice site data, we use a subset of data
that contains 106 training examples, 4,627,840 testing examples and 12,495,340 features,
and we evaluate the classification performance by the measure of area under precision recall
curve (auPRC)4 as in Sonnenburg and Franc (2010) due to that the data is highly imbalanced.
We show the results in Fig. 3 for two values of the reduced dimensionality m = 500 and
m = 1000. From the results we can see that (i) RS usually performs worse than RG and RH,
which verifies that satisfying the JL property is very important for the randomized reduction
methods; (ii) there is no clearwinner betweenRGandRH; howeverRH ismuchmore efficient
RG; (iii) DSRR performs similarly to RPDR on RCV1 data and better than RPDR on Splice
site data, implying that DSRR is favorable than RPDR; (iv) both DSRR and RPDR performs
better than RP, verifying that recovering an accurate high-dimensional model benefits the
prediction performance.

Runtime Speedup byDistributed Learning: Although in some cases the recovered solution
or the solution learned in the reduced space can provide sufficiently good performance, it usu-
ally performs worse than the optimal solution that solves the original problem and sometimes
the performance gap between them can not be ignored as seen in following experiments. To
address this issue, we combine the benefits of distributed learning and the proposed random-
ized reduction methods for solving big data problems. When data is too large and sits on
multiple machines, distributed learning can be employed to solve the optimization problem.
In distributed learning, individual machines iteratively solve sub-problems associated with
the subset of data on them and communicate some global variables (e.g., the primal solution
w ∈ R

d ) among them. When the dimensionality d is very large, the total communication
cost could be very high. To reduce the total communication cost, we propose to first solve the

4 The higher the auPRC the better the performance.
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Fig. 3 Classification performance of different randomized methods on RCV1 ad Splice data

reduced data problem and then use the found solution as the initial solution to the distributed
learning for the original data.

Below, we demonstrate the effectiveness of DSRR for the recently proposed distributed
stochastic dual coordinate ascent (DisDCA) algorithm (Yang 2013). The procedure is (1)
reduce original high-dimensional data to very low dimensional space on individualmachines;
(2) use DisDCA to solve the reduced problem; (3) use the optimal dual solution to the reduce
problem as an initial solution to DisDCA for solving the original problem. We record the
running time for randomized reduction in step 1 and optimization of the reduced problem in
step 2, and the optimization of the original problem in step 3. We compare the performance
of four methods (i) the method that only uses the low-dimensional model learned by solving
the reduced problem (7) with DisDCA, which is referred to as DSRR-ld, (ii) the method
that uses the recovered model in the original space with the dual solution learned by solving
the reduced problem (7) with DisDCA, referred to as DSRR-hd; (iii) the method that uses
the dual solution to the reduced problem as an initial solution of DisDCA and runs it for
the original problem with k = 1 or 2 communications (the number of updates before each
communication is set to the number of examples in each machine), referred to as DSRR-
DisDCA-k; and (iv) the distributed method that directly solves the original dual problem by
DisDCA. For DisDCA to solve the original problem, we stop running when its performance
on the testing data does not improve. Two data sets are used, namely RCV1-binary, KDD
2010 Cup data. For KDD 2010 Cup data, we use the one available on LibSVM data website.
RCV1 data is evenly distributed over 5 machines and KDD data is evenly distributed over
10 machines. The results averaged over 5 trials are shown in Fig. 4, which exhibit that the
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Fig. 4 Top: Testing error for different methods. Bottom: Training time for different methods. The value of
λ = 10−5 and the value of τ = 0.9. The high-dimensional features are reduced to m = 1024-dimensional
space using random hashing. The loss function is the squared hinge loss

performance of DSRR-DisDCA-1/2 is remarkable in the sense that it achieves almost the
same performance of directly training on the original data (DisDCA) and uses much less
training time with about 5 times speedup. In addition, DSRR-DisDCA performs much better
than DSRR-ld and has small computational overhead.

9.2 SLSR

In this subsection, we present some numerical experiments for SLSR. We conduct experi-
ments on two datasets, a synthetic dataset and a real dataset. The synthetic data is generated
similar to previous studies on sparse signal recovery (Xiao and Zhang 2013). In particu-
lar, we generate a random matrix X ∈ R

n×d with n = 104 and d = 105. The entries of
the matrix X are generated independently with the uniform distribution over the interval
[−1,+1]. A sparse vector u∗ ∈ R

d is generated with the same distribution at 100 randomly
chosen coordinates. The noise ξ ∈ R

n is a dense vector with independent random entries
with the uniform distribution over the interval [−σ, σ ], where σ is the noise magnitude and
is set to 0.1. We scale the data matrix X such that all entries have a variance of 1/n and
scale the noise vector ξ accordingly. Finally the vector y was obtained as y = Xu∗ + ξ . For
elastic net on the synthetic data, we try two different values of λ, 10−8 and 10−5. The value
of γ is set to 10−5 for both elastic net and lasso. Note that these values are not intended to
optimize the performance of elastic net and lasso on the synthetic data. The real data used
in the experiment is E2006-tfidf dataset. We use the version available on libsvm website.5

There are a total of n = 16, 087 training instances and d = 150, 360 features and 3308
testing instances. We normalize the training data such that each dimension has mean zero

5 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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Fig. 5 Recovery error of elastic net and lasso under different settings on the synthetic data
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Fig. 6 Recovery or Regression error of lasso under different settings on the E2006-tfidf

and variance 1/n. The testing data is normalized using the statistics computed on the training
data. For JL transform, we use the random matrix with one block of random hashing. The
experimental results on the synthetic data under different settings are shown in Fig. 5. In
the left plot, we compare the recovery error for elastic net with λ = 10−8 and two different
values of m, i.e., m = 1000 and m = 2000. The horizontal axis is the value of σ , the added
regularization parameter. We can observe that adding a slightly larger additional �1 norm
to the compressed data problem indeed reduces the recovery error. When the value of τ is
larger than some threshold, the error will increase, which is consistent with our theoretical
results. In particular, we can see that the threshold value form = 2000 is smaller than that for
m = 1000. In the middle plot, we compare the recovery error for elastic net with m = 1000
and two different values of the regularization parameter λ. Similar trends of the recovery
error versus σ are also observed. In addition, it is interesting to see that the recovery error for
λ = 10−8 is less than that for λ = 10−5, which seems to contradict to the theoretical results
at the first glance due to the explicit inverse dependence on λ. However, the optimization
error also depends on ‖e‖2, which measures the empirical error of the corresponding optimal
model. We find that with λ = 10−8 we have a smaller ‖e‖2 = 0.95 compared to 1.34 with
λ = 10−5, which explains the result in the middle plot. For the right plot, we repeat the same
experiments for lasso as in the left plot for elastic net, and observe similar results.

The experimental results on E2006-tfidf dataset for lasso are shown in Fig. 6. In the left
plot, we show the root mean square error (RMSE) on the testing data of different models
learned from the original data with different values of γ . In the middle and right plots, we
fix the value of γ = 10−4 and increase the value of τ and plot the relative recovery error and
the RMSE on the testing data. Again, the empirical results are consistent with the theoretical
results and verify that with random sketched data a larger �1 regularizer could yield a better
performance.
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10 Conclusions

In this paper, we have proposed new theory of high-dimensionalmodel recovery from random
sketched data. We have studied two important problems in machine learning, i.e., classifica-
tion and sparse least-squares regression. We propose to explore the intrinsic sparsity of the
problemand develop new formulations on the sketched data and novel analysis of the recovery
error. The numerical experiments validate our theoretical analysis and also demonstrate that
the proposed randomized methods are favorable in comparison with previous randomized
algorithms.

A Proof of Theorem 6

Let F̂(α) be defined as

F̂(α) = 1

n

n
∑

i=1

�∗
i (αi ) + 1

2λn2
αT
̂X̂X�α + τ

n
‖α‖1,

and F(α) be defined as

F(α) = 1

n

n
∑

i=1

�∗
i (αi ) + 1

2λn2
αT X X�α.

Since α̃∗ = argmin F̂(α) therefore for any g∗ ∈ ∂‖αs∗‖1

0 ≥F̂ (̃α∗) − F̂(αs∗) ≥ (̃α∗ − αs∗)�
(

1

n
∇�∗(αs∗) + 1

λn2
̂X̂X�αs∗

)

+ τ

n
(̃α∗ − αs∗)�g∗

+ 1

2nL
‖α̃∗ − αs∗‖22,

where we used the strong convexity of �∗
i and its strong convexity modulus 1/L . Due to the

sub-optimality of αs∗, we have

1

n
‖αs∗ − α̃∗‖1ξ ≥ (̃α∗ − αs∗)�

[

1

n
∇�∗(αs∗) + 1

λn2
XX�αs∗

]

.

Combining the above two inequalities we have

1

n
‖αs∗ − α̃∗‖1ξ ≥ (̃α∗ − αs∗)�

(

1

λn2
(̂X̂X� − XX�)αs∗

)

+ τ

n
(̃α∗ − αs∗)�g∗ + 1

2nL
‖α̃∗ − αs∗‖22.

Since the above inequality holds for any g∗ ∈ ∂‖αs∗‖1, if we choose [g∗]i = sign([̃α∗]i ), i ∈
Sc, then we have

(ξ + τ)‖[̃α∗]S − [α∗]S‖1 ≥ −‖Δ‖∞‖α̃∗ − αs∗‖1 + (τ − ξ)‖[̃α∗]Sc‖1 + 1

2L
‖α̃∗ − αs∗‖22.

(41)

Thus

(τ + ξ + ‖Δ‖∞)‖[̃α∗]S − [α∗]S‖1 ≥ (τ − ξ − ‖Δ‖∞)‖[̃α∗]Sc‖1 + 1

2L
‖α̃∗ − αs∗‖22.
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Assuming τ ≥ 2(‖Δ‖∞ + ξ), we have

‖α̃∗ − αs∗‖22 ≤ 3τ L‖[̃α∗]S − [α∗]S‖1
‖[̃α∗]Sc‖1 ≤ 3‖[̃α∗]S − [α∗]S‖1.

(42)

Therefore,

‖[̃α∗]S − [α∗]S‖21
s

≤ ‖α̃∗ − αs∗‖22 ≤ 3τ L‖[̃α∗]S − [α∗]S‖1.

leading to the result

‖[̃α∗]S − [α∗]S‖1 ≤ 3τ Ls.

Combing above inequality with inequalities in (42) we have

‖[̃α∗]Sc‖1 ≤ 9τ Ls, ‖α̃∗ − αs∗‖2 ≤ 3τ L
√
s.

B Proof of Lemmas 2 and 3

Since the two lemmas are equivalent, we use the notation in Lemma 2.
The key idea is to use the convex relaxation of Kn,s . Define Sn,s = {α ∈ R

n : ‖α‖2 ≤
1, ‖α‖0 ≤ s}. It was shown in Plan and Vershynin (2011) that conv(Sn,s) ⊂ Kn,s ⊂
2conv(Sn,s), where conv(S) is the convex hull of the set S. Then for any α ∈ Kn,s , we
can write it as α = 2

∑

i λiβi where βi ∈ Sn,s ,
∑

i λi = 1 and λi ≥ 0. Thus, we have

|(X�α)�(I − A�A)(X�α)| ≤ 4

∣

∣

∣

∣

∣

∣

(

X
∑

i

λiβi

)�
(I − A�A)

(

X
∑

i

λiβi

)

∣

∣

∣

∣

∣

∣

≤ 4
∑

i j

λiλ j |(X�βi )
�(I − A�A)(X�β j )|

≤ 4 max
α1,α2∈Sn,s

|(X�α1)
�(I − A�A)(X�α2)|

∑

i j

λiλ j

= 4 max
α1,α2∈Sn,s

|(X�α1)
�(I − A�A)(X�α2).

Therefore

σn,s = max
α∈Kn,s

1

n
|(X�α)�(I − A�A)(X�α)| ≤ 4 max

α1,α2∈Sn,s

1

n
|(Xα1)

�(I − A�A)(Xα2)|.

Let u1 = X�α1 and u2 = X�α2. Following the proof of Theorem 5, for any fixed α1, α2 ∈
Sn,s , with a probability 1 − 2δ we have

1

n
|(X�α1)

�(I − A�A)(X�α2)| ≤ 1

n
‖X�α1‖2‖X�α2‖2c

√

log(1/δ)

m
≤ ρ+

n,sc

√

log(1/δ)

m
,

where we use

max
α∈Sn,s

‖X�α‖2√
n

≤ max
α∈Kn,s

‖X�α‖2√
n

=
√

ρ+
n,s .
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In order to extend the inequity to all α1, α2 ∈ Sn,s . We consider the ε proper-net of Sn,s (Plan
and Vershynin 2011) denoted by Sn,s(ε). Lemma 3.3 in Plan and Vershynin (2011) shows
that the entropy of Sn,s , i.e., the cardinality of Sn,s(ε) denoted N (Sn,s, ε) is bounded by

log N (Sn,s, ε) ≤ s log

(

9n

εs

)

.

Then by using the union bound, we have with a probability 1 − 2δ, we have

max
α1∈Sn,s (ε)
α2∈Sn,s (ε)

1

n
|(X�α1)

�(I − A�A)(X�α2)| ≤ cρ+
n,s

√

log(N 2(Sn,s, ε)/δ)

m

≤ cρ+
n,s

√

log(1/δ) + 2s log(9n/εs)

m
. (43)

To proceed the proof, we need the following lemma.

Lemma 10 Let U = 1
n X(I − A�A)X�, and Let

Es(α2) = max
α1∈Sn,s

|α�
1 Uα2|,

Es(α2, ε) = max
α1∈Sn,s (ε)

|α�
1 Uα2|.

For ε ∈ (0, 1/
√
2), we have

Es(α2) ≤
(

1

1 − √
2ε

)

Es(α2, ε).

Proof Following Lemma 9.2 of Koltchinskii (2011), for any α, α′ ∈ Sn,s , we can always find
two vectors β, β ′ such that

α − α′ = β − β ′, ‖β‖0 ≤ s, ‖β ′‖0 ≤ s, β�β ′ = 0.

Let

Es(α2) = max
α1∈Sn,s

|α�
1 Uα2|,

Es(α2, ε) = max
α1∈Sn,s (ε)

|α�
1 Uα2|.

Thus

|〈α − α′,Uα2〉| ≤ |〈β,Uα2〉| + |〈−β ′,Uα2〉|
= ‖β‖2

∣

∣

∣

∣

〈

β

‖β‖2 ,Uα2

〉∣

∣

∣

∣

+ ‖β ′‖2
∣

∣

∣

∣

〈 −β ′

‖β ′‖2 ,Uα2

〉∣

∣

∣

∣

≤ (‖β‖2 + ‖β ′‖2)Es(α2) ≤ Es(α2)
√
2
√

‖β‖22 + ‖β ′‖22
= Es(α2)

√
2‖β − β ′‖2 = Es(α2)

√
2‖β − β ′‖2 = Es(α2)

√
2‖α − α′‖2.

Then, we have

Es(α2) = max
α∈Sn,s

|α�Uα2| ≤ max
α∈Sn,s (ε)

|α�Uα2| + sup
α∈Sn,s

α′∈Sn,s (ε),‖α−α′‖2≤ε

〈α − α′,Uα2〉

≤ Es(α2, ε) + √
2εEs(α2),
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which implies

Es(α2) ≤ Es(α2, ε)

1 − √
2ε

.

��
Lemma 11 Let

Es(ε) = max
α2∈Sn,s

Es(α2, ε) = max
α1∈Sn,s

α2∈Sn,s (ε)

|α�
1 Uα2|,

Es(ε, ε) = max
α2∈Sn,s (ε)

Es(α2, ε) = max
α1,α2∈Sn,s (ε)

|α�
1 Uα2|.

For ε ∈ (0, 1/
√
2), we have

Es(ε) ≤
(

1

1 − √
2ε

)

Es(ε, ε).

The proof of the above lemma follows the same analysis as that of Lemma 10. By combining
Lemmas 10 and 11, we have

σn,s ≤ 4 max
α2∈Sn,s

Es(α2) ≤ maxα2∈Sn,s Es(α2, ε)

1 − √
2ε

= 4
1

1 − √
2ε

Es(ε) ≤ 4

(

1

1 − √
2ε

)2

Es(ε, ε)

= 4

(

1

1 − √
2ε

)2

max
α1,α2∈Sn,s (ε)

|α�
1 Uα2|.

By combing the above inequality with inequality (43), we have

σn,s ≤ 4c

(

1

1 − √
2ε

)2

ρ+
n,s

√

log(1/δ) + 2s log(9n/εs)

m
.

If we set ε = 1/(2
√
2), we can complete the proof.
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