
Vol.:(0123456789)

Machine Learning (2020) 109:973–997
https://doi.org/10.1007/s10994-020-05868-6

1 3

Sparse hierarchical regression with polynomials

Dimitris Bertsimas1  · Bart Van Parys1

Received: 29 May 2017 / Revised: 9 September 2019 / Accepted: 3 January 2020 /
Published online: 24 January 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
We present a novel method for sparse polynomial regression. We are interested in that
degree r polynomial which depends on at most k inputs, counting at most � monomial
terms, and minimizes the sum of the squares of its prediction errors. Such highly struc-
tured sparse regression was denoted by Bach (Advances in neural information process-
ing systems, pp 105–112, 2009) as sparse hierarchical regression in the context of kernel
learning. Hierarchical sparse specification aligns well with modern big data settings where
many inputs are not relevant for prediction purposes and the functional complexity of the
regressor needs to be controlled as to avoid overfitting. We propose an efficient two-step
approach to this hierarchical sparse regression problem. First, we discard irrelevant inputs
using an extremely fast input ranking heuristic. Secondly, we take advantage of modern
cutting plane methods for integer optimization to solve the remaining reduced hierarchical
(k,�)-sparse problem exactly. The ability of our method to identify all k relevant inputs and
all � monomial terms is shown empirically to experience a phase transition. Crucially, the
same transition also presents itself in our ability to reject all irrelevant features and mono-
mials as well. In the regime where our method is statistically powerful, its computational
complexity is interestingly on par with Lasso based heuristics. Hierarchical sparsity can
retain the flexibility of general nonparametric methods such as nearest neighbors or regres-
sion trees (CART​), without sacrificing much statistical power. The presented work hence
fills a void in terms of a lack of powerful disciplined nonlinear sparse regression methods
in high-dimensional settings. Our method is shown empirically to scale to regression prob-
lems with n ≈ 10,000 observations for input dimension p ≈ 1000.

Keywords  Nonlinear regression · Sparse regression · Integer optimization · Polynomial
learning

Editor: Tong Zhang.

Bart Van Parys is generously supported by the Early Postdoc. Mobility fellowship P2EZP2 165226 of
the Swiss National Science Foundation.

 *	 Dimitris Bertsimas
	 dbertsim@mit.edu

	 Bart Van Parys
	 vanparys@mit.edu

1	 Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

http://orcid.org/0000-0002-1985-1003
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05868-6&domain=pdf

974	 Machine Learning (2020) 109:973–997

1 3

1  Introduction

We consider the problem of high-dimensional nonlinear regression. Given input
X = (x1,… , xn) ∈ Rn×p and response data Y = (y1,… , yn) ∈ Rn , we set out to find an
unknown underlying nonlinear relationship

where E ∶= (e1,… , en) in Rn is the error term. Regression is a problem at the core of
machine learning, statistics and signal processing. It is clear that if we are to carry any
hope of success, some structure on the nature of the unknown nonlinear relationship g
between input and response data must be assumed. Classical statistical learning theory
(Vapnik 2013) indeed requires the complexity of the set of considered functions to be
bounded in some way. We focus in this work on polynomial regression function primarily
for two reasons. Polynomial regression, first, has a long history (Smith 1918) and is men-
tioned in almost any standard work on machine learning. We will consider in this paper all
nonlinear relationships in the form of polynomials in p variables of total degree at most r.
We denote with P the set of polynomials of total degree r. Typically the polynomial which
best explains data is defined as the minimizer to the abstract optimization problem

over polynomial functions g in P . The squared norm ‖g‖2 of a polynomial g is taken here
to mean the sum of squares of its coefficients. The best polynomial in formulation (1) mini-
mizes a weighted combination of the sum of its squared prediction errors and its coefficient
vector. This latter Ridge regularization (Tikhonov 1943; Hoerl and Kennard 1970) term
stabilizes its solution and helps reduce overfitting even further. An alternative interpreta-
tion of the regularization term as a precaution against errors in the input data matrix X has
been given for instance in Bertsimas and Copenhaver (2018). Nevertheless, the value of the
hyperparameter � must in practice be estimated based on historical data using for instance
cross validation.

By allowing for nonlinear dependence between input and response data, second, poly-
nomial regression can discover far more complex relationships than standard linear regres-
sion. For a sufficiently large degree r in fact, any continuous functional dependence can
be discovered up to arbitrary precision (Stone 1948). The previous observation leads to
the fact that polynomial regression is a hybrid between parametric and nonparametric
regression. Depending on the degree r of the polynomials considered, it falls between text-
book parametric regression (r = 1) which assumes the functional dependence g between
input and response data to be linear and completely nonparametric regression ( r → ∞ )
where nothing beyond continuity of the dependence g between input and response data is
assumed. Although nonparametric approaches are very general and can unveil potentially
any continuous relationship between input and response data, they nonetheless seriously
lack in statistical power. Indeed, nonparametric methods such as kernel density estimation
and nearest neighbors regression (Altman 1992) or decision trees (Breiman 2017) need a
large number of samples in order to return statistically meaningful predictions. The amount
of observations n needed scales unfavorable with the input dimension p which is com-
monly in modern data sets.

The polynomial regressor g in the regression problem (1) is a sum of at most
f ∶=

(
p+r

r

)
 monomial features. A seminal result due to Vapnik (1998) states that the

yt = g(xt) + et, ∀t ∈ [n],

(1)min
g∈P

1

2

�
t∈[n]

��yt − g(xt)
��2 + 1

2�
‖g‖2,

975Machine Learning (2020) 109:973–997	

1 3

high-dimensionality of the unconstrained regression problem (1) does not pose an obstacle
to its numerical solution. Indeed, the feature dimensionality f can be avoided in its entirety
using the now classical kernel representation of polynomials put forward by Mercer (1909).
Regression formulations amendable to such a kernel reformulation are typically referred to
a kernel learning methods. It is thanks to both the flexibility of the regression formulation
(1) and its computational tractability that polynomial and even more general kernel meth-
ods have experienced a lot of interest in the learning community (Suykens and Vandewalle
1999). Polynomial regression using kernel learning has indeed been used with success in
many applications such as character recognition, speech analysis, image analysis, clinical
diagnostics, person identification, machine diagnostics, and industrial process supervision.
Today, efficient and mature software implementations of these so called polynomial kernel
regressors are widely available, see c.f. Schölkopf and Smola (2002) and Pelckmans et al.
(2002). Unfortunately in high-dimensional settings (f ≫ n) , the previously discussed curse
of dimensionality and overfitting phenomena do pose a formidable obstacle to the recov-
ery of the correct nonlinear relationship between input and response data. That is, in set-
tings where we have many more monomial input features f than observations n, it becomes
unlikely that we recover a statistically meaningful regressor by solving (1).

Here we will work to address the previous issue by providing a sparse counterpart to the
polynomial regression problem (1). Sparse regression has recently been identified in the
works of Tibshirani (1996), Hastie et al. (2015) and Candès et al. (2006) as an excellent
antidote to the malignant phenomena of both dimensionality and overfitting. Interestingly,
very few mature machine learning methods seem to have been developed which can deal
reliably with sparse nonlinear regressors in a high-dimensional settings despite the obvi-
ous relevance of this problem class. One notable exception of direct relevance here is the
SPORE algorithm by Huang et al. (2010) which uses an approach based on �1-regulari-
zation. We subsequently describe a hierarchical sparse regression problem which controls
both the dependence and functional complexity of the regression polynomials considered.

1.1 � Hierarchical (k,�)‑sparsity

The popularity and effectiveness of sparse regression can from a practical perspective be
explained by the following two observations. In the digital age obtaining and processing
vast amounts of input data is increasingly less of a burden. Nevertheless, we expect only a
small number k of all p recorded inputs to be meaningfully correlated to the response data
Y. The trouble is that we can not tell the relevant features from the obfuscating bulk of data
ahead of time. Sparsity hence firstly describes the limited functional dependence between
input and response data. As only a finite amount of data can be recorded, one must avoid
overfitting by limiting the complexity of the considered functional relationships. Of the
potential f monomials making up the polynomial regressor g, the considered relationships
should only depend on a select few of them. We use sparsity to enforce simplicity among
the considered relationships. As both these described sparsity considerations are quite dif-
ferent in nature, we believe it is paramount not to conflate them.

We will say that the function g ∈ Pk,� is so called (k,�)-sparse if it is the sum of �
monomials in at most k inputs. For instance the regressor g(x) = x2

1
+ x2x3 would be (3, 2)

sparse as it depends on the three inputs x1 , x2 and x3 , and is made up of two monomials x2
1

and x2x3 . The resulting problem of hierarchical sparse regression can be cast as the regres-
sion problem

976	 Machine Learning (2020) 109:973–997

1 3

The previous regression formulation is a structured sparsity constrained version of (1).
Using this novel notion of hierarchical sparse regressors, we hope to keep the statistical
power of parametric regression while simultaneously allowing highly nonlinear relation-
ships between input and response data as well. Although structured hierarchical sparsity
patterns were studied already by Zhao et al. (2009), they were never considered in our
polynomial regression context directly. A related hierarchical kernel learning approach
to a convex proxy of problem (2) is studied in Bach (2009) and from which we retained
the word hierarchical to describe the structured sparsity of Pk,� . The regression problem
(2) carries the additional benefit of automatically yielding highly interpretable regressors
with only a few nonlinear terms and input dependencies. By explicitly controlling both
the dependence complexity k of used inputs as well as the functional complexity � of the
regression polynomials, the hierarchical sparse regression problem (2) promises to deliver
nonlinear regressors with significant statistical power even in high-dimensional settings.

Unfortunately, solving the hierarchical sparse regression problem (2) can be challeng-
ing. Bringing to bear the power of modern integer optimization algorithms combined with
smart heuristics, we will nevertheless show that many hierarchical sparse regression prob-
lems can nevertheless be dealt with.

1.2 � Exact algorithms

The problem of sparse linear regression has been studied extensively in the literature.
Despite being provably hard in the sense of complexity theory’s NP hardness, in prac-
tice many successful algorithms are available. Historically, the first heuristic methods for
sparse approximation seem to have arisen in the signal processing community (c.f. the
work of Miller 2002; Mallat and Zhang 1993 and references therein) and typically are of an
iterative thresholding type. More recently, one popular class of sparse regression heuristics
solve the convex surrogate

to the sparse regression formulation (2) where � is a sparsity inducing hyperparameter .
Here the norm ‖g‖1 of the polynomial g is meant to denote the sum of the absolute values
of its coefficients. The convex proxy reformulation (3) is a direct adaptation of the semi-
nal Lasso method of Tibshirani (1996) to the polynomial regression problem (1). The
discussed SPORE algorithm by Huang et al. (2010) provides an implementation of this
idea specific to the polynomial regression context considered here. Where the convex heu-
ristic (3) does not incorporate the hierarchical sparsity structure of our exact formulation
(2), more refined methods such as Group Lasso (Zhao et al. 2009; Bach 2008) could
in principle do so by considering structured norm constraints. There is an elegant theory
for convex proxy schemes promising large improvements over the more myopic iterative
thresholding methods. Indeed, a truly impressive amount of high-quality work (Bühlmann
and van de Geer 2011; Hastie et al. 2015; Wainwright 2009) has been written on character-
izing when exact solutions can be recovered, albeit through making strong probabilistic
assumptions on the data.

(2)min
g∈Pk,�

1

2

�
t∈[n]

��yt − g(xt)
��2 + 1

2�
‖g‖2.

(3)min‖g‖1≤�
1

2

�
t∈[n]

��yt − g(xt)
��2 + 1

2�
‖g‖2.

977Machine Learning (2020) 109:973–997	

1 3

The problem of exact sparse nonlinear regression however seems, despite its impor-
tance, not to have been studied extensively. Although they are well studied separately,
combining nonlinear and sparse regression never received much attention. Our recent work
(Bertsimas and Van Parys 2017, and earlier in Bertsimas et al. 2016) has revealed that
despite complexity results, exact sparse linear regression is not outside the realm of the
possible even for very high-dimensional problems with a number of features f and samples
n in the 100,000 s. Contrary to traditional complexity theory which suggests that the dif-
ficulty of a problem increases with size, the sparse regression problems seem to have the
property that for a small number of samples n, exact regression is not easy to accomplish,
but most importantly its solution does not recover the truth. However, for a large number of
samples n, exact sparse regression can be done fast and perfectly separates the true features
in the data from the obfuscating bulk. These results warrant also the possibility of nonlin-
ear feature discovery in regression tasks.

1.3 � Triage heuristic

Unfortunately, hierarchical (k,�)-sparse regression problems quickly becomes problematic
for all but small problem instances. The number of monomial features f is indeed combina-
torial and hence scales quite badly in both the number of regressors p as well of the degree
r of the considered polynomials. In order to provide a scalable algorithm to the problem of
hierarchical kernel regression it is clear that the dimensionality of the problem needs to be
reduced.

Our key insight in this paper will be to use polynomial kernel regression to rank the
potential inputs. This heuristic method is very helpful in rejecting many irrelevant candi-
date inputs without missing out on the actual underlying nonlinear relationship between
input and response data. Exact sparse hierarchical kernel regression described before will
then be used to identify the relevant nonlinearities from among the most promising candi-
date inputs; see Fig. 1. We remark that the input triage step in our two step approach to the
sparse hierarchical regression (2) renders the overall method potentially inexact. Indeed, if
any relevant input is eliminated erroneously it can not be recovered later by the subsequent
exact sparse hierarchical regression step. In this paper we nevertheless set out to show that
this combination of smart heuristic and exact sparse regression goes a long way to solve
hierarchical sparse regression problems (2) of practical size.

1.4 � Contributions

In this paper, we first and foremost want to promote a notion of hierarchical (k,�)-spar-
sity that rhymes well with the challenges of the big data era. Capturing limited func-
tional dependence and complexity in big data problems is crucial to allow statistically

Input Ranking
X ∈ Rn×p

Y ∈ Rn
(k, �)-Regression

X′ ∈ Rn×p′

Y ∈ Rn

g�

Fig. 1   Our two-step approach to (k,�)-sparse regression for observations Y in Rn and regressors X in Rn×p
. In a first step we select the p′ ≪ p most promising inputs out of the p candidates. The second step then
performs exact (k,�)-sparse regression on these most promising candidates. We set out to show that this
combination of a smart ranking heuristics and exact sparse regression goes a long way to solve hierarchical
sparse regression problems (2) of practical size

978	 Machine Learning (2020) 109:973–997

1 3

meaningful regression in high-dimensional and nonlinear settings. Hierarchical (k,�)
-sparse regression definition is in this regard a first step in the direction of lifting non-
linear regression into high-dimensional settings as well. In particular, we hope that the
method presented here will show a more disciplined approach to nonlinear discovery
than some more black box methods such as artificial neural networks.

Secondly, we also offer scalable algorithms able to address these hierarchical (k,�)
-sparse regression problems using modern optimization techniques. In accordance with
previous results (Bertsimas and Van Parys 2017), we show that sparse regression is
indeed tractable in practice even for very high-dimensional problems with a number of
features f and samples n in the 100,000 s. We will indeed show that we can reliably dis-
cover nonlinear relationships using a combination of smart heuristics and exact sparse
regression via a cutting plane approach for convex integer optimization.

In order to judge the quality of a proposed regressor g⋆ , we will measure on the one
hand to what extent all the relevant monomial features are discovered. In order to do so,
while at the same time avoiding notational clutter, we need to establish a way to refer to
each of the monomials of degree r in p variables in an efficient fashion. Let mj ∶ Rp

→ R
for each j in [f] denote a distinct monomial in p inputs of degree at most r. We define the
accuracy of a regressor g⋆ as

where supp (g) represents all j such that monomial mj contributes to the polynomial g. This
accuracy measure A% thus represents the proportion of true underlying monomial features
discovered by the proposed polynomial regressor g⋆ . On the other hand, we can use

to quantify how many irrelevant features were wrongly included in the process. Perfect
recovery occurs when the method gives the whole truth ( A% = 100 ) and nothing but the
truth (F% = 0) . In practice, however, machine learning methods must inevitable make a
choice between both desirables.

We intend to illustrate that exact sparse regression methods have an inherent edge
over proxy based sparse heuristics. Proxy based methods such as Lasso do indeed have
several well documented shortcomings. First and foremost, as argued by Bertsimas et al.
(2016) they do not recover very well the sparsity pattern. Furthermore, the Lasso leads
to biased regression regressors, since the �1-norm penalizes both large and small coef-
ficients uniformly. The ability of our method to identify all relevant features is shown
empirically to experience a phase transition. There exists a critical number of data sam-
ples n0 such that when presented sufficient data n > n0 our method recovers the ground
truth ( A% ≈ 100 ) completely, whereas otherwise its accuracy A% tends to zero. Cru-
cially, the same number of samples n0 also enables our method to reject most irrelevant
features ( F% ≈ 0 ) as well. We thus show that we significantly outperform Lasso in
terms of offering regressors with a larger number of relevant features (bigger A% ) for far
fewer nonzero coefficients (smaller F% ) enjoying at the same time a marginally better
prediction performance. In the regime n > n0 where our method is statistically powerful
(A% ≈ 100 , F% ≈ 0 ), its computational complexity is furthermore on par with sparse

(4)A% ∶=
|| supp (g⋆) ∩ supp (gtrue)

||
|| supp (gtrue)||

,

(5)F% ∶=
|| supp (g⋆) ⧵ supp (gtrue)

||
| supp (g⋆)|

979Machine Learning (2020) 109:973–997	

1 3

heuristics such as Lasso. This last observation takes away the main propelling justifi-
cation for most heuristic based sparsity approaches.

Finally, we illustrate that sparse hierarchical regression its predictive performance
on real data sets is on par with more established nonparametric methods such as nearest
neighbors or CART​, while offering interpretable models. We hence argue that hierarchical
sparse regression is a competitive nonlinear regression approach in particular when faced
with many modern high-dimensional regression problems.

1.5 � Notation

The knapsack set Sp
k
 denotes here the binary set Sp

k
∶= {s ∈ {0, 1}p ∶

∑
j∈[p] sj ≤ k} ,

which contains all binary vectors s selecting k components out of p possibilities.
Assume that (y1,… , yp) is a collection of elements and suppose that s is an element
of Sp

k
 , then ys ∈ R|s| denotes the sub-collection of yj where sj = 1 . Similarly, we use

supp (x) =
{
s ∈ {0, 1}p ∶ sj = 1 ⟺ xj ≠ 0

}
 to denote those indices of a vector x which

are nonzero. We denote by Sn
+
 ( Sn

++
 ) the cone of n × n positive semidefinite (definite) matri-

ces. Given a matrix K ∈ Rn×n , we denote its element-wise rth power or Hadamard power as
K◦r , i.e., we have that

2 � Hierarchical (k,�)‑sparse polynomial regression

In this section, we discuss two formulations of the hierarchical sparse regression problem
(2) through a standard integer optimization lens. In the last twenty plus years the compu-
tational power of integer optimization solves has increased at a dramatic speed (Bertsimas
et al. 2016). Where 20 years ago integer optimization for statistics was branded impossible,
recent work (Bertsimas and Van Parys 2017; Bertsimas et al. 2016) has shown convinc-
ingly that this position needs to be revisited. The position that exact sparse regression is
an unattainable goal only to be striven for via admittedly elegant convex heuristics such as
Lasso should not be held any longer.

We considered in the sparse regression problem (2) as features the set of all monomials
of degree at most r. It is clear that this sparse hierarchical regression problem over poly-
nomials can equivalently stated as an optimization problem over their coefficients in the
monomial basis mj for j in [f]. We will avoid the need to explicitely order each these mono-
mials as follows. Define the dependents D(i) of any data input i as the set of indices j such
that the monomial mj depends on input i. Similarly, we define the ancestors A(j) of any j as
the multiset of inputs making up the monomial mj . Instead of using the classical monomial
basis, we consider a scaled variant in which we take mj(�p) to coincide with the square root
of the number of distinct ways to order the multiset A(j). This rescaling of the monomials
comes in very handy when discussing the solution of the regression problem (1) in Sect. 3.
In fact, the same scaling is implicitly made by the Mercer kernel based approach as well.

To make the discussion more concrete, we consider a data problem with p = 3 inputs
and associated data (yt, xt,1, x2,t, x3,t) for t ∈ [n] . We consider all monomials on the three

K◦r ∶=

⎛⎜⎜⎜⎝

Kr
11

Kr
12

… Kr
1n

Kr
21

Kr
22

… Kr
2n

⋮ ⋮ ⋱ ⋮

Kr
n1

Kr
n2

… Kr
nn

⎞⎟⎟⎟⎠
.

980	 Machine Learning (2020) 109:973–997

1 3

inputs of degree at most two, i.e., we consider the monomials and their corresponding indi-
ces as given below.

Monomial mj 1
√
2x1

√
2x2

√
2x3

x2
1

√
2x1x2

√
2x1x3

x2
2

√
2x2x3

x3
3

Index j 1 2 3 4 5 6 7 8 9 10

The set D(i) corresponds to the set of indices of the monomials in which input xi partici-
pates. In our example above we have D(1) = {2, 5, 6, 7} corresponding to the monomials
{
√
2x1, x

2
1
,
√
2x1x2,

√
2x1x3} . The set A(j) corresponds to all inputs that are involved in the

monomial with index j. Again as an illustration, in our example A(7) = {1, 3} correspond-
ing to the inputs x1 and x3 . The fact that A(7) has two distinct permutations causes the scal-
ing

√
2 , as opposed to A(5) = {1, 1} which only has one disctinct permutation and hence is

not scaled.

2.1 � Mixed integer formulation

With the help of the previous definitions, we can now cast the hierarchical (k,�)-sparse
regression problem (2) as a standard optimization problem. The problem of hierarchical
sparse regression can indeed be cast as the following (MIO) problem

using a big-M formulation. Its optimal solution w⋆ gives the coefficients of the polyno-
mial g⋆(x) =

∑
j∈[f] w

⋆
j
mj(x) in (2) best describing the relationship between input and

observations in our monomial basis {mj} . The coefficient wj of any monomial mj is only
then nonzero when sj = 1 as per the first constraint in (6). The constant M needs to be
chosen sufficiently large for the given data as to make none of the ultimate constraints in
(6) binding. Although nontrivial, this can be done using the strategy found in Bertsimas
et al. (2016). Mixed integer formulations employing the previously outlined strategy our
commonly denoted as Big-M formulations. In any case, the binary variable s ∈ S

f

�
 rep-

resents the sparsity pattern in the monomials, i.e., which � monomials are used out of f
potential candidates. The first constraint of formulation (6) encodes the hierarchical nature
of our (k,�)-sparsity requirement. Only those monomials mj such that the input hi = 1 is
selected for all its ancestors i ∈ A(j) are considered as potential regressors. In all, the binary
constraint

hence represents the postulated hierarchical (k,�)-sparsity pattern.
To use the example discussed before in which we have three inputs and monomi-

als of order two, the monomial m7(x) =
√
2x1x3 can only be included as a regressor if

the variable s7 = 1 . The variable s7 can only then be nonzero if both inputs x1 and x2
are selected which requires that the variables h1 = 1 and h3 = 1 . The resulting optimal

(6)

min
1

2

�
t∈[n]

‖yt −∑
j∈[f] wj ⋅ mj(xt)‖2 + 1

2�
‖w‖2

s.t. w ∈ Rf , s ∈ S
f

𝓁
, h ∈ S

p

k
,

sj ≤ hi ∀i ∈ A(j),∀j ∈ [f],

−Msj ≤ wj ≤ Msj ∀j ∈ [f],

(s, h) ∈ S
f ,p

�,k
∶= {s ∈ S

f

�
, h ∈ S

p

k
∶ sj ≤ hi, ∀i ∈ A(j), ∀j ∈ [f]}

981Machine Learning (2020) 109:973–997	

1 3

regressor polynomial h⋆(x) =
∑

j∈[f] w
⋆
j
⋅ mj(x) thus counts at most � monomials depend-

ing on at most k regressor inputs.
Although the direct formulation (6) of the hierarchical (k,�)-sparse regression prob-

lem results in a well posed MIO problem, the constant M needs to be chosen with
extreme care as not to impede its numerical solution. The choice of this data depend-
ent constant M indeed affects the strength of the MIO formulation (6) and is critical
for obtaining solutions quickly in practice. Consequently, solving the Big-M formula-
tion directly is only been practical for problems of dimension n ≈ 1000 and f ≈ 100
(Bertsimas et al. 2016) far smaller than the problems we hope to address. Furthermore,
as the regression dimension p grows, explicitly constructing the MIO problem (6), let
alone solving it, becomes burdensome. In order to develop an exact scalable method
a different perspective on sparse regression is needed. We will employ a perspective
found in our previous work (Bertsimas and Van Parys 2018) albeit applied now instead
to the nonlinear sparse regression problem (2). In the subsequent section we develop an
alternative exact formulation which avoids using a big-M formulation while at the same
time will prove to be more amenable to a scale algorithms.

2.2 � Convex integer formulation

We next establish that the sparse regression problem (6) can in fact be represented as a
pure binary optimization problem. By doing so we will eliminate the dependence of our
formulation on the data dependent constant M . We will need the help of the following
supporting lemma regarding linear regression.

Lemma 1  (The regression loss function c) The least-squares regression cost
c(ZZ⊤) ∶= minw

1

2
‖Y − Zw‖2 + 1

2𝛾
‖w‖2 admits the following explicit characterization

Proof  As the regression problem over w in Rp is an unconstrained (QO) problem, the
optimal value w⋆ satisfies the linear relationship (�p∕𝛾 + Z⊤Z)w⋆ = Z⊤Y . Substituting the
expression for the optimal linear regressor w⋆ back into optimization problem, we arrive at
c(ZZ⊤) = 1∕2Y⊤Y − 1∕2Y⊤Z(�p∕𝛾 + Z⊤Z)−1Z⊤Y . The final characterization can be derived
from the previous result with the help of the matrix inversion lemma found stating the
identity (�n + 𝛾ZZ⊤)−1 = �n − Z(�p∕𝛾 + Z⊤Z)−1Z⊤. 	� ◻

Lemma 1 will enable us to eliminate the continuous variable w out of the MIO sparse
regression formulation (6). The proof of the next Theorem is inspired by a similar but
distinct result from Bertsimas and Van Parys (2017). The following result provides a
different pure integer approach to hierarchical sparse regression. It will form the basis to
our attempts to solve hierarchical regression problems exactly.

Theorem 1  (Hierarchical (k,�)-sparse regression) The hierarchical (k,�)-sparse regres-
sion problem (2) can be reformulated as the pure (CIO) problem

(7)c(ZZ⊤) =
1

2
Y⊤

(
�n + 𝛾ZZ⊤

)−1
Y .

982	 Machine Learning (2020) 109:973–997

1 3

where the micro kernel matrices Kj in Sn
+
 are defined as the dyadic outer products

Kj ∶= mj(X) ⋅ mj(X)
⊤.

Proof  We start the proof by separating the optimization variable w in the sparse regression
problem (6) into its support s ∶= suppw and the corresponding non-negative entries ws .
Evidently, we can now write the sparse regression problem (6) as the bilevel minimization
problem

It now remains to be shown that the inner minimum can be found explicitly as the objec-
tive function of the optimization problem (8). Using Lemma 1, the minimization prob-
lem can be reduced to the minimization problem min{c(ms(X) ⋅ ms(X)

⊤) ∶ (s, h) ∈ S
p,r

k,𝓁
} .

We finally remark that the outer product can be decomposed as the sum
ms(X) ⋅ ms(X)

⊤ =
∑

j∈[p] sj ⋅ mj(X) ⋅ mj(X)
⊤ , thereby completing the proof. 	� ◻

For all but small problems, exact hierarchical sparse regression nevertheless quickly
becomes problematic. The effective number of regression features f which determines the
dimension of our formulation (8) is indeed combinatorial in the number of inputs p and
degree r of the considered polynomials. Our key insight is to triage the inputs first heuristi-
cally using an efficient input ranking method described in the subsequent section. Later
in Sect. 5 we will show that this two-step procedure outlined in Fig. 1 goes a long way to
solve practical hierarchical sparse regression problems.

3 � Polynomial kernel input ranking

Input selection is an important and well known technique for high-dimensional data reduc-
tion. Most commonly this is done by ranking the inputs based on some performance crite-
ria. We point to Fan and Lv (2010) for a recent review on the topic. For high-dimensional
data problems surely independence screening (SIS, Fan and Lv 2008) and Lasso (Tibshi-
rani 1996) are the most popular methods. Both these methods implicitly assume a linear
regression model. Indeed, neither of these feature-wise methods takes into account nonlin-
ear feature interactions. A large body of work, c.f. Kong et al. (2017), Hall and Xue (2014),
Hao and Zhang (2014) and further references therein, tries to consider feature interactions
effects in the input selection method as well. We do remark though that these methods
are generally limited to finding interactions only between at most two distinct variables at
once. Translated to our polynomial regression setting this means its applicability is limited
to the case of quadratic ( r = 2 ) polynomials.

The objective in this section is hence to present an efficient method which can
address the high-dimensional nature of sparse hierarchical regression by ignoring irrel-
evant regression inputs and working with promising candidates only while considering

(8)
min

1

2
Y⊤

�
�n + 𝛾

∑
j∈[f] sjKj

�−1

Y

s.t. s ∈ S
f

�
, h ∈ S

p

k
,

sj ≤ hi ∀i ∈ A(j),∀j ∈ [f],

(9)min
(s,h)∈S

p,r

k,𝓁

�
min
w∈Rk

1

2�
‖w‖2 + 1

2

�
t∈[n]

‖yt −∑
{j∈[n] ∶ sj=1}

wj ⋅ mj(xt)‖2
�
.

983Machine Learning (2020) 109:973–997	

1 3

potential interaction effects between at most r variables. The reader might wonder at
this point whether any such attempt would not entail the solution of the original hierar-
chical sparse regression problem. It should indeed be clear though that any input triage
heuristic renders our overall two step procedure (see Fig. 1) potentially inexact. Here,
however, we do not claim to triage the inputs optimally, but rather aim for a simple
approximate yet fast method. In practice however, we will observe that this potential
loss of optimality often comes with only minor consequences. We will attempt to tri-
age inputs efficiently by leveraging the fact that polynomial regression problem without
sparse constraints can be solved optimally.

A seminal result due to Vapnik (1998) states that the feature dimensionality f of the
unconstrained regression problem (1) surprisingly does not play any role in its numeri-
cal solution. Indeed, the feature dimensionality f can be done away with in its entirety
using the now classical Mercer (1909) kernel representation theorem. We can state the
polynomial regression problem (1) as an optimization problem in terms of coefficients
in the monomial basis

We state the Mercer kernel representation in Theorem 2 for the sake of completeness
regarding the dual of the regression problem (10). It should be noted that surprisingly the
dimension f does not play a role but instead the number of samples n is of importance. This
previous observation is what has propelled kernel learning algorithms as viable nonlinear
regression methods (Schölkopf and Smola 2002).

Theorem 2  (Mercer Kernel Representation (Vapnik 1998)) The polynomial regression
problem (10) can equivalently be formulated as the unconstrained maximization problem

where the positive semidefinite kernel matrix K ∶= m(X) ⋅ m(X)⊤ allows for an efficient
characterization as the Hadamard power K = (XX⊤ + �n×n)

◦r.

Theorem 2 uses the Mercer kernel representation which establishes that the outer
product m(X) ⋅ m(X)⊤ can be characterized as the element-wise Hadamard power
(XX⊤ + �n×n)

◦r for our specific polynomial bases. Indeed, for any t and t′ in [n] we have

where ‖A(j)‖ denotes here the number of distinct ways to order the multiset A(j). The penul-
timate equality is recognized as the binomial expansion theorem. Note that for the Mercer
kernel representation to hold, the monomial basis had indeed to be properly normalized

(10)min
1

2

∑
t∈[n] ‖yt −

∑
j∈[f] wj ⋅ mj(xt)‖2 + 1

2�
‖w‖2

s.t. w ∈ Rf .

(11)c(K) = max −
𝛾

2
𝛼⊤K𝛼 −

1

2
𝛼⊤𝛼 + Y⊤𝛼

s.t. 𝛼 ∈ Rn,

K(t, t�) ∶= m(xt)
⊤
⋅ m(xt�)

= [
√‖A(1)‖ ⋅ m1(xt),… ,

√‖A(f)‖ ⋅ mf (xt)]
⊤
⋅ [
√‖A(1)‖ ⋅ m1(xt�),… ,

√‖A(f)‖ ⋅ mf (xt�)]

=
∑

j∈[f] ‖A(j)‖mj(xt) ⋅ mj(xt�)

=
∑

j∈[f] ‖A(j)‖mj([xt,1 ⋅ xt�,1,… , xt,p ⋅ xt� ,p])

= (1 +
∑

i∈[p] xt,i ⋅ xt� ,i)
r

= (1 + x⊤
t
xt�)

r

984	 Machine Learning (2020) 109:973–997

1 3

using
√‖A(j)‖ as explained in the beginning of Sect. 2. This well known but crucial obser-

vation seems to have been made first by Poggio (1975).
The size of the kernelized regression problem (11) scales only with the number of data

points n rather than the feature dimension f. It could be remarked that as the kernelized
regression problem is unconstrained it admits a closed form solution in the form of the
linear system (�n + 𝛾K)𝛼⋆ = Y which can be solved requiring O(n3) computation. Indeed,
the matrix K is a full matrix without any obvious sparsity pattern to exploit. The optimal
regression coefficients w⋆ in formulation (10) are linearly related to the optimal dual vari-
able 𝛼⋆ in formulation (11) via the complementarity conditions which here read

Although this last relationship is linear, computing the coefficients in the monomial basis
might still prove a daunting task merely because of the shear number of them. In the fol-
lowing, we show that we can nevertheless compute the Euclidean norm of the optimal
coefficients w⋆

j
 in front of the monomials depending on a certain input i efficiently.

Proposition 1  The Euclidean norm of the coefficients w⋆
j
 in front of all monomials mj

depending on input i is related to the dual optimal variable 𝛼⋆ in (11) as

where the kernel matrix Ki can be characterized explicitly as K − (XX⊤ − XiX
⊤
i
+ �n×n)

◦r.

Proof  From the linear relationship (12) between the optimal coefficients w⋆ and dual vari-
able � it follows immediately that ���wj

���
2

= 𝛾2 ⋅ 𝛼⋆⊤(
∑

j∈D(i) Kj) 𝛼
⋆ . Through simple expan-

sion it is quite easy to see that (XX⊤ − XiX
⊤
i
+ �n×n)

◦r coincides exactly with
∑

j∉D(i) Kj .
Hence, the kernel matrix Ki ∶=

∑
j∈D(i) Kj is found as its complement

K − (XX⊤ − XiX
⊤
i
+ �n×n)

◦r . 	� ◻

Hence, despite the fact that the size of the optimal coefficients wj in front of the mono-
mials depending on a certain input i consists of the sum of squares of as many as (
p + r − 1

r − 1

)
 components, it can nevertheless be computed without much effort. Unfortu-

nately, the optimal regressors coefficients w⋆ in (10) are not expected to be sparse. Never-
theless, the optimal regressors coefficients can be used to provide a heuristic ranking of the
importance of the p data inputs. The Euclidean norm of the coefficients of the monomials
which depend on input i can indeed be used as a proxy for the relevance of the input of
interest. Fortunately, the quantities (13) are very efficient to compute once the optimal dual
variable 𝛼⋆ has been found. Indeed, each quantity can be computed in O(n2) time inde-
pendent of the dimension f of the polynomials considered.

The complete computation is given in Algorithm 1. Though not exact, it gives a good
indication of the significance of each of the p inputs. In fact it is very closely related the
backward elimination wrapper methods discussed in Guyon and Elisseeff (2003).

(12)w⋆

j
= 𝛾 ⋅ mj(X)

⊤𝛼⋆ ∀j ∈ [f].

(13)���w⋆

D(i)

���
2

=
∑

j∈D(i)

���w⋆
j

���
2

= 𝛾2 ⋅ 𝛼⋆⊤Ki 𝛼
⋆,

985Machine Learning (2020) 109:973–997	

1 3

An alternative way of looking at our input ranking algorithm is through the subgradients
of the convex regression loss function c defined in the dual problem (11). We note that the
subgradient of the function c can be computed explicitly using its dual characterization
given in (11) as well.

Proposition 2  (Derivatives of the optimal regression loss function) We have that the sub-
gradient of the regression loss function c as a function of the kernel K can be stated as

where 𝛼⋆ maximizes (11).

Proof  From the dual definition of the regression loss function c it is clear that we have the
inequality

for all K̄ . From the very definition of 𝛼⋆ as the maximizer of (11) it follows that the previ-
ous inequality becomes tight for K̄ = K . This proves that the left hand side of (14) is a
subgradient to the regression loss function c at the point K. 	� ◻

When comparing the previous proposition with the result in Theorem 1, it should be
noted that the derivatives of c at K agree up to the constant − 2� with the sum of squares of
the coefficients w⋆ of the optimal polynomial. In essence thus, our Algorithm 1 ranks the
inputs according to the linearized loss of regression performance ∇ci caused by ignoring
the inputs using the polynomial regression (1). The quantity ri characterizes up to first-
order the loss in predictive power when not using the input i. The bigger this caused loss,
the more importance is assigned to including input i as a regressor.

Before we can move on to the next section, the computational efficiency of our input
ranking heuristic needs to be addressed first. The dominant cost in computing the input
ranking r is clearly finding the optimal dual maximizer 𝛼⋆ which requires O(n3) computa-
tion. This computational cost becomes a practical issue for problems counting much more
than a few thousand observations. To speed up computations, in practice we split such very
large data sets in smaller chunks of size approximately n = 2000 and compute for each of
those chunks a distinct ranking r using Algorithm 1. We than take as overall approximate
ranking the average of the rankings obtained on each of the distinct data chunks. As was
noted in the beginning of the section, the input ranking method presented in Algorithm 1
does not aspire to find all k relevant inputs exactly. Rather, it is only meant to eliminate

∇c = −
𝛾

2
⋅ 𝛼⋆⊤∇K𝛼⋆,

(14)c(K̄) ≥ −
𝛾

2
⋅ 𝛼⋆⊤K̄𝛼⋆ −

1

2
𝛼⋆⊤𝛼⋆ + Y⊤𝛼⋆

986	 Machine Learning (2020) 109:973–997

1 3

the most unpromising inputs and keep p′ high potential candidates as illustrated in Fig. 1.
Hence, although it would be better not separate the data into chunks at all in terms of
ranking performance, it is very beneficial for the main reason of using the input heuristic;
speed. Among those inputs which are deemed promising we will then solve the hierarchi-
cal (k,�) sparse regression problem (2) exactly as explained in the subsequent section.

4 � A cutting plane algorithm for hierarchical sparse regression

We point out again that our pure integer formulation (8) of the hierarchical (k,�)-sparse
regression problem (2) circumvents the introduction of a big-M constant which is simulta-
neously hard to estimate and crucial for its numerical efficacy. Solving the Big-M formula-
tion directly is consequently only practical for small problems of dimension n ≈ 1000 and
f ≈ 100 (Bertsimas et al. 2016). That being said, explicitly constructing the optimization
problem (8) results in the integer semidefinite optimization problem

which might prove daunting as well. The regression loss function c is indeed a semidefinite
representable function (Nesterov and Nemirovskii 1994) to be optimized over the discrete
set Sf ,p

�,k
 . Without even taking into account the discrete nature of the optimization problem

(8), solving a semidefinite optimization (SDO) of size the number of samples might even
prove in a convex case impractical for medium size problems with n ≈ 1000 . In order to
solve our CIO formulation (8), we take here an alternative route using the outer approxima-
tion approach introduced by Duran and Grossmann (1986) and given explicitly in Algo-
rithm 2. As this is a standard algorithm applied, albeit applied to our novel pure integer
formulation (8), we try to keep its discussion high-level.

Theorem 3  (Exact Sparse Regression (Fletcher and Leyffer 1994)) Algorithm 2 returns
the exact sparse solution w⋆ of the hierarchical (k,�)-sparse regression problem (6) in
finite time.

Despite the previous encouraging theorem, it nevertheless remains the case that from a
theoretical point of view we may need to compute exponentially many cutting planes in the
worst-case, thus potentially rendering our approach impractical. Indeed, in the worst-case

min
(s,h)∈S

f ,p

�,k

c
�∑

j∈[f] sjKj

�

987Machine Learning (2020) 109:973–997	

1 3

Algorithm 2 considers all integer point in Sf ,p
�,k

 forcing us to minimize the function so
constructed

over the hierarchical binary constraint set Sf ,p
�,k

 . As the number of integer points in the
constraint set is potentially extremely large, the previous full explicit construction should
evidently be avoided. This complexity behavior is however to be expected as exact sparse
regression is known to be an NP-hard problem. In practice usually very few cutting planes
need to be considered making the outer approximation method an efficient approach.

In general, outer approximation methods such as Algorithm 2 are known as multi-tree
methods because every time a cutting plane is added, a slightly different integer optimi-
zation problem is to be solved anew by constructing a branch-and-bound tree. Over the
course of the iterative cutting plane algorithm, a naive implementation would require that
multiple branch and bound trees are built in order to solve the successive integer optimiza-
tion problems. We employed a single tree implementation, instead of the iteration algo-
rithm 2 directly, by using dynamic constraint generation (Barnhart et al. 1998). Such sin-
gle tree implementations save the rework of rebuilding a new branch-and-bound tree every
time a new binary solution is found in Algorithm 2.

Bertsimas and Van Parys (2017) provide a closely related algorithm intended to solve
sparse linear regression problem up to dimensions f and n in the order of 100, 000s based
on a cutting plane formulation for integer optimization. Contrary to traditional complexity
theory which suggests that the difficulty of sparse regression problem increases with size,
there seems to exist a critical number of observations n0 such that the sparse regression
problems has the property that for a small number of samples n < n0 , an exact regressor
is not easy to obtain, but most importantly its solution does not recover the truth ( A% ≈ 0
and F% ≈ 100 ). For a large number of samples n > n0 however, exact sparse regression can
be done extremely fast and perfectly separates ( A% ≈ 100 and F% ≈ 0 ) the true monomial
features from the obfuscating bulk. We will show that similar behavior is observed in our
nonlinear sparse regression setting as well.

5 � Numerical results

To evaluate the effectiveness of hierarchical sparse polynomial regression discussed in this
paper, we report its performance first on synthetic sparse data and subsequently on real
data from the UCI Machine Learning Repository as well. All algorithms in this
document are implemented in Julia and executed on a standard Intel(R) Xeon(R)
CPU E5-2690 @ 2.90GHz running CentOS release 6.7. All optimization
was done with the help of the commercial mathematical optimization distribution Gurobi
version 6.5 interfaced through the JuMP package developed by Lubin and Dunning
(2015).

5.1 � Benchmarks and data

In the first part we will describe the performance of our cutting plane algorithm for polyno-
mial sparse regression on synthetic data. Working with synthetic data will allow for exper-
iments concerning the efficacy of our hierarchical sparse regression method in terms of its

c̄(s) ∶= max
(s̄,h̄)∈S

f ,p

�,k

c(s̄) + ∇c(s̄)(s − s̄)

988	 Machine Learning (2020) 109:973–997

1 3

accuracy A% and false alarm rate F% which would otherwise not be impossible on real data.
All synthetic data is generated as detailed in the following section.

Synthetic data The synthetic observations Y and input data X satisfy the linear relationship

The unobserved true regressor wtrue has exactly � nonzero components at indices j selected
uniformly at random without replacement from J  . This previous subset J is itself fur-
thermore constructed as {j ∈ [f] ∶ A(j) ⊆ I} where each of the k elements in I are uni-
formly selected out of [p]. The previous discussed construction thus guarantees that the
ground truth wtrue is (k,�) sparse. Additionally, the nonzero coefficients in wtrue are drawn
uniformly at random from the set {− 1,+ 1} . The observation Y consists of the signal
S ∶= Xwtrue corrupted by the noise vector E. The noise components et for t in [n] are drawn
independent identically distributed (i.i.d.) from a normal distribution and scaled such that
the signal-to-noise ratio equals

Evidently as the signal-to-noise ratio SNR increases, recovery of the unobserved true
regressor wtrue from the noisy observations can be done with higher precision. We have yet
to specify how the input matrix X is chosen. We assume here that the input data samples
X = (x1,… , xn) are drawn from an i.i.d. source with Gaussian distribution. Although the
columns of the data matrix X are left uncorrelated, the features mj(X) will be correlated.
For instance, it is clear that the second and forth power of the first input can only be posi-
tively correlated.

We will compare the performance of hierarchical sparse regression with four other bench-
mark regression approaches. The first two approaches where chosen as to investigate the
impact of both sparsity and nonlinearity on the performance of our method. The latter two
approaches are of a general nonparametric nature and investigate the effect of our polyno-
mial regressor assumption. We now describe the particularities of these four benchmarks
more closely.

Polynomial Kernel Regression As a first benchmark we consider ordinary polynomial
regression with regularization. The primary advantage of this formulation stems from the
fact that the optimal polynomial regressor in (1) can be found efficiently using

where 𝛼⋆ = (�n + 𝛾K)−1Y is the maximizer of (11) with kernel matrix K as given in Theo-
rem 2. Computing the maximizer 𝛼⋆ requires O(n3) effort which quickly becomes prohibi-
tive for problems counting much more than a few thousand samples. An approximation of
some sort is required for such large scale data sets. Approximation methods such as the
Nyström method (Drineas and Mahoney 2005) would be one possibility here. We however
opted for an approximation method in line with the approximation method suggested for
the ranking heuristic when faced with large data sets at the end of Sect. 3. To speed up

Y = gtrue(X) + E

= m(X) ⋅ wtrue + E.

√
SNR ∶= ‖S‖2∕‖E‖2.

g⋆
2
(x) = 𝛾

∑
t∈[n] 𝛼

⋆
t
(x⊤xt + 1)r

989Machine Learning (2020) 109:973–997	

1 3

computations, we split large data sets in smaller chunks of size approximately n = 2000
samples and compute for each of these chunks a distinct polynomial regressor. We use as
an approximation to g⋆

2
 the average of the regressors obtained on the different data chunks.

We find our approximation to be both simple yet effective.
As ordinary polynomial regression does not yield sparse regressors, this benchmark

will show us the merit of sparsity in terms of prediction performance. Classical Ridge
regression is found as a special case for r = 1 , enabling us to see what fruits polynomial
nonlinearity brings us.

�1-Heuristic Regression In order to determine the effect of exact sparse regression in our
two step procedure, we will also use a close variant of the SPORE algorithm developed by
Huang et al. (2010) as a benchmark. The potentially large number of polynomial features

f =

(
p + r

p

)
 also here necessitates the use of a input ranking heuristic for data sets of size

observed in practice. Using the input ranking method discussed in Sect. 3, we determine
first the p′ most relevant inputs heuristically. Using the remaining inputs X� ∈ Rn×p� and
response data Y ∈ Rn we then consider the maximizer g⋆

1
 of (3) as a heuristic sparse regres-

sor for varying sparsity parameter � and the standard choice � = ∞ . The best (p,�)-sparse
model is then ultimately taken as the least regularized model (highest � ) still counting at
most � nonzero feature coefficients. This two-step regression procedure hence shares the
structure outlined in Fig. 1 with our hierarchical exact sparse regression algorithm. As to
have a comparable number of hyper parameters as our two-step approach, we finally per-
form Ridge regression on the thus selected features using a Tikhonov regularization param-
eter � selected using cross validation. The final Ridge regression comes with the added
benefit that it debiases the sparse regressor obtained via the standard lasso procedure which
uses its hyperparameter � for both regularization and sparsification simultaneously.

Theoretical considerations (Bühlmann and van de Geer 2011; Hastie et al. 2015; Wain-
wright 2009) and empirical evidence (Donoho and Stodden 2006) suggests that the ability
to recover the support of the correct regressor wtrue from noisy data using the Lasso heu-
ristic experiences a phase transition. While it is theoretically understood (Gamarnik and
Zadik 2017) that a similar phase transition must occur in case of exact sparse regression,
due to a lack of scalable algorithms such a transition was never empirically reported. The
scalable cutting plane algorithm developed in Sect. 4 offers us the means to do so however.
Our main observation is that exact regression is significantly better than convex heuristics
such as Lasso in discovering all true relevant features ( A% ≈ 100 ), while truly outper-
forming their ability to reject the obfuscating ones ( F% ≈ 0).

Nonparametric Regression To be able to investigate the efficacy of our polynomial regres-
sor assumption, we also compare our hierarchical sparse method with two classical nonpar-
ametric regression methods. The simplest such method may be nearest neighbors regres-
sion (Altman 1992). This method is theoretically very well understood and even promises
near optimal performance in the asymptotic regime n → ∞ as discussed by Kpotufe (2011).
A closely related nonparametric method is regression trees which have been empirically
observed to perform excellent on many types of data sets (Breiman 2017). We used stand-
ard implementations of both these nonparametric regression methods found in the Julia
packages NearestNeigbors.jl and DecisionTree.jl, respectively.

990	 Machine Learning (2020) 109:973–997

1 3

5.2 � Phase transitions

In Fig. 2 we depict the performance of the hierarchical sparse regression procedure out-
lined in Fig. 1 in its ability to discover all relevant regression features ( A% ) and the run-
ning time T in seconds as a function of the sample size n for a regression problem with
p� = p = 25 inputs expanded with the help of all cubic monomials into f = 3276 possible
features. As p� = p the input ranking heuristic is irrelevant here and instead all inputs are
considered by the exact sparse regression procedure. The reported results are the average
of 20 independent sparse synthetic data sets where the error bars vizualize one standard
deviation of the inter data set variations. For the purpose of this section, we assume that we
know that only � = 20 features are relevant but do not know which. In practice though, the
parameter � must be estimated from data. In order to play into the ballpark of the Lasso
method, no hierarchical structure (k = p) is imposed. This synthetic data is furthermore
lightly corrupted by Gaussian noise with

√
SNR = 20 . Furthermore, if the optimal sparse

regressor was not found by the outer approximation Algorithm 2 within 2 min, the best
solution found up to that point is considered.

It is clear that our ability to uncover all relevant features ( A% ≈ 100) experiences a
phase transition at around n0 ≈ 600 data samples. That is, when given more than n0 data
points, the accuracy of the sparse regression method is perfect. With fewer data points our
ability to discover the relevant features quickly diminishes. For comparison, we also give
the accuracy performance of the Lasso heuristic described in (3). It is clear that exact
sparse regression dominates the Lasso heuristic and needs fewer samples for the same
accuracy A%.

Especially surprising is that the time T it takes Algorithm 2 to solve the correspond-
ing (k,�)-sparse problems exactly experiences the same phase transition as well. That is,
when given more than n0 data points, the accuracy of the sparse regression method is not
only perfect but easy to obtain. In fact, in case n > n0 our method is empirically as fast as
the Lasso based heuristic. This complexity transition can be characterized equivalently in
terms of the number of cutting planes necessary for our outer approximation Algorithm 2
to return the optimal hierarchical sparse regressor. While potentially exponentially many
( |Sf ,p

�,k
| in fact) cutting planes might be necessary in the worst-case, Table 1 list the actual

average number of cutting planes considered on the twenty instances previously discussed
in this section. When n > n0 only a few cutting planes suffice, whereas for n < n0 an expo-
nential number seem to be necessary.

5.3 � The whole truth, and nothing but the truth

In the previous section we demonstrated that exact sparse regression is marginally better
in discovering all relevant features A% . Nevertheless, the true advantage of exact sparse
regression in comparison to heuristics such as Lasso is found to lie elsewhere. Indeed,
both our method and the Lasso heuristic are with a sufficient amount of data eventually
able to discover all relevant ( A% ≈ 100 ) features. In this section, we will investigate the
ability of both methods to reject irrelevant features. Indeed in order for a method to tell the
truth, it must not only tell the whole truth ( A% ≈ 100 ), but nothing but the truth ( F% ≈ 0 ).
It is in the latter aspect that exact sparse regression truly shines.

In Fig. 3 we show the performance of the (p,�)-sparse regressors found with our exact
method and the Lasso heuristic on the same synthetic data discussed in the previous

991Machine Learning (2020) 109:973–997	

1 3

Fig. 2   The performance of exact sparse regression and the Lasso heuristic on synthetic data in terms of
accuracy A% , false alarm rate F% and time T in seconds. The reported results are the average of 20 inde-
pendent sparse synthetic data sets where the error bars vizualize one standard deviation of the inter data set
variations

992	 Machine Learning (2020) 109:973–997

1 3

section in terms of both their accuracy A% and false alarm rate F% in function of � . Again,
the reported results are averages over 20 distinct synthetic data sets . Each of these data sets
consisted of n = 560 observations. Among all potential third degree monomial features,
again only 20 where chosen to be relevant for explaining the observed data Y. Whereas in
previous section, the true number of features was treated as a given, in practical problems
� must also be estimated from data. As we vary � over the regression path [f], we implic-
itly trade lower false alarm rates for higher accuracy. We have indeed a choice between
including too many features in our model resulting in a high false alarm rate but hopefully
discovering many relevant features, or limiting the number of features thus keeping the
false alarm rate low but at the cost of missing features. One method is better than another
when it makes this tradeoff better, i.e., obtains higher accuracy for a given false alarm rate
or conversely a lower false alarm rate for the same accuracy. It is clear from the results
shown in Fig. 3 that exact sparse regression dominates the Lasso heuristic in terms of

Table 1   Number of cutting planes considered in the outer approximation Algorithm 2 as a function of the
sample size n 

For the smallest sample sizes n the optimal solution could not be computed within the allocated maximum
solution time

Samples n 300 400 500 600 700 800 900 1000
Cutting planes > 300 > 300 298 200 70 59 25 31

Fig. 3   The performance of exact sparse regression and the Lasso heuristic on synthetic data in terms of
accuracy A% and false alarms F%

993Machine Learning (2020) 109:973–997	

1 3

keeping a smaller false alarm rate while at the same time discovering more relevant mono-
mial features.

Hence although both exact sparse regression and the Lasso heuristic are eventually
capable to find all relevant monomial features, only the exact method finds a truly sparse
regressor by rejecting most irrelevant monomials from the obfuscating bulk. In practical
situations where interpretability of the resulting regression model is key, the ability to
reject irrelavant features can be a game changer. While all the results so far are demon-
strated on synthetic data, we shall argue in the next section that also for real data sets simi-
lar encouraging conclusions can be drawn.

5.4 � Polynomial input ranking

In the preceding discussions, the first step of our approach outlined in Fig. 1 did not come
into play as it was assumed that p� = p . Hence, no preselection of the inputs using the rank-
ing heuristic took place. Because of the exponential number of regression features f as a func-
tion of the input dimension p, such a direct approach may not be tractable when p becomes
large. In this part we will argue that the performance of the input ranking heuristic discussed
in Sect. 3 is sufficient in identifying the relevant features while ignoring the obfuscating bulk.

To make our case, we consider synthetic data with hierarchical sparsity (k,�) = (20, 40)
generated in the fashion detailed in Sect. 5.1. That is, only 20 inputs in 40 monomial fea-
tures of degree r = 3 are relevant for the purpose of regression. In Table 2 we report the
average reduced input dimension p′ necessary for the input ranking heuristic to recover
all relevant inputs. That is, all relevant k inputs are among the top p′ ranked inputs. For
example, for n = 2000 and p = 1000 the input ranking heuristic needs to include p� = 286
to cover all 20 true features, while for n = 10,000 and p = 1000 the input ranking heuris-
tic needs to include only p� = 78 . We note that as n increases the input ranking heuristic
needs a smaller number of features to identify the relevant ones. Note, however, that the
false alarm rate of the input ranking heuristic remains high, that is, among the top p′ inputs
many inputs were in fact irrelevant ( p′ > k ). However, we do not aspire here to find all k
relevant inputs exactly, rather we hope to reduce the dimension to p′ without missing out
any relevant inputs. Reducing the false alarm rate is done by means of exact hierarchical
sparse regression in the second step of our overall algorithm.

5.5 � Real data sets

In the final part of the paper we report the results of the presented methods on several data
sets found in the UCI Machine Learning Repository found under https://
archive.ics.uci.edu/ml/datasets.html. Each of the datasets was folded ten

Table 2   Average size p′ necessary for our input ranking heuristic to identify all relevant features

Dimension p′ n = 2 × 103 n = 4 × 103 n = 6 × 103 n = 8 × 103 n = 10 × 103

p = 200 72 41 36 54 27
p = 400 117 109 75 80 62
p = 600 222 166 128 68 104
p = 800 361 230 96 95 102
p = 1000 286 264 142 103 78

994	 Machine Learning (2020) 109:973–997

1 3

times into 80% training data, 10% validation data and 10% test data T  . No preprocessing
was performed on the data besides rescaling the inputs to have a unit norm.

We report the prediction performance of each of the mentioned regression methods on
the test data sets. The first regression method we consider is ordinary Ridge regression.
Ridge regression allows us to find out whether considering nonlinear regressors has merit.
The second method we consider is polynomial kernel regression with degree r polynomials
as in (1). This nonlinear but non-sparse method on its part will allow us to find out the mer-
its of sparsity for the purpose of out-of-sample prediction performance. The third method
is the �1-heuristic described before and which will allow us to see whether our sparse for-
mulation bring any benefits. We used the input ranking algorithm described in Sect. 3 to
limit the number of potentially relevant inputs to at most p� = 20 . Furthermore, we limit
the time spent on computing our sparse hierarchical regression to at most Tmax = 60 s.
We also report an upper bound on the suboptimality of the best obtained solution s̃ after
Tmax seconds as the relative accuracy gap = (c(

∑
j∈[f] s̃jKj) − c̃)∕c̃ where c̃ is a provable

lower bound on optimal value of the sparse hierarchical optimization formulation (8) and
can be obtained at no additional cost as the quantity � defined in the outer approximation
Algorithm 2.

Each of these preceding regression methods assumes the data to follow a polynomial
model as discussed in Sect. 1. To be able to judge the impact of the polynomial model
assumption, we also report the prediction performance of nonparametric nearest-neighbors
and regression tree (CART​) methods. Each of these methods is compared to our hierarchi-
cal exact regressor in terms of out-of-sample test error

The hyperparameters of each method were chosen as those best performing on the valida-
tion data from among k ∈ [p�] , � ∈ [100] and polynomial degree ranging in r ∈ [4] . The
average out-of-sample performance on the test data and sparsity of the obtained regressors
using the Lasso heuristic and exact hierarchical sparse regression is shown in Table 3.

As one could expect, considering nonlinear monomial features is not beneficial for pre-
diction in all data sets. Indeed, in six data sets ordinary Ridge regression (RR) provides
the same out-of-sample performance as its polynomial kernel (SVM) counterpart. In these
cases, sticking with r = 1 was validated to be best. A similar remark can be made with
regards to sparsity. That is, for all but four data sets adding sparsity using either polyno-
mial lasso (PL) or our hierarchical regression method (CIO) does not immediately yield
any benefits in terms of prediction power. Also this should not be that surprising. If the
underlying data is simply not well explained by a sparse model, considering sparse models
heuristically or exactly will not be beneficial to prediction performance. Nevertheless, add-
ing sparsity using our integer optimization approach (CIO) is empirically found to lead to
better prediction performance than with Lasso (PL) in all but five instances.

When we compare the performance of any of the four parametric methods (RR, SVM,
PL, CIO) to either nonparametric methods (NN, CART) which do not assume a polynomial
model, then in all but five instances they have better prediction performance. It should be
remarked that our method (CIO) has two potential sources of prediction performance deg-
radation: (1) the inexact nature of the input ranking heuristic when p > p� = 20 and (2) the
fact that the obtained regressor solves the sparse regression problem (8) only up to relative
accuracy gap > 0 . Increasing Tmax from 60 to 3600 s had no statistically significant effect
on either the test error (TE) or relative accuracy ( gap ) for the data sets in Table 3 which

TE ∶=

∑
t∈T

��yt − h(xt)
��2√�T�

.

995Machine Learning (2020) 109:973–997	

1 3

have at most 20 inputs. Hence, we do not know with certainty whether the observed loss in
prediction performance stems from the imposed polynomial nature of the regression mod-
els or the heuristic nature of our structured sparse regression algorithm. As the polynomial
kernel (SVM) regression method has the worst overall average ranking, the former seems
however a more likely explanation than the latter.

6 � Conclusions

We discussed a scalable hierarchical sparse regression method based on a smart heuristic
and modern integer optimization for nonlinear regression. We consider as the best regres-
sor that degree r polynomial of the input data which depends on at most k inputs count-
ing at most � monomial terms which minimizes the sum of squares prediction errors with
a Tikhonov loss. This hierarchical sparse specification aligns well with big data settings
where many inputs are not relevant for prediction purposes and the functional complexity
of the regressor needs to be controlled to avoid overfitting. Using a modern cutting plane
algorithm, we can use exact sparse regression on regression problems of practical size. The
ability of our method to identify all k relevant inputs as well as all � relevant monomial
terms and reject all others was shown empirically to experience a phase transition. In the
regime where our method is statistically powerful, the computational complexity of exact
hierarchical regression was empirically on par with Lasso based heuristics taking away
their main propelling justification. We have empirically shown that we can outperform

Table 3   Out-of-sample performance of regression trees (CART), nearest neighbors (NN), ridge regression
(RR), polynomial kernel regression (SVM), polynomial lasso (PL) and exact hierarchical regression (CIO)
on several UCI Data sets

The last row gives the rank of each method as averaged over all data sets

Problem n p CART​ NN RR SVM PL CIO

TE TE TE TE TE TE Gap

Airfoil self-noise 1502 5 3.07 2.28 4.76 3.09 6.10 3.25 0.15
Concrete compressive strength 1030 8 7.00 7.67 10.23 6.12 7.63 6.84 0.16
Energy efficiency I 768 8 0.62 3.06 2.95 0.72 2.49 2.39 0.13
Energy efficiency II 768 8 2.00 3.50 3.31 1.66 3.32 3.43 0.20
Wine quality red 1599 11 0.74 0.68 0.69 0.69 0.67 0.78 0.18
Wine quality white 4898 11 0.78 0.75 0.76 0.71 0.76 0.77 0.17
UJIIndoorLoc I 199,937 519 11.73 8.57 36.8 36.8 121.08 75.3 0.18
UJIIndoorLoc II 199,937 519 0.06 0.04 0.21 0.09 0.36 0.35 0.18
Monitoring 11,933 16 0.0014 0.0016 0.0022 0.00010 0.010 0.0056 0.03
Music I 1058 68 20.06 16.16 16.81 16.81 21.97 15.1 0.0
Music II 1058 68 53.89 42.21 43.65 43.65 47.73 45.26 0.11
Residential I 372 107 257.51 672.36 157.79 157.79 119.27 120.56 0.15
Residential II 372 107 46.49 88.12 35.90 35.90 29.53 35.34 0.17
Slice localization 53,500 384 2.83 0.204 8.47 5.32 15.06 14.69 0.0
Average rank 3.43 2.64 3.29 4.36 3.79 3.5

996	 Machine Learning (2020) 109:973–997

1 3

heuristic methods in both finding all relevant nonlinearities as well as rejecting obfuscating
ones.

References

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The Ameri-
can Statistician, 46(3), 175–185.

Bach, F. (2008). Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning
Research, 9(Jun), 1179–1225.

Bach, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in
neural information processing systems (pp. 105–112).

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., & Vance, P. (1998). Branch-and-price: Column
generation for solving huge integer programs. Operations Research, 46(3), 316–329.

Bertsimas, D., & Copenhaver, M. (2018). Characterization of the equivalence of robustification and regu-
larization in linear and matrix regression. European Journal of Operational Research, 270, 931–942.

Bertsimas, D., King, A., & Mazumder, R. (2016). Best subset selection via a modern optimization lens.
Annals of Statistics, 44(2), 813–852.

Bertsimas, D., & Van Parys, B. (2017). Sparse high-dimensional regression: Exact scalable algorithms and
phase transitions. Submitted to the Annals of Statistics. https​://arxiv​.org/abs/1709.10029​.

Breiman, L. (2017). Classification and regression trees. London: Routledge.
Bühlmann, P., & van de Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applica-

tions. Berlin: Springer.
Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from

highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.
Donoho, D., & Stodden, V. (2006). Breakdown point of model selection when the number of variables

exceeds the number of observations. In International joint conference on neural networks (pp. 1916–
1921). IEEE.

Drineas, P., & Mahoney, M. (2005). On the Nyström method for approximating a gram matrix for improved
kernel-based learning. Journal of Machine Learning Research, 6(Dec), 2153–2175.

Duran, M., & Grossmann, I. (1986). An outer-approximation algorithm for a class of mixed-integer nonlin-
ear programs. Mathematical Programming, 36(3), 307–339.

Fan, J., & Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature space. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(5), 849–911.

Fan, J., & Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. Statis-
tica Sinica, 20(1), 101.

Fletcher, R., & Leyffer, S. (1994). Solving mixed integer nonlinear programs by outer approximation. Math-
ematical Programming, 66(1), 327–349.

Gamarnik, D., & Zadik, I. (2017). High-dimensional regression with binary coefficients. Estimating squared
error and a phase transition. https​://arxiv​.org/abs/1701.04455​.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine
Learning Research, 3(Mar), 1157–1182.

Hall, P., & Xue, J. H. (2014). On selecting interacting features from high-dimensional data. Computational
Statistics & Data Analysis, 71, 694–708.

Hao, N., & Zhang, H. (2014). Interaction screening for ultrahigh-dimensional data. Journal of the American
Statistical Association, 109(507), 1285–1301.

Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The lasso and gener-
alizations. Boca Raton: CRC Press.

Hoerl, A., & Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Techno-
metrics, 12(1), 55–67.

Huang, L., Jia, J., Yu, B., Chun, B. G., Maniatis, P., & Naik, M. (2010). Predicting execution time of com-
puter programs using sparse polynomial regression. In Advances in neural information processing sys-
tems (pp. 883–891).

Kong, Y., Li, D., Fan, Y., Lv, J., et al. (2017). Interaction pursuit in high-dimensional multi-response regres-
sion via distance correlation. The Annals of Statistics, 45(2), 897–922.

Kpotufe, S. (2011). k-NN regression adapts to local intrinsic dimension. In Advances in neural information
processing systems (pp. 729–737).

Lubin, M., & Dunning, I. (2015). Computing in operations research using Julia. INFORMS Journal on
Computing, 27(2), 238–248.

https://arxiv.org/abs/1709.10029
https://arxiv.org/abs/1701.04455

997Machine Learning (2020) 109:973–997	

1 3

Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on
Signal Processing, 41(12), 3397–3415.

Mercer, J. (1909). Functions of positive and negative type, and their connection with the theory of integral
equations. Philosophical Transactions of the Royal Society of London, 209, 415–446.

Miller, A. (2002). Subset selection in regression. Boca Raton: Chapman and Hall/CRC.
Nesterov, Y., & Nemirovskii, A. (1994). Interior-point polynomial algorithms in convex programming. Phil-

adelphia: SIAM.
Pelckmans, K., Suykens, J., Van Gestel, T., De Brabanter, J., Lukas, L., Hamers, B., De Moor, B., & Vande-

walle, J. (2002). LS-SVMlab: A Matlab/C toolbox for least squares support vector machines. Technical
report, K.U.Leuven

Poggio, T. (1975). On optimal nonlinear associative recall. Biological Cybernetics, 19(4), 201–209.
Schölkopf, B., & Smola, A. (2002). Learning with kernels: Support vector machines, regularization, optimi-

zation, and beyond. Cambridge: MIT press.
Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an observed polynomial

function and its constants and the guidance they give towards a proper choice of the distribution of
observations. Biometrika, 12(1/2), 1–85.

Stone, M. (1948). The generalized Weierstrass approximation theorem. Mathematics Magazine, 21(5),
237–254.

Suykens, J., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing
Letters, 9(3), 293–300.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1), 267–288.

Tikhonov, A. (1943). On the stability of inverse problems. Doklady Akademii Nauk SSSR, 39(5), 195–198.
Vapnik, V. (1998). The support vector method of function estimation. In Nonlinear modeling (pp. 55–85),

Springer.
Vapnik, V. (2013). The nature of statistical learning theory. Berlin: Springer.
Wainwright, M. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using-

constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55(5),
2183–2202.

Zhao, P., Rocha, G., & Yu, B. (2009). The composite absolute penalties family for grouped and hierarchical
variable selection. The Annals of Statistics, 37, 3468–3497.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Sparse hierarchical regression with polynomials
	Abstract
	1 Introduction
	1.1 Hierarchical -sparsity
	1.2 Exact algorithms
	1.3 Triage heuristic
	1.4 Contributions
	1.5 Notation

	2 Hierarchical -sparse polynomial regression
	2.1 Mixed integer formulation
	2.2 Convex integer formulation

	3 Polynomial kernel input ranking
	4 A cutting plane algorithm for hierarchical sparse regression
	5 Numerical results
	5.1 Benchmarks and data
	5.2 Phase transitions
	5.3 The whole truth, and nothing but the truth
	5.4 Polynomial input ranking
	5.5 Real data sets

	6 Conclusions
	References

