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Abstract
Although recent studies have shown that a Bayesian network classifier (BNC) that maxi-
mizes the classification accuracy (i.e., minimizes the 0/1 loss function) is a powerful tool in 
both knowledge representation and classification, this classifier: (1) focuses on the majority 
class and, therefore, misclassifies minority classes; (2) is usually uninformative about the 
distribution of misclassifications; and (3) is insensitive to error severity (making no distinc-
tion between misclassification types). In this study, we propose to learn the structure of a 
BNC using an information measure (IM) that jointly maximizes the classification accuracy 
and information, motivate this measure theoretically, and evaluate it compared with six 
common measures using various datasets. Using synthesized confusion matrices, twenty-
three artificial datasets, seventeen UCI datasets, and different performance measures, we 
show that an IM-based BNC is superior to BNCs learned using the other measures—espe-
cially for ordinal classification (for which accounting for the error severity is important) 
and/or imbalanced problems (which are most real-life classification problems)—and that 
it does not fall behind state-of-the-art classifiers with respect to accuracy and amount of 
information provided. To further demonstrate its ability, we tested the IM-based BNC in 
predicting the severity of motorcycle accidents of young drivers and the disease state of 
ALS patients—two class-imbalance ordinal classification problems—and show that the 
IM-based BNC is accurate also for the minority classes (fatal accidents and severe patients) 
and not only for the majority class (mild accidents and mild patients) as are other classi-
fiers, providing more informative and practical classification results. Based on the many 
experiments we report on here, we expect these advantages to exist for other problems in 
which both accuracy and information should be maximized, the data is imbalanced, and/
or the problem is ordinal, whether the classifier is a BNC or not. Our code, datasets, and 
results are publicly available http://www.ee.bgu.ac.il/~boaz/softw are.
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1  Introduction and related work

Classifiers, e.g., the neural network (NN), random forest (RF), and support vector machine 
(SVM), excel in prediction but not in knowledge representation, which is needed in prob-
lems for which key factor identification is sought, such as in an attempt to understand pos-
sible causes of accidents, a disease, or a machine/process fault. The Bayesian network 
(BN) excels in knowledge representation, which makes it ideal to identify key factors, but 
it is not considered a supreme classifier. To achieve high accuracy (ACC), learning the 
structure of a BN classifier (BNC) should maximize a (discriminative) score that is specific 
to classification and not a generative one based on the likelihood function that may fit a 
general BN structure, but not necessarily that of a BNC structure. Indeed, when a BNC 
was learned to minimize the 0/1 loss function, it showed superiority to BNCs learned using 
marginal and class-conditional likelihood-based scores and even to state-of-the-art classi-
fiers like NN and SVM (Kelner and Lerner 2012).

However, by maximizing accuracy (minimizing the 0/1 loss function) in learning its 
structure, the BNC—similar to other machine learning classifiers—cannot account for the 
error distribution and, thus, is not informative enough about the classification result and the 
contribution of each class to the error (Provost et al. 1998; García et al. 2010), and it may 
also be sub-optimal (Ranawana and Palade 2006). Other discriminative measures used in 
learning a classifier, such as the area under curve (AUC), suffer from the same shortcom-
ing, because they all relate to ACC. Moreover, in most cases, these measures only suit 
binary classification problems. Also, it may explain why other studies (García et al. 2009) 
suggested measures such as the consensus measure of accuracy.

On the other hand, measures that maximize information and account for error distri-
bution, e.g., mutual information (MI) (Cover and Thomas 2012), the Matthew correlation 
coefficient (MCC) (Baldi et al. 2000), and the confusion entropy (CEN) (Wei et al. 2010) 
usually are not accurate enough. Labatut and Cherifi (2011) claimed that most of the non-
accuracy measures were initially developed for other purposes than to compare/evaluate 
classifiers (e.g., to measure the association between two random variables, the alignment 
between two raters, or the similarity between two sets). Therefore, they may lead to con-
fusing terminology or even to wrong interpretation, or they may be noisy and ad hoc for a 
particular problem.

A second challenge for a BNC, as well as for all other machine-learning classifiers, is 
that for imbalanced data, they usually predict all (or almost all, depending on the imbal-
ance level) samples of the minority classes as of the majority class. These classifiers show 
high accuracy, which is in the order of the prior probability of the majority class, since 
they classify all samples to this class, but at the same time, they may misclassify all sam-
ples of the minority classes. Class imbalance can traditionally be tackled using different 
approaches, e.g., random sampling—upsampling the minority class(es) or downsampling 
the majority class (Chawla 2005; Provost 2000). However, these two sampling methods 
result in over-fitting and domain deformation or loss of data, respectively. In addition, 
tackling imbalance by random downsampling or upsampling, or applying different costs 
to different misclassifications provides an optimistic ACC estimate, and thus is not recom-
mended (Provost 2000). Also other accuracy-driven measures, e.g., precision, sensitivity, 
and specificity lead to sub-optimal solutions in the presence of class imbalance (Ranawana 
and Palade 2006). More advanced methods to tackle class imbalance include feature selec-
tion (Wasikowski and Chen 2010); sampling subsets of the classes (Liu et al. 2009); combi-
nation of down- and upsampling using e.g., the synthetic minority over-sampling technique 
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(SMOTE) (Chawla et  al. 2002); combination of down–upsampling with an ensemble of 
classifiers (Galar et al. 2012) or with feature selection (Lerner et al. 2007); cost-sensitive 
learning (Domingos 1999); measuring the balanced accuracy (over all classes) (Brodersen 
et  al. 2010) or its geometric mean (García et  al. 2010); and hierarchical decomposition 
of the classification task, where each hierarchy level is designed to tackle a simpler prob-
lem that is represented by classes that are approximately balanced (Lerner et  al. 2007). 
Although probably never tested, classifiers—BNCs and others—learned using information 
measures such as MI, MCC, and CEN should be less affected by class imbalance data but 
at the same time also less accurate.

A third challenge is that 0/1 loss-function classifiers do not account differently for dif-
ferent error severities, as they count all misclassifications the same, both for performance 
evaluation and in learning. However, when the class (target) variable is ordinal, exploit-
ing the ordinal nature of this variable may facilitate learning the classifier and make it 
more accurate. Considering an ordinal target variable Y, taking one of M values, such that 
V1 < ⋯ < VM , a learning algorithm can take into account the natural ordering of this vari-
able to induce a classifier, which harnesses this extra information to improve its accuracy. 
One such classifier is the cumulative probability tree (Frank and Hall 2001), for which Y 
is transformed into M − 1 binary variables such that the ith binary variable represents the 
test Y > Vi . The model then comprises M − 1 tree classifiers, where the ith tree is trained to 
output P(Y > Vi) . Another ordinal classifier is the cumulative link model (CLM) (Agresti 
2011) that is an extension of the generalized linear model (GLM) for ordinal classification. 
A third ordinal classifier is the ordinal decision tree, which generalizes the classification 
and regression tree (CART) (Breiman et al. 1984) to ordinal target variables by considering 
splitting functions based on ordinal impurity functions (Piccareta 2008), which are spe-
cific implementations of the generalized Gini impurity function for a node. Principally—
although we are not aware of any such study—the mean absolute error, MAE, (Hyndman 
and Koehler 2006), which sometimes is used to evaluate the error between a prediction and 
the true value, may also be used to augment learning an ordinal classifier. While such a 
measure can capture the ordinal information in a problem and potentially penalize different 
errors differently as we desired, it is not informative regarding the error distribution and is 
still sensitive to class imbalance.

To motivate this study further, let’s consider two examples. The first is prediction of the 
severity of young-driver (YD) motorcycle accidents (MAs). Road injuries are the leading 
cause of death among YDs (ages 18–24) (Toledo et al. 2012); YDs make up 9–13% of the 
population, but their percentage in driver fatalities is 18–30% (OECD 2006). Besides the 
tragic human cost, a fatal accident costs (OECD 2006) around $1.5M, where in the US 
alone, the cost of YD road accidents in 2002 was $40 billion. MAs are particularly deadly, 
and luckily fatal MAs are only ∼ 1% of all accidents, whereas severe and minor accidents 
are around 12% and 87% of the accidents, respectively. However, experiments show that 
MA classifiers tend to focus on the majority class of minor accidents at the expense of the 
minority classes of severe and fatal accidents (Halbersberg and Lerner 2019). In addition 
they are uninformative about their error distribution and are insensitive to error severity 
(making, e.g., no distinction between misclassification of fatal accidents as severe or minor 
although the former is less harsh than the latter). Road-safety experts wish their MA clas-
sifier to not only maximize accuracy, but also to be informative about its errors, to be as 
indifferent as possible to data imbalance between minor and fatal accidents, and to penalize 
misclassifications of fatal accidents as severe and as minor differently.

The second example is prediction of the disease state of an ALS patient. Amyotrophic 
lateral sclerosis (ALS) is a devastating neurodegenerative illness of the human motor 
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system with an unknown pathogenesis (Kiernan et  al. 2011), which is still not visibly 
affected by the therapies available today, and from which 50% of patients die within three 
to five years of onset, and about 20% survive between five to ten years (Mitchell and Bora-
sio 2007; Kiernan et  al. 2011). The ALS functional rating scale (ALSFRS) is a widely 
accepted metric in the ALS medical community for the evaluation of ALS-related disabil-
ity and progression (Brooks et al. 1996), with values between 0 for no functionality and 
4 for full functionality for ten ALSFRS items describing physical functionalities in, e.g., 
breathing, speaking, and walking. By considering the ALSFRS as the target (class label), 
we may define ALS disease state prediction as an ordinal problem. With respect to the rela-
tive frequencies of ALSFRS values, which typically may vary from around 1% for ALS-
FRS of 0 to 42% and 35% for values of 3 and 4, respectively, disease state prediction also 
becomes a class imbalance problem. ALS patients, along with their doctors and carers, 
wish for disease state prediction to be very accurate (Gordon and Lerner 2019) but at the 
same time informative, to not be fooled by the imbalance among disease states, and to con-
sider mild misclassification less harshly than severe misclassification.

In this study, we propose to learn a BNC, which leverages knowledge representation, 
using measures replacing the 0/1 loss function and trading accuracy and information. We 
are interested in learning the BNC using a measure that maximizes both accuracy and 
information, considers the error distribution, admits class imbalance, and accounts for 
error severity (which is significant only for ordinal problems). First, we consider exist-
ing measures, such as MI, MCC, and CEN, that all use the entire confusion matrix and 
not just its diagonal (as ACC) and, therefore, have the potential to meet at least some of 
our concerns. In addition, we evaluate the MAE, which naturally accounts for error sever-
ity. Second, since none of these measures accounts for all concerns, we propose next a 
novel information measure (IM), trading accuracy and information, that accounts for all 
of them. Third, we extend this measure further, adding to it a term that trades off accuracy 
and IM, giving the measure an additional degree of flexibility. Then we motivate the pro-
posed measures and thoroughly evaluate them, comparing them with the existing meas-
ures theoretically and using several performance measures (which are the same learning 
measures), synthesized confusion matrices, artificial datasets, UCI ordinal datasets, and 
three real ordinal problems. We show the advantages of the IM-based BNC compared with 
BNCs that are learned using alternative measures and other state-of-the-art classifiers with 
respect to maximization of accuracy and information in ordinal class-imbalance problems. 
These advantages are manifested here for many databases and several real-world problems, 
but we believe they hold true for other problems (e.g., ranking problems) having the same 
requirements, and for classifiers other than the BNC.

In summary, our contribution is that: (1) We propose to utilize the BNC using a measure 
replacing the 0/1 loss function to jointly maximize accuracy and information, consider the 
error distribution, admit class imbalance, and account for error severity in tackling class-
imbalance ordinal classification problems; (2) Since our theoretical and empirical evalua-
tion of existing measures showed that none of the existing measures accounts for all these 
concerns, we suggest a novel information measure (IM) that has all the above desired prop-
erties; (3) We motivate the proposed measure and thoroughly evaluate it theoretically in 
comparison with the existing measures and empirically using several performance meas-
ures, synthesized confusion matrices, artificial datasets, UCI ordinal datasets, and three 
real ordinal problems; and (4) We demonstrate the advantages of the IM-based BNC com-
pared with BNCs that are learned using existing measures and with other state-of-the-art 
classifiers (e.g., NN, SVM, BNC, and RF) with respect to maximization of accuracy and 
information in ordinal class-imbalance problems. We manifested these advantages using 
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many databases and several real-world problems, and we believe these hold true for other 
problems (e.g., ranking problems) having the same requirements, and for classifiers other 
than the BNC.

The rest of this paper is organized as follows. In Sects. 2 and 3, we review the BNC 
and candidate measures for learning its structure, respectively. In Sect. 4, we propose new 
measures for learning a BNC and demonstrate how to control their values to trade learning 
among the conflicting requirements of accuracy, information, and error severity. In Sect. 5, 
we experimentally evaluate our information measures comparing them with existing meas-
ures using synthesized confusion matrices that pose different classification scenarios and 
challenges. In Sect. 6, we expand our evaluation and compare empirically BNCs learned 
based on our (as well as other) measures with state-of-the-art classifiers using databases 
representing artificial and real-world problems. Finally in Sect. 7, we summarize the study 
and draw important conclusions.

2  Bayesian network classifiers

The BN compactly represents the joint probability distribution P over a set of variables 
X = {X1,… ,Xn} , each, in the discrete case, having a finite set of mutually exclusive states. 
It consists of a network structure G and a set of parameters � , where G = (V ,E) is a directed 
acyclic graph in which the nodes V in G are in one-to-one correspondence with the vari-
ables in X, and the edges E in G encode a set of conditional independence assertions about 
variables in X. � consists of local probability distributions, each for each variable Xi given 
its parents PA(Xi) in G. Given the network, the joint probability distribution over X com-
prises the local distributions as (Heckerman 1998):

Learning the structure of the BN from a dataset D is NP hard (Cooper and Herskovits 
1992), and thus is usually performed heuristically and sub-optimally using, e.g., the search 
and score (S&S) approach by which the structure that maximizes a score function, which 
measures the fitness of the structure to the data, is selected. One such score (measure) is 
the a posteriori probability of the network given the data, P(G|D) (or the marginal likeli-
hood, P(D|G), for equally probable structures) (Cooper and Herskovits 1992), and another 
measure is based on the minimum description length principle (Lam and Bacchus 1994), 
penalizing model complexity, where both scores are asymptotically equivalent and correct. 
However, these scores, similar to other log likelihood (LL) or information-based scores, 
either likelihood-equivalent or not (Heckerman et  al. 1995), cannot optimize a classifier 
(Friedman et al. 1997) because they are not directed in maximizing the classification accu-
racy. Instead, it was suggested to learn a BNC by maximizing the conditional log likeli-
hood (CLL) of G given D (Grossman and Domingos 2004):

where v′
i
 and ci are the feature vector and class label, respectively, for the ith of N instances. 

However, the computation of CLL is exponential in the number of instances N, and also, 

(1)P(X1,X2, ...,Xn) =

n∏

i=1

P(Xi|PA(Xi)).

(2)CLL(G|D) = log

N∏

i=1

P(ci|v�i) =
N∑

i=1

logP(ci|v�i) = LL(G|D) −
N∑

i=1

logP(v�
i
),
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although CLL is asymptotically correct, for a finite sample, the class maximizing CLL can 
only indicate the correct classification, but it can not guarantee it (Kelner and Lerner 2012).

A score that measures the degree of compatibility between a possible state of the 
class variable C and the correct class is the 0/1 loss function:

where ĉi is the estimated class label for the ith instance. Instead of selecting a structure 
based on summation of supervised marginal likelihoods over the dataset (2), the risk mini-
mization by cross validation (RMCV) score selects a structure based on summation of false 
decisions about the class state over the dataset (Kelner and Lerner 2012),

where the training set D is divided into K non overlapping validation sets DK
k

 (each hav-
ing N/K instances of the form vki = (cki, v

�
ki
) ), and for each such validation set, an effective 

training set has |D ⧵ DK
k
| (i.e., N(K − 1)∕K ) instances. As part of the cross validation (CV), 

the classification error rate, i.e., the RMCV score, is measured on all vectors of DK
k

 and 
averaged over the K validation sets. No use of the test set is made during learning. Note 
that the RMCV score is normalized by the dataset size N, whereas (2) is not. Although 
normalization has the same effect on all learned structures, it can clarify the meaning of the 
score (i.e., an error rate) and help in comparing scores over datasets. Moreover, sharing the 
same range of values ([0, 1]), RMCV establishes its correspondence to classification accu-
racy. Also, note that the same RMCV measure can be used for learning the BNC and for 
evaluating its accuracy, which makes learning oriented towards classification.

To compute the RMCV, the candidate structure has to be turned into a classifier by 
learning its parameters. Local probabilities are modeled using the unrestricted multi-
nominal distribution (Heckerman 1998), where the distribution parameters are obtained 
using maximum likelihood (ML) (Cooper and Herskovits 1992), similar to (Kontkanen 
et al. 1999). Moreover, it has been empirically shown (Grossman and Domingos 2004) 
that ML parameter estimation does not deteriorate the results compared to maximum 
conditional likelihood estimation, which can only be obtained by computationally 
expensive numerical approximation. Learning a BN rather than a structure has an addi-
tional cost of parameter learning, though this cost is negligible while using ML estima-
tion and fully observed data.

Starting with the empty or naïve Bayesian graph and using a simple hill-climbing 
search with the RMCV score establish the RMCV structure learning algorithm for 
BNCs (Kelner and Lerner 2012). The hill-climbing implementation includes a search 
over all neighbor graphs at each iteration. A neighbor graph is defined as a single modi-
fication of the current graph using one of the following operators: edge addition, dele-
tion, or reversal provided that the derived graph remains a directed acyclic graph. The 
RMCV BNC showed superiority to other BNCs and state-of-the-art classifiers using 
synthetic and UCI datasets and, thus, is used in this study to represent a BNC. However, 
as it is based on the 0/1 loss function, RMCV, similar to other classifiers, is prone to all 
weaknesses of classifiers as described in Sect. 1.

(3)L(ci, ĉi) =

{
0, ci = ĉi ,

1, ci ≠ ĉi

(4)

RMCV(D,G) =
1

K

K∑

k=1

K

N

N∕K∑

i=1

L(c
ki
, argmax

c
P(C = c|v�

ki
,D�DK

k
,G)), c ∈ {c1,… , c

M
},
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3  Evaluating classifier performance

How can we know whether the classification model we have constructed is the most 
suitable one? Performance measures that evaluate multi-class classifiers are usually 
based on the confusion matrix between predicted and true classes (Baldi et  al. 2000). 
Although this matrix summarizes all correct and wrong predictions (Table  1), and 
thereby may represent the classifier error distribution, the common way to evaluate 
classifier performance is based on the classification accuracy (Ferri et al. 2009; Jurman 
et al. 2012), i.e., the 0/1 loss function (RMCV score), which is the (normalized) matrix 
trace.

However, researchers have made claims against the use of accuracy (Ranawana and Pal-
ade 2006; García et al. 2010). Provost et al. (1998) and Chawla (2005) argued that accu-
racy ignores misclassification costs and, therefore, may lead to misleading conclusions. 
Brodersen et al. (2010) concluded that even while CV is used, measuring performance by 
accuracy has two critical shortcomings: first, it is a non-parametric approach that does not 
make it possible to compute a meaningful confidence interval of a true underlying quantity. 
Second, it does not properly handle imbalanced datasets. As we noted above, upsampling 
the minority class or downsampling the majority class result in over-fitting and domain 
deformation or loss of data, respectively. Also, tackling data imbalance by these methods 
provides an optimistic accuracy estimate and, thus, is not recommended (Provost et  al. 
1998). Others have stated that accuracy is inappropriate when there are a great number of 
classes (Caballero et al. 2010).

Indeed, many studies have been conducted trying to suggest other measures for evaluat-
ing the classifier performance. For example, Wallace and Boulton (1968) suggested meas-
uring the goodness of classification based on the minimum message length borrowed from 
information theory. Ferri et al. (2009) compared and analyzed relationships of 18 classifier 
performance measures. They concluded that measures providing a qualitative understand-
ing of error, such as accuracy, perform badly when distortion occurs during the learning 
phase because the dataset is too small or a bad algorithm is used. Moreover, they con-
firmed that some measures suffer from the imbalanced data limitation. They offered to use 
the area under curve (AUC) measure. Baldi et al. (2000) compared nine binary classifier 
performance measures, among them information measures and quadratic error measures. 
However, none of them adequately combines information, error severity, and ways to han-
dle class imbalance.

Before we start reviewing relevant classifier performance measures, let’s recall that 
besides the question of which measure to use to evaluate a classifier, there is also the ques-
tion of which measure to use for learning (training the classifier). Not always are the two 
measures the same, which raises the question why. For example, the NN and RF classifiers 
are evaluated using classification accuracy, but usually are trained according to some (non 
classification) error and information gain, respectively. This was also the case with BNCs, 

Table 1  A confusion matrix for a 
three-class classification problem

Predicted class (X) True class (Y)

Class 1 Class 2 Class 3

Class 1 C11 C12 C13

Class 2 C21 C22 C23

Class 3 C31 C32 C33
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until very recently (Kelner and Lerner 2012), when the classifiers were trained according to 
an LL-driven measure, but evaluated using accuracy.

Following, we review several common measures as a replacement for the classification 
accuracy for learning and evaluating a BNC.

3.1  Mutual information

In information theory and statistics, entropy is used to measure the uncertainty about a 
certain variable (Cover and Thomas 2012). If X is a discrete random variable with K val-
ues, then the information content in each value k of this variable is h(k) = −logP(X = k) . 
Therefore, a less likely value of X contains more information than a highly probable one. 
The entropy is the average information content of X that is distributed according to P:

where in this paper, we use the natural base logarithm. Similarly, the joint entropy between 
two variables X and Y, which measures how much uncertainty there is in the two variables 
together, is defined as: H(X, Y) = −

∑
x,y P(x, y) logP(x, y) (Cover and Thomas 2012).

The mutual information (MI) between X and Y can be defined as the reduction in entropy 
(uncertainty) of Y by the conditional entropy of Y on X, i.e., I(X;Y) = H(Y) − H(Y|X) . For 
classification, if X and Y are holding predictions and true values, respectively, MI measures 
the reduction in uncertainty for the true class Y = y due to the prediction X = x (Baldi et al. 
2000),

Since MI measures how prediction decreases the uncertainty regarding the true class, we 
should prefer a classifier with a high MI value.

3.2  Confusion entropy

The confusion entropy (CEN) (Wei et al. 2010) exploits the distribution of misclassifica-
tions of a class as any other of M − 1 classes and of the M − 1 classes as that class:

where Pm refers to the confusion probability of class m,

where Cm,k is the (m, k) element of the confusion matrix between X and Y.
The denominator for all classes is equal to the sum of all confusion matrix elements 

multiplied by two, and the numerator for Pm equals the sum of row m and column m (i.e., 

(5)H(X) = −

K∑

k=1

P(X = k) logP(X = k),

(6)MI = I(X;Y) =
∑

x

∑

y

P(x, y) log

(
P(x, y)

P(x)P(y)

)
.

(7)CEN =

M∑

m=1

PmCENm,

(8)Pm =

∑M

k=1
(Cm,k + Ck,m)

2
∑

k

∑
l Ck,l

,
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the sum of all samples that belong to class m and those that were classified to class m). 
CENm refers to the confusion entropy of class m,

where Pm
k,m

 is the probability of misclassifying samples of class k to class m subject to class 
m,

i.e., the misclassification is normalized by the sum of all samples that belong to class m and 
those that were classified as class m.

For an M class problem, the misclassification information involves both information on 
how the samples with true class label ci have been misclassified to one of the other M − 1 
classes and information on how the samples of the other M − 1 classes have been misclas-
sified to class ci (Wei et al. 2010).

3.3  Matthew correlation coefficient

The Matthew correlation coefficient (MCC), known also as the Pearson correlation, has 
been used in the binary classification case (Baldi et al. 2000). Its generalization to the mul-
ticlass problem was introduced by (Gorodkin 2004), where MCC is the correlation between 
the true ( � ) and predicted ( � ) class matrices (Jurman et al. 2012),

� and � are N ×M , and N and M are the numbers of samples and classes, respectively, and 
COV(�,�) is:

where the average prediction and true value of class m are vm =
1

N

∑N

i=1
vim and 

um =
1

N

∑N

i=1
uim , respectively.

Consider the case in which the class variable is perfectly balanced and all off-diagonal 
entries in the confusion matrix are F, for false, and all main diagonal entries are T, for true. 
That is, F is the number of misclassifications of class i to class j, ∀j ≠ i (and thus there are 
(M − 1)F misclassifications for each class), and T is the number of correct classifications 
of class i, ∀i . A strong (monotone) connection between CEN and MCC for this case is (Jur-
man et al. 2012):

According to (13), the relation between CEN and MCC depends on the log of the ratio of 
the number of samples belonging to class i (in this case, this number is shared by all classes 
as the class variable is perfectly balanced) to the number of misclassifications of this class.

(9)CENm =
∑

k≠m

(Pm
m,k

log2M−2(P
m
m,k

) + Pm
k,m

log2M−2(P
m
k,m

)),

(10)Pm
k,m

=
Ck,m

∑M

j=1
(Cm,j + Cj,m)

, ∀k ≠ m,

(11)MCC =
COV(�,�)

√
COV(�,�)COV(�,�)

.

(12)COV(�,�) =
1

M

M∑

m=1

N∑

i=1

(uim − um)(vim − vm),

(13)CEN = (1 −MCC)

(
1 + log2M−2

(
T + (M − 1)F

(M − 1)F

))(
1 −

1

M

)
.
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Similarly, we can write the relationship between MI and MCC as:

and for the case for which F = 1 and T >> M , we can derive an approximation:

3.4  Mean absolute error

The mean absolute error (MAE) measures the prediction error as the average deviation of 
the predicted class vector (X) from the true class vector (Y) (Hyndman and Koehler 2006),

which is the sum of all possible errors, each is the (x, y) element of the confusion matrix, 
weighted by their relative prevalence according to the confusion matrix, P(x, y).

4  Trading between information and accuracy

As our experimental evaluation shows (Sect. 5), when applied in learning a BNC, none of 
the presented measures can accomplish all we ask—maximization of both accuracy and 
information, tackling class imbalance, and accounting for error severity. By using the joint 
probability distribution P(x, y) between predictions X and true classes Y (as in Sects. 3.1 
and 3.4, where (x, y) is an element in the confusion matrix), we suggest the information 
measure (IM) that balances between the mutual information between X and Y (Sect. 3.1) 
and a score, we call total error severity (ES), that evaluates the classifier error simultane-
ously over all classes, penalizing errors by their severity (Halbersberg and Lerner 2016),

where |x − y| is the “severity” of a specific error, that of predicting x where the true value 
is y. ES(X, Y) =

∑M

x=1

∑M

y=1
P(x, y) log(1 + �x − y�) measures weighted [by the joint prob-

ability P(x,  y)] errors between predictions the classifier has made and labels for the M 
true classes. Since ES refers to the “distance” measured on an ordinal scale between two 
classes, it will contribute to IM only for ordinal classification problems, where such a 
distance has a meaning, and will not contribute in non-ordinal problems (where only MI 
between predictions and true values will contribute to IM).

By taking the logarithm of the sum of the error severity |x − y| and 1 (16), we put ES 
and MI on common ground, letting them span the same range and be additive. Let’s con-
sider those conditions/scenarios that establish the range of values IM gets. As Table  2 

(14)
MI = log(MCC) +

T log(T) + (M − 1)F log(F)

T + (M − 1)F

+ log

(
M[T + (M − 1)F]

T2 + (M − 2)TF − (M − 1)F2

)
,

MI ≈ log(MCC) + log(M).

(15)MAE =
∑

x

∑

y

P(x, y)|x − y|,

(16)

IM = −MI(X,Y) + ES(X, Y)

=
∑

x

∑

y

P(x, y)

(
− log

(
P(x, y)

P(x)P(y)

)
+ log(1 + |x − y|)

)
,
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demonstrates, when there is no difference between the true and predicated classes, i.e., 
perfect classification, y = x , ES takes its minimal value of P(x, x) log(1 + 0) = 0 , as 
desired. In this scenario, X and Y are identical and, thus, dependent, and MI will take 
its maximal value when the class variable is uniformly distributed, 
MI(Y ,Y) =

∑M

y=1

∑M

y=1
P(y, y) log

�
P(y,y)

P(y)P(y)

�
= log(M) , which is also the entropy of Y, 

MI(Y ,Y) = min{H(Y),H(Y)} = H(Y) (Cover and Thomas 2012). This scenario sets the 
minimal (best) value of IM, which is − log(M) (Table  2). When, on the other hand, the 
severity is maximal, i.e., all samples are of true class y = 1 and classified as class x = M 
(or vice versa), which means that P(x = M, y = 1) = 1 and |x − y| = M − 1 , ES is 
P(M, 1) log(1 +M − 1) = log(M) . In this scenario, the only entry in the double sum of MI 
is P(M, 1) log

(
P(M,1)

P(x=M)P(y=1)

)
= log(1) = 0 . Thus, −MI(X, Y) + ES(X, Y) = log(M) is the 

highest value IM takes.
A third interesting scenario in Table 2 is when the confusion matrix distribution is uni-

form, and then ES takes a middle value of M−1

M2
log(2M!)1.

In summary, not only that MI and ES are in the same range, but they are in opposite 
trends, which encouraged us to sum them, where MI is added in a negative sign, as we wish 
to minimize both −MI and ES. As Table 2 shows, IM is in the range [− log(M), log(M)] , 
where − log(M) is for perfect classification (all samples are correctly classified) and the 
data is balanced across the classes, and log(M) is for the extreme misclassification case, 
when all samples belong to class 1, but are classified as class M (or vice versa). If we iden-
tify the error severity with an adaptive cost for penalizing different misclassification errors 
differently (Grossman and Domingos 2004; Elkan 2001), then the IM can be interpreted as 
a cost matrix (Table 3).

Now, let us prove that IM gets its minimum at the same point -MI and ES get their mini-
mum. We base our proof on Lemma 1 that shows that a function (IM) that is the sum of 
two other functions (-MI and ES) that get their global minimum at the same point will get 
its global minimum at that point.

Table 2  Extreme conditions/scenarios for IM in an M-class classification problem

X = Y  (i.e., x = y ∀y ) and a uniform 
class distribution (1/M diagonal matrix 
entries)

|x − y| = M − 1 for y = M , x = 1 i.e., 
(1, M) is the only non-empty matrix 
entry

Uniform confusion 
matrix distribution

ES 0 log(M) M−1

M2
log(2M!)

−MI − log(M) 0 0
IM − log(M) log(M) M−1

M2
log(2M!)

1 For a uniform confusion matrix distribution, P(x, y) = 1∕M2 ∀x, y , 
MI(X,Y) =

∑M

x=1

∑M

y=1
1∕M2 log

�
1∕M2

1∕M⋅1∕M

�
= 0 . We will separate the computation of ES to three elements: 

on, above, and below the diagonal of the confusion matrix. The sum on the diagonal is 0 (as there are no 
error terms on the diagonal) and that above the diagonal equals that below the diagonal (due to the symme-
try of |x − y| ). Thus, ES(X,Y) = 2 ⋅ 1∕M2

⋅

∑
x

∑
y>x log(1 + �x − y�) = 2∕M2

⋅ Sn , where Sn is the sum over 
all matrix entries above the diagonal, which is also the arithmetic series for which the first element is 
log(2) + log(3) +⋯ + log(M) , the last element is log(2) , and the number of series elements is M − 1 . That 
is, ES(X,Y) = 2∕M2

⋅ (M − 1)∕2 ⋅ (log(2) + log(3) +⋯ + log(M) + log(2)) = (M − 1)∕M2
⋅ log(2M!).
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Lemma 1 A function that is the sum of two functions that get their global minima at the 
same point will also get its global minimum at that point.

Proof Let x, y ∈ A , and let argminx∈A f (x) = x∗ , a global minimum of f, and 
argminx∈A g(x) = x∗ , also a global minimum of g. Let us assume by contradiction that 
argminx∈A h(x) = g(x) + f (x) = y , y ≠ x∗ . It follows that f (y) > f (x∗) and also g(y) > g(x∗) , 
which means that g(y) + f (y) > g(x∗) + f (x∗) , but we assumed that y is a global minimum 
of h(x) = g(x) + f (x) for all x ∈ A , which makes the contradiction.   ◻

As we have seen, IM is a proper measure to tackle ordinal classification problems, 
and it answers the requirements of combining information and error severity to clas-
sification accuracy, and of handling class imbalance (see Sect.  5 for empirical evalu-
ation). But, it may poorly evaluate the classifier in cases where the classifier has poor 
performance (e.g., there are more errors than correct classifications), and in these cases, 
MI dominants IM. It is easy to propose a corresponding theoretical confusion matrix 
(Sect. 5.5 and Fig. 6), but it can also happen in practice, for example, when the algo-
rithm starts its greedy search with a classifier that is close to random. Therefore, to trade 
better IM and accuracy, we modify IM with a term � ≥ 1 that adjusts the error severity 
(see  “Information measure with alpha” section in Appendix):

Then IM� (i.e., IM that is controlled by � ) can be written as (see “Information measure 
with alpha” section in Appendix):

where � ’s role in practice is to determine the balance between ACC and IM (and not to 
add costs to error severities). The measure range is − log(𝛼M) < IM𝛼 < log(M) . The mini-
mal value − log(�M) is achieved for perfect classification, when all samples are correctly 
classified and the data is balanced. In this case, IM = − log(M) , and because ACC is 1, 
IM� = − log(M) − log(�) = − log(�M) . The maximal value log(M) is the extreme misclas-
sification case, when all samples belong to class 1, but are classified as M (in this case, 
ACC = 0 , so the second element in Eq. (18), − log(�)ACC , cancels out).

Note that when � = 1 , IM is a special case of IM� . As � increases, IM� decreases 
regardless of IM, which is independent of � and becomes negligible compared to 
log(�)ACC . Then, as the following Lemma shows, ACC becomes a special case of IM�.

(17)IM� =
∑

x

∑

y

−P(x, y) log

(
�P(x, y)

P(x)P(y)

)
+
∑

x

∑

y,x≠y

P(x, y) log (�(1 + |x − y|)).

(18)IM� = IM − log(�)ACC,

Table 3  Cost matrix of IM Predicted class (X) True class (Y)

Class 1 Class 2 ... Class M

Class 1 log(1) log(2) log(M)

Class 2 log(2) log(1) log(M − 1)

... ...
Class M log(M) log(M − 1) log(1)
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Lemma 2 As � increases, IM� is monotone with ACC.

Proof Let Ai and Aj be two classifiers for a number of classes M > 2 , and let � ≫ M . For 
Ai

Without loss of generality, we assume that ACCi > ACCj > 0 . Since 𝛼 ≫ M , and since IM 
is upper bounded by log(M) , IM is negligible to the second element, so

which means that:

  ◻

That is, for � ≫ M , IM� is monotone with ACC, and thus learning a BNC structure by 
minimizing IM� yields a BNC that also maximizes ACC, and the structure minimizing IM� 
is the same structure maximizing ACC. That is, ACC is a special case of IM� for large � 
(but only for large � ). Therefore, IM� balances between IM and ACC and provides extra 
sensitivity beyond that provided by IM to different tradeoffs between accuracy and infor-
mation, error distributions, and error severities.

To demonstrate the impact of � on IM� , we use a simple example. Let U be a matrix of 
dimension M = 3 , where all off-diagonal and main diagonal elements are F (false) and T 
(true), respectively, and let F =

1

3
T  (as in Sect. 3.3, F is the number of misclassifications 

of class i to class j, ∀j ≠ i , and T is the number of correct classifications of class i, ∀i ) 
(Table 4). We executed 81 ( M4 = 34 ) scenarios and calculated for each scenario ACC, IM, 
and IM� , the latter with a range of � values in [1,81]. Figure 1 shows that as � increases, 
IM� increases as log(�)ACC, and ACC and IM are, as expected, independent of � . For 
� = 1 , IM = IM� ≈

2

3
ACC, and for � = 81 , IM� ≈ 90% of ACC. An interesting intermedi-

ate point is � = M2 = 9 . Up until � = 9 , the IM� gains more than 80% of its maximum 
value (ACC). But, due to the logarithm function, for 𝛼 > 9 , the increase rate is low, and 
for example for � = 81 , IM� gains only a bit more than 90% (even for � = 100, 000 , it only 
gains a little bit more than 95% of ACC).

IM�(Ai) = IM(Ai) − log(�)ACCi.

IM�(Ai) = − log(�)ACCi and IM�(Aj) = − log(�)ACCj,

IM𝛼(Ai) < IM𝛼(Aj).

Table 4  Example for alpha 
analysis with three classes

Predicted class (X) True class (Y)

C
1

C
2

C
3

C1 T F F
C2 F T F
C3 F F T
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5  Measure evaluation using synthesized confusion matrices

Our first examination of the proposed measures was in six experiments using synthesized 
confusion matrices that exhibit different scenarios. The advantage in using synthesized 
confusion matrices is in dispensing with training and testing the classifiers. Since values 
of different measures are in different ranges, to be able to present all measures on the same 
graph, we normalize each measure to [0-1] by:

Note that some of the performance measures (e.g., ACC and MCC) should be maximized 
and some (i.e., CEN and IM) should be minimized.

5.1  Sensitivity to class imbalance

In this experiment, 101 confusion matrices for two classes were created: each for 100 
samples and perfect classification (Table  5). The only difference among the matrices is 
in the number of samples coming from each class, which is measured by m (which con-
trol the balance). For m = 0 , the confusion matrix is highly imbalanced (i.e., all samples 
belong to class 1). As m increases, the confusion matrices become more balanced, and for 
m = 50 , the classes are perfectly balanced. As m increases from 50 towards 100, the confu-
sion matrices become imbalanced again (i.e., for m = 100 , all samples belong to class 2). 
Figure 2 presents the experiment results for nine measures and settings: IM, IM� ( � = 10 ), 
IM� ( � = 100 ), IM� ( � = 1000 ), MI, CEN, MCC, MAE, and ACC. In Fig. 2 (and also in 
Figs. 3, 4, 5, 6), measures that behave the same share the same symbol and graph color.

Figure 2 shows that while IM, IM� , and MI are sensitive to the level of balance and 
peak to a balanced distribution ( m = 50 ), CEN, MCC, MAE, and ACC are indifferent to 
the level of balance. The latter four measures receive a perfect score for all scenarios since 

(19)MeasureNorm =
Measure − min(Measure)

max(Measure) − min(Measure)
.

Fig. 1  � analysis for class variable with three classes (Color figure online)
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ACC remains 1 throughout the experiment, the correlation remains perfect (MCC), and 
there are no errors distributed (CEN and MAE). Because the experiment was conducted 
without misclassification errors, IM = IM� = MI. In real problems, a classifier errs and the 
classes are almost always imbalanced. Thus, when a classifier is trained by CEN, MCC, 
MAE, or ACC, it will be fooled by the majority class, misclassifying all/most samples of 
the minority classes, whereas a classifier that is trained by IM, IM� , or MI is expected to 
err evenly for all classes.

5.2  Sensitivity to the number of classes

In this experiment, 99 confusion matrices were created, each with a different number of 
classes ranging from 2 to 100 (i.e., when M = 2 , the confusion matrix is a matrix of dimen-
sion 2, and when M = 100 , the matrix is of dimension 100). As in the previous experiment, 
all matrices demonstrate a perfect classifier, with diagonal entries equal to 10 (Table 6). 
Figure 3 shows that while IM, IM� , and MI are sensitive to the number of classes, CEN, 
MCC, MAE, and ACC are not. Although the four latter measures show perfect perfor-
mance, it is only because there are no errors in this scenario. In real problems, a classifier 
tends to err more as the number of classes in the classification problem increases. While 
CEN, MCC, MAE, and ACC show no sensitivity to this number, IM, IM� , and MI do show 
such sensitivity.

Table 5  Sensitivity to class 
imbalance

Predicted class (X) True class (Y)

C
1

C
2

C1 100 − m 0
C2 0 m
m = [0, 100]

Fig. 2  Sensitivity to class imbal-
ance (Color figure online)
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5.3  Sensitivity to the error severity

In this experiment, 99 confusion matrices with 100 classes were created, each representing 
the worst classification scenario (all samples are of Class 1 and misclassified), but with a 
different error severity. That is, the number of misclassifications in each matrix is fixed, 
but the error severity (i.e., |x − y| ) changes from the mildest (all Class 1’s samples are mis-
classified to Class 2) to the harshest (all Class 1’s samples are misclassified to Class 100). 
This severity is represented in the matrices by the parameter S, which changes in [1, 99] 
according to the position (severity) of the error in the confusion matrix (Table 7) (note that 
in each matrix, only one cell is non-zero holding the entire error “E”). Figure 4 reveals that 
only IM, IM� , MI, and MAE are sensitive to the error severity, losing accuracy with the 
increase of the severity, as is expected from a performance measure. CEN obtains a perfect 
score for all error severities, and MCC and ACC are the worst in performance (always 0), 
but all three measures are insensitive to the error severity regardless of their result, which 
manifests an additional shortcoming of them as performance measures.

5.4  Sensitivity to the error distribution

In this experiment, 34 confusion matrices represent scenarios of wrongly classifying 
99 samples of Class 4 (of four classes) with different error distributions. This distribu-
tion is controlled by m (Table 8). As m increases, the distribution becomes more uniform 

Fig. 3  Sensitivity to the number 
of classes (Color figure online)

Table 6  Sensitivity to the 
number of classes

Predicted class (X) True class (Y)

C
1

C
2

... C
M

C1 10 0 0
C2 0 10 0
... ...
C
M

0 0 10
M = [2, 100]
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and vice versa. Note that the total error severity is equal in all scenarios/matrices (i.e., ∑
�x − y� = 198 ∀Matrix ). Figure 5 shows that MI, MCC, MAE, and ACC are not sensi-

tive to the error distribution, whereas the other measures are. However, CEN decreases as 
m increases because the measure “prefers” the error distribution not to be uniform, whereas 
IM and IM� increase linearly with m because they excel for uniform error distribution.

5.5  ACC–information tradeoff

This experiment demonstrates with a simple example the tradeoff between ACC and infor-
mation (as we expect will be measured by IM). Let U1 and U2 be two confusion matrices 
for two classifiers for M = 3 . In Case 1 (Table 9), U1 has an ACC of 80% compared to a 
slightly lower accuracy of 79% for U2, but it can easily been seen that U2 reveals more 
information about the classification than U1, which has information only concerning Class 
1’s predictions. Quantitatively, U1’s MI is 0 compared to U2’s MI, which is 0.31. In Case 
2 (Table 10), the ACCs of U1 and U2 are equal, but U2’s MI is higher than U1’s (0.32 
compared to 0). RMCV (which is learned using ACC), for instance, would not show any 
difference between the two classifications. However, in both cases, although U1 and U2 
are similar (Case 1) or identical (Case 2) with respect to accuracy, they provide different 

Table 7  Sensitivity to the error 
severity

Predicted class 
(X)

True class (Y)

C
1

C
2

... C
100

C1 0 0 0
C2

{
E, S = 1

0, else

0 0

... ... 0
C100

{
E, S = 99

0, else

0 0 0

S = [1, 99]

Fig. 4  Sensitivity to the error 
severity (Color figure online)
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Fig. 5  Sensitivity to the error 
distribution (Color figure online)

Table 8  Sensitivity to the error 
distribution

Predicted class (X) True class (Y)

C
1

C
2

C
3

C
4

C1 0 0 0 m
C2 0 0 0 99− 2m
C3 0 0 0 m
C4 0 0 0 0
m = [0, 33]

degrees of information about the problem. This is reflected in different IM values, where 
that of U2 is higher than that of U1 in both cases.

To demonstrate this example in the general case, we created (Table 11) 51 confusion 
matrices for 100 samples equally distributed between two classes but with different types 
of errors. The type of error is determined by the value of m, which is the number of Class 
1’s samples that are wrongly classified as Class 2 (and the number of Class 2’s samples that 
are wrongly classified as Class 1), whereas 50 − m is the number of Class 1’s (2’s) samples 
that are correctly classified. Figure 6 presents the experimental results for the same meas-
ures, but in this case, we used IM� ( � = 3 ), IM� ( � = 10 ), and IM� ( � = 100 ) to see the 
differences among the measures more clearly. For m = 0 , ACC, MCC, and MAE are 1, and 
they linearly decrease with m until 0 for m = 50 . Note, however, that as m increases (and 
the accuracy deteriorates), the information shared by the classifier increases (Table 11).

As Fig. 6 shows, MI decreases with m as the confusion matrix becomes more uniformly 
distributed until a uniform distribution at m = 25 (for which MI = 0). For m greater than 
25, MI increases at the same rate of the decrease until m = 25 because MI does not dis-
tinguish between correct and wrong classifications. Table  12 demonstrates two mirror 
cases—the first shows perfect classification and the second shows perfect misclassifica-
tion—but both have the same MI value. This is the main disadvantage of MI that it does 
not distinguish symmetrical cases, and a high MI value can equally imply a very good or a 
very bad classifier.

In addition, Fig.  6 shows that IM decreases with m up to a certain point ( m = 35 ) 
and from that point starts to increase due to an enhanced contribution of MI to IM. This 
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contribution led MI to start its increase at 25, sooner than IM. This seems to be the great-
est disadvantage of IM, that following a severe decline in the classification performance, 
MI becomes more dominant and worsens IM. Models that classify with m > 35 are not 
superior to the model with m = 35 regarding classification although their IM improves. 
CEN seems to be more appropriate in such a scenario since it starts its incline only at 40, 
and this incline is very moderate compared with IM. Until 35, IM� (for all values of alphas) 
behaves, as expected, between ACC and IM. It decreases from m = 0 to m = 35 at a higher 
rate than ACC, which is similar to that of IM. However, it does not increase as IM beyond 
m = 35 due to the increased impact of � on the classification errors. By that, IM� over-
comes the above disadvantage of IM. The value of alpha determines the type of behavior. 
When � is small, IM� behaves similarly to IM, and when � is large, IM� behaves similarly 
to ACC.

In concluding Sect.  5, Table  13 summarizes how the seven evaluated measures meet 
requirements we may have from a classification-oriented measure used for learning a BNC. 
We use a green check-mark to indicate that a specific measure meets a certain property 
(requirement), a red X-mark to indicate that it does not meet the property, and a combined 
black mark to indicate that the measure meets the property, but only under certain condi-
tions/constraints. The table shows that IM and IM� are the only measures that meet all 
requirements. Full details and proofs are in “Sensitivity analysis” section of Appendix.

Table 9  Case 1 for demonstrating 
ACC and information tradeoff

Predicted class (X) True class (Y)

C
1

C
2

C
3

(a) U1
   C1 80 20 0
   C2 0 0 0
   C3 0 0 0

(b) U2
   C1 59 0 0
   C2 21 20 0
   C3 0 0 0

Table 10  Case 2 for 
demonstrating ACC and 
information tradeoff

Predicted class (X) True class (Y)

C
1

C
2

C
3

(a) U1
   C1 80 20 0
   C2 0 0 0
   C3 0 0 0

(b) U2
   C1 60 0 0
   C2 20 20 0
   C3 0 0 0
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6  Experiments and results

In this section, we empirically evaluate BNCs learned using the seven measures that were 
described in Sects. 3 and 4: IM, IM� , MI, CEN, MCC, MAE, and the zero-one loss func-
tion (i.e., ACC). First, we create seven structure learning algorithms based on the RMCV 
algorithm (although we could base on other classifiers). For each measure, in each learning 
iteration of this search and score (S&S) algorithm, all neighboring BNCs (derived from the 
current BNC by an edge addition, deletion, or reversal) are compared to the current BNC 
(after learning the graph parameters) based on the measure and the BNC confusion matrix, 
and learning proceeds as long as more accurate graphs are found in consecutive iterations.

That is, we suggest seven variants of the RMCV algorithm for which learning is per-
formed according to a different measure:

– Learning BNC according to IM
– Learning BNC according to IM�

– Learning BNC according to MI
– Learning BNC according to CEN
– Learning BNC according to MCC
– Learning BNC according to MAE
– Learning BNC according to RMCV (ACC)

Table 11  ACC—information 
tradeoff

Predicted class (X) True class (Y)

C
1

C
2

C1 50 − m m
C2 m 50 − m

m = [0, 50]

Fig. 6  ACC—information trade-
off (Color figure online)
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Each variant leads to its own classifier with its own confusion matrix. A confusion matrix 
of each of the seven variants is evaluated according to seven measures: IM, IM� , MI, CEN, 
MCC, MAE, and ACC. That is, learning a BNC by each variant is made according to its 
own measure, but evaluation in the test is made according to all measures. In other words, 
each of the measures evaluates the confusion matrix derived by each of the trained BNC 
variants using the test set. Note that since IM� decreases with � , we compare performances 
of classifiers trained with different � values and select the best IM�-based variant (classi-
fier) using the IM measure, which is independent of �.

The BNC based on IM� is designed as a wrapper algorithm (Algorithm  1), which 
repeats the learning phase with different � s selected from the range [2,M3] , as recom-
mended in Sect. 4. In order to avoid an exhaustive search and due to the log behavior of 
alphas, we only search for alphas between 2 and M ( � = 1 is exactly IM), M+M2

2
 , M2 , M

2+M3

2
 , 

and M3 . The wrapper chooses the alpha that maximizes the IM measure (Sect. 4). Note that 
there is no use in the testing set in this phase. The wrapper algorithm’s input is similar to 
that of RMCV and consists of: a training set ( Dtr ), test set ( Dtst ), number of classes (M), 
number of folds for the RMCV’s cross-validation (K), and an initial graph ( G0 ). First, the � 
value that maximizes IM is found together with the corresponding BNC’s structure. Then, 
after learning the parameters for this structure to turn it into a classifier, this classifier is 
tested using the test set to provide a confusion matrix that is evaluated as those yielded by 
the other measures. 

Table 12  (a) Perfect 
classification and (b) completely 
wrong classification that share 
the same MI value

Predicted class (X) True class (Y)

C
1

C
2

(a)
   C1 10 0
   C2 0 10

(b)
   C1 0 10
   C2 10 0

Table 13  Summary of properties (columns) we expect from different measures (rows) used in learning a 
BNC (see also the above experiments with artificial confusion matrices and “Sensitivity analysis” section of 
Appendix) (Color table online)
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Since the RMCV algorithm must be initialized by a graph, when in the following exper-
iments we evaluate each of the seven algorithms, we do that with both the empty graph and 
the naïve Bayesian classifier (NBC) as initializations. In total, for each database, we train 
14 classifiers (for seven measures X two initializations).

This section is divided into three experiments. In Sect. 6.1, we compare the seven algo-
rithms using 23 (artificial) synthetic datasets. In Sect.  6.2, we compare the seven algo-
rithms using 17 real world and UCI datasets. While in these two sections we evaluate the 
BNC learned using each of the seven measures, in Sect. 6.3, we compare the BNC learned 
using IM� with state-of-the-art machine learning classification algorithms, such as neural 
network (NN), decision tree (DT), random forest (RF), and support vector machine (SVM).

In each experiment, we evaluate the results using the Friedman non parametric test that 
was designed for comparing multiple algorithms/classifiers over multiple databases. A 
Friedman test can be applied to classification accuracies, error ratios, or any other measure 
(Demšar 2006). Since the Friedman test only tells us if one algorithm is superior to the oth-
ers, but not which algorithm is the most accurate, Demšar (2006) suggested that the test be 
followed by a post hoc test, the Nemenyi test or the Wilcoxon signed ranks test. The Neme-
nyi test compares all algorithms to each other regarding the ranks computed in the Fried-
man test in order to find which algorithm is superior to the others. The Wilcoxon signed 
ranks test, in contrast to the Nemenyi test, does not use the Friedman ranks, but rather 
computes the difference between two algorithms for each dataset and assigns ranks accord-
ing to the absolute difference (i.e., the Wilcoxon test ranks differences between algorithms 
and not algorithms directly).

6.1  Artificial datasets

This experiment included 23 artificial (synthetic) databases (Table 14) that were derived 
from the synthetic BN structure in Fig. 7. The baseline BN consists of 20 variables (nodes) 
where the target variable is Node 20. We made sure that, on the one hand, this BN would 
not be too complicated (dense), but on the other hand, it would possess all types of variable 
connections: diverging, serial, and converging (Ide and Cozman 2002). This BN also has 
the following properties:
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– Each variable has a cardinality of three.
– The target variable is fully balanced (each class has the same prior probability), 

unless otherwise mentioned.

We then derived from the baseline BN, 22 other BNs to perform a sensitivity analy-
sis for: target variable cardinality (number of classes), sample size, and class balance 
(Table 14):

Table 14  Characteristics of 23 
artificial databases

Database number # Classes # Samples Class balance

1 2 2000 Yes
2 3 2000 Yes
3 4 2000 Yes
4 5 2000 Yes
5 6 2000 Yes
6 7 2000 Yes
7 8 2000 Yes
8 9 2000 Yes
9 4 500 Yes
10 4 1000 Yes
11 4 1500 Yes
12 4 2000 Yes
13 4 2500 Yes
14 4 3000 Yes
15–23 4 2000 Different 

degrees of 
imbalance

Fig. 7  Synthetic BN to create the artificial databases of Table 14
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– Target variable cardinality: eight databases (Databases 1–8) containing 2, 3, 4,...,9 
classes of the target variable (Node 20).

– Sample size: six databases (Databases 9–14) containing: 500, 1000, 1500, 2000, 2500, 
and 3000 samples.

– Class balance: nine databases (Databases 15–23) containing different balances for the 
target variable. Database 15 is perfectly balanced2 and further databases gradually 
become less balanced. The percentage of samples each class holds was set heuristically.

Further details about the sampling technique for these databases are in “Artificial BN sam-
pling” section of Appendix. Note that since in most evaluations (see below), we tested and 
report results for three separate category databases for which a single parameter is tested: 
the number of classes, number of samples, and degree of class imbalance, we included a 
benchmark database with four classes, 2000 samples, and no imbalance in the three catego-
ries (i.e., Databases 3, 12, and 15).

The BN of Fig. 7 was sampled ten times in each setting of the 23 of Table 14 to create 
ten data permutations for each of the 23 databases. Each permutation is divided into five 
equally sized datasets (folds) as part of a CV5 experiment, where each fold in its turn is 
used for the test and the other four folds are used for training. That is, each of the 23 data-
bases in Table 14 is used and tested 50 times using different training and tests sets, and thus 
1150 experiments using 1150 datasets are performed in total. Each of the seven algorithms 
trains and tests two classifiers (one for each initial graph) on each of the 50 datasets of the 
23 databases (i.e., 16,100 classifiers). For each database, algorithm, and initial graph, we 
calculate all scores (i.e., IM, IM� , MI, CEN, MCC, MAE, and ACC) as averages over the 
50 confusion matrices of the 50 corresponding test sets.

Tables  15 and  16 show the average accuracies (ACC) and IM� scores, respectively, 
achieved by the seven learning algorithms initialized by the empty graph. In each row of 
the two tables, the best classifier is marked in bold font, whereas the worst is marked in 
italic font. The last row in each table presents the average and standard deviation of the 
algorithms over all databases. A similar table for IM scores is Table 42 in “IM scores for 
artificial databases" section of Appendix.

Table  15 reveals that the IM�-based BNC (where � has been optimized according to 
Algorithm  1) achieves the highest average accuracies although the BNCs were learned 
with the goal of maximizing IM� and not ACC. This is because IM contains ACC compo-
nents in both MI and ES terms which makes it maximize ACC while maximizing the IM� 
score. Another explanation is that IM� trades between IM and ACC; hence, for databases 
where maximizing accuracy leads to better performance, a large � is automatically chosen 
by the algorithm, and for databases where maximizing IM leads to better performance, a 
small � is selected. The tuning of � is done on training and validation sets, while the results 
shown are for an independent testing set. IM- and ACC- (RMCV) based BNCs (first and 
last columns of Table 15) do not seem to show any superiority over one another. Again, 
one would expect an ACC-based BNC to achieve better accuracy results, but the IM-based 
BNC does not fall behind.

2 Note that three of the 23 databases, Databases 3, 12, and 15 have the same parameters: numbers of 
classes (4) and samples (2000), and no imbalance. Note, however, that each of these databases is randomly 
generated from the BN, and although they bring some bias when considered among the 23 databases, each 
is used in the sensitivity analysis of the algorithm to check a different characteristic: variable cardinality, 
learning curve, and degree of imbalance.
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Table 15 also reveals that CEN is the worst method to evaluate classifier performance, 
due to a major limitation of the measure. When all entries in a confusion matrix belong to 
one predicted class (which is the case when the initial graph is empty), the measure will 
take a very low value (CEN is a measure we wish to minimize). That is because, in Eq. (9), 
all CENm will result in zero except for one. This may also be seen in the following exam-
ple. In Tables 17(a) and 17(b), we see the confusion matrices for Database 3 (Table 14) for 
an empty initial graph and for its best neighbor, respectively. The CEN scores are 0.3365 
and 0.4138, respectively. Therefore, the algorithm terminates, and the empty graph is cho-
sen by the CEN-based BNC even though it is obvious that the best neighbor which yields 
Table 17(b) is better in terms of accuracy and information.

Table 16 shows the average IM� scores achieved by the seven algorithms. The IM� has 
the highest average IM� score. We recall that the IM� is normalized; hence, its range is [0, 
1]. For the purpose of visualization and to better distinguish between results, we multiply 
each score by 100. Thus, the following results of normalized IM� are in the range [0, 100].

Figure 8 compares the classification performance ( IM� ) between IM-, IM� -, and ACC-
based BNCs for an empty initial graph and the 23 databases. The first row refers to the 
comparison of the IM� - and IM-based BNCs, the second row to IM� - and ACC-based 
BNCs, and the third row to that between the IM- and ACC-based BNCs. The comparison 

Table 15  Mean (std) ACC values of BNCs learned using seven measures and the RMCV algorithm that is 
initialized by the empty graph for 23 artificial databases

DB IM IM� MI CEN MCC MAE ACC 

1 93.30 (2) 93.30 (2) 93.30 (2) 93.28 (2) 93.30 (2) 93.30 (2) 93.30 (2)
2 90.65 (1) 90.61 (1) 90.47 (2) 63.84 (24) 90.56 (1) 90.58 (1) 90.51 (1)
3 78.64 (3) 79.57 (3) 76.95 (5) 44.36 (16) 78.57 (3) 79.34 (3) 79.04 (3)
4 71.51 (3) 71.75 (3) 71.16 (3) 36.32 (16) 71.80 (2) 69.88 (7) 71.95 (2)
5 63.60 (8) 66.25 (3) 62.37 (8) 26.63 (10) 65.60 (4) 63.80 (7) 65.88 (3)
6 60.06 (3) 60.56 (3) 59.50 (3) 23.98 (8) 60.40 (3) 58.28 (5) 60.12 (3)
7 56.39 (3) 57.34 (3) 54.46 (6) 19.92 (5) 56.34 (4) 52.54 (10) 56.45 (4)
8 52.90 (3) 53.84 (2) 48.56 (9) 16.91 (6) 52.66 (3) 43.05 (14) 52.87 (2)
9 70.70 (6) 71.70 (5) 67.70 (9) 41.92 (12) 69.39 (8) 70.37 (6) 70.53 (7)
10 75.02 (7) 77.38 (2) 73.29 (8) 43.98 (10) 75.56 (7) 75.86 (5) 77.62 (3)
11 76.03 (5) 77.82 (3) 76.09 (5) 40.16 (14) 77.22 (4) 77.00 (3) 77.20 (3)
12 78.64 (3) 79.57 (3) 76.95 (5) 44.36 (16) 78.57 (3) 79.34 (3) 79.04 (3)
13 79.51 (2) 80.17 (2) 79.94 (2) 42.33 (12) 79.83 (2) 79.88 (2) 79.84 (2)
14 81.29 (2) 81.34 (2) 80.93 (2) 41.89 (14) 81.01 (2) 81.07 (2) 80.94 (2)
15 79.20 (2) 79.31 (2) 75.48 (9) 38.72 (10) 79.08 (2) 77.94 (6) 79.02 (2)
16 78.44 (2) 78.74 (2) 77.59 (4) 40.64 (10) 78.22 (2) 78.59 (2) 78.40 (3)
17 78.17 (3) 78.42 (2) 75.11 (7) 38.77 (4) 76.55 (7) 77.94 (3) 77.92 (3)
18 77.28 (6) 78.47 (4) 73.44 (11) 45.46 (5) 68.57 (12) 74.77 (8) 76.02 (8)
19 78.63 (4) 79.49 (2) 79.07 (2) 48.46 (2) 77.70 (6) 79.22 (2) 78.75 (4)
20 76.86 (6) 78.34 (3) 70.46 (9) 56.88 (2) 76.62 (5) 75.79 (6) 76.50 (5)
21 76.36 (5) 76.04 (5) 77.31 (4) 69.17 (3) 75.92 (4) 73.19 (5) 72.41 (5)
22 75.64 (4) 75.51 (4) 77.14 (4) 73.20 (2) 76.71 (4) 74.20 (3) 73.91 (3)
23 85.45 (2) 85.39 (2) 85.72 (2) 85.39 (2) 85.65 (2) 85.39 (2) 85.39 (2)
Avg (std) 75.40 (10) 76.15 (9) 74.04 (10) 46.81 (19) 75.04 (10) 74.41 (11) 75.37 (10)
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Table 16  Mean (std) IM� (multiplied by 100) values of BNCs learned using seven measures and the RMCV 
algorithm that is initialized by the empty graph for 23 artificial databases

DB IM IM� MI CEN MCC MAE ACC 

1 84.74 (3) 84.74 (3) 84.76 (3) 84.73 (3) 84.74 (3) 84.75 (3) 84.75 (3)
2 84.15 (2) 84.15 (2) 83.97 (2) 57.79 (24) 84.00 (2) 84.05 (2) 83.91 (2)
3 74.23 (3) 75.10 (3) 72.62 (5) 46.17 (15) 73.91 (3) 74.77 (3) 74.31 (3)
4 69.12 (3) 69.41 (2) 68.69 (2) 41.40 (15) 69.09 (2) 68.03 (5) 69.22 (2)
5 63.90 (3) 65.84 (3) 62.94 (3) 32.14 (9) 64.95 (3) 61.1 (5) 65.01 (3)
6 62.03 (2) 62.43 (2) 61.57 (3) 33.24 (11) 62.02 (2) 60.40 (4) 61.72 (3)
7 59.81 (2) 60.49 (2) 58.52 (4) 32.68 (8) 59.36 (3) 57.21 (6) 59.33 (3)
8 57.46 (3) 58.27 (2) 54.66 (6) 28.57 (9) 57.13 (2) 51.10 (10) 57.16 (2)
9 66.32 (5) 67.14 (5) 64.41 (7) 44.35 (13) 65.22 (6) 66.20 (6) 66.06 (6)
10 70.57 (5) 72.21 (2) 68.95 (6) 46.69 (11) 70.99 (5) 70.83 (4) 72.29 (3)
11 71.25 (4) 72.70 (4) 71.55 (4) 42.68 (14) 71.96 (4) 72.15 (3) 71.86 (4)
12 74.23 (3) 75.10 (3) 72.62 (5) 46.17 (15) 73.91 (3) 74.77 (3) 74.31 (3)
13 74.98 (2) 75.59 (2) 75.53 (2) 44.45 (13) 75.12 (3) 75.33 (2) 75.04 (3)
14 76.70 (2) 76.74 (2) 76.32 (2) 43.78 (14) 76.24 (2) 76.37 (2) 76.16 (2)
15 74.58 (3) 74.68 (2) 71.47 (7) 38.46 (13) 74.25 (3) 73.36 (5) 74.16 (3)
16 73.71 (2) 73.86 (2) 72.96 (4) 40.84 (12) 73.19 (3) 73.63 (2) 73.32 (3)
17 70.64 (3) 70.88 (2) 68.43 (5) 34.70 (6) 69.32 (6) 70.28 (3) 70.25 (3)
18 68.69 (5) 69.59 (4) 65.74 (9) 36.83 (5) 61.67 (9) 66.63 (7) 67.58 (7)
19 68.34 (3) 68.92 (2) 68.74 (2) 38.09 (2) 67.42 (5) 68.73 (3) 68.22 (3)
20 65.10 (5) 66.44 (3) 59.97 (8) 41.62 (3) 64.75 (4) 64.23 (5) 64.72 (5)
21 58.02 (7) 57.15 (8) 59.56 (6) 47.77 (3) 57.84 (6) 54.15 (7) 52.77 (8)
22 52.92 (6) 52.46 (6) 55.24 (6) 48.82 (3) 54.40 (6) 50.31 (5) 49.95 (4)
23 53.58 (2) 53.28 (1) 54.49 (3) 53.18 (1) 54.43 (3) 53.18 (1) 53.18 (1)
Avg (std) 68.48 (9) 69.01 (9) 67.55 (8) 43.70 (11) 68.08 (8) 67.46 (10) 68.06 (9)

Table 17  Example for CEN 
limitation–confusion matrices for 
Database 3

Predicted class (X) True class (Y)

C
1

C
2

C
3

C
4

(a) Initial empty graph
   C1 0 0 0 0
   C2 0 0 0 0
   C3 365 379 406 350
   C4 0 0 0 0

(b) Best neighbor structure to the empty graph
   C1 69 91 2 2
   C2 241 235 6 3
   C3 54 49 385 333
   C4 1 4 13 12
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is given in Figures  8a, d, g for Databases 1–8 (see Table  14) that allow analysis of the 
influence of the number of classes, Figs. 8b, e, h for Databases 9–14 that allow analysis of 
the influence of the number of samples, and Figs. 8c, f, i for Databases 15–23 that allow 
analysis of the influence of class imbalance. We call the three categories according to this 
division of the databases: class analysis (left column in Fig. 8), samples analysis (middle 
column), and proportion analysis (right column). The points in Fig. 8 which are above the 
x = y (red) line represent databases for which the algorithm written on the y-axes is favored 
over the one written on the x-axes and vice versa.

Figure 8 (first two rows) shows that the IM�-based BNC is superior to the other two 
classifiers (learned to minimize IM and maximize ACC) with respect to IM� score. The 
superiority is obvious in the samples analysis (Fig. 8b, e) and proportion analysis (Fig. 8c, 
f) scenarios. However, a closer look reveals that also in the class analysis scenario (Fig. 8a, 
d), none of the points (each represents a database) are below the red line, which means that 
the IM�-based BNC is also superior to the other two classifiers regarding class analysis 
(Databases 1–8). The third row in Fig. 8, which presents the comparison of IM- and ACC-
based BNCs, shows that the IM-based BNC is superior to the ACC-based BNC in the case 
of proportion analysis, but is slightly inferior for the case of samples analysis.

In addition, we examine in Fig. 9 how the performance measures for each category of 
the databases change with the number of classes, number of samples, and balance in the 
samples among the classes (data proportion). The first row (Fig. 9a–c) shows IM scores, 
while the second (Fig. 9d–f) shows ACC scores. As can be seen in Fig. 9, the IM score is 

Fig. 8  IM� scores of IM� versus IM, IM� versus ACC, and IM versus ACC for BNCs initialized by an 
empty graph for 23 artificial databases
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monotone for each analysis (Fig. 9a–c), whereas ACC is not monotone in the case of the 
proportion analysis (Fig. 9f). As the number of classes increases, ACC decreases (Fig. 9d) 
because the classification task becomes more difficult, and IM increases (Fig.  9a) for 
the same reason. As the number of samples increases, ACC increases (Fig.  9e) and IM 
decreases (Fig. 9b) (i.e., both performance measures are improved). The reason is that as 
the number of samples in the dataset increases, the number of samples for each combi-
nation of variables increases, which makes the estimated probabilities more reliable and 
thereby also increases ACC. In the case of proportion analysis, ACC is unstable for all 
algorithms in contrast to the IM score, which increases as the database becomes imbal-
anced. This can be attributed to the accuracy limitation that was described in Sect. 5; the 
accuracy is not sensitive to changes in the level of imbalance. Finally, we see that in terms 
of IM (Fig. 9a–c) and ACC (Fig. 9d–f), the IM�-based BNC is the best algorithm.

Figure 10 reveals that the number of neighbors of the IM- and ACC-based BNCs is sim-
ilar where the initial graph is empty (Fig. 10a–c) with a slight tendency towards the ACC-
based BNC (the ACC line is almost always beneath the IM line, which means fewer neigh-
bors). However, for the NBC initial graph, the ACC-based BNC is significantly superior to 
the IM-based BNC. In the proportion analysis, for either the empty or NBC initial graphs 
(Fig. 10c, f), there is a sharp decline starting from Database 6. The explanation for this 
break point is that from the sixth database (i.e., Database 20), we created very imbalanced 
databases. Note that we excluded IM� to keep the graph scale. Each iteration of the IM�

-based BNC includes examining several alphas; hence, the number of neighbors is a func-
tion of the number of alphas and the number of iterations, and IM� is inferior to all seven 
proposed algorithms with respect to run time. The CEN-based BNC has the lowest number 
of iterations, which is constant regardless of the scenario and coheres with the explanation 
described above about CEN limitation and poor performance. More details about run-times 
are given in Table 43 in “Run time measured by number of neighbors for artificial BNs” 
section of Appendix.

Fig. 9  ACC and IM measured for BNCs initialized by an empty graph and learned using the ACC-based 
(blue), IM-based (red), and IM�-based (green) BNCs for 23 artificial databases (Color figure online)
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To demonstrate that the advantage of the IM�-based BNC is not biased by the majority 
classes at the expense of the minority classes in imbalance problems, and that the measure 
is indeed advantageous to the minority classes, we repeated the experiment with only the 
non-major classes in Databases 15–23, each having a different degree of imbalance from 
zero (15) to large (23). Table 18 shows the average ACC value over the non-major classes 
after excluding the major class for each of the imbalanced databases. The table reveals that 
indeed the IM�-based BNC outperforms all other algorithms for all databases except for 
the three most imbalanced (21–23) for which the MI-based BNC is superior (and the IM-
based BNCs are usually second best). The latter result demonstrates that, for a very highly 
imbalanced dataset, the MI component in the IM� measure is more important than the ES 
component (we already saw the MI’s supreme sensitivity to class imbalance in Sect. 5.1). 

Fig. 10  Number of algorithm’s neighbors for artificial databases (Color figure online)

Table 18  Mean (std) ACC values of BNCs learned using seven measures and the RMCV algorithm that is 
initialized by the empty graph for the non-major classes of nine imbalanced artificial databases

DB IM IM� MI CEN MCC MAE ACC 

15 78.65 (1) 78.90 (1) 77.72 (1) 13.22 (6) 78.70 (1) 77.46 (1) 78.44 (1)
16 77.51 (1) 78.06 (1) 76.83 (2) 29.97 (10) 77.57 (1) 77.89 (1) 77.91 (1)
17 77.83 (1) 77.96 (0) 72.83 (3) 17.38 (11) 75.79 (1) 76.94 (1) 76.49 (1)
18 70.10 (2) 72.31 (2) 60.34 (6) 2.41 (2) 55.24 (7) 68.28 (3) 64.75 (5)
19 72.48 (1) 72.91 (1) 72.58 (1) 0.00 (0) 71.45 (2) 72.90 (1) 72.35 (1)
20 58.98 (3) 61.69 (2) 51.15 (5) 0.00 (0) 60.36 (3) 57.79 (3) 60.09 (3)
21 37.40 (2) 32.62 (3) 41.37 (2) 0.00 (0) 34.22 (4) 20.42 (5) 20.03 (8)
22 15.91 (4) 14.86 (4) 25.30 (4) 0.00 (0) 23.50 (4) 6.95 (3) 4.54 (2)
23 4.50 (1) 4.14 (1) 4.57 (2) 0.00 (0) 4.07 (2) 0.00 (0) 0.00 (0)
Avg (std) 54.82 (28) 54.83 (29) 53.63 (26) 7.00 (10) 53.43 (27) 50.96 (32) 50.51 (33)
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For comparison, for these three databases, the MAE and ACC-based BNCs, and actually 
all BNCs, are very poor, demonstrating the inability of all measures to adequately accom-
modate a very high class imbalance.

To demonstrate that the advantage of the IM�-based BNC for ordinal problems is not 
due to class imbalance, and that the measure is indeed advantageous when errors have dif-
ferent severities, we computed the MAE for the seven algorithms on the 14 non-imbal-
anced databases (1–14) (see “Artificial BN sampling” section of Appendix for details on 
how we created the ordinal problems). Table 19 shows that the IM�-based BNC achieves 
better MAE results than all algorithms regardless of the class-variable cardinality (Data-
bases 1–8) and sample size (Databases 9–14). This superiority applies even to the MAE-
based BNC that was trained to minimize MAE, whereas the IM�-based BNC was trained to 
minimize IM� . In these scenarios, the ES component of IM� is the dominant one (which is 
supported by the superiority of the MAE-based BNC to the MI-based BNC).

Table 19  Mean ( std × 10−1 ) MAE values of BNCs learned using seven measures and the RMCV algorithm 
that is initialized by the empty graph for 14 balanced artificial databases

DB IM IM� MI CEN MCC MAE ACC 

1 0.067 (0) 0.067 (0) 0.067 (0) 0.067 (0) 0.067 (0) 0.067 (0) 0.067 (0)
2 0.099 (0) 0.099 (0) 0.102 (0) 0.452 (4) 0.101 (0) 0.100 (0) 0.101 (0)
3 0.241 (0) 0.232 (0) 0.268 (1) 0.743 (4) 0.246 (0) 0.234 (0) 0.242 (0)
4 0.359 (0) 0.353 (0) 0.365 (0) 0.978 (4) 0.358 (0) 0.357 (1) 0.359 (0)
5 0.514 (1) 0.485 (1) 0.535 (1) 1.374 (5) 0.491 (1) 0.495 (1) 0.509 (1)
6 0.625 (1) 0.616 (0) 0.636 (1) 1.833 (7) 0.626 (1) 0.665 (1) 0.633 (1)
7 0.761 (1) 0.745 (1) 0.802 (1) 1.773 (5) 0.783 (1) 0.832 (2) 0.785 (1)
8 0.901 (1) 0.869 (1) 1.012 (3) 2.321 (8) 0.906 (1) 0.902 (3) 1.107 (1)
9 0.356 (1) 0.345 (1) 0.390 (1) 0.781 (3) 0.377 (1) 0.356 (1) 0.360 (1)
10 0.293 (1) 0.266 (0) 0.318 (1) 0.696 (3) 0.285 (1) 0.275 (1) 0.276 (0)
11 0.279 (1) 0.259 (0) 0.278 (1) 0.802 (3) 0.271 (1) 0.266 (0) 0.271 (0)
12 0.241 (0) 0.232 (0) 0.268 (1) 0.743 (4) 0.246 (0) 0.234 (0) 0.242 (0)
13 0.231 (0) 0.223 (0) 0.224 (0) 0.778 (3) 0.229 (0) 0.226 (0) 0.230 (0)
14 0.207 (0) 0.207 (0) 0.212 (0) 0.763 (3) 0.212 (0) 0.210 (0) 0.213 (0)
Avg (std) 0.370 (2) 0.357 (2) 0.391 (3) 1.007 (6) 0.371 (2) 0.373 (3) 0.385 (3)

Table 20  Average Friedman’s 
ranks according to ACC, IM, 
MAE, and MI of BNCs learned 
using seven measures and two 
initializations for 23 artificial 
databases

Initial IM IM� MI CEN MCC MAE ACC 

1. ACC score Empty 3.2 1.5 4.7 6.9 3.9 3.8 3.8
NBC 4.0 1.8 6.4 5.7 3.6 3.3 3.1

2. IM score Empty 2.8 1.5 4.3 6.9 3.8 4.1 4.5
NBC 3.0 1.6 5.4 5.1 5.3 2.8 4.7

3. MAE score Empty 3.1 1.6 4.7 6.7 3.6 3.9 4.3
NBC 3.1 1.6 6.0 5.3 4.8 2.8 4.3

4. MI score Empty 2.9 1.5 4.0 6.9 3.9 4.2 4.6
NBC 2.5 1.8 4.9 4.8 5.7 3.1 5.2
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Finally, we proceed to Friedman’s non parametric test followed by the Nemenyi post 
hoc test, as was suggested by Demšar (2006) in order to find which algorithms are supe-
rior. The Friedman test results are given for ACC, IM, MAE, and MI in Table 20, rows 
1–4 respectively, and those of the Nemenyi post hoc test (with a 0.05 confidence level) 
for ACC and IM in Table 21, rows 1 and 2, respectively. The rows in Tables 20 and 21 
refer to specific measures and initial graphs (empty or NBC), while the columns repre-
sent the seven algorithms/classifiers. In Table 20, we present the MAE and MI scores, 
in addition to IM, since they compose it, which allows us to see if the advantage of the 
IM-based BNC over the other algorithms is due to either or both of the measures. In 
Table  21, each column represents a baseline algorithm to which the rest of the algo-
rithms were compared in the Nemenyi post hoc test.

First, we can see that the IM�-based BNC has the lowest (best) average rank regard-
less of the initial graph or the measure (Table  20). The fact that the IM�-based BNC 
shows better results with respect to both MAE and MI (that both compose IM) dem-
onstrates that it simultaneously minimizes error severity and maximizes the informa-
tion provided by the classifier. Second, as can be seen from the Nemenyi post hoc tests 
(Table  21), all algorithms were significantly better than the CEN-based BNC almost 
always, and the IM�-based BNC was almost always significantly superior to all other 
algorithms regardless of the initial graph. With respect to the differences between the 
IM- and IM�-based BNCs, we expanded our evaluation and performed Wilcoxon tests 
between these BNCs for the two initializations (Empty and NBC) and two measures 
(IM and ACC) and found, based on all four tests, that IM� is superior to IM (with a 0.05 
confidence level).

Discussion of the artificial-dataset experiment
The goal of this experiment was to demonstrate using 23 artificial databases the sen-

sitivity of the different measures to the issues that motivated the development of IM� . 
This experiment shows that the IM�-based BNC (and usually also the IM-based BNC) are 
superior to the ACC-based BNC. This is especially remarkable since IM and IM� are not 
trained to maximize the classification accuracy as ACC does, yet they achieved better ACC 
results. This is explained by the fact that IM contains ACC components in both the MI and 
ES terms and because IM� trades IM and ACC, enjoying the benefits from both. Moreover, 
the experiment shows that the IM�-based BNC simultaneously minimizes the error severity 
and maximizes the amount of information in the classification as is revealed in the MAE 
and MI scores achieved by the algorithm that outperform those of the MAE and MI-based 
BNCs, respectively.

The IM� superiority as reflected based on the ACC, IM, MI, and IM� scores can also be 
seen through the confusion matrices, which give us insight into additional information. For 
example, we can see the resultant confusion matrix of the ACC-based BNC (Table 22a) 
compared to that of the IM�-based BNC (Table 22b) over a specific test set of Database 22. 
The ACC-based BNC totally fails in classifying the minority class ( C4 ), whereas the IM�

-based BNC achieves a 50% accuracy on this minority class. Also, the confusion matrix of 
the IM�-based BNC is superior to that of the ACC-based BNC in terms of MAE (0.22 vs. 
0.27) and MI (0.34 vs. 0.22). These differences between the matrices of the two classifiers 
are typical also to the other sets in the other databases. However, this superiority comes at 
the expense of run time, which on average is six times higher for the IM�-based BNC than 
for the IM- or ACC-based BNCs (as it examines this approximate number of alphas). Note 
that we did not run the wrapper in parallel with different alphas, which could reduce the 
average run time to that of the IM-based BNC.
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The proportion analysis (class imbalance) has shown that the ACC measure is noisy 
compared to the IM measure, which can be explained by the experiments that were con-
ducted in Sect. 5, which demonstrated the ACC limitations, among them the insensitivity 
to class balance.

In this experiment, the CEN-based BNC was the least accurate. The reason for its poor 
performance seems to be that it is not sensitive enough to changes (e.g., number of classes, 
class proportions); hence, it is terminated too quickly. This was demonstrated with an 
example and was supported by Fig. 10a–f where the CEN-based BNC had on average not 
more than 200 neighbors regardless of the scenario. Another shortcoming of the CEN-
based BNC is that as the sample size increases (500–3000), its accuracy does not increase 
as is expected from a classifier.

6.2  UCI and real‑world databases

This experiment included 17 ordinal databases (Table 23), 14 of them are UCI databases 
(Lichman 2013), while the other three are original: ALS3, Missed due date,4 and Motor-
cycle.5 The selected problems show diversity with respect to the sample size, number of 

Table 22  Confusion matrices 
achieved by ACC and IM�-based 
BNCs initialized with NBC for a 
single test set of Database 22

Predicted class (X) True class (Y)

C
1

C
2

C
3

C
4

(a) ACC 
   C1 360 77 15 2
   C2 8 8 0 4
   C3 1 0 19 4
   C4 0 0 2 0

(b) IM�

   C1 359 75 7 2
   C2 9 10 0 0
   C3 1 0 27 3
   C4 0 0 2 5

3 The amyotrophic lateral sclerosis (ALS) database (Gordon and Lerner 2019) consists of patients’ static 
data (e.g., sex, age at onset of disease), temporal/longitudinal data (e.g., blood pressure, laboratory test 
results), and ALSFRS (class variable) values, which are documented at every clinic meeting. ALSFRS 
scores take five values (classes) between 0 and 4, where 0 is complete loss of function and 4 corresponds to 
normal ability, that are distributed 1%, 5.5%, 17.2%, 42%, and 34.3% respectively.
4 The Missed due date database contains information about Teleco orders. After submitting an order, the 
company has x days to deliver the product; however, if the due date is not met, then the order is flagged as 
a missed due date. Each order is characterized by the product (e.g., its price), type (e.g., whether it includes 
shipment), and assignments (e.g., their number and complexity). The target variable is due date delay level, 
which consists of three classes: No delay (1), 3–5 days of delay (2), and more than 5 days of delay (3), that 
are distributed 89%, 9.5%, and 1.5%, respectively.
5 The Motorcycle data (Halbersberg and Lerner 2019) include motorcycle injury accidents of young drivers 
(YDs) who received their driving license in Israel between 2002 and 2008. Each accident is characterized 
by 73 variables of the driver, road, car, accident, and environment. The class variable is accident severity: 
Fatal (1), Severe (2), and Minor (3), which are distributed 1%, 12.5%, and 86.5%, respectively. After per-
forming a Spearman test (0.05 confidence level) between each of the 73 variables and the class variable, 19 
features were selected.



1072 Machine Learning (2020) 109:1039–1099

1 3

variables and classes, and degree of imbalance, posing a range of challenges the classifiers 
should meet. Similar to the previous experiment, 10 random permutations were made to 
each database, which were each separated by CV5. That is, a total of 850 datasets are used 
in this experiment. Again, each of the seven algorithms trains and tests two classifiers (one 
for each initial graph) on each of the 850 datasets of the 17 databases (i.e., 11,900 classi-
fiers). For each database, algorithm, and initial graph, we calculate all scores as averages 
over the 50 derived datasets.

Tables 24 and 25 show the average accuracies and IM� scores achieved by the seven 
algorithms (all are initialized by the NBC), respectively. Table 44 in “IM scores for UCI 
databases” section of Appendix shows similar results for the IM score. Table 24 reveals 
that CEN on average is the worst method to learn a classifier. The algorithm based on IM� 
( � is optimized according to Algorithm 1) has the highest ACC score for most databases 
(10 out of 17) and also the highest average score. Moreover, the IM�-based BNC has a 
slight advantage over IM with respect to ACC for almost all databases with more than two 
classes (Databases 1, 3, 4, 5, 10, 11, 13, 15, and 16). This result gives another empirical 
justification to the development of the IM� score that was targeted towards multiclass clas-
sification problems with a wide range of class number.

Figure 11(a) shows the IM�-based BNC superiority to the ACC-based BNC (9 out of 
17 points—a point represents a database—are above the red line, four are below the line, 
and four are on the line), and Fig. 11b shows superiority to the CEN-based BNC for all 
databases. Table 25 reveals that CEN is the poorest in terms of the IM� measure, and the 
algorithms based on IM∕IM� have the highest values of this measure.

Area under curve (AUC) is a performance measure considered by many to be an 
alternative to accuracy because it trades between a true and false positive. The AUC 
has an important statistical property: the AUC of a classifier is equivalent to the prob-
ability that the classifier will rank a randomly chosen positive instance higher than a 
randomly chosen negative one (Fawcett 2006). In Table 26, we present the average AUC 

Table 23  Characteristics of 
selected UCI and real-world 
ordinal databases

Database name # Classes # Variables # Samples

1 ALS 5 29 2531
2 Australian 2 15 690
3 Autombp 10 8 392
4 Bostonhousing 10 14 506
5 Car 4 7 1728
6 Cleve 2 12 296
7 Corral 2 7 128
8 Glass2 2 10 163
9 Hepatitis 2 20 80
10 Machinecpu 10 7 209
11 Missed due date 3 20 10,500
12 Mofn 2 11 1324
13 Motorcycle 3 19 3653
14 Mushroom 2 22 8124
15 Shuttle 6 9 5800
16 Stocksdomain 10 10 950
17 Voting 2 17 232
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results accomplished by each of the seven algorithms. For non binary databases, we use 
an extension for AUC to a multiclass problem as introduced by Hand and Till (2001). 
Table 26 shows that MAE- and IM�-based BNCs have the highest average AUC. How-
ever, the average results of all algorithms are very similar, and the advantage is not 
significant. While considering only binary databases (2, 6, 7, 8, 9, 12, 14, and 17), IM�

-based BNCs ranks first for all; however, in 4 out of 8 of the binary databases, all algo-
rithms achieved the same results, so the advantage of IM� regarding AUC in the binary 
databases is also not significant.

Two other well known measures in statistics and machine learning are precision (pos-
itive predictive value) and recall (true positive rate), which are mainly used for binary 

Table 24  Mean (std) ACC values of BNCs learned using seven measures and the RMCV algorithm that is 
initialized by the NBC graph for 17 UCI and real-world databases

DB IM IM� MI CEN MCC MAE ACC 

1 49.82 (2) 50.53 (1) 50.14 (1) 46.51 (4) 50.22 (1) 50.14 (1) 49.74 (2)
2 86.03 (3) 86.03 (3) 86.03 (3) 85.74 (2) 86.03 (3) 86.03 (3) 86.03 (3)
3 48.95 (5) 49.18 (6) 48.60 (5) 48.47 (5) 49.25 (5) 49.27 (5) 49.43 (5)
4 72.02 (4) 72.14 (5) 70.61 (5) 71.43 (4) 70.90 (5) 71.92 (5) 72.02 (5)
5 95.39 (2) 95.43 (2) 94.74 (2) 95.37 (2) 94.93 (2) 95.20 (2) 95.34 (2)
6 81.60 (4) 81.60 (4) 81.60 (4) 81.53 (4) 81.60 (4) 81.73 (4) 81.73 (4)
7 99.57 (3) 99.57 (3) 99.57 (3) 99.57 (3) 99.07 (4) 99.57 (3) 99.57 (3)
8 75.09 (9) 75.09 (9) 75.09 (9) 64.80 (14) 75.09 (9) 75.03 (9) 75.03 (9)
9 84.50 (9) 84.25 (9) 85.25 (9) 84.25 (9) 86.13 (9) 85.13 (9) 85.13 (9)
10 64.89 (6) 65.38 (6) 65.60 (6) 64.44 (6) 64.46 (6) 65.24 (5) 64.67 (7)
11 91.25 (1) 92.71 (1) 91.11 (1) 91.24 (1) 84.55 (4) 92.15 (1) 92.46 (1)
12 94.22 (7) 94.27 (7) 94.22 (7) 94.19 (7) 94.53 (7) 94.27 (7) 94.27 (7)
13 84.37 (1) 84.69 (1) 84.28 (1) 86.65 (1) 84.37 (1) 85.37 (1) 85.39 (1)
14 100.00 100.00 100.00 100.00 99.97 (0) 100.00 100.00
15 99.60 (0) 99.60 (0) 99.60 (0) 99.59 (0) 99.59 (0) 99.57 (0) 99.59 (0)
16 85.05 (3) 85.42 (3) 84.95 (3) 84.75 (3) 85.76 (3) 85.08 (3) 85.25 (3)
17 95.08 (3) 95.08 (3) 95.08 (3) 95.08 (3) 94.79 (3) 94.75 (3) 94.75 (3)
Avg (std) 82.79 (16) 83.00 (16) 82.73 (16) 81.98 (17) 82.43 (16) 82.97 (16) 82.96 (16)

Fig. 11  Accuracies of IM�-based BNC vs. the ACC- and CEN-based BNCs. All are initialized by the empty 
graph for the 17 UCI and real-world databases
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Table 25  Mean (std) normalized IM� (multiplied by 100) values of BNCs learned using seven measures 
and the RMCV algorithm that is initialized by the NBC graph for 17 UCI and real-world databases

DB IM IM� MI CEN MCC MAE ACC 

1 50.54 (5) 50.57 (5) 50.57 (5) 40.89 (3) 50.55 (5) 50.59 (5) 50.52 (5)
2 71.14 (4) 71.14 (4) 71.14 (4) 70.67 (4) 71.14 (4) 71.16 (4) 71.16 (4)
3 59.83 (3) 59.99 (4) 59.46 (3) 59.44 (4) 59.93 (3) 59.91 (4) 60.15 (3)
4 65.76 (4) 65.78 (5) 64.91 (5) 65.25 (4) 64.92 (5) 65.51 (5) 65.62 (5)
5 78.26 (5) 78.29 (5) 77.61 (4) 78.27 (5) 77.77 (4) 78.02 (4) 78.21 (5)
6 65.05 (6) 65.05 (6) 65.05 (6) 64.92 (6) 65.05 (6) 65.24 (6) 65.24 (6)
7 98.32 (5) 98.32 (5) 98.32 (5) 98.32 (5) 97.29 (7) 98.32 (5) 98.32 (5)
8 57.49 (10) 57.49 (10) 57.49 (10) 47.65 (13) 57.49 (10) 57.43 (10) 57.43 (10)
9 62.94 (11) 62.58 (11) 64.02 (11) 62.61 (11) 65.25 (12) 63.86 (11) 63.86 (11)
10 60.03 (3) 60.20 (3) 60.30 (3) 59.70 (3) 59.82 (4) 60.02 (3) 60.04 (4)
11 71.33 (1) 72.00 (1) 68.36 (2) 69.55 (2) 61.79 (3) 71.20 (1) 70.84 (2)
12 80.09 (12) 80.18 (12) 80.09 (12) 80.04 (12) 80.72 (12) 80.18 (12) 80.18 (12)
13 60.29 (5) 60.45 (5) 59.92 (5) 59.31 (5) 59.37 (5) 59.65 (5) 59.66 (5)
14 99.94 (0) 99.94 (0) 99.94 (0) 99.94 (0) 99.85 (0) 99.94 (0) 99.94 (0)
15 74.08 (4) 74.07 (4) 74.10 (4) 74.02 (4) 74.06 (4) 74.02 (4) 74.05 (4)
16 81.49 (3) 81.73 (3) 81.47 (3) 81.34 (3) 82.07 (3) 81.51 (3) 81.49 (3)
17 88.21 (6) 88.21 (6) 88.21 (6) 88.20 (6) 87.65 (7) 87.60 (7) 87.60 (7)
Avg (std) 72.05 (14) 72.12 (14) 71.82 (14) 70.60 (16) 71.45 (14) 72.01 (14) 72.02 (14)

Table 26  Mean ( std × 10−1 ) AUC values of BNCs learned using seven measures and the RMCV algorithm 
that is initialized by the NBC graph for 17 UCI and real-world databases

DB IM IM� MI CEN MCC MAE ACC 

1 0.77 (0) 0.76 (0) 0.77 (0) 0.62 (1) 0.76 (0) 0.75 (0) 0.77 (0)
2 0.92 (0) 0.92 (0) 0.92 (0) 0.92 (0) 0.92 (0) 0.92 (0) 0.92 (0)
3 0.77 (1) 0.77 (1) 0.77 (1) 0.77 (1) 0.77 (1) 0.77 (1) 0.77 (1)
4 0.95 (0) 0.95 (0) 0.95 (0) 0.95 (0) 0.95 (0) 0.95 (0) 0.95 (0)
5 0.99 (0) 1.00 (0) 0.99 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
6 0.89 (0) 0.89 (0) 0.89 (0) 0.89 (0) 0.89 (0) 0.89 (0) 0.89 (0)
7 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 0.97 (0) 1.00 (0) 1.00 (0)
8 0.77 (1) 0.77 (1) 0.77 (1) 0.70 (1) 0.77 (1) 0.77 (1) 0.77 (1)
9 0.62 (4) 0.82 (3) 0.63 (4) 0.65 (4) 0.81 (4) 0.80 (3) 0.64 (4)
10 0.51 (2) 0.50 (2) 0.51 (2) 0.51 (2) 0.50 (2) 0.50 (2) 0.50 (2)
11 0.73 (1) 0.77 (1) 0.76 (1) 0.75 (1) 0.74 (1) 0.75 (1) 0.79 (1)
12 0.98 (0) 0.98 (0) 0.98 (0) 0.98 (0) 0.98 (0) 0.98 (0) 0.98 (0)
13 0.66 (1) 0.63 (1) 0.64 (1) 0.66 (1) 0.61 (1) 0.65 (1) 0.65 (1)
14 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
15 0.51 (1) 0.51 (1) 0.51 (1) 0.51 (1) 0.50 (1) 0.51 (1) 0.51 (1)
16 0.98 (0) 0.99 (0) 0.98 (0) 0.98 (0) 0.98 (0) 0.98 (0) 0.99 (0)
17 0.86 (3) 0.87 (3) 0.86 (3) 0.86 (3) 0.87 (3) 0.87 (3) 0.86 (3)
Avg (std) 0.82 (2) 0.83 (2) 0.82 (2) 0.81 (2) 0.82 (2) 0.83 (2) 0.82 (2)
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classification problems (Baccianella et al. 2009), but have an extended version for mul-
ticlass problems (Sokolova and Lapalme 2009): recalli =

Mii∑
j Mij

 and precisioni =
Mii∑
j Mji

 . 
These measures are calculated for each class separately. The results for all classes can 
then be averaged as micro (favors bigger classes) or macro (treats all classes equally) 
and merged to Fmeasure = 2⋅precision⋅recall

precision+recall
 (Sokolova and Lapalme 2009). In precision, 

recall, and F-measure, all error types are equal; hence, no information about the error 
distribution is taken into consideration (fits to nominal multiclass problems). Table 27 
presents the performance of the seven algorithms when the classifier is evaluated using 
the F-measure. According to Table 27, the IM�-based BNC has the best average F-meas-
ure and is also ranked first in all but three databases.

We further analyze the time complexity of each algorithm [full results are in Table 45 
(“Run Time measured by number of neighbors for UCI BNs” section of Appendix)]. 
The IM�-based BNC suffers from the worst time complexity, which is the number of � ’s 
checked times longer than that of the other classifiers.

Table 28 summarizes the average Friedman’s ranks according to ACC, IM, MAE, and 
MI scores in rows 1–4, respectively. Because results regarding the average rank of AUC 
had shown no superiority to any of the algorithms, they were excluded. Each column repre-
sents an algorithm and each row stands for a different evaluation measure and initial graph. 
Table 28 shows that the IM�-based BNC has the lowest (best) average rank followed by 
IM, regardless of the initial graph or the evaluation measure (again, in addition to the IM 
measure, we present the MAE and MI measures that compose IM and IM� to show that the 
success of our proposed measure is attributed to the improvement in both measures).

Table 27  Mean (std×10−1 ) F-measure values of BNCs learned using seven measures and the RMCV algo-
rithm that is initialized by the NBC graph for 17 UCI and real-world databases

DB IM IM� MI CEN MCC MAE ACC 

1 0.90 (2) 0.91 (2) 0.90 (2) 0.88 (3) 0.90 (2) 0.90 (2) 0.90 (2)
2 0.85 (0) 0.86 (0) 0.86 (0) 0.36 (0) 0.85 (0) 0.85 (0) 0.85 (0)
3 0.41 (1) 0.41 (1) 0.40 (1) 0.12 (1) 0.37 (1) 0.37 (1) 0.36 (1)
4 0.74 (1) 0.74 (1) 0.74 (1) 0.13 (0) 0.75 (1) 0.75 (1) 0.74 (1)
5 0.21 (0) 0.21 (0) 0.21 (0) 0.21 (0) 0.21 (0) 0.21 (0) 0.21 (0)
6 0.78 (1) 0.78 (1) 0.77 (1) 0.39 (1) 0.77 (1) 0.77 (1) 0.77 (1)
7 0.82 (1) 0.82 (1) 0.81 (1) 0.38 (1) 0.82 (1) 0.82 (1) 0.82 (1)
8 0.76 (1) 0.76 (1) 0.76 (1) 0.43 (2) 0.76 (1) 0.76 (1) 0.76 (1)
9 0.69 (2) 0.68 (2) 0.71 (2) 0.64 (2) 0.68 (2) 0.64 (2) 0.64 (2)
10 0.23 (1) 0.23 (1) 0.23 (0) 0.11 (0) 0.22 (0) 0.22 (1) 0.20 (1)
11 0.56 (0) 0.56 (0) 0.56 (0) 0.31 (0) 0.56 (0) 0.56 (0) 0.55 (0)
12 0.44 (0) 0.44 (0) 0.44 (1) 0.44 (0) 0.44 (0) 0.44 (0) 0.44 (0)
13 0.33 (0) 0.32 (0) 0.40 (0) 0.31 (0) 0.36 (0) 0.31 (0) 0.31 (0)
14 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
15 0.51 (0) 0.60 (1) 0.51 (0) 0.52 (0) 0.60 (1) 0.59 (1) 0.51 (0)
16 0.86 (0) 0.86 (0) 0.86 (0) 0.85 (0) 0.86 (0) 0.86 (0) 0.86 (0)
17 0.97 (0) 0.97 (0) 0.97 (0) 0.97 (0) 0.97 (0) 0.97 (0) 0.97 (0)
Avg (std) 0.65 (3) 0.66 (3) 0.65 (3) 0.47 (3) 0.65 (3) 0.65 (3) 0.64 (3)
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Next, we proceeded to conduct Nemenyi and Wilcoxon post hoc tests. Table 29 sum-
marizes the Nemenyi post hoc test for ACC. Each column represents a baseline algorithm 
to which the rest of the algorithms are compared. For BNCs initialized by an empty graph, 
the algorithm based on IM� significantly outperforms all other BNCs except for IM. For 
the NBC initial graph, BNC-ACC and BNC-IM were not dominant by the IM�-based BNC; 
however, according to the Wilcoxon test (Table 30), the IM�-based BNC is superior to the 
IM-based BNC for the NBC initialization and to the ACC-based BNC for the empty graph 

Table 28  Average Friedman’s 
ranks according to the ACC, 
IM, and MAE of BNCs learned 
using seven measures and two 
initializations for 17 UCI and 
real-world databases

Initial IM IM� MI CEN MCC MAE ACC 

1. ACC score Empty 2.6 2.1 4.1 6.0 4.1 4.3 4.8
NBC 3.1 2.3 4.6 5.6 4.5 3.9 4.0

2. IM score Empty 2.3 1.8 3.6 6.2 4.4 4.5 5.3
NBC 2.6 2.3 3.8 5.5 4.8 4.3 4.8

3. MAE score Empty 2.5 1.9 4.4 5.9 4.2 4.2 5.0
NBC 3.1 2.4 4.3 5.3 4.7 3.7 4.5

4. MI score Empty 2.2 2.1 3.0 6.0 4.4 4.5 5.6
NBC 2.9 2.7 3.8 5.7 4.3 4.0 4.8

Table 29  Nemenyi post hoc test according to ACC of BNCs learned using seven measures and two initiali-
zations for 17 UCI and real-world databases. Values in the table stand for algorithms for which the column 
headline is superior

Initial IM IM� MI CEN MCC MAE ACC 

Empty CEN, ACC MI, CEN, MCC, 
MAE, ACC 

– – – – –

NBC CEN MI, CEN, MCC – – – – –

Table 30  Wilcoxon post hoc 
test according to ACC of BNCs 
learned using IM, IM� , and ACC 
and two initializations for 17 UCI 
and real-world databases

Tick stands for statistically superiority of IM� and ’X’ stands for non-
statistical significant

Initial IM� vs. IM IM� vs. ACC 

Empty ×
√

NBC
√

×

Table 31  Nemenyi post hoc test according to IM of BNCs learned using seven measures and two initializa-
tions for 17 UCI and real-world databases

Values in the table stand for algorithms for which the column headline is superior

Initial IM IM� MI CEN MCC MAE ACC 

Empty CEN, MCC, MAE, ACC CEN, MCC, MAE, ACC CEN – – – –
NBC CEN, MCC, ACC CEN, MCC, MAE, ACC – – – – –
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initialization. Table  31 reveals that in contradiction to the comparison of ACC values, 
while comparing the IM scores, the IM-based BNC is statistically significantly superior to 
CEN-, MCC-, MAE-, and ACC-based BNCs regardless of the initial graph. Also, it reveals 
that the IM�-based BNC is not superior to the MI-based classifier, but is superior to all 
other classifiers. The Wilcoxon test displayed in Table 32 shows that for the NBC initial 
graph, the IM�-based BNC is superior also to the IM-based BNC, which was not the case 
in the Nemenyi test, besides being significantly superior to the ACC-based BNC, which 
was not the case when compared based on ACC in Table 30. If we allow the confidence 
level in the Nemenyi test to be 0.1, then the IM�-based BNC is superior to the IM-based 
BNC also in the Nemenyi post hoc test.

Discussion of UCI and real-world databases experiments
After showing the advantages of our proposed algorithm on artificial databases, in this 

experiment, we focused on UCI and real-world databases from a variety of problems/
domains. The experiment showed that IM and IM� did not fall behind the ACC-based 
BNC, and were even better with respect to classification accuracy (not significant) and IM 
score (significant). In most of the databases with a high number of classes, such as ALS, 
Bostonhousing, Car, Missed due date, and Shuttle, the IM�-based BNC outperforms all 
other classifiers (even) with respect to accuracy. Also, on average, it has the best ACC, IM, 
and IM� , and the lowest (best) rank regardless of the initial graph. Also, the IM�-based 
BNC showed better AUC and F-measure results. However, the fact that AUC scores for all 
algorithms were very similar may indicate that there is a lack of ability to compare imbal-
anced-ordinal databases based on this measure.

The IM�-based BNC’s better results come at the expense of run time, which on average 
is five times higher than that of the ACC/IM-based BNCs (we did not run the wrapper IM� 
in parallel with different values of alpha, but rather in sequential mode). This is because of 
the need to optimize �.

Once again, the CEN-based BNC was found to be the least efficient. It has already been 
argued by Jurman et al. (2012) that CEN is not reliable in the binary case and that MCC 

Table 32  Wilcoxon post hoc test 
according to IM of BNCs learned 
using IM, IM� , and ACC and two 
initializations for 17 UCI and 
real-world databases

Tick stands for statistically superiority of IM� and ‘X’ stands for non-
statistical significant

Initial IM� vs. IM IM� vs. ACC 

Empty ×
√

NBC
√ √

Fig. 12  Accuracies of CEN- versus MCC-based BNCs for 17 UCI and real-world databases. a all binary 
databases and empty initial graph, b all multiclass databases and empty initial graph, c all binary databases 
and NBC-based initialization, and d all multiclass databases and NBC-based initialization
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should be preferred as an optimal off-the-shelf tool in practical tasks. In this experiment, 
we showed that this claim stands true also in multiclass problems. A comparison showing 
the superiority of MCC-based BNCs over CEN-based ones can be seen in Fig. 12, which 
demonstrates the differences between MCC- and CEN-based BNCs with respect to: (1) 
empty graph (Fig. 12a, b) versus NBC-based initializations (Fig. 12c, d), and (2) binary 
(Fig. 12a, c) versus multiclass (Fig. 12b, d) classifications. It can be seen that for multiclass 
problems, when the initial graph is empty (Fig. 12b), MCC is superior to CEN (this is sup-
ported by the Wilcoxon test with a 0.05 confidence level). For an NBC-based initial graph 
(Fig. 12d), although there is no statistical superiority: in five databases, MCC has higher 
accuracy, in three CEN leads, and one ends in a tie. For the binary databases, the results 
are similar (significance superiority in favor of MCC for an empty initial graph, and non-
significance superiority for the NBC-based initialization).

6.3  Comparison to state‑of‑the‑art algorithms

In this section, we compare the proposed algorithm to other state-of-the-art machine 
learning algorithms. Tables  33 and  34 summarize the ACC results for seven algorithms 
compared with our proposed algorithm to artificial (Sect. 6.1) and real-world (Sect. 6.2) 

Table 33  Mean (std) ACC values of eight state-of-the-art algorithms and BNC-IM� that is initialized by the 
NBC graph for 23 artificial databases

DB DT-ord DT-cost NN RF SVM SVM-smt TAN IM�

1 95.97 (1) 95.97 (1) 92.44 (2) 96.75 (1) 93.02 (1) 93.02 (1) 96.20 (1) 97.44 (1)
2 86.75 (2) 86.53 (2) 69.84 (1) 87.25 (2) 78.58 (4) 78.58 (4) 83.91 (2) 90.75 (1)
3 71.85 (3) 71.74 (3) 58.24 (2) 72.24 (2) 55.82 (3) 55.82 (3) 63.93 (5) 79.81 (2)
4 63.75 (3) 63.27 (3) 52.04 (2) 65.86 (3) 60.66 (3) 60.66 (3) 63.48 (3) 71.26 (3)
5 56.96 (3) 55.60 (3) 42.08 (3) 56.60 (3) 46.00 (4) 46.00 (4) 48.55 (4) 65.96 (3)
6 49.98 (3) 49.60 (3) 39.68 (3) 51.70 (3) 41.58 (4) 41.58 (4) 44.52 (4) 59.99 (3)
7 46.53 (3) 45.83 (3) 36.92 (2) 46.84 (3) 34.46 (3) 34.46 (3) 37.87 (3) 55.71 (3)
8 42.30 (2) 40.70 (3) 33.48 (2) 42.69 (3) 33.28 (3) 33.28 (3) 35.86 (3) 52.31 (2)
9 63.95 (6) 64.42 (5) 48.80 (7) 64.67 (5) 54.08 (6) 54.08 (6) 57.25 (6) 68.83 (5)
10 68.25 (4) 67.98 (4) 56.08 (4) 68.83 (3) 56.14 (5) 56.14 (5) 59.77 (5) 76.11 (3)
11 70.34 (3) 69.94 (3) 55.79 (2) 71.79 (2) 55.48 (5) 55.48 (5) 61.23 (4) 78.05 (2)
12 71.85 (3) 71.74 (3) 58.24 (2) 72.24 (2) 55.82 (3) 55.82 (3) 63.93 (5) 79.81 (2)
13 72.37 (2) 72.27 (2) 58.08 (1) 73.11 (2) 56.89 (5) 56.89 (5) 62.78 (4) 80.54 (2)
14 73.49 (2) 73.54 (2) 58.67 (2) 73.97 (2) 56.48 (4) 56.48 (4) 65.35 (3) 81.55 (1)
15 71.32 (3) 71.16 (3) 58.92 (1) 71.91 (3) 56.56 (5) 56.56 (5) 60.27 (4) 79.98 (2)
16 71.24 (2) 70.76 (2) 58.96 (2) 71.94 (3) 56.38 (3) 56.34 (3) 61.60 (4) 78.79 (2)
17 71.00 (3) 70.54 (2) 59.08 (2) 70.90 (2) 54.68 (4) 54.48 (4) 58.17 (4) 78.65 (2)
18 73.23 (3) 73.02 (3) 62.96 (3) 74.18 (3) 60.97 (3) 61.27 (3) 66.00 (4) 79.13 (2)
19 73.34 (3) 73.01 (2) 62.48 (2) 74.31 (2) 61.29 (3) 61.33 (3) 69.22 (3) 78.94 (2)
20 71.95 (2) 71.89 (2) 64.76 (3) 74.04 (2) 66.58 (2) 63.86 (3) 68.85 (3) 78.64 (2)
21 73.68 (2) 73.66 (3) 72.84 (2) 77.21 (2) 73.63 (2) 67.95 (2) 75.88 (2) 78.89 (3)
22 73.86 (3) 73.72 (3) 74.88 (6) 78.37 (2) 76.74 (2) 69.50 (3) 78.47 (2) 79.47 (2)
23 83.83 (1) 83.70 (1) 81.64 (2) 86.21 (1) 85.77 (2) 60.76 (6) 86.78 (1) 86.92 (2)
Avg (std) 69.47 (12) 69.16 (12) 59.00 (14) 70.59 (12) 59.60 (15) 57.84 (13) 63.91 (14) 76.41 (10)



1079Machine Learning (2020) 109:1039–1099 

1 3

databases, respectively. The experiments were performed using LIBSVM (Chang and Lin 
2011) (SVM), PRTOOLS (Duin et al. 2000) (NN), and the Matlab Statistics and Machine 
Learning Toolbox (DT and RF). We used a linear kernel for SVM since among the linear, 
polynomial, and Gaussian kernels, it was found in Kelner and Lerner (2012) to have the 
highest average accuracy over 22 UCI databases. We used ordinal classification implemen-
tation for DT (Frank and Hall 2001) (denoted as DT-ord). We also added to the comparison 
DT with the equivalent cost matrix that was derived by IM and IM� (denoted as DT-cost), 
where each cell in the cost matrix is equal to |x − y| . These two DTs are advantageous 
to the conventional DT for the examined scenarios of ordinal nature and different error 
severities. In addition, we included the tree augmented naïve Bayes (TAN) (Friedman et al. 
1997), which is a supreme BNC (and therefore saw no need to include the inferior NBC). 
Also included in the comparison is an SVM that was trained after synthetically balancing 
each dataset using the synthetic minority over-sampling technique, SMOTE, denoted as 
SVM-smt. SMOTE (Chawla et al. 2002), as opposed to random sampling, uses a more edu-
cated sampling technique to combine both downsampling the majority class and creation 
of synthetic minority class examples (upsampling) by introducing synthetic examples to 
each minority sample according to the feature space of its k nearest neighbors. We chose to 
compare the state-of-the-art algorithms to the IM�-based BNC that is initialized with NBC 
since it achieved the highest performances in previous experiments.

As can be seen from Table 33 for the artificial databases, the IM�-based BNC is ranked 
first for all databases (and therefore also has the highest average accuracy) and is obvi-
ously superior to all other algorithms with no need for any statistical tests. Notice that 
SVM and SVM-smt have different accuracies only for the imbalanced databases 16–23 
(see Table 14). Note also, that by focusing on the minority classes, SVM-smt misses the 

Table 34  Mean (std) ACC values of eight state-of-the-art algorithms and BNC-IM� that is initialized by the 
NBC graph for 17 UCI and real-world databases

DB DT-ord DT-cost NN RF SVM SVM-smt TAN IM�

1 44.22 (2) 44.99 (2) 45.60 (3) 50.07 (2) 50.94 (2) 48.71 (2) 50.01 (2) 50.53 (1)
2 84.00 (3) 84.00 (3) 65.36 (6) 85.70 (3) 85.07 (3) 85.07 (3) 83.33 (3) 86.03 (3)
3 48.88 (5) 47.05 (5) 41.25 (8) 50.20 (5) 48.85 (5) 45.35 (5) 49.00 (6) 49.18 (6)
4 73.06 (4) 73.06 (4) 71.57 (5) 75.71 (5) 75.92 (4) 75.51 (4) 73.22 (5) 72.14 (5)
5 95.39 (1) 95.13 (1) 97.93 (1) 97.41 (1) 86.79 (1) 86.11 (2) 87.70 (4) 95.43 (2)
6 78.60 (5) 78.60 (5) 72.33 (8) 82.30 (4) 83.47 (4) 83.47 (4) 80.20 (4) 81.60 (4)
7 91.07 (6) 91.07 (6) 100.00 98.50 (3) 88.86 (6) 88.86 (6) 85.21 (8) 99.57 (3)
8 76.17 (8) 76.17 (8) 75.43 (10) 76.34 (8) 75.66 (7) 75.66 (7) 73.54 (9) 75.09 (9)
9 84.50 (9) 84.50 (9) 81.25 (10) 86.50 (8) 82.63 (9) 81.13 (10) 77.63 (11) 84.25 (9)
10 64.22 (7) 61.51 (7) 57.78 (6) 62.44 (6) 60.27 (7) 61.96 (8) 64.84 (5) 65.38 (6)
11 93.06 (0) 92.98 (0) 92.16 (1) 93.05 (1) 92.73 (0) 89.92 (1) 91.12 (1) 92.71 (1)
12 99.85 (1) 99.85 (1) 100.00 99.25 (1) 99.93 (0) 99.96 (0) 92.66 (3) 94.27 (7)
13 82.88 (1) 82.64 (1) 86.66 (2) 85.54 (1) 86.66 (1) 78.88 (3) 84.89 (1) 84.69 (1)
14 100.00 100.00 100.00 100.00 95.64 (1) 95.64 (1) 100.00 100.00
15 99.65 (0) 99.64 (0) 95.40 (3) 99.78 (0) 98.84 (0) 97.21 (1) 99.57 (0) 99.60 (0)
16 88.89 (2) 89.01 (2) 86.11 (2) 90.28 (2) 84.01 (2) 84.04 (2) 85.78 (2) 85.42 (3)
17 95.75 (3) 95.75 (3) 92.08 (5) 96.13 (3) 94.67 (3) 94.67 (3) 95.37 (3) 95.08 (3)
Avg (std) 82.36 (17) 82.11 (17) 80.05 (19) 84.78 (16) 81.82 (15) 80.71 (16) 80.83 (15) 83.00 (16)
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majority classes with the consequence of lower overall accuracy than the conventional 
SVM. By Table 34, RF outperforms the other algorithms for six of the 17 databases and 
gains the highest average accuracy. Although ranked first for only three of the databases, 
the IM�-based algorithm has the second highest average accuracy (above NN and SVM and 
only second to RF), and is never ranked last (an achievement that is shared only by RF).

We compared algorithm performances for the artificial as well as the UCI and real-world 
databases for each score function separately using Friedman’s non parametric test and a 
Nemenyi post hoc test. Table 35 shows that, for the artificial databases, IM�-based BNC is 
ranked first with a large margin from the RF and DT-ord algorithms that follow. The supe-
riority of the IM�-based BNC to all other algorithms is significant. Table 36 reveals that, 
for the UCI and real-world databases, RF has the highest average ranks followed by either 
DT-ord (if measured according to ACC) or the IM�-based BNC (if measured according to 
the IM score). The difference between the RF and IM�-based BNC is vivid regarding ACC, 
but negligible regarding IM. Regarding IM—the more important measure of the two—the 
Nemenyi post hoc test (performed with a 0.05 confidence level) shows that the RF and 
IM�-based BNC are superior to NN. Further, a Wilcoxon post hoc test (with a 0.05 con-
fidence level) found the RF and IM�-based BNC to also be significantly superior to SVM 
and TAN. In addition, Table 36 shows the impact of SMOTE on the SVM. Interestingly, 
SVM is superior with respect to ACC, and SVM-smt is significantly better with respect 
to the IM score. Nevertheless, both are behind the IM�-based algorithm regardless of the 
score metric.

As a concluding evaluation of the classifiers, let us analyze their confusion matri-
ces for the two real-world problems we described in Sect.  1, which helped motivate 
this study: prediction of the severity of a YD motorcycle accident and prediction of 
the disease state of an ALS patient (Databases 13 and 1, respectively, in Table  23). 
As we recall, these are ordinal class-imbalance problems for which the severity of 
the error should be accounted. Table  34 shows that the SVM and NN achieved the 
best ACC performance (86.66%) for Database 13 (YD accidents). However, consid-
ering their confusion matrices, we see that the SVM (Table  37a) predicted all sam-
ples to the majority class of minor accidents, and the NN (Table  37b) did not pre-
dict even a single fatal accident and only very few severe accidents, which make both 

Table 35  Average Friedman’s ranks according to ACC and IM measures of state-of-the-art algorithms for 
23 artificial databases

DT-ord DT-cost NN RF SVM SVM-smt TAN IM�

1. ACC score 3.5 4.0 6.6 2.3 6.4 7.6 4.5 1
2. IM score 3.7 3.4 7.6 2.2 6.8 6.5 4.6 1

Table 36  Average Friedman’s ranks according to ACC and IM measures of state-of-the-art algorithms for 
17 UCI and real-world databases

DT-ord DT-cost NN RF SVM SVM-smt TAN IM�

1. ACC score 3.7 4.6 5.4 2.3 4.5 5.9 5.5 4.1
2. IM score 3.6 4.2 5.6 2.8 5.5 5.0 5.3 3.0
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classifiers uninformative and practically not useful. The SVM that is based on SMOTE 
(SVM-smt) slightly improved the prediction of the minority class of fatal accidents 
(Table  37c), but at the expense of too many false alarms (e.g., on average, 26.5 and 
48.2 minor accidents were misclassified as fatal and severe, respectively, compared to 
the conventional SVM (Table  37a)). This is a common disadvantage of all sampling 
techniques. The differences between Tables 37(b) and 37(c) also demonstrate the dis-
parity that was revealed in Table  36 between SVM and SVM-smt, where the former 
was ranked higher than the latter in accuracy, but lower with respect to IM. Although 
the IM�-based BNC is less accurate than the SVM and NN for the YD database in 2% 
(34), its confusion matrix (Table  37d) shows more accurate predictions for the two 
minority classes of severe and fatal accidents that make the classifier more informa-
tive and valuable practically. SVM-smt, which is more accurate in the prediction of 
fatal accidents, is less accurate for severe and minor accidents, which makes it, overall, 
inferior to the IM�-based BNC. Other traditional methods in addition to DT-cost, DT-
ord, and SVM-smt to tackle the ordinal class imbalance problem represented in this 
database, such as upsampling the fatal accidents for DT and ordinal regression by the 
logit model, were evaluated and found inferior to the IM�-based BNC in Halbersberg 
and Lerner (2019).

Similarly, for the ALS problem, the SVM, RF, and IM�-based BNC show exactly 
the same accuracy (50%), but comparison of their confusion matrices (Table 38) shows 
that the IM�-based BNC is the most or second-most accurate classifier for all disease 
states except the state describing patient’s “full functionality” (State 4). The RF is 
never the best disease-state predictor (the IM�-based BNC is superior to RF for all 
classes except for State 4), the SVM is the most accurate classifier twice (States 2 and 
4), but also the least accurate three times, and the SVM-smt causes once again too 
many false alarms for the minority class that describes patient’s “non-functionality” 

Table 37  Confusion matrices 
for the YD motorcycle accident 
database of SVM, NN, and IM�

Predicted class (X) True class (Y)

Fatal Severe Minor

(a) Confusion matrix for SVM
   Fatal 0 0 0
   Severe 0 0 0
   Minor 6.6 91.2 635.2

(b) Confusion matrix for NN
   Fatal 0 0 0
   Severe 1.1 9.8 9.8
   Minor 5.4 81.4 625.4

(c) Confusion matrix for SVM-smt
   Fatal 0.9 7.4 26.5
   Severe 1.7 16.8 48.2
   Minor 4.0 67.1 560.5

(d) Confusion matrix for IM�-based BNC
   Fatal 0.3 1.4 3.2
   Severe 2.2 22.0 35.8
   Minor 4.1 67.8 596.2
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(State 0). Moreover, SVM-smt (similar to SVM) shows poor results for State 3, with 
only 5.2 patients on average that were correctly classified (compared to 43.6 by the 
IM�-based BNC).

7  Discussion

By minimizing the 0/1 loss function, the BNC, which is a powerful tool in knowledge rep-
resentation, can also guarantee accurate classification. However, similar to other classifiers, 
the BNC focuses on the majority class, and therefore, misclassifies minority classes; is usu-
ally uninformative about the distribution of misclassifications; and is insensitive to error 
severity (making no distinction between misclassification types).

We have proposed a measure—the information measure (IM)—that is more appropri-
ate for learning and evaluating the BNC because it jointly maximizes the classification 
accuracy and information, and accounts for the error distribution, class imbalance, and 
error severity in the domain. We motivated this measure theoretically. We then extended 
it using a control parameter that provides more flexibility in meeting the problem require-
ments. This parameter can be user defined or be set using a wrapper and a validation set. 

Table 38  Confusion matrices for 
the ALS database of SVM, RF, 
and IM�

Predicted 
Class (X)

True Class (Y)

0 1 2 3 4

(a) Confusion matrix for SVM
   0 3.9 2.3 2.8 1.9 0
   1 0.8 0.2 0.7 0.2 0
   2 14.7 19.1 25.9 22.2 1.4
   3 1.8 2.6 6.7 7.5 5.2
   4 3.9 9.4 44.2 108.9 220.7

(b) Confusion matrix for RF
   0 5.2 4.7 4.1 2.9 0.1
   1 5.1 4.5 5.7 3.9 0.7
   2 7.3 10.5 17.8 16.6 5.2
   3 5.7 9.3 25.4 40.9 35.9
   4 1.8 4.5 27.4 76.4 185.6

(c) Confusion matrix for SVM-smt
   0 11.8 11.9 13.3 12.9 3.6
   1 7.2 8.0 16.1 14.5 4.1
   2 3.9 7.0 15.2 17.6 8.7
   3 0.2 1.1 3.4 5.2 4.1
   4 1.8 5.6 32.4 90.5 206.8

(d) Confusion matrix for IM�-based BNC
   0 7.1 6.1 4.9 4.9 3.0
   1 6.2 5.6 6.3 6.8 0.9
   2 5.5 12.1 19.3 18.2 11.3
   3 5.2 6.1 27.8 43.6 31.5
   4 1.0 3.2 22.0 67.3 180.6
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To expedite the search for the optimal value of the parameter using a wrapper, we suggest 
parallelizing the search. Alternatively, setting the parameter can be performed in a Bayes-
ian setting.

We evaluated the measure in comparison to seven common measures using synthesized 
confusion matrices, twenty-three artificial databases, seventeen UCI and real-world data-
bases, and different performance measures. We showed that an IM-based BNC is supe-
rior to BNCs learned using the other measures for ordinal classification and/or imbalanced 
problems, and is not inferior to state-of-the-art classifiers with respect to accuracy. More 
importantly, this BNC provides vital information about the distribution of errors and clas-
sifies well all classes and not just the majority one. Our experiments encourage application 
of the IM-based BNC to other problems for which joint maximization of accuracy and 
information is needed, the data is imbalanced, and/or the problem is ordinal, whether the 
classifier is a BNC or not.

In addition, we demonstrated the advantages of the IM�-based BNC in better analyz-
ing real-world complex problems, such as in road safety and medical diagnosis. In further 
research, this classifier can be applied to other domains for which both accuracy and infor-
mation are needed, the classes are imbalanced, and/or the cost of different misclassifica-
tions is different. Also for further research is the application of the information measure to 
other classifiers, e.g., to determine the splitting variable in each level of training a decision 
tree.

Appendix

Information measure with alpha

(20)

IM = −MI + ES

=
∑

x

∑

y

−P(x, y) log

(
P(x, y)

P(x)P(y)

)
+
∑

x

∑

y

P(x, y) log(1 + |x − y|))

IM� =
∑

x

∑

y

−P(x, y) log

(
�P(x, y)

P(x)P(y)

)
+
∑

x

∑

y≠x

P(x, y) log (�(1 + |x − y|))

=
∑

x

∑

y

(
−P(x, y) log(�) − P(x, y) log

(
P(x, y)

P(x)P(y)

))

+
∑

x

∑

y≠x

(P(x, y) log(�) + P(x, y) log(1 + |x − y|))

=
∑

x

∑

y

−P(x, y) log(�)

+
∑

x

∑

y

−P(x, y) log

(
P(x, y)

P(x)P(y)

)
+
∑

x

∑

y≠x

(P(x, y) log(�))

+
∑

x

∑

y≠x

P(x, y) log (1 + |x − y|)

= − log(�) + log(�)
∑

x

∑

y≠x

P(x, y) +
∑

x

∑

y

P(x, y)

(
− log

(
P(x, y)

P(x)P(y)

)
+ log(1 + |x − y|)

)

= IM − log(�) + log(�)(1 − ACC)

= IM − log(�)ACC



1084 Machine Learning (2020) 109:1039–1099

1 3

Sensitivity analysis

In this section, we give theoretical support for the experiments presented in Sect.  5 and 
particularly to Table 13. Since Table 13 consists of 7 measures × 5 properties = 35 cases, 
we concentrate here only on the most interesting or unexplored combinations of measure 
and property. This appendix is organized according to the order by which the measures are 
presented in Table 13.

In most of the cases for which we wish to show insensitivity of a measure to a property, 
we give an example by which we make a single change to the property, as reflected in a 
classifier confusion matrix6, and show that the measure does not change (i.e., manifests 
insensitivity). Thus, it is necessary to require that the sum over the confusion matrices (i.e., 
the total number of samples in the test set) before and after the change remains fixed in 
order to analyze the sensitivity to the property. The notation we use is that (similarly to 
Sect. 5) y and x are the true and predicted values for a class, and Y and X are these values 
for all M classes, respectively. In addition, i and j are assignments to specific classes (i for x 
and j for y) we are interested in.

Accuracy

According to Table 13, accuracy is not sensitive to any of the properties except partially to 
the number of classes. To show this, recall that accuracy is the confusion matrix trace (sum 
of the matrix diagonal) divided by the total number of samples, and thus, first, is insensi-
tive to the diagonal distribution (i.e., insensitive to class imbalance). Second, if the number 
of classes changes (say, by joining two existing classes i and j and not by adding/removing 
a class, which changes the problem), accuracy remains insensitive to this number if there 
were no errors in misclassifying class i as class j or vice versa (keeping the trace/accuracy 
unchanged). However, if this is not the case, accuracy becomes sensitive, and thus, overall, 
it is only partially sensitive to the number of classes. In addition, since accuracy is also 
defined as one minus the total number of errors, it is insensitive to the error distribution 
and severity, and therefore cannot also trade accuracy and information.

Mean absolute error

1. Class imbalance: Table 13 indicates that the MAE is only partially sensitive to class 
imbalance. We demonstrate MAE insensitivity in a special case where imbalance is 
reflected only on-diagonal (as in the introduction to this appendix, this is enough to 
demonstrate insensitivity for a single case). Consider two confusion matrices for the 
same number of samples and the same off-diagonal elements, but with different on-
diagonal class distributions. Although this class imbalance is along the diagonal, the 
two matrices have the same MAE, which means that for this case, MAE is not sensitive 
to class imbalance (of course if the imbalance was reflected also off diagonal, then the 
MAE could have been changed accordingly).

6 Recall that using the confusion matrix of a classifier already trained according to a certain measure 
can directly exhibit the measure properties without really training the classifier, and as we exercised this 
approach already in Sect. 5, we also do it here.
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2. Number of classes: Table 13 also indicates that the MAE is only partially sensitive to 
the number of classes. As we mentioned for accuracy, there are two approaches to dem-
onstrate (in)sensitivity to the number of classes: (1) removal/addition of a class from/
to the confusion matrix, and (2) merging two classes into one. Since the total number 
of samples should be kept between the scenarios, the latter approach is more realistic 
than the former, which also defines a new problem. Thus, let’s consider a confusion 
matrix A with M > 2 classes. Also, let’s merge the ith and jth true classes of A (without 
loss of generality, assume j > i ) to form a confusion matrix B. Assume there were no 
misclassifications in A with respect to the j class (i.e., the j class is not “involved” in 
any misclassification), the MAE elements of the merged class in B and those of the two 
original classes in A have the same error severity. That is, the MAE of the two matrices 
is equal, which means that the MAE is insensitive to the number of classes. Note that 
Sect. 5.2 demonstrates an example for this insensitivity using the first approach above 
(introducing a new class).

3. Error distribution: Table 13 indicates that the MAE is only partially sensitive to the 
error distribution. It is very easy to change the error distribution of true class j but to 
keep the MAE intact by changing the error distribution of another true class i to com-
pensate for the change in class j. It is more challenging, though, to show the MAE 
indifference to the error distribution by changing only the distribution of a single class, 
but without changing the sum of errors of that class. To show this, we use the case of 
symmetrical error distributions (e.g., uniform, normal, Laplace). For example, consider 
the two error severity frequency distributions (with an equal MAE = 3.5 ): 
VAj

= {10, 10, 10, 10, 10, 10} and VBj
= {5, 10, 15, 15, 10, 5} representing uniform and 

normal distributions of the error severity for true class j and confusion matrices A and 
B, respectively. VBj

 , e.g., demonstrates that there are in B five samples of true class j 
wrongly classified with error severity of one, ten samples of true class j wrongly clas-
sified with error severity two, 15 with error severity three, etc. until error severity six 
(the dimension of VBj

 ). This example will inspire us in the proof of the following lemma 
that the MAE is insensitive to a change in error distribution of a single class if the dis-
tributions are symmetrical and the sum of errors for that class (and since this is the only 
class to change also for the entire confusion matrix) is kept intact.

Lemma 3 Two confusion matrices of two classifiers induced using the same data have the 
same MAE if their corresponding error severity distributions per class are either equal or 
each is symmetrical.

Proof Without loss of generality, we change the error distribution of class j (of M classes) 
between two confusion matrices A and B, but without changing their sum of errors (i.e., the 
total number of errors for class j in A and B is equal). Assume that error severities 1 to mj 
for true class j are symmetrical in A and B (recall VAj

 and VBj
 in the example above) and 

distributed, respectively:

where mj is the maximal error severity for class j ( mj ≤ M − 1 ), Sj is the number of samples 
of true class j, and ek

Ay=j
 is the number of samples of true class j in A that were wrongly clas-

PAy=j
=

1

Sj
{e1

Ay=j
, e2

Ay=j
, ..., e

mj

Ay=j
} and PBy=j

=
1

Sj
{e1

By=j
, e2

By=j
, ..., e

mj

By=j
},
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sified to class x s.t. |x − j| = k , and 1 ≤ k ≤ mj . Note, that ek
Ay=j

 should not necessarily be 
equal to ek

By=j
.

Since both error severity frequency distributions are symmetrical (recall VAj
 and VBj

 ), we 
get for PAy=j

 and an even mj (and similarly for PBy=j
 and/or an odd mj):

Due to this symmetry, we get that:

And since the sums of errors for class j in A and B are equal, we get that:

  ◻

4. Error severity: MAE tackles error severities by definition.
5. Accuracy and information tradeoff: Generally, a tradeoff is a balancing of factors, all 

of which are not attainable at the same time. In our case, we see a tradeoff as balancing 
between two measures with opposite trends, e.g., one increases, and the other decreases. 
In ranges where the measures do not demonstrate such a relation, they show no tradeoff. 
In Table 13, we stated that the MAE does not trade accuracy and information. To show 
that, we first assume by negation that there is a tradeoff between them. If the MAE bal-
ances between accuracy and the MI, then in ranges where one increases while the other 
decreases, we expect the MAE to be monotonic with one of them, but with a smaller 
change. We will check the corresponding changes and show that this is not the case.

Lemma 4 The MAE does not balance between accuracy and information.

Proof Let A be a confusion matrix of size M that holds zero information (i.e., representing 
a random classifier showing a uniform error distribution per class), and let B be a confu-
sion matrix of a classifier trained over the same data, but with a single change from A. 
According to the information theory, B holds more information than A, i.e., MIB > MIA.

There could be three types of change A has undergone: 

 (i) Moving samples between two (on- or) off-diagonal cells in A and B.
 (ii) Moving samples from an off-diagonal cell in A to a diagonal cell in B.

e1
Ay=j

= e
mj

Ay=j
, e2

Ay=j
= e

mj−1

Ay=j
, ..., e

mj∕2

Ay=j
= e

mj∕2+1

Ay=j
.

MAEAy=j
= 1∕Sj

(
[1 + mj]e

1
Ay=j

+ [2 + mj − 1]e2
Ay=j

+ ... + [
mj

2
+

mj

2
+ 1]e

mj∕2

Ay=j

)

= 1∕Sj

(
[mj + 1]e1

Ay=j
+ [mj + 1]e2

Ay=j
+ ... + [mj + 1]e

mj∕2

Ay=j

)

= (mj + 1)∕Sj

(
e1
Ay=j

+ e2
Ay=j

+ ... + e
mj∕2

Ay=j

)
= (mj + 1)∕Sj

mj∕2∑

i=1

ei
Ay=j

.

MAEAy=j
= (mj + 1)∕Sj

mj∕2∑

i=1

ei
Ay=j

= (mj + 1)∕Sj

mj∕2∑

i=1

ei
By=j

= MAEBy=j
.
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 (iii) Moving samples from a diagonal cell in A to an off-diagonal cell in B.

  ◻

Since MI increases when moving from A to B following a single change, we are interested 
in cases in which accuracy decreases for this change, i.e., cases that demonstrate a tradeoff 
between the two measures. In the first two cases, there is no tradeoff since accuracy does not 
decrease. In the third case, however, accuracy decreases and, therefore, there is a potential for 
a tradeoff between accuracy and the MI. If the MAE trades between the two measures, we 
expect the change in its value to account for the opposite trends in both measures and not only 
for one of them.

Let us denote in k the number of samples of true class y = j that moved from predicted 
class x = j to predicted class x = i in a single change when moving from A to B (i.e., sam-
ples predicted as j in A and as i in B), n the total number of samples, and s the change in 
severity |j − i| due to the move. Thus, when moving between A and B, the accuracy due to 
this single change decreases by k/n, and the MAE increases by (ks)/n.

To prove the lemma, we will show that although the MAE is monotone with the MI, the 
MAE’s change is higher than the MI’s change, which means accuracy did not reduce the 
MAE, and there is no balance between the MI and accuracy.

We first compute element-wise the change in the MI due to a single change in moving 
between confusion matrices A and B:

Since �MI between A and B is only due to the change in elements of the ith and jth rows 
(predicted classes), we can calculate �MI by first removing the MI’s contribution of these 

(21)

�MI = −
∑

x=i,j

∑

y

PA(x, y)log

(
PA(x, y)

PA(x)PA(y)

)

+
∑

y≠j

PB(x = i, y)log

(
PB(x = i, y)

PB(x = i)PB(y)

)

+
∑

y≠j

PB(x = j, y)log

(
PB(x = j, y)

PB(x = j)PB(y)

)

+ PB(x = i, y = j)log

(
PB(x = i, y = j)

PB(x = i)PB(y = j)

)

+ PB(x = j, y = j)log

(
PB(x = j, y = j)

PB(x = j)PB(y = j)

)
.

Table 39  With correspondence to Eq. (21), an example of a single change between two M ×M confusion 
matrices (a) A and (b) B, in which c samples of class M that were correctly predicted in this class ( x = M ) 
in A are now wrongly predicted in class 1 ( x = 1 ) in B (recall that each true class in A is uniformly distrib-
uted) (Color table online)

(a) (b)
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rows in A—the first term in Eq. (21), in red in Table 39(a) in which i = 1 and i = M . Sec-
ond, we add the MI contribution of these rows in B—the second and third terms in Eq. (21) 
for all true classes but the jth one, in green in Table 39(b), and the fourth and fifth terms in 
Eq. (21) for the jth true class, in blue in Table 39(b) in which j = M , respectively.

Note that the first term in Eq. (21) is canceled off since A is uniformly distributed per 
class and, thus, log

(
P(x,y)

(1∕M)(MP(x,y))

)
= 0 ∀x, y , and the fifth term is canceled off because 

PB(x = j, y = j) = 0 (all samples of class j that were correctly classified as j in A are clas-
sified as i in B).

The highest value MI can take due to the change between A and B is when 
k = nP(yj)∕M (i.e., all samples of class j that were classified as j in A are classified as i 
in B).

Since: (1) PB(x = i) = PA(x = i) + P(k) = 1∕M + k∕n , (2) PB(y = j) = Mk∕n , and (3) 
PB(x = i, y = j) = 2k∕n , the fourth term in Eq. (21) can be written as:

Next, since: (1) PB(x, y) = PA(x, y) ∀x,∀y ≠ j , and (2) 
PB(y) = PA(y) = MPA(x = i, y) = MPA(x = j, y) ∀y , the sum of the second and third terms 
in Eq. (21) can be written as

And now Eq. (21) can be written as

To prove the lemma, we need to show that �MAE = ks∕n is larger than �MI (Eq.  (22)), 
which will contradict the assumption that the MAE lies between accuracy and the MI in 
a range where both measures have opposite trends. The two cases to consider are for the 
highest and lowest vales k can take: 

 (i) k → n∕M : In this case, (almost) all samples are from class j, which is distributed 
uniformly in A, leading to the highest value of k samples moved from A to B. The 
first term in Eq. (22) goes to log(2n∕2n) = 0 , and the second term also goes to zero 

2k

n
log

(
(2k)∕n

(1∕M + k∕n)(Mk∕n)

)
=

2k

n
log

(
2n

n +Mk

)

∑

y≠j

PA(x = i, y)log

(
PA(x = i, y)

(1∕M + k∕n)MPA(x = i, y)

)

+
∑

y≠j

PA(x = j, y)log

(
PA(x = j, y)

(1∕M − k∕n)MPA(x = j, y)

)

=
∑

y≠j

PA(x = i, y)log
(

n

n +Mk

)

+
∑

y≠j

PA(x = j, y)log
(

n

n −Mk

)

=
∑

y≠j

PA(x = i, y)log

(
n2

n2 − (Mk)2

)
.

(22)�MI =
2k

n
log

(
2n

n +Mk

)
+
∑

y≠j

PA(x = i, y)log

(
n2

n2 − (Mk)2

)
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because PA(x = i, y ≠ j) → 0 , as there are almost no samples of classes other than j 
[note we use the convention that 0log(0∕0) = 0Cover and Thomas (2012)], and thus 
�MI → 0 . Since �MAE → s∕M , 𝛥MAE > 𝛥MI.

 (ii) k → 1 : In this case, we move down to the minimal number of samples, which is k = 1 . 
For n ≫ M , the first term in Eq. (22) goes to (2k)/n, as log(2) = 1 , the second term 
goes to zero, and thus �MI → 2∕n . Since �MAE → s∕n , for s > 2 , 𝛥MAE > 𝛥MI.7

  ◻

Mutual Information

1. Class imbalance: According to Table 13, mutual information (MI) is sensitive to class 
imbalance. We prove that (Lemma 5) by showing that the MI bounds are sensitive to 
class imbalance, and if the bounds are sensitive to the balance between classes, then 
also the measure is.

Lemma 5 Two confusion matrices with M classes and the same number of samples have 
different MI bounds if the balance between classes is different.

Proof Let A and B be two confusion matrices with M classes, and let PA and PB be two 
probability distributions of P(Y) in A and B, respectively (i.e., two class proportions). Note, 
that we do not consider here two reverse distributions as different (e.g., PA = {a, b, c} and 
PB = {c, b, a} ). We prove by showing that the bounds of MI are different between A and B 
if PA ≠ PB . We examine the lower and upper bounds: 

 (i) For both A and B, the lower bound of MI is zero. This value is obtained when each 
class is uniformly distributed with respect to X. Therefore, we only have to show 
that there is a difference between the upper bounds of A and B.

 (ii) For both A and B, the upper bound of MI is achieved for a perfect classification 
(i.e., all off diagonal entries are zero). Thus, the non-diagonal elements in Eq. (6) 
are canceled off, and since in this case P(x, y) = P(x) = P(y) , the upper bound is a 
function of P(y): 

 Because Eq. (23) is a strictly convex function (Cover and Thomas 2012), the upper 
bounds of MI (and thus also its values) for A and B are different if PA ≠ PB.

  ◻

(23)MI =
∑

x=y

∑

y

P(x, y)log

(
P(x, y)

P(x)P(y)

)
=
∑

y

P(y)log

(
1

P(y)

)
,

7 For s = 2 , �MAE → 2∕n from above ( k > 1 leads to 𝛥MAE > 2∕n ), and �MI → 2∕n from below ( k > 1

—more than a single sample is moved from A to B—leads to the first log in Eq. (22) to decrease faster than 
the increase in 2k/n), i.e., 𝛥MI <2/n), so the inequality holds also for s = 2 . For s = 1 , there is no meaning 
to the severity error, and this is the binary case, where MAE is replaced by the accuracy.
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2. Number of classes: Table 13 indicates that MI is sensitive to the number of classes. 
Again, we prove (Lemma 6) that MI is sensitive to the number of classes by showing 
that MI bounds are.

Lemma 6 Two confusion matrices with a different number of classes have different MI 
bounds.

Proof We prove that by showing that MI bounds are different for the two matrices. Let A 
and B be two confusion matrices with MA and MB classes ( MA ≠ MB ). In general, the mini-
mal MI value a confusion matrix can take is when all samples are uniformly distributed 
across the matrix, i.e., MI =

∑
x

∑
y 1∕M

2log
1∕M2

1∕M⋅1∕M
= 0 , a value that is independent of M. 

The maximal value MI can take is when all samples are uniformly distributed across the 
diagonal, i.e., MI =

∑
x 1∕Mlog

1∕M

1∕M⋅1∕M
= log(M) . Since MA ≠ MB also 

log(MA) ≠ log(MB) , i.e., different upper bounds to MA and MB .   ◻

3. Error distribution: According to Table 13, MI is only partially affected by the error 
distribution. A simple case that demonstrates MI insensitivity to error distribution is 
a flipped confusion matrix. For example, the error distributions of class C3 (in red) in 
Tables 40(a, b) (or those of class C1 ) are different although the MI of the two confusion 
matrices is equal ( log(9∕6) = 0.585).

4. Error severity Table 13 indicates that MI is only partially affected by the error severity. 
In order to demonstrate the MI insensitivity to the total error severity, ES, we also have 
to change the error distribution because it is the interrelation of the error distribution 
and severity of error ( |x − y ) that is expressed in ES (Eq. (16)). Consider the example 

Table 40  Example of two flipped confusion matrices with the same MI (Color table online)

(a) (b)

Table 41  Example of two confusion matrices with reverse error distribution for C4 and the same MI (0.316) 
(Color table online)

(a) (b)
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in Table 41 that shows two confusion matrices with the same entries except those of 
class C4 (highlighted in red). These matrices demonstrate different error distributions for 
class j = 4 , leading to harsher total error severity for Table 41(a) than for Table 41(b), 
yet they have the same MI score. A measure that pretends to account for error severity 
cannot score both Tables 41(a, b) equally.

In Lemma 7, we prove that MI is insensitive to error severity for the general (harsh) case, 
where the error distributions are reversed. For this lemma, we require that the total number 
of predictions for classes other than j with respect to true classes other than j are symmetri-
cal. To demonstrate this, let’s denote Sk as the total number of predictions for classes other 
than j for the k predicted class. For example, in Table 41, the sum of the first and third rows 
(without C4 ) are S1 = 80 + 50 + 30 = 160 and S3 = 60 + 10 + 90 = 160 , respectively (we 
arrange all Sx ∀x ≠ j in a vector S = {S1, S2, S3} ). We will show that MI is insensitive in the 
case where the errors of class j are reversed, and S = {S1,… , SM−1} is symmetrical, where 
Sx =

∑
y≠j P(Ax,y),∀x ≠ j (and similarly for B).

Lemma 7 Two confusion matrices of two classifiers learned from the same data and with 
reverse error distributions for class j have the same MI if all their non-j entries are ele-
ment-wise equal and Sx = SM−x ∀x ≠ j for both matrices.

Proof Let A and B be two confusion matrices with M classes. Assume that the errors of 
class j in A and B have a reverse distribution, Sx = SM−x ∀x ≠ j (see C4 in Table 41 for an 
example).

The MI of A can be written as:

The first term in Eq. (24) is the sum over all class predictions for true class j, the second 
term is the sum for predictions of class j over all true classes, and the third term is the sum 
over predictions for all classes other than j when the true classes are other than j. For exam-
ple, in Table 41(a), the first term refers to all elements that in red, the second term to the 
elements of the fourth row, and the third term to all elements except those of the fourth row 
and the fourth column. We further develop the three terms of Eqs.  (24) in (28) (the first 
term), (25) (the second term), and (27) (the third term).

The second term of Equation (24): Because the following class marginal probabilities of A 
and B are equal, P(Ay) = P(By), ∀y , and P(Ax=j) = P(Bx=j) , we write this term as:

The third term of Equation (24) can be written as:

(24)

MI(A) =
∑

x≠j

P(Ax,y=j)log

(
P(Ax,y=j)

P(Ax)P(Ay=j)

)
+
∑

y

P(Ax=j,y)log

(
P(Ax=j,y)

P(Ax=j)P(Ay)

)

+
∑

x≠j

∑

y≠j

P(Ax,y)log

(
P(Ax,y)

P(Ax)P(Ay)

)
.

(25)
∑

y

P(Ax=j,y)log

(
P(Ax=j,y)

P(Ax=j)P(Ay)

)
=
∑

y

P(Bx=j,y)log

(
P(Bx=j,y)

P(Bx=j)P(By)

)
.
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First, since A and B are element-wise equal for y ≠ j , P(Ax,y)logP(Ax,y) = P(Bx,y)logP(Bx,y) 
for y ≠ j . Second, as above, P(Ay) = P(By), ∀y . Third, since P(Ax,y=j) = P(BM−x,y=j) for 
x ≠ j (the reverse distribution assumption), and, based on the lemma assumption:

then P(Ax) = P(BM−x) . Therefore, the third term of Eq. (24) is:

where the last equality is due to the lemma definition, leading to ∑
y≠j P(Bx,y)logP(BM−x) =

∑
y≠j P(Bx,y)logP(Bx).

The first term of Equation  (24): Since, as above, P(Ax) = P(BM−x) and 
P(Ax,y=j) = P(BM−x,y=j) , the first term of Eq. (24) is:

where the last equality is between two sums over the same elements in different order.
Since we showed in Eqs.  (25), (27), and  (28) that in each term of Eq.  (24) the ele-

ment corresponding to A can be replaced with that corresponding to B, we get that 
MI(A) = MI(B) .   ◻

Information measure

In this section, we refer to both the information measure (IM) and IM� . Since IM and IM� 
are a combination of MI and a variation of MAE, they are both sensitive to the same prop-
erties which either MI or MAE are sensitive to. Thus, IM and IM� are sensitive to class 
imbalance, number of classes, and balance between accuracy and information (due to the 
MI part), and to error severity (due to the ES part of IM and IM� ). Although both MI and 
MAE are insensitive to the error distribution under several conditions, these conditions do 
not overlap, and thus IM and IM� are sensitive to the error distribution.

Confusion entropy

Confusion entropy (CEN) showed poor results, and thus it is omitted from this theoretical 
analysis. Empirical results, similar to those in Sect. 5, showed that CEN is insensitive to 

∑

x≠j

∑

y≠j

P(Ax,y)
(
logP(Ax,y) − logP(Ax) − logP(Ay)

)
.

(26)
∑

y≠j

Ax,y =
∑

y≠j

AM−x,y, ∀ x ≠ j,

(27)

∑

x≠j

∑

y≠j

P(Bx,y)
(
logP(Bx,y) − logP(BM−x) − logP(By)

)
=
∑

x≠j

∑

y≠j

P(Bx,y)log

(
P(Bx,y)

P(Bx)P(By)

)
,

(28)

∑

x≠j

P(Ax,y=j)log

(
P(Ax,y=j)

P(Ax)P(Ay=j)

)
=
∑

x≠j

P(BM−x,y=j)log

(
P(BM−x,y=j)

P(BM−x)P(By=j)

)

=
∑

x≠j

P(Bx,y=j)log

(
P(Bx,y=j)

P(Bx)P(By=j)

)
,
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class imbalance, number of classes, and error severity, but a theoretical proof for this is not 
in the scope of this study.

Artificial BN sampling

The implementation to learn a BN—the structure and conditional probability table (CPT) 
parameters—was aided by the BNT (Murphy 2001) and SLP (Leray and Francois 2004) 
toolboxes. All CPTs (except that of the target variable) were sampled from a Dirichlet 
distribution with a parameter � = [1, 1, 1] (Geiger and Heckerman 1997; Ide and Cozman 
2002). To perform a sensitivity analysis, we have to control the target variable (hence we 
cannot use the Dirichlet distribution). For each combination of the target variable parents, 
the target variable is sampled from the following distribution:

where x is a continuous random variable.
We chose this function for several reasons: A polynomial of order three suits our pur-

poses since it has a small area under the curve of high values of f(x); however, other areas 
are not negligible, and the addition of x to x3 increases the lowest probabilities to improve 
the representation of classes corresponding to low x.

For each combination of parents, we sampled X 10,000 times using decomposition 
Suzuki (1990) and created a histogram with bins as the number of classes of target vari-
able. Figure 13 shows the distribution (in a discrete form) for three Fig. 13a, four  Fig. 13b 
and five Fig. 13c class scenarios. It is important to maintain the same distribution so we 
could argue later that the differences in performance are due to changes in the number of 
classes and not due to the conditional probabilities.

IM scores for artificial databases

Table 42 shows the average IM scores achieved by the seven algorithms initialized by the 
empty graph. Recall that the IM scores are calculated according to Eq. (16) without nor-
malization (as opposed to the IM� scores that are normalized in order to compare different 

(29)f (x) = x3 + x, 0 < x < 1.112

Fig. 13  Target variable distributions for a given parent combination and different number of classes
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values of alphas). IM� has the best average IM score. The differences between the measures 
are similar to those achieved for ACC and IM� as was seen in Sect. 6.1.

Run time measured by number of neighbors for artificial BNs

In Table 43, we analyze the time complexity of each algorithm by counting the number 
of neighbor graphs examined during the learning phase. The poor results of CEN with 
respect to the seven measures are compensated by a short run time. This makes sense 
due to the small number of iterations of the algorithm. On the other hand, the IM�-based 
BNC suffers from the worse time complexity since it is a wrapper algorithm.

Table 42  Mean ( std × 10−1 ) IM values of BNCs learned using seven measures and the RMCV algorithm 
that is initialized by the empty graph for 23 artificial databases

DB IM IM� MI CEN MCC MAE ACC 

1 − 1.009 (1) − 1.010 (1) − 1.010 (1) − 1.009 (1) − 1.009 (1) − 1.010 (1) − 1.010 (1)
2 − 1.012 (1) − 1.013 (1) − 1.007 (1) − 0.182 (8) − 1.007 (1) − 1.009 (1) − 1.004 (1)
3 − 0.896 (1) − 0.928 (1) − 0.833 (2) 0.116 (6) − 0.877 (1) − 0.913 (1) − 0.891 (1)
4 − 0.851 (1) − 0.865 (1) − 0.831 (1) 0.325 (7) − 0.844 (1) − 0.806 (2) − 0.850 (1)
5 − 0.732 (2) − 0.801 (2) − 0.694 (3) 0.681 (6) − 0.769 (2) − 0.718 (2) − 0.776 (2)
6 − 0.699 (1) − 0.721 (1) − 0.676 (1) 0.825 (7) − 0.696 (1) − 0.611 (2) − 0.678 (1)
7 − 0.644 (1) − 0.679 (1) − 0.582 (2) 0.825 (5) − 0.608 (2) − 0.511 (3) − 0.605 (2)
8 − 0.577 (2) − 0.624 (1) − 0.433 (3) 1.090 (7) − 0.551 (1) − 0.261 (5) − 0.550 (1)
9 − 0.592 (2) − 0.617 (2) − 0.533 (2) 0.191 (5) − 0.549 (2) − 0.592 (2) − 0.583 (2)
10 − 0.747 (2) − 0.803 (1) − 0.682 (2) 0.088 (5) − 0.763 (2) − 0.754 (2) − 0.804 (1)
11 − 0.773 (2) − 0.824 (1) − 0.789 (2) 0.267 (6) − 0.792 (2) − 0.808 (1) − 0.787 (1)
12 − 0.896 (1) − 0.928 (1) − 0.833 (2) 0.116 (6) − 0.877 (1) − 0.913 (1) − 0.891 (1)
13 − 0.923 (1) − 0.948 (1) − 0.947 (1) 0.186 (5) − 0.926 (1) − 0.937 (1) − 0.921 (1)
14 − 0.997 (1) − 0.999 (1) − 0.981 (1) 0.220 (6) − 0.977 (1) − 0.982 (1) − 0.974 (1)
15 − 0.903 (1) − 0.907 (1) − 0.795 (3) 0.474 (6) − 0.888 (1) − 0.861 (2) − 0.883 (1)
16 − 0.859 (1) − 0.864 (1) − 0.831 (1) 0.356 (5) − 0.834 (1) − 0.852 (1) − 0.840 (1)
17 − 0.708 (1) − 0.717 (1) − 0.635 (2) 0.672 (3) − 0.660 (2) − 0.691 (1) − 0.690 (1)
18 − 0.621 (2) − 0.652 (1) − 0.516 (3) 0.651 (2) − 0.365 (3) − 0.543 (2) − 0.576 (2)
19 − 0.563 (1) − 0.583 (1) − 0.579 (1) 0.650 (0) − 0.527 (2) − 0.577 (1) − 0.557 (1)
20 − 0.433 (2) − 0.480 (1) − 0.242 (3) 0.561 (0) − 0.415 (2) − 0.399 (2) − 0.413 (2)
21 − 0.074 (3) − 0.031 (3) − 0.141 (2) 0.383 (0) − 0.068 (2) 0.093 (3) 0.156 (3)
22 0.143 (2) 0.166 (2) 0.042 (2) 0.331 (0) 0.081 (2) 0.263 (2) 0.280 (1)
23 0.175 (1) 0.190 (0) 0.133 (1) 0.195 (0) 0.135 (1) 0.195 (0) 0.195 (0)
Avg (std) − 0.660 (0) − 0.680 (0) − 0.626 (0) 0.348 (0) − 0.643 (0) − 0.617 (0) − 0.637 (0)
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IM scores for UCI databases

Table  44 shows the average IM scores (again, not normalized) achieved by the seven 
algorithms initialized by the NBC graph.

Run Time measured by number of neighbors for UCI BNs

In Table 45, we analyze the time complexity of each algorithm by counting the number 
of neighbor graphs examined during the learning phase. This table is consistent with 
Table 43.

Table 43  Mean × 102 ( std × 102 ) run time (measured by number of neighbors) of BNCs learned using 
seven measures and the RMCV algorithm that is initialized by the empty graph for 23 artificial databases

DB IM IM� MI CEN MCC MAE ACC 

1 1.7 (2) 10.3 (12) 1.7 (2) 1.7 (2) 1.7 (2) 1.6 (2) 1.6 (2)
2 12.3 (4) 69.6 (18) 12.5 (5) 4.9 (5) 12.7 (4) 10.5 (3) 10.7 (3)
3 11.7 (5) 69.2 (31) 11.0 (5) 2.4 (4) 11.0 (5) 10.9 (3) 10.0 (4)
4 11.5 (5) 59.8 (18) 9.9 (4) 2.1 (3) 10.1 (3) 11.4 (4) 10.0 (3)
5 13.3 (6) 78.1 (34) 12.3 (6) 1.0 (1) 12.6 (4) 11.2 (5) 11.2 (4)
6 13.0 (4) 73.0 (26) 12.6 (4) 1.2 (1) 12.4 (4) 11.2 (4) 11.2 (3)
7 11.5 (4) 63.5 (20) 13.0 (6) 1.0 (0) 11.2 (4) 10.3 (5) 11.2 (4)
8 10.5 (4) 69.8 (24) 10.2 (5) 1.0 (1) 12.5 (4) 8.3 (6) 12.0 (3)
9 7.0 (3) 43.9 (19) 6.7 (3) 1.4 (1) 8.2 (4) 6.9 (2) 6.5 (3)
10 9.3 (4) 60.2 (21) 9.2 (5) 1.5 (1) 10.8 (5) 8.9 (3) 9.5 (3)
11 12.8 (7) 71.2 (21) 12.3 (5) 1.5 (2) 10.8 (4) 9.9 (3) 10.7 (4)
12 11.7 (5) 69.2 (31) 11.0 (5) 2.4 (4) 11.0 (5) 10.9 (3) 10.0 (4)
13 13.2 (5) 83.9 (31) 15.5 (6) 1.8 (3) 13.9 (5) 12.3 (4) 12.2 (4)
14 15.4 (5) 90.3 (45) 16.6 (7) 2.2 (4) 14.2 (5) 12.9 (4) 11.6 (4)
15 13.6 (5) 82.3 (36) 12.8 (7) 1.0 (1) 13.6 (5) 11.3 (4) 12.7 (4)
16 13.0 (4) 87.2 (28) 12.8 (4) 1.0 (1) 13.0 (4) 12.5 (3) 12.5 (4)
17 11.7 (6) 72.0 (28) 12.7 (6) 0.7 (0) 13.0 (6) 10.8 (4) 10.9 (4)
18 15.9 (5) 97.5 (48) 13.9 (7) 0.4 (0) 9.6 (7) 12.3 (5) 13.9 (6)
19 13.3 (5) 83.3 (25) 13.3 (4) 0.4 (0) 12.5 (5) 14.7 (5) 12.2 (4)
20 15.8 (8) 92.0 (31) 9.9 (8) 0.4 (0) 14.7 (8) 13.4 (5) 12.3 (5)
21 9.6 (7) 45.4 (41) 12.4 (7) 0.4 (0) 8.9 (6) 4.6 (5) 4.5 (6)
22 4.5 (6) 13.1 (21) 6.4 (6) 0.4 (0) 5.5 (5) 1.9 (4) 1.2 (2)
23 0.9 (2) 2.3 (0) 1.5 (2) 0.4 (0) 1.9 (4) 0.4 (0) 0.4 (0)
Avg (std) 11.0 (4) 66.3 (28) 10.9 (4) 1.4 (1) 10.7 (4) 9.5 (4) 9.5 (4)
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Table 44  Mean ( std × 10−1 ) IM values of BNCs learned using seven measures and the RMCV algorithm 
that is initialized by the NBC graph for 17 UCI and real-world databases

DB IM IM� MI CEN MCC MAE ACC 

1 0.030 (1) 0.028 (1) 0.028 (0) 0.059 (3) 0.030 (0) 0.028 (1) 0.031 (0)
2 − 0.274 (1) − 0.274 (1) − 0.274 (1) − 0.263 (1) − 0.274 (1) − 0.274 (1) − 0.274 (1)
3 − 0.820 (2) − 0.829 (2) − 0.795 (2) − 0.794 (2) − 0.824 (2) − 0.824 (2) − 0.836 (2)
4 − 0.614 (2) − 0.609 (2) − 0.580 (2) − 0.590 (2) − 0.578 (2) − 0.596 (2) − 0.603 (2)
5 − 0.889 (1) − 0.891 (1) − 0.861 (1) − 0.890 (1) − 0.888 (1) − 0.877 (1) − 0.867 (1)
6 − 0.135 (1) − 0.135 (1) − 0.135 (1) − 0.132 (1) − 0.135 (1) − 0.140 (1) − 0.140 (1)
7 − 0.954 (1) − 0.954 (1) − 0.954 (1) − 0.954 (1) − 0.928 (2) − 0.954 (1) − 0.954 (1)
8 0.026 (2) 0.026 (2) 0.026 (2) 0.219 (3) 0.026 (2) 0.027 (2) 0.027 (2)
9 − 0.043 (3) − 0.035 (2) − 0.068 (3) − 0.036 (2) − 0.096 (3) − 0.065 (2) − 0.065 (2)
10 − 0.602 (2) − 0.609 (2) − 0.613 (2) − 0.580 (2) − 0.588 (2) − 0.597 (2) − 0.606 (2)
11 − 0.202 (0) − 0.205 (0) − 0.202 (0) − 0.203 (0) 0.043 (1) − 0.201 (0) − 0.186 (0)
12 − 0.457 (3) − 0.461 (3) − 0.457 (3) − 0.455 (3) − 0.474 (3) − 0.461 (3) − 0.461 (3)
13 0.130 (0) 0.127 (0) 0.128 (0) 0.138 (0) 0.131 (0) 0.130 (0) 0.130 (0)
14 − 0.998 (0) − 0.998 (0) − 0.998 (0) − 0.998 (0) − 0.996 (0) − 0.998 (0) − 0.998 (0)
15 − 0.908 (0) − 0.908 (0) − 0.910 (0) − 0.905 (0) − 0.907 (0) − 0.905 (0) − 0.907 (0)
16 − 1.393 (1) − 1.400 (1) − 1.393 (1) − 1.389 (1) − 1.418 (1) − 1.393 (1) − 1.388 (1)
17 − 0.695 (2) − 0.695 (2) − 0.695 (2) − 0.695 (2) − 0.682 (2) − 0.680 (2) − 0.680 (2)
Avg (std) − 0.517 (0) − 0.519 (0) − 0.515 (0) − 0.498 (0) − 0.503 (0) − 0.516 (0) − 0.516 (0)

Table 45  Mean × 102 ( std × 102 ) run time (measured by number of neighbors) of BNCs learned using 
seven measures and the RMCV algorithm that is initialized by the NBC graph for 17 real-world and UCI 
databases

DB IM IM� MI CEN MCC MAE ACC 

1 126.1 (48) 634.4 (37) 120.3 (24) 146.4 (10) 166.1 (46) 134.4 (23) 139.2 (31)
2 14.1 (4) 70.5 (6) 14.1 (4) 13.2 (4) 14.1 (4) 11.9 (2) 11.9 (2)
3 2.6 (1) 16.9 (1) 2.6 (1) 3.0 (1) 3.1 (1) 2.4 (1) 2.5 (1)
4 21.4 (5) 141.3 (7) 20.2 (6) 20.2 (4) 22.5 (5) 19.0 (3) 19.7 (4)
5 2.6 (1) 21.5 (2) 2.5 (1) 2.8 (1) 2.7 (1) 2.8 (1) 2.6 (1)
6 6.4 (3) 57.8 (4) 6.4 (3) 6.8 (2) 6.4 (3) 5.2 (2) 5.2 (2)
7 1.4 (0) 14.3 (0) 1.4 (0) 1.4 (0) 1.4 (0) 1.4 (0) 1.4 (0)
8 2.0 (1) 22.5 (1) 2.0 (1) 2.5 (1) 2.0 (1) 2.0 (1) 2.0 (1)
9 17.0 (4) 100.8 (6) 17.6 (5) 17.2 (4) 16.6 (4) 15.9 (3) 15.9 (3)
10 1.5 (0) 10.0 (1) 1.5 (0) 1.9 (1) 1.6 (0) 1.6 (0) 1.4 (0)
11 67.6 (14) 410.5 (20) 67.8 (15) 58.3 (13) 66.3 (27) 72.3 (15) 72.5 (12)
12 7.4 (5) 44.9 (7) 7.4 (5) 7.4 (5) 7.7 (5) 7.5 (5) 7.5 (5)
13 29.4 (8) 185.4 (12) 30.9 (12) 26.3 (2) 30.9 (12) 28.7 (7) 27.2 (6)
14 12.9 (2) 77.5 (2) 12.9 (2) 12.9 (2) 11.9 (2) 12.9 (2) 12.9 (2)
15 3.5 (1) 20.4 (1) 3.8 (1) 3.2 (1) 3.3 (1) 3.1 (1) 2.9 (1)
16 5.2 (2) 36.8 (2) 5.0 (2) 4.7 (2) 6.4 (2) 5.3 (2) 5.7 (2)
17 13.8 (3) 82.5 (5) 13.8 (3) 14.1 (3) 13.6 (3) 13.2 (3) 13.2 (3)
Avg (std) 19.7 (32) 114.6 (166) 19.4 (31) 20.1 (35) 22.2 (40) 20.0 (34) 20.2 (35)
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