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Abstract
We employ random geometric digraphs to construct semi-parametric classifiers. These 
data-random digraphs belong to parameterized random digraph families called proxim-
ity catch digraphs (PCDs). A related geometric digraph family, class cover catch digraph 
(CCCD), has been used to solve the class cover problem by using its approximate minimum 
dominating set and showed relatively good performance in the classification of imbalanced 
data sets. Although CCCDs have a convenient construction in ℝd , finding their minimum 
dominating sets is NP-hard and their probabilistic behaviour is not mathematically tractable 
except for d = 1 . On the other hand, a particular family of PCDs, called proportional-edge 
PCDs (PE-PCDs), has mathematically tractable minimum dominating sets in ℝd ; however 
their construction in higher dimensions may be computationally demanding. More specifi-
cally, we show that the classifiers based on PE-PCDs are prototype-based classifiers such 
that the exact minimum number of prototypes (equivalent to minimum dominating sets) is 
found in polynomial time on the number of observations. We construct two types of classi-
fiers based on PE-PCDs. One is a family of hybrid classifiers that depends on the location 
of the points of the training data set, and another type is a family of classifiers solely based 
on class covers. We assess the classification performance of our PE-PCD based classifiers 
by extensive Monte Carlo simulations, and compare them with that of other commonly 
used classifiers. We also show that, similar to CCCD classifiers, our classifiers tend to be 
robust to the class imbalance in classification as well.

Keywords  Class cover problem · Delaunay tessellation · Digraph · Domination · Prototype 
selection · Support estimation

Editor: Tapio Elomaa.

 *	 Artür Manukyan 
	 artur‑man@hotmail.com

	 Elvan Ceyhan 
	 ceyhan@auburn.edu

1	 Department of Industrial and Systems Engineering, Yeditepe University, 34755 Istanbul, Turkey
2	 Department of Mathematics and Statistics, College of Sciences and Mathematics, Auburn 

University, Auburn, AL 36849, USA

http://orcid.org/0000-0003-2423-3178
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05878-4&domain=pdf


762	 Machine Learning (2020) 109:761–811

1 3

1  Introduction

Classification methods based on set covering algorithms received considerable attention 
recently because of their use in prototype selection (Bien and Tibshirani 2011; Cannon and 
Cowen 2004; Angiulli 2012). Prototypes are selected members of a data set so as to attain 
various tasks including reducing, condensing or summarizing a data set. Many learning 
methods aim to carry out more than one of these tasks, thereby building efficient learn-
ing algorithms (Pȩkalska et al. 2006; Bien and Tibshirani 2011). A desirable prototype set 
reduces the data set in order to decrease running time, condenses the data set to preserve 
information, and summarizes the data set for better exploration and understanding. The 
methods we discuss in this work are considered as decision boundary generators where 
decisions are made based on class conditional regions, or class covers, that are composed 
of a collection of convex sets, each associated with a prototype (Toussaint 2002). The 
union of such convex sets constitutes a region for the class of interest, estimating the sup-
port of this class (Schölkopf et al. 2001). Support estimates have uses in both supervised 
and unsupervised learning schemes offering solutions to many problems in machine learn-
ing (Marchette 2004). We propose supervised learning methods, or classifiers, based on 
these estimates of the supports constructed with a random geometric digraph family called 
proximity catch digraphs.

Proximity Catch Digraphs (PCDs) are closely related to Class Cover Catch Digraphs 
(CCCDs) introduced by Priebe et  al. (2001), and are vertex-random digraphs defined 
by the relationship between class-labeled observations. Priebe et  al. (2001) introduced 
CCCDs to find graph theoretic solutions to the Class Cover Problem (CCP), and provided 
some results on the minimum dominating sets and the distribution of the domination num-
ber of such digraphs for one dimensional data. The goal of CCP is to find a set of hyper-
spheres (usually Euclidean balls) such that their union encapsulates, or covers, (a subset 
of) the training data set associated with a particular class, called the target class (Cannon 
and Cowen 2004). In addition, Priebe et al. (2003a) showed that approximate dominating 
sets of CCCDs, which were obtained by a greedy algorithm, can be used to establish effi-
cient semi-parametric classifiers. Moreover, DeVinney et al. (2002) defined random walk 
CCCDs (RW-CCCDs) where balls of class covers are defined in a relaxed manner com-
pared to the previously introduced CCCDs so as to avoid the overfitting problem. These 
digraphs have been used, e.g. in face detection (Eveland et al. 2005) and in latent class dis-
covery for gene expression data (Priebe et al. 2003b). CCCDs also show robustness to the 
class imbalance in data sets (Manukyan and Ceyhan 2016). Class imbalance often occurs 
in real data sets; that is, some classes of the data sets have a large number of members 
whereas the remaining classes only have fewer, resulting in a bias towards the majority 
class (the class with abundant number of members) which drastically decreases the clas-
sification performance.

Class covers with Euclidean balls have been extended to allow the use of different type 
of regions in order to cover a class of interest. Serafini (2014) uses sets of boxes to find a 
cover of classes, and also defines the maximum redundancy problem. This is an optimiza-
tion problem of covering as many points as possible by each box where the total number of 
boxes is kept to a (approximately) minimum. Hammer et al. (2004) investigates CCP using 
boxes with applications to the logical data analysis. Moreover, Bereg et al. (2012) extend 
covering boxes to rectilinear polygons to cover classes, and they report on the complex-
ity of the CCP algorithms using such polygonal covering regions. Takigawa et al. (2009) 
incorporate balls and establish classifiers similar to the ones based on CCCDs, and they 
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also use sets of convex hulls. Ceyhan (2005) uses sets of triangles relative to the tessel-
lation of the opposite class to analytically compute the minimum number of triangles 
required to establish a class cover. In this work, we study class covers with particular trian-
gular regions (simplicial regions in higher dimensions).

CCCDs can be generalized using proximity maps (Jaromczyk and Toussaint 1992). Cey-
han (2005) defined PCDs and introduced three families of PCDs and investigated the dis-
tribution of the domination number of such digraphs in a two class setting. Domination 
number and, another graph invariant called the arc density (the ratio of number of arcs in a 
digraph to the total number of arcs possible) of these PCDs has been used for testing spa-
tial patterns of segregation and association (Ceyhan and Priebe 2005; Ceyhan et al. 2006, 
2007). In this article, we employ PCDs in statistical classification and investigate their per-
formance. The PCDs of concern in this work are based on a particular family of proximity 
maps called proportional-edge (PE) proximity maps. The corresponding PCDs are called 
PE-PCDs, and are defined for target class (i.e. the class of interest) points inside the convex 
hull of non-target class points (Ceyhan 2005). However, this construction ignores the target 
class points outside the convex hull of the non-target class. We mitigate this shortcoming 
by partitioning the region outside of the convex hull into unbounded regions, called outer 
simplices, which may be viewed as extensions of outer intervals in ℝ (e.g. intervals with 
infinite endpoints) to higher dimensions. We attain proximity regions in these outer sim-
plices by extending PE proximity maps to outer simplices. We establish two types of clas-
sifiers based on PE-PCDs, namely, hybrid and cover classifiers. The first type incorporates 
the PE-PCD covers of only points in the convex hull and use other classifiers for points 
outside the convex hull of the non-target class, hence we have some kind of a hybrid classi-
fier; the second type is further based on two class cover models where the first is a mixture 
of PE-PCDs and CCCDs (composite covers) whereas the second is purely based on PE-
PCDs (standard covers).

One common property of most class covering (or set covering) methods is that none 
of the algorithms find the exact minimum number of covering sets in polynomial time, 
and solutions are mostly provided by approximation algorithms (Vazirani 2001). However, 
for PE-PCDs, the exact minimum number of covering sets (equivalent to prototype sets) 
can be found much faster; that is, the exact minimum solution is found in a running time 
polynomial in size of the data set but exponential in dimensionality. PE-PCDs have com-
putationally tractable (exact) minimum dominating sets in ℝd (Ceyhan 2010). Since the 
complexity of class covers based on this family of proximity maps exponentially increases 
with dimensionality, we apply dimension reduction methods (such as principal components 
analysis) to substantially reduce the number of features and thus reduce the dimensionality. 
Hence, based on the transformed data sets in the reduced dimensions, the PE-PCD based 
hybrid classifiers and, in particular, cover classifiers become more appealing in terms of 
both prototype selection and classification performance (in the reduced dimension). We use 
simulated and real data sets to show that these two types of classifiers based on PE-PCDs 
have either comparable or slightly better classification performance than other classifiers 
when the data sets exhibit the class imbalance problem.

The article is organized as follows: in Sect.  2, we introduce some auxiliary tools for 
defining PCDs, and in particular in Sect.  3, we describe PE proximity regions and PE-
PCDs. In Sect. 4, we introduce two types of class cover models that are called composite 
and standard covers. In Sect. 5, we establish two types of statistical classifiers based on PE-
PCDs which are called hybrid and cover PE-PCD classifiers. The latter type is defined for 
both class cover models described in Sect. 4. In Sect. 6, we assess the performance of PE-
PCD classifiers and compare them with existing methods (such as kNN and support vector 
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machine classifiers) on simulated data sets. Finally, in Sect. 7, we assess our classifiers on 
real data sets, and in Sect. 8, we present discussion and conclusions as well as some future 
research directions.

2 � Tessellations in ℝd and auxiliary tools

In this section, we introduce the tools required for constructing PE-PCD classifiers. Let 
(�,M) be a measurable space, and let the training data set be composed of two non-empty 
sets, X0 and X1 with sample sizes n0 ∶= |X0| and n1 ∶= |X1| from classes 0 and 1, respec-
tively. Also let X0 and X1 be sets of �-valued random variables with class conditional dis-
tributions F0 and F1 , with supports s(F0) and s(F1) , respectively. We develop rules to define 
proximity maps and regions for the points from the class of interest, i.e. target class, which 
is class j with respect to the Delaunay tessellation of the points from the class of non-
interest, i.e. non-target class which is class 1 − j for j = 0, 1.

A tessellation in ℝd is a collection of non-intersecting (or intersecting only on bounda-
ries) convex d-polytopes such that their union covers a region. We partition ℝd into non-
intersecting d-simplices and d-polytopes to construct PE-PCDs that tend to have multi-
ple disconnected components. We show that such a partitioning of the domain provides 
digraphs with computationally tractable minimum dominating sets. In addition, we use 
the barycentric coordinate system to characterize the target class points with respect to the 
Delaunay tessellation of the non-target class. Such a coordinate system simplifies the defi-
nitions of many tools associated with PE-PCD classifiers in ℝd , including minimum domi-
nating sets of PE-PCDs and convex distance functions which are defined in Sect. 5.1.

2.1 � Delaunay tessellation of ℝd

The convex hull of the non-target class points CH(X1−j) can be partitioned into Delaunay 
cells through the Delaunay tessellation of X1−j ⊂ ℝ

d . For d = 1 , the Delaunay tessella-
tion is an intervalization (i.e., integer partition) of the the convex hull of X1−j which is 
CH(X1−j) =

(
min(X1−j), max(X1−j)

)
 , where the middle intervals (i.e. intervals in the convex 

hull) are based on the order statistics of X1−j , and end intervals are 
(
−∞, min(X1−j)

)
 and (

max(X1−j),∞
)
 . For d = 2 , the Delaunay tessellation becomes a triangulation which parti-

tions CH(X1−j) into non intersecting triangles. For the points in the general position, the tri-
angles in the Delaunay triangulation satisfy the property that the circumcircle of a triangle 
contains no points from X1−j except for the vertices of the triangle. In higher dimensions, 
Delaunay cells are d-simplices (for example, a tetrahedron in ℝ3 ). Hence, the CH(X1−j) is 
the union of a set of disjoint d-simplices {Sk}

K
k=1

 where K is the number of d-simplices, or 
Delaunay cells. Each d-simplex has d + 1 non-coplanar vertices where none of the remain-
ing points of X1−j are in the interior of the circumsphere of the simplex (and the vertices of 
the simplex are points from X1−j ). Hence, simplices of the Delaunay tessellations are more 
likely to be acute (simplices with no substantially small inner angles). Note that Delaunay 
tessellation is the dual of the Voronoi diagram of the set X1−j . A Voronoi diagram is a par-
titioning of ℝd into convex polytopes such that the points inside each polytope is closer to 
the point associated with the polytope than any other point in X1−j . Hence, a polytope V(�) 
associated with a point � ∈ X1−j is defined as
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Here, ‖ ⋅ ‖ stands for the usual Euclidean norm. Observe that the Voronoi diagram is unique 
for a fixed set of points. A Delaunay graph is constructed by joining the pairs of points in 
X1−j whose boundaries of Voronoi polytopes intersect. The edges of the Delaunay graph 
constitute a partitioning of CH(X1−j) , hence the Delaunay tessellation. By the uniqueness of 
the Voronoi diagram, the Delaunay tessellation is also unique (except for cases where d + 1 
or more points lie on the same hypersphere).

A Delaunay tessellation partitions only CH(X1−j) and does not offer a partitioning of 
the complement ℝd⧵CH(X1−j) unlike the Voronoi diagrams. As we will see in the fol-
lowing sections, this drawback makes the definition of our semi-parametric classifiers 
more difficult. Let facets of CH(X1−j) be the simplices on the boundary of CH(X1−j) . 
To partition ℝd⧵CH(X1−j) , we define unbounded regions associated with each facet 
of CH(X1−j) , namely outer simplices in ℝd or outer triangles in ℝ2 . Each outer sim-
plex is constructed by a single facet of CH(X1−j) , denoted by Fl for l = 1,… , L where, 
L is the number of boundary facets and, note that, each facet is a (d − 1)-simplex. 
Let {P1,P2,… ,PN} ⊆ X1−j be the set of points on the boundary of CH(X1−j) , and let 
CM ∶=

∑N

i=1
pi∕N be the center of mass of CH(X1−j) . We use the bisector rays of Deng 

and Zhu (1999) as a framework for constructing outer simplices, however, such rays 
are not well defined for convex hulls in ℝd for d > 2 . Let the ray emanating from CM 
through Pi be denoted as ��������⃗CMPi . Hence, we define the outer simplices by rays emanating 
from each boundary vertex Pi to outside of CH(X1−j) in the direction of ��������⃗CMPi . Each facet 
Fl has d boundary points adjacent to it, and the rays associated with these boundary 
points establish an unbounded region together with the facet Fl . Such a region can be 
viewed as an infinite “drinking glass” with Fl being the bottom while top of the glass 
reaching infinity, similar to the end intervals in ℝ with one end being infinity. Let Fl 
denote the outer simplex associated with the facet Fl . An illustration of a Delaunay tri-
angulation and the corresponding outer triangles in ℝ2 is given in Fig. 1 where CH(X1−j) 
has six facets, hence ℝ2⧵CH(X1−j) is partitioned into six disjoint unbounded regions.

V(�) = {v ∈ ℝ
d ∶ ‖v − �‖ ≤ ‖v − z‖ for all z ∈ X1−j⧵{�}}.

(b)(a)

Fig. 1   a A Delaunay triangulation of 20 points X1−j ⊂ ℝ
2 , partitioning CH(X1−j) . b The Delaunay tessella-

tion of X1−j with rays ��������⃗CMpi for i = 1,… , 6 that yield a partitioning of ℝ2⧵CH(X1−j) . The dashed lines illus-
trate the direction of these rays where they meet at the point center of mass of CH(X1−j)
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2.2 � Barycentric coordinate system

The barycentric coordinate system was introduced by A.F. Möbius in his book “The 
Barycentric Calculus” in 1837. The idea is to assign weights w1 , w2 and w3 to points �1 , 
�2 and �3 which constitute the vertices of a triangle T in ℝ2 , respectively (Ungar 2010). 
Hence, the center of mass, or the barycenter of �1 , �2 and �3 is , for w1 + w2 + w3 ≠ 0 , is 
given by

Similarly, let S = S(Y) be a d-simplex defined by the d + 1 non-coplanar points 
Y = {�1, �2,… , �d+1} ⊂ ℝ

d with weights (w1,w2,… ,wd+1) . Thus, the barycenter W ∈ ℝ
d 

is given by

The (d + 1)-tuple � = (w1,w2,… ,wd+1) (also denoted as (w1 ∶ w2 ∶ … ∶ wd+1) ) can also 
be viewed as a set of coordinates of W with respect to the (vertex) set Y = {�1, �2,… , �d+1} 
for d > 0 . Hence, the name barycentric coordinates. Observe that W in Eq.  (2) is scale 
invariant (i.e. invariant under scaling of the weights of W). Therefore, the set of barycentric 
coordinates is homogeneous, i.e., for any � ∈ ℝ+,

This gives rise to normalized barycentric coordinates �� = (w�
1
,w�

2
,… ,w�

d+1
) of a point 

x ∈ ℝ
d with respect to Y as follows:

where wtot ∶=
∑d+1

j=1
wj . For simplicity, we use the normalized barycentric coordinates as 

“barycentric coordinates” throughout this work, and use � to denote the vector of the coor-
dinates of x. That is, x is (w1,w2,… ,wd+1) in barycentric coordinates so that 

∑d+1

i=1
wi = 1 . 

The vector � has a unique solution given the linear systems of equations

where the vectors �k − �1 ∈ ℝ
d for k = 2,… , d + 1 are linearly independent (Lawson 

1986). The vector � is unique but wi are not necessarily in (0, 1). Barycentric coordinates 
define whether the point x is in S(Y) or not, as follows:

•	 x ∈ S(Y)o if wi ∈ (0, 1) for all i = 1,… , d + 1 : the point x is inside of the d-simplex 
S(Y) where S(Y)o denotes the interior of S(Y),

•	 x ∈ ⦊(S(Y)) , the point x is on the boundary of S(Y) , if wi = 0 and wj = (0, 1] for 
some i in I such that I ⊊ {1,… , d + 1} and j ∈ {1,… , d + 1}⧵I,

(1)P =
w1�1 + w2�2 + w3�3

w1 + w2 + w3

.

(2)W =

∑d+1

i=1
wi�i∑d+1

i=1
wi

with

d+1�
i=1

wi ≠ 0.

(3)(w1,w2,… ,wd+1) = (�w1, �w2,… , �wd+1).

(4)
d+1∑
i=1

w�
i
=

d+1∑
i=1

wi

wtot

= 1,

(5)�� =

�
1 1 ⋯ 1

�1 �2 ⋯ �d+1

�⎡⎢⎢⎢⎣

w1

w2

⋮

wd+1

⎤⎥⎥⎥⎦
=

�
1

x

�
.
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•	 x = �i if wi = 1 and wj = 0 for all i = 1,… , d + 1 and j ≠ i : the point x is at a vertex 
of S(Y),

•	 x ∉ S(Y) if wi ∉ [0, 1] for some i ∈ {1,… , d + 1} : the point x is outside of S(Y).

Barycentric coordinates of a point x ∈ S(Y) can also be viewed as the convex combina-
tion of the points of Y , the vertices on the boundary of S(Y).

2.3 � M‑vertex regions

A d-simplex is the smallest convex polytope in ℝd constructed by a set of non-coplanar 
vertices Y = {�1, �2,… , �d+1} . The boundary of a d-simplex consists of k-simplices 
called k-faces for 0 ≤ k < d . Each k-face is a simplex defined by a subset of Y with k 

elements, hence there are 
(
d + 1

k + 1

)
 k-faces in a d-simplex. Let S(Y) be the simplex 

defined by the set of points Y . Given a simplex center M ∈ S(Y)o (e.g. a triangle center 
in ℝ2 ), there are d + 1 M-vertex regions constructed by the set Y . The M-vertex region 
of the vertex �i is denoted by RM(�i) for i = 1, 2,… , d + 1.

For i = 1,… , d + 1 , let fi denote the (d − 1)-face opposite to the vertex �i . Observe 
that the lines through the points �i and M cross the face fi , a ( d − 1)-face, at the points Mi . 
Similarly, since the face fi is a ( d − 1)-simplex with a center Mi for any i = 1,… , d + 1 , 
we can find the centers of (d − 2)-faces of this ( d − 1)-simplex. Note that both Mi and 
M are of the same type of centers of their respective simplices fi and S(Y) . The vertex 
region RM(�i) is the convex hull of the points �i , {Mj}

d+1
j=1;j≠i

 , and centers of all k-faces 
(which are also k-simplices) adjacent to �i for k = 1,… , d − 2 . In Fig. 2, we illustrate the 
vertex regions of an acute triangle in ℝ2 and the vertex regions RM(�1) and RM(�3) of a 
3-simplex (tetrahedron). In ℝ2 , the 2-simplex is a triangle with vertices Y = {�1, �2, �3} 
denoted as T(Y) = T(�1, �2, �3) and the corresponding vertex regions are RM(�1) , RM(�2) , 
and RM(�3) (see Fig. 2a, b). Notice that Mi lies on edge ei which is opposite to vertex �i 
for i = 1, 2, 3 . Observe that, in Fig. 2c and d, each 2-face of this 3-simplex is a 2-sim-
plex (a triangle). For example, in Fig. 2c, the points M2 , M3 and M4 are centers of f2 , 
f3 and f4 , respectively. Moreover, these 2-simplices also have faces (1-faces or edges of 
the 3-simplex), and the centers of these faces are {Mij}

4
i,j=1;i≠j

 . Hence, the vertex region 
RM(�1) is a convex polytope of points {�1,M,M2,M3,M4,M32,M42,M43} and RM(�3) is 
a convex polytope of points {�3,M,M2,M4,M1,M42,M41,M21} . Just as we can write the 
vertex region as the intersection of two triangles in ℝ2 , we can write the vertex region 
as intersections of three tetrahedrons in ℝ3 . For example, RM(�1) is the intersection of 
tetrahedrons T(�1,M42, �2, �4) , T(�1,M43, �3, �4) and T(�1,M32, �2, �3).

Ceyhan and Priebe (2005) introduced the vertex regions as auxiliary tools to define 
proximity regions. They also gave the explicit functional forms of these regions as a 
function of the coordinates of vertices {�1, �2, �3} . However, we characterize these 
regions based on barycentric coordinates as given in Proposition 1 and Theorem 1, as 
this coordinate system is more convenient for computation in higher dimensions.

Proposition 1  Let Y = {�1, �2, �3} ⊂ ℝ
2 be a set of three non-collinear points, and let 

{RM(�i)}i=1,2,3 be the vertex regions that partition T(Y) . Then for x ∈ T(Y) and M ∈ T(Y)o , 
we have x ∈ RM(�i) if and only if
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for i = 1, 2, 3 where �T (x) =
(
w
(1)

T
(x),w

(2)

T
(x),w

(3)

T
(x)

)
 and � = (m1,m2,m3) are barycen-

tric coordinates of points x and M with respect to the triangle T(Y) , respectively.

Proof  It is sufficient to show the result for i = 1 , as i = 2, 3 cases would follow similarly. So 
we will show that, x ∈ RM(�1) iff

Let T2(Y) and T3(Y) be two triangles formed by sets of points {�1, �2,M2} and {�1, �3,M3} , 
respectively. First, we observe that x ∈ RM(�1) if and only if x ∈ T2(Y) ∩ T3(Y) . So, 
for the forward direction, assume x ∈ T2(Y) ∩ T3(Y) . Then x ∈ T2(Y) and x ∈ T3(Y) . 
Since x ∈ T2(Y) , we have x = �1�1 + �2�2 + �3M2 , i.e., the barycentric coordi-
nate vector of point x with respect to the triangle T2(Y) is �T2

(x) = (�1, �2, �3) . But 
since M2 lies on edge e2 , we can write it as M2 = b�1 + (1 − b)�3 for some b ∈ (0, 1) . 
Then x = (�1 + �3b)�1 + �2�2 + �3(1 − b)�3 . Hence, by uniqueness of barycentric 

w
(i)

T
(x) ≥ max

j = 1, 2, 3

j ≠ i

miw
(j)

T
(x)

mj

,

w
(1)

T
(x) ≥ max

{
m1w

(2)

T
(x)

m2

,
m1w

(3)

T
(x)

m3

}
.

M

M1

M2

M3
y1 y2

y3

M

M1

M2

M3
y1 y2

y3

RM(y1) RM(y2)

RM(y3)

(a) (b)

(c) (d)

M

M3

M2

M4

M43

M42

M32

y1 y2

y3

y4 M
M2

M42

y1 y2

y3

y4

M41

M4

M21

M1

Fig. 2   M-vertex regions of an acute triangle T(Y) = T(�1, �2, �3) with a center M ∈ T(Y)o . a The dashed 
lines that constitute the vertex regions. b M-vertex regions associated with a vertex �i for i = 1, 2, 3 . c 
M-vertex region RM(�1) of vertex �1 and d RM(�3) of vertex �3 of a 3-simplex, or a tetrahedron. M-vertex 
regions are shaded in c and d 
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coordinates for x with respect to T(Y) , it follows that w(1)

T
(x) = �1 + �3b , w(2)

T
(x) = �2 and 

w
(3)

T
(x) = �3(1 − b) . Also, since M2 and M are on the same line which crosses edge e2 , we 

have M = c�2 + (1 − c)M2 for some c ∈ (0, 1) . Then

Hence, by uniqueness of barycentric coordinates for M with respect to T(Y) , it follows that 
m1 = b(1 − c) , m2 = c , and m3 = (1 − b)(1 − c) . Hence

Then, x ∈ T2(Y) iff w
(1)

T
(x) ≥ (m1∕m3)w

(3)

T
(x) , and similarly, x ∈ T3(Y) iff 

w
(1)

T
(x) ≥ (m1∕m2)w

(2)

T
(x) . So, x ∈ T2(Y) ∩ T3(Y) = RM(�1) implies 

w
(1)

T
(x) ≥ max

{
m1w

(2)

T
(x)

m2

,
m1w

(3)

T
(x)

m3

}
.

For the reverse direction, for a contradiction, assume that x ∈ RM(�1) and 

w
(1)

T
(x) < max

{
m1w

(2)

T
(x)

m2

,
m1w

(3)

T
(x)

m3

}
 . Without loss of generality, assume that 

w
(1)

T
(x) <

m1w
(3)

T
(x)

m3

 . Since x ∈ T2(Y) , as before, we have 
w
(1)

T
(x)

w
(3)

T
(z)

=
�1 + �3b

�3(1 − b)
 which is less 

than 
m1

m3

=
b

1 − b
 . That is, 

𝛼1 + 𝛼3b

𝛼3(1 − b)
<

b

1 − b
 which implies 𝛼1 < 0 which implies x ∉ T(Y) 

contradicting the assumption that x ∈ T2(Y) ⊂ T(Y) . Thus,

	�  ◻

Note that, when M ∶= MC (i.e., M is the centroid or the center of mass of the tri-
angle T(Y) ), we can further simplify the result of Proposition 1; that is, for any point 
x ∈ T(Y)o , we have x ∈ RMC

(�i) if and only if w(i)

T
(x) = maxj=1,2,3 w

(j)

T
(x) since the vector 

of (special) barycentric coordinates of MC is �C = (1∕3, 1∕3, 1∕3) . The following theo-
rem is an extension of Proposition 1 to higher dimensions.

Theorem  1  Let Y = {�1, �2,… , �d+1} ⊂ ℝ
d be a set of non-coplanar points for d > 0 , 

and let {RM(�i)}
d+1
i=1

 be the M-vertex regions that partition S(Y) . Then, for x ∈ S(Y) and 
M ∈ S(Y)o , we have x ∈ RM(�i) if and only if

where �S(x) =
(
w
(1)

S
(x),… ,w

(d+1)

S
(x)

)
 and � = (m1,… ,md+1) are the barycentric coordi-

nates of points x and M with respect to the simplex S(Y) , respectively.

M = c�2 + (1 − c)(by1 + (1 − b)y3)

= b(1 − c)�1 + c�2 + (1 − b)(1 − c)�3.

w
(1)

T
(x)

w
(3)

T
(x)

=
�1 + �3b

�3(1 − b)
≥

b

1 − b
=

b(1 − c)

(1 − b)(1 − c)
=

m1

m3

.

RM(�1) =

{
x ∈ T(Y) ∶ w

(1)

T
(x) ≥ max

{
m1w

(2)

T
(x)

m2

,
m1w

(3)

T
(x)

m3

}}
.

(6)
w
(i)

S
(x) ≥ max

j = 1,… , d + 1

j ≠ i

miw
(j)

S
(x)

mj

,
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See “Appendix” for the proof.
As in the triangle case above, for M = MC and for any point x ∈ S(Y)o , we have 

x ∈ RMC
(�i) if and only if w(i)

T
(x) = maxj w

(j)

T
(x) since the set of barycentric coordinates of 

MC is �C = (1∕(d + 1), 1∕(d + 1),… , 1∕(d + 1)) . The MC-vertex regions are particularly 
appealing for our proportional-edge proximity regions.

3 � Proximity regions and proximity catch digraphs

We consider proximity regions for the (supervised) two-class classification problem, then 
perform complexity reduction via minimum dominating sets of the associated proxim-
ity catch digraphs. For j = 0, 1 , the proximity map N(⋅) ∶ � → 2� associates with each 
point x ∈ Xj , a proximity region N(x) ⊂ 𝛺 . Consider the data-random (or vertex-random) 
proximity catch digraph Dj = (Vj,Aj) with vertex set Vj = Xj and arc set Aj defined by 
(u, v) ∈ Aj ⟺ {u, v} ⊂ Xj and v ∈ N(u) , for j = 0, 1 . The digraph Dj depends on the 
(joint) distribution of the sets of points X0 and X1 , and on the map N(⋅) . The adjective prox-
imity—for the digraph Dj and for the map N(⋅) — comes from thinking of the region N(x) 
as representing those points in � “closer” to x (Toussaint 1980; Jaromczyk and Toussaint 
1992). Our proximity catch digraphs (PCDs) for Xj against X1−j are defined by specify-
ing Xj as the target class and X1−j as the non-target class. Hence, in the definitions of our 
PCDs, the only difference is switching the roles of X0 and X1 . For j = 0 , 0 becomes the 
target class label and 1 becomes the non-target class label, and it is vice versa for j = 1.

The proximity regions associated with PCDs introduced by Ceyhan and Priebe (2005) 
are simplicial proximity regions (regions that constitute simplices in ℝd ) defined for the 
target class points Xj in the convex hull of the non-target class points CH(X1−j) . However, 
by introducing the outer simplices associated with the facets of CH(X1−j) , we extend the 
definition of the simplicial proximity regions to ℝd⧵CH(X1−j) . Such simplicial regions are 
d-simplices in CH(X1−j) (intervals in ℝ , triangles in ℝ2 and tetrahedrons in ℝ3 ) and d-pol-
ytopes for ℝd⧵CH(X1−j) . After partitioning ℝd into disjoint regions, we further partition 
each simplex Sk (only the ones inside CH(X1−j) ) into vertex regions, and define the simpli-
cial proximity regions N(x) for x ∈ Sk . Here, we define the regions N(x) as open sets in ℝd.

3.1 � Class cover catch digraphs

Class Cover Catch Digraphs (CCCDs) are graph theoretic representations of the CCP 
(Priebe et al. 2001, 2003a). In a CCCD, for x, y ∈ Xj ; let B = B(x, �) be the ball centered 
at x with radius � = �(x) . A CCCD is a digraph Dj = (Vj,Aj) with vertex set Vj = Xj and 
the arc set Aj where (x, y) ∈ Aj iff y ∈ B . One particular family of CCCDs are called 
pure-CCCDs wherein, for all x ∈ Xj , no non-target class point lies in B. Hence, for some 
� ∈ (0, 1] and for all x ∈ Xj , the open ball B is denoted by B�(x, ��(x)) with the radius ��(x) 
given by

where u(x) ∶= argmin y∈X1−j
d(x, y), and �(x) ∶= argmax z∈Xj

{d(x, z) ∶ d(x, z) < d(x, u(x))}. 
Here, d(., .) can be any dissimilarity measure but we use the Euclidean distance henceforth. 
For all x ∈ Xj , the definition of the radius ��(x) keeps any non-target class point v ∈ X1−j 
out of the ball B; that is, X1−j ∩ B = � . We say the CCCD, Dj , is “pure” since the balls 
include only the target class points and none of the non-target class points. The CCCD, Dj , 

(7)��(x) ∶= (1 − �)d(x,�(x)) + �d(x, u(x)),
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is invariant to the choice of � , but this parameter affects the classification performance. 
This parameter potentially establishes classifiers with increased performance (Priebe et al. 
2003a). An illustration of the effect of parameter � on the radius of B�(x, ��(x)) is given in 
Fig. 3 (DeVinney 2003). In fact, CCCDs can be viewed as a family of PCDs using spheri-
cal proximity maps, letting N(x) ∶= B(x, �(x)) . We denote the proximity regions associated 
with pure-CCCDs as NS(x, �) = B�(x, ��(x)) . For simplicity, we refer to pure-CCCDs as 
CCCDs throughout this article.

3.2 � Proportional‑edge proximity maps

We use a type of proximity map with expansion parameter r, namely proportional-edge 
(PE) proximity map, denoted by NPE(⋅, r) . The PE proximity map and the associated 
digraphs, PE-PCDs, are defined in Ceyhan and Priebe (2005). Currently, PE-PCDs are only 
defined for the points in Xj ∩ CH(X1−j) . Hence, for the remaining target class points Xj , i.e. 
Xj⧵CH(X1−j) , we extend the definition of PE proximity maps to the outer simplices. Hence, 
we will be able to show in the subsequent sections that the resulting PCDs have compu-
tationally tractable minimum dominating sets which are equivalent to the exact minimum 
prototype sets of PE-PCD classifiers for the entire data set.

3.2.1 � PE proximity maps for the interior of convex hull of non‑target points

For r ∈ [1,∞) , we define NPE(⋅, r) to be the PE proximity map associated with a trian-
gle T = T(Y) formed by the set of non-collinear points Y = {�1, �2, �3} ⊂ ℝ

2 . Let RMC
(�1) , 

RMC
(�2) and RMC

(�3) be the vertex regions associated with vertices �1,�2 and �3 . Note 
that the barycentric coordinates of MC are (1/3:1/3:1/3). For x ∈ To , let v(x) ∈ Y be the 
vertex whose region contains x; hence x ∈ RMC

(v(x)) . If x falls on the boundary of two 
vertex regions, or on MC , we assign v(x) arbitrarily. Let e(x) be the edge of T opposite 
to v(x). Let �(v(x), x) be the line parallel to e(x) through x. Let d(v(x),�(v(x), x)) be the 
Euclidean (perpendicular) distance from v(x) to �(v(x), x) . For r ∈ [1,∞) , let �r(v(x), x) 
be the line parallel to e(x) such that d(v(x),�r(v(x), x)) = rd(v(x),�(v(x), x)) and 
d(�(v(x), x),�r(v(x), x)) < d(v(x),�r(v(x), x)) . Let Tr(x) be the triangle similar to and with 
the same orientation as T where Tr(x) has v(x) as a vertex and and the edge opposite v(x) 
lies on �r(v(x), x) . Then the proportional-edge proximity region NPE(x, r) is defined to be 

Fig. 3   The radius ��(x) of a 
single target class point x in a 
two-class setting. Grey and black 
points represent the target class 
points Xj and the non-target class 
points X1−j , respectively. The 
solid circle is constructed with 
the radius ��(x) given by � = 1 , 
dashed one by � = 0.5 and the 
dotted one by � = � , where � is 
the machine epsilon

x
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(Tr(x) ∩ T)o . Figure 4a illustrates a PE proximity region NPE(x, r) of a point x in an acute 
triangle.

The extension of NPE(⋅, r) to ℝ
d for d > 2 is straightforward. Now, let 

Y = {�1, �2,… , �d+1} be a set of d + 1 non-coplanar points, and represent the sim-
plex formed by the these points as S = S(Y) . We define the PE proximity map as fol-
lows. Given a point x ∈ So , let v(x) be the vertex in whose region x falls (if x falls on 
the boundary of two vertex regions or on MC , we assign v(x) arbitrarily.) Let �(x) be the 
face opposite to vertex v(x), and �(v(x), x) be the hyperplane parallel to �(x) which con-
tains x. Let d(v(x), �(v(x), x)) be the (perpendicular) Euclidean distance from v(x) to 
�(v(x), x) . For r ∈ [1,∞) , let �r(v(x), x) be the hyperplane parallel to �(x) such that 
d(v(x), �r(v(x), x)) = r d(v(x), �(v(x), x)) and d(𝜂(v(x), x), 𝜂r(v(x), x)) < d(v(x), 𝜂r(v(x), x)) . 
Let Sr(x) be the polytope similar to and with the same orientation as S having v(x) as a 
vertex and �r(v(x), x) as the opposite face. Then the proportional-edge proximity region is 
given by NPE(x, r) ∶= (Sr(x) ∩ S)o.

Notice that, so far, we assumed a single d-simplex for simplicity. For n1−j = d + 1 , 
the convex hull of the non-target class CH(X1−j) is a d-simplex. If n1−j > d + 1 , then we 
consider the Delaunay tessellation (assumed to exist) of X1−j where �in

1−j
= {S1,… ,SK} 

denotes the set of all Delaunay cells (which are d-simplices). We construct the proximity 
region NPE(x, r) of a point x ∈ Xj depending on which d-simplex Sk this point resides in. 
Observe that, this construction pertains to points in Xj ∩ CH(X1−j) only.

3.2.2 � PE proximity maps for the exterior of convex hull of non‑target points

For target class points Xj outside of the convex hull of the non-target class points X1−j , i.e. 
Xj⧵CH(X1−j) , we define the PE proximity maps similar to the ones defined for d-simplices. 
Let F ⊂ ℝ

2 be an outer triangle defined by the adjacent boundary points which are without 
loss of generality assumed to be {�1, �2} ⊂ ℝ

2 of CH(X1−j) and by rays ��������⃗CM�1 and ��������⃗CM�2 
for CM being the centroid of the boundary points of CH(X1−j) . Also, let e = F  be the edge 
(or facet) of CH(X1−j) adjacent to vertices {�1, �2} . Note that there is no center in an outer 
triangle, and hence no need for vertex regions. For r ∈ [1,∞) , we define NPE(⋅, r) to be 
the PE proximity map of the outer triangle as follows. For x ∈ F

o , let �(x, e) be the line 

y1 = v(x) y2

x

y3

MC

2 (v(x), x)

e(x)

d(
v(
x)

2(
v(
x)
, x
))
=
2 d
(v
(x
)
(v
(x
), x
))

d(
v(
x)

(v
(x
), x
))

(v(x), x)

x

(x
, e)

2 (x
, e)

e
=
F

y1

y2

d(
(x, e

))

d( 2(x,
e)) =

2d(
(x, e

))

−
CM

y1

−−−→
CMy2

(a) (b)

Fig. 4   The PE proximity region (shaded), NPE(x, r = 2) , a in a triangle T ⊆ ℝ
2 and b in an outer triangle 

F ⊆ ℝ
2
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parallel to e through x, and let d(e,�(x, e)) be the Euclidean distance from e to �(x, e) . For 
r ∈ [1,∞) , let �r(x, e) be the line parallel to e such that d(e,�r(x, e)) = rd(e,�(x, e)) and 
d(�(x, e),�r(x, e)) < d(e,�r(x, e)) . Let Fr(x) be a polygon similar to the outer triangle F  
such that Fr(x) has e and er(x) = �r(x, e) ∩F  as its two edges, however Fr(x) is a bounded 
region whereas F  is not. Then, the proximity region NPE(x, r) is defined to be Fo

r
(x) . Fig-

ure 4b illustrates a PE proximity region NPE(x, r) of a point x in an outer triangle.
The extension of NPE(⋅, r) of outer triangles in ℝ2 to ℝd for d > 2 is also straightfor-

ward. Let F ⊂ ℝ
d be an outer simplex defined by the adjacent boundary points which 

are without loss of generality assumed to be {�1,… , �d} ⊂ ℝ
d of CH(X1−j) and by rays 

{ ��������⃗CM�1,… , ���������⃗CM�d} . Also, let F  be the facet of CH(X1−j) adjacent to vertices {�1,… , �d} . 
We define the PE proximity map as follows. Given a point x ∈ F

o , let �(x,F) be the 
hyperplane parallel to F  through x and let d(F, �(x,F)) be the Euclidean distance 
from F  to �(x,F) . For r ∈ [1,∞) , let �r(x,F) be the hyperplane parallel to F  such that 
d(F, �r(x,F)) = rd(F, �(x,F)) and d(𝜂(x,F), 𝜂r(x,F)) < d(F, 𝜂r(x,F)) . Let Fr(x) be the 
polytope similar to the outer simplex F  such that Fr(x) has F  and Fr(x) = �r(x) ∩F  as its 
two faces. Then, the proximity region NPE(x, r) is defined to be Fo

r
(x).

The convex hull CH(X1−j) has at least d + 1 facets (exactly d + 1 when n1−j = d + 1 ), 
and since each outer simplex is associated with a facet, the number of outer simplices is at 
least d + 1 . Let �out

1−j
= {F1,… ,FL} denote the set of all outer simplices. This construc-

tion handles the points in Xj⧵CH(X1−j) only. Together with the points inside CH(X1−j) , the 
PE-PCD, Dj , whose vertex set is Vj = Xj , has at least

many components where I(⋅) stands for the indicator function.

3.3 � Minimum dominating sets of PCDs

We develop prototype-based classifiers with computationally tractable exact minimum pro-
totype sets. We model the target class with a digraph D such that prototype sets of the tar-
get class are equivalent to dominating sets of D. Ceyhan (2010) determined the appealing 
properties of minimum dominating set of CCCDs in ℝ as a guideline in defining new para-
metric digraphs relative to the Delaunay tessellation of points from the non-target class. In 
ℝ , finding the minimum dominating sets of CCCDs is computationally tractable, and the 
exact distribution of domination number is known for target class points which are uni-
formly distributed within each cell (Priebe et al. 2001). However, there is no polynomial 
time algorithm for finding the exact minimum dominating sets of CCCDs in ℝd for d > 1 . 
In this section, we provide a characterization of minimum dominating sets of PE-PCDs 
with the barycentric coordinate system and employ those coordinates to introduce algo-
rithms for finding their minimum dominating sets in polynomial time.

We model the support of the class conditional distributions, i.e. s(Fj) , by a mixture of 
proximity regions. For a general proximity region N(⋅) , we estimate the support of the class 
j as Qj ∶= ∪x∈Xj

N(x) such that Xj ⊂ Qj . Nevertheless, the support of the target class j can 
be estimated by a cover with lower complexity (i.e. with fewer proximity regions). For this 
purpose, we wish to reduce the model complexity by selecting an appropriate subset of 
proximity regions that still gives approximately the same estimate as Qj . Let this (approxi-
mate) cover be defined as Cj ∶= ∪x∈Sj

NPE(x, r) , where Sj is a prototype set of points for Xj 

K∑
k=1

I(Xj ∩ Sk ≠ �) +

L∑
l=1

I(Xj ∩Fl ≠ �)



774	 Machine Learning (2020) 109:761–811

1 3

such that Xj ⊂ Cj . A reasonable choice of the prototype set for our class covers is the mini-
mum dominating set of PE-PCDs, whose elements are often more “central” than the arbi-
trary sets of the same size. Dominating sets of minimum size are desirable, since the size 
of the prototype sets determine the complexity of the model; that is, the smaller the set in 
cardinality (i.e. the model is lower in complexity), the higher the expected classification 
performance (Mehta et al. 1995; Rissanen 1989; Gao et al. 2013).

Algorithm 1 The greedy algorithm for finding an approximate minimum domi-
nating set of a digraph D. Here, D[H] is the digraph induced by the set of vertices
H ⊆ V (see (West 2000)).
Input: A digraph D = (V,A)
Output: An approximate minimum dominating set, S

set H = V and S = ∅
while H = ∅ do

v∗ ← argmaxv∈V(D) |{u ∈ V(D) : (v, u) ∈ A(D)}|
S ← S ∪ {v∗}
H ← V(D) \ ({u ∈ V(D) : (v∗, u) ∈ A(D)} ∪ {v∗})
D ← D[H]

end while

In general, a digraph D = (V,A) of order n = |V| , a vertex v dominates itself and all 
vertices of the form {u ∶ (v, u) ∈ A} . A dominating set, SD , for the digraph D is a subset 
of V such that each vertex v ∈ V is dominated by a vertex in SD . A minimum dominating 
set (MDS), SMD , is a dominating set of minimum cardinality, and the domination number, 
�(D) , is defined as �(D) ∶= |SMD| . Finding a minimum dominating set is, in general, an 
NP-hard optimization problem (Karr 1992; Arora and Lund 1996). However, an approxi-
mately minimum dominating set can be obtained in O(n2) time using a well-known greedy 
algorithm as in Algorithm 1 (Chvatal 1979; Parekh 1991). PCDs using NS(⋅, �) (or CCCDs 
with parameter � ) are examples of such digraphs. But, (exact) MDS of PE-PCDs are com-
putationally tractable unlike PCDs based on NS(⋅, �) . Many attributes of these PE proxim-
ity maps and the proof of the existence of an algorithm to find a MDS are conveniently 
implemented through the barycentric coordinate system. Before proving the results on the 
MDS, we give the following proposition.

Proposition 2  Let Y = {�1, �2,… , �d+1} ⊂ ℝ
d be a set of non-coplanar points for d > 0 . 

For x, x∗ ∈ S = S(Y) , we have d(x, fi) < d(x∗, fi) if and only if w(i)

S
(x) < w

(i)

S
(x∗) for all 

i = 1,… , d + 1 , where d(x, fi) is the distance between point x and the face fi.

Proof  For i = 1,… , d + 1 , note that fi is the face of the simplex S opposite to the vertex �i . 
Let L(�i, x) be the line through points x and �i , and let z ∈ fi be the point that L(�i, x) crosses 
fi . Also, recall that �(�i, x) denotes the hyperplane through the point x and parallel to fi . 
Hence, for � ∈ (0, 1),

and since z is a convex combination of the set {�k}k≠i,

x = ��i + (1 − �)z,
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for �k ∈ (0, 1) for all k. Thus, w(i)

S
(x) = � by the uniqueness of �S(x) for x with respect 

to S . Observe that � = d(x, z)∕d(�i, z) = d(x, fi)∕d(�i, fi) , since distances d(x,  z) and 
d(x, fi) = d(�(�i, x), fi) are directly proportional (and so are d(�i, z) and d(�i, fi) ). In fact, 
points that are on the same plane parallel to fi have the same ith barycentric coordinate as 
w
(i)

S
(x) = � corresponding to the vertex �i . Also, recall that, with decreasing � , the point x 

gets closer to fi ( x ∈ fi if � = 0 , and x = �i if � = 1 ). Then, for any two points x, x∗ ∈ S , we 
have w(i)

S
(x) = d(x, fi)∕d(�i, fi) and w(i)

S
(x∗) = d(x∗, fi)∕d(�i, fi) . Thus w(i)

S
(x) < w

(i)

S
(x∗) if and 

only if d(x, fi) < d(x∗, fi) . 	�  ◻

Barycentric coordinates of a set of points in S(X1−j) are useful in characterizing the 
set of local extremum points, which are extreme (having maximum or minimum distance) 
with respect to a subset of the class supports. A subset of local extremum points would 
constitute the minimum dominating set SMD . We use Proposition 2 to prove the following 
theorem on MDS of a PE-PCD, D.

Theorem  2  Let Zn = {z1, z2,… , zn} ⊂ ℝ
d and Y = {�1, �2,… , �d+1} ⊂ ℝ

d for d > 0 , 
and let S = S(Y) be the d-simplex given by the set Y such that Zn ⊂ S . Let D be the PE-
PCD associated with the proximity map NPE(⋅, r) with vertex set V = Zn , then we have 
�(D) ≤ d + 1 for all r > 1.

Proof  Let x[i] ∶= argmin x∈Zn∩RM (�i)
d(x, fi) , i.e., x[i] is the closest Zn point in RM(�i) 

to face fi (so x[i] is a local extremum in Zn with respect to RM(�i) ), provided 
Zn ∩ RM(�i) ≠ � . By Proposition 2, note that d

(
x[i], fi

)
≤ minz∈Zn∩RM (�i)

d(z, fi) if and only if 
w
(i)

S
(x[i]) ≤ minz∈Zn∩RM (�i)

w
(i)

S
(z) . Hence, the local extremum point x[i] satisfies

Clearly, Zn ∩ RM(�i) ⊂ NPE

(
x[i], r

)
 for all r > 1 . Hence, Zn ⊂ ∪d+1

i=1
NPE

(
x[i], r

)
 . So, the set 

of all such local extremum points EL ∶= {x[1],… , x[d+1]} (provided they all exist) is a dom-
inating set for the PE-PCD with vertices Zn . If some of the x[i] do not exist, the set of such 
local extremum points will be a proper subset of EL . Hence, we obtain �(D) ≤ d + 1 . 	� ◻

For r = 1 , x ∉ NPE(x, r) , so NPE

(
x[i], r

)
 does not cover the points on its boundary, in 

particular on its face coincident with �r
(
x[i], fi

)
 which is the same as �

(
x[i], fi

)
 for r = 1 . But 

�
(
x[i], fi

)
 has Lebesgue measure zero in ℝd.

With M = MC , MDSs of PE-PCDs are found by locating the closest point x[i] to face fi 
in the vertex region RMC

(�i) for all i = 1,… , d + 1 . By Theorem 2, in RMC
(�i) , the point 

x[i] is the closest point among Xj ∩ RMC
(�i) to the face fi . For a set of d-simplices given by 

the Delaunay tessellation of X1−j , Algorithm 2 identifies all such local extremum points of 
each d-simplex in order to find the (exact) minimum dominating set Sj = SMD.

Let Dj = (Vj,Aj) be the PE-PCD with vertex set V = Xj . In Algorithm 2, we partition Xj 
into such subsets that each subset falls into a single d-simplex in the Delaunay tessellation 
of the set X1−j . Let �1−j be the set of all d-simplices associated with X1−j . Moreover, for 
each S ∈ �1−j , we further partition the subset Xj ∩ S into subsets that each subset falls into 
a single vertex region of S . In each vertex region RMC

(�i) , we find the closest point x[i] to 

x = ��i +

(
d+1∑

k=1;k≠i

(1 − �)�k�k

)
,

x[i] ∶= argmin
x∈Zn∩RM (�i)

w
(i)

S
(x).



776	 Machine Learning (2020) 109:761–811

1 3

face fi provided Xj ∩ RMC
(�i) ≠ � . Let S(D) denote the minimum dominating set and �(D) 

denote the domination number of a digraph D. Also, let Dj[S] be the digraph induced by 
points of Xj inside the d-simplex S , i.e. Xj ∩ S . Recall that, as a result of Theorem  2, 
�(Dj[S]) ≤ d + 1 since Xj ∩ S ⊂ ∪d+1

i=1
NPE

(
x[i], r

)
 . To find S(Dj[S]) , we sort all subsets of 

the set of such local extremum points, from smallest cardinality to highest, and check if 
Xj ∩ S is in the union of proximity regions of these subsets of local extremum points. For 
example, S(Dj[S]) =

{
x[l]

}
 and �(Dj[S]) = 1 if Xj ∩ S ⊂ NPE

(
x[l], r

)
 for some 

l ∈ {1, 2,… , d + 1} ; else S(Dj[S]) =
{
x[l1], x[l2]

}
 and �(Dj[S]) = 2 if 

Xj ∩ S ⊂ NPE

(
x[l1], r

)
∪ NPE

(
x[l2], r

)
 for some {l1, l2} ∈

(
{1, 2,… , d + 1}

2

)
 ; or else 

S(Dj[S]) = {x[1], x[2], x[3]} and �(Dj[S]) = 3 if Xj ∩ S ⊂ ∪l=1,2,3NPE

(
x[l], r

)
 , and so on. The 

resulting minimum dominating set of Dj for Xj ∩ CH(X1−j) is the union of these sets, i.e., 
Sj = ∪S∈�1−j

S(Dj[S]) and �(Dj) = |Sj| . Observe that S(Dj[S]) = � if Xj ∩ S = � . This algo-
rithm is guaranteed to terminate, as long as n0 and n1 are both finite.

Algorithm 2 The algorithm for finding the (exact) minimum dominating set Sj

of a PE-PCD, Dj , induced by Xj ∩ CH(X1−j).
Input: The target class points Xj , the Delaunay tessellation based on non-target class points

X1−j with Delaunay cells S1−j , and the PE proximity map NPE(·, r)
Output: The minimum dominating set, Sj

1: Sj = ∅
2: for all S ∈ S1−j where Xj = ∅ do
3: X ∗

j ← Xj ∩ S and let {y1, . . . , yd+1} be the vertices of S
4: for i = 1, . . . , d+ 1 do
5: Let x[i] ← argmin

x∈X∗
j ∩RMC

(yi)
w

(i)
S (x)

6: end for
7: for t = 1, . . . , d+ 1 do

8: if there exists a set {l1, . . . , lt} ∈ {1, . . . , d+ 1}
t

s.t. X ∗
j ⊂ ∪t

a=1NPE x[la], r

then
9: Sj ← Sj ∪ x[l1], . . . , x[lt]
10: break
11: end if
12: end for
13: end for

The level of reduction in the training data depends also on the magnitude of the expan-
sion parameter r. In fact, the larger the magnitude of r, the more likely the S(Dj[S]) have 
smaller cardinality, i.e. the more the reduction in the data set. Thus, we have a stochastic 
ordering as follows:

Theorem  3  Let S be a d-simplex in ℝd for d > 0 with d + 1 non-coplanar vertices and 
Zn = {X1,X2,… ,Xn} be a random sample from a continuous distribution F whose sup-
port is S . Also let PE-PCD be defined with vertices Zn (i.e., Zn is from the target class 
j) and expansion parameter r ≥ 1 . Denote the domination number of this PE-PCD as 
�d(r) = �(Zn,Dj, r) . Then for r1 < r2 , we have �d(r2) ≤ST �d(r1) where ≤ST stands for “sto-
chastically smaller than”.

Proof  Suppose r1 < r2 . Then for any x ∈ S , we have NPE(x, r1) ⊆ NPE(x, r2) . Let 
AS ∶= {x ∈ S ∶ NPE(x, r1) ⊊ NPE(x, r2)} . Since r1 < r2 , we have 𝜆(AS) > 0 where � is the 
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Lebesgue measure. For any t ∈ ℤ+ , �d(r) ≤ t iff there exist x1, x2,… , xt ∈ Zn such that 
Zn ⊂ ∪t

i=1
NPE(xi, r) . But since r1 < r2 , ∪t

i=1
NPE(xi, r1) ⊆ ∪t

i=1
NPE(xi, r2) , hence �d(r1) ≤ t 

implies �d(r2) ≤ t , hence P(�d(r1) ≤ t) ≤ P(�d(r2) ≤ t for all t > 0 . Furthermore, strict ine-
quality holds for at least one t ∈ ℤ+ , e.g., t = 1 since it is more likely that NPE(X, r2) is more 
likely to cover all Zn compared to NPE(X, r1) for any X ∈ Zn as NPE(x, r1) ⊊ NPE(x, r2) for 
x ∈ AS . Hence, the desired result follows. 	�  ◻

Algorithm  2 ignores the target class points outside the convex hull of the non-target 
class. This is not the case with Algorithm 1, since the map NS(⋅, �) is defined over all points 
in Xj whereas the original PE proximity map NPE(⋅, r) is not. Hence, with Algorithm 2, the 
prototype set Sj only yields a reduction in the set Xj ∩ CH(X1−j) . We tackle this issue with 
various approaches. One approach is to define covering methods with two proximity maps 
that are the PE proximity map and another oone which does not require the target class 
points to be inside the convex hull of the non-target class points, e.g. spherical proximity 
regions (i.e. proximity maps NS(⋅, �)).

Algorithm 3 uses both maps NPE(⋅, r) and NS(⋅, �) to generate a prototype set Sj for the 
target class points Xj . There are two separate MDSs, Sin

j
 which is exactly MDS, and Sout

j
 

which is approximately MDS. The two maps are associated with two distinct digraphs such 
that Xj ∩ CH(X1−j) constitutes the vertex set of one digraph and Xj⧵CH(X1−j) constitute the 
vertex set of the other, where the non-target class is always X1−j . Algorithm 2 finds a pro-
totype set Sin

j
 for Xj ∩ CH(X1−j) , and then the prototype set Sout

j
 for Xj⧵CH(X1−j) is merged 

with the overall prototype set, i.e. Sj = Sin
j
∪ Sout

j
 as in Algorithm 3. Note that the set Sj is an 

approximately minimum dominating set, since Sout
j

 is an approximately minimum dominat-
ing set.

Algorithm 3 The algorithm for finding the minimum dominating set Sj of PCD,
Dj , defined by using both the proximity maps NPE(·, r) and NS(·, θ).
Input: The target class points Xj , the Delaunay tessellation based on non-target class points

X1−j with Delaunay cells S1−j , and the proximity maps NPE(·, r) and NS(·, θ)
Output: The approximate minimum dominating set, Sj

1: Sin
j = ∅ and Sout

j = ∅
2: Find the minimum dominating set of PE-PCD with the vertex set Xj ∩ CH(X1−j) as in

Algorithm 2 and assign it to Sin
j

3: Xj = Xj \ CH(X1−j)
4: Find the approximate minimum dominating set of the CCCD as in Algorithm 1 where the

target class is Xj and the non-target class is X1−j , and assign the MDS to Sout
j

5: Sj = Sin
j ∪ Sout

j

Algorithm 4 uses only the PE proximity map NPE(⋅, r) with the original version inside 
CH(X1−j) and extended version outside CH(X1−j) . The cover is a mixture of d-simplices 
and d-polytopes. Given a set of d-simplices, �in

1−j
 , and a set of outer simplices �out

1−j
 , we 

find the respective local extremum points of each d-simplex and outer simplex where local 
extremum in a d-simplex is the closest point among the data points in the vertex region 
to the face opposite to the relevant vertex and the local extremum in an outer simplex is 
the furthest data point to the face which constitutes the bottom edge of the outer simplex. 
Local extremum points of d-simplices are found as in Algorithm 2, and then we find the 
local extremum points of the remaining points to get the prototype set for the entire target 
class points Xj . The following theorem provides a result on the local extremum points in 
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an outer simplex F  . Note that, in Algorithm 4, the set Sj is the exact minimum dominating 
set, since both Sin

j
 and Sout

j
 are exact MDSs for the PE-PCDs induced by Xj ∩ CH(X1−j) and 

Xj⧵CH(X1−j) , respectively.

Theorem 4  Let Zn = {z1, z2,… , zn} ⊂ ℝ
d and F  be a facet of the CH(X1−j) and F  be the 

associated outer simplex such that Zn ⊂ F  . Then, the furthest point among Zn points to 
the facet F  is a minimum dominating set SMD of the PE-PCD restricted to F  and is found 
in linear time. Moreover, the domination number of this restricted PE-PCD equals to 1 
(provided n > 0).

Proof  We show that there is a point s ∈ Zn such that Zn ⊂ NPE(s, r) for all r ∈ (1,∞) . 
Note that �(x,F) denotes the hyperplane through x and parallel to F  . Thus, for 
x, x∗ ∈ F  , observe that d(x,F) < d(x∗,F) if and only if d(𝜂(x,F),F) < d(𝜂(x∗,F),F) . 
Then it follows that NPE(x, r) ⊊ NPE(x

∗, r) which implies {x, x∗} ⊂ NPE(x
∗, r) . Then, for 

s ∶= argmax x∈Zn
d(x,F) , we have Zn ⊂ NPE(s, r) . So, SMD = {s} and � = 1 . Also, since s 

is the furthest point among Zn from the facet F  , finding the MDS is linear in n. 	�  ◻

For r = 1 , some Zn points may fall on �(s, r) (i.e., on the boundary of NPE(s, r) ) so {s} is 
not a dominating set in such a case, but �(s, r) is of Lebesgue measure zero in ℝd.

Algorithm 4 The algorithm for finding the (exact) minimum dominating set Sj

of PE-PCD, Dj , with vertex set Xj .
Input: The target class points Xj , the set of d-simplices Sin

1−j , the set of polytopes Sout
1−j

Output: The minimum dominating set, Sj

1: Sin
j = ∅ and Sout

j = ∅
2: Find the minimum dominating set of PE-PCD restricted to the interior points as in Algo-

rithm 2 and assign it to Sin
j

3: Xj = Xj \ CH(X1−j)
4: for all F ∈ Sout

1−j where Xj ∩F = ∅ do
5: X ∗

j ← Xj ∩F

6: Let s ∈ X ∗
j be the local extremum point (i.e. furthest point from the corresponding

facet) in F
7: Sout

j ← Sout
j ∪ {s}

8: end for
9: Sj = Sin

j ∪ Sout
j

Given Theorems 2 and 4, Algorithm 4 may be the most appealing one, since it gives 
the exact minimum dominating set for the complete target class j. However, the following 
theorem shows that the cardinality of such sets increase exponentially with dimensionality 
of the data set, even though it is polynomial on the number of observations.

Theorem 5  Algorithm 4 finds an exact minimum dominating set Sj of the target class points 
Xj in O

�
dkn2

1−j
+ 2dn

⌈d∕2⌉
1−j

�
 time for k > 1 where �Sj� = O

�
dn

⌈d∕2⌉
1−j

�
.

Proof  A Delaunay tessellation of the non-target class points X1−j ⊂ ℝ
d is found in 

O(dkn2
1−j

) time with the Bowyer-Watson algorithm for some k > 1 , depending on the com-
plexity of the algorithm that finds the circumcenter of a d-simplex (Watson 1981). The 
resulting tessellation with n1−j vertices has at most O

�
n
⌈d∕2⌉
1−j

�
 simplices and at most 
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O(n
⌊d∕2⌋
1−j

) facets (Seidel 1995). Hence, the union of sets of d-simplices �in
1−j

 and outer sim-
plices �out

1−j
 is of cardinality at most O

�
n
⌈d∕2⌉
1−j

�
 . Now, for each simplex S ∈ �in

1−j
 or each 

outer simplex F ∈ �out
1−j

 , the local extremum points are found in linear time. Each simplex 
is divided into d + 1 vertex regions with each having its own extremum point. Hence, a 
minimum cardinality subset of the set of local extremum points is of cardinality at most 
d + 1 and found in a brute force fashion. For outer simplices, however, the local extremum 
point is the furthest point to the associated facet of the Delaunay tessellation. Thus, it takes 
at most O(2d) and O(n) time to find the exact minimum dominating sets which are subsets 
of local extremum points for each (inner) simplex and outer simplex, respectively. Hence, 
the desired result follows. 	�  ◻

Theorem 5 shows the exponential increase of the number of prototypes as dimension-
ality increases. So, the complexity of the class cover model also increases exponentially, 
which might lead to overfitting. We will investigate this issue further in Sects. 6 and 7.

4 � PCD covers

We establish class covers with the PE proximity map NPE(⋅, r) and spherical proximity 
map NS(⋅, �) . We define two types of class covers: one type is called composite cov-
ers which cover the points in Xj ∩ CH(X1−j) with PE proximity maps and the points 
in Xj⧵CH(X1−j) with spherical proximity maps, and the other is called standard cover 
incorporating the PE proximity maps for all points in Xj . We use these two types of cov-
ers to establish a specific type of classifier that is more appealing in the sense of proto-
type selection.

Our composite covers are mixtures of simplicial and spherical proximity regions. Spe-
cifically, given a set of simplices and a set of spheres, the composite cover is the union of 
both these sets which constitute proximity regions of two separate PCD families, hence the 
name composite cover. Let Nin(⋅) and Nout(⋅) be the proximity maps associated with sets 
Xj ∩ CH(X1−j) and Xj⧵CH(X1−j) , respectively. The set Qj is partitioned into two: the cover 
Qin

j
 of points inside the convex hull of non-target class points, i.e., Xj ∩ CH(X1−j) , and the 

cover Qout
j

 of non-target class points outside, i.e., Xj⧵CH(X1−j) . Let 
Q

(1)

j
∶= ∪x∈Xj∩CH (X1−j)

Nin(x) and Qout
j

∶= ∪x∈Xj⧵CH (X1−j)
Nout(x) such that Qj ∶= Qin

j
∪ Qout

j
 . 

Hence, in composite covers, target class points inside CH(X1−j) are covered with PE prox-
imity map Nin(⋅) = NPE(⋅, r) , and the remaining points are covered with spherical proximity 
map Nout(⋅) = NS(⋅, �) . Given the covers Qin

j
 and Qout

j
 , let Cin

j
 and Cout

j
 be the class covers 

with lower complexity associated with the dominating sets Sin
j

 and Sout
j

 . Let 
Cin
j
∶= ∪s∈Sin

j
Nin(s) and Cout

j
∶= ∪s∈Sout

j
Nout(s) . Then, the composite cover is given by

An illustration of the class covers C0 and C1 with Nin(⋅) = NPE(⋅, r = 2) and 
Nout(⋅) = NS(⋅, � = 1) is given in Fig. 5b.

By definition, the spherical proximity map NS(⋅, �) yields class covers for all points in 
Xj . Figure 5a illustrates the class covers of the map NS(⋅, � = 1) . We call such covers which 
only constitute a single type of proximity map as standard covers. Hence, the standard 
cover of the PE-PCD, Dj , is a union of d-simplices and d-polytopes:

Cj ∶= Cin
j
∪ Cout

j
.
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Here, Nin(⋅) = Nout(⋅) = NPE(⋅, r) . An illustration is given in Fig. 5c.
PCD covers can easily be generalized to the multi-class case with J classes. To establish 

the set of covers C = {C1,C2,… ,CJ} , the set of PCDs D = {D1,… ,DJ} , and the set of 
MDSs � = {S1, S2 … , SJ} associated with a set of classes with labels ℭ = {1, 2,… , J} , we 
gather the classes into two classes as CT = j and CNT = ∪t≠j{t} for t, j = 1,… , J . We refer 
to classes CT and CNT as target and non-target classes, respectively. More specifically, target 
class is the class we want to find the cover of, and the non-target class is the union of the 
remaining classes. We transform the multi-class case into the two-class setting and find the 
cover of jth class, Cj for each j = 1, 2,… , J.

5 � Classification with PCDs

The elements of the minimum dominating set Sj are selected prototypes for the problem of 
modelling the class conditional discriminant regions via a collection of proximity regions 
(balls, simplices, polytopes, etc.). The sizes of these regions represent an estimate of the 
domain of influence, which is the region in which a given prototype should influence the 
class labelling. Our semi-parametric classifiers depend on the class covers given by these 
proximity regions. We define various classifiers based on the class covers (composite or 
standard) and some other classification methods. We approach classification of points in ℝd 
in two ways: 

Hybrid classifiers	� Given the class covers Cin
0

 and Cin
1

 associated with classes with labels 
0 and 1, we classify a given point z ∈ ℝ

d with gP if z ∈ Cin
0
∪ Cin

1
 , and 

with gA otherwise. Here, gP is the pre-classifier and gA is an alternative 
classifier.

Cj ∶=
⋃
s∈Sj

NPE(s, r).

(c)(b)(a)

Fig. 5   Class covers of a data set in a two-class setting in ℝ2 where grey and black points represent points 
of two distinct classes. The training data set is composed of two classes labeled as 0 and 1 wherein 100 and 
20 data points are drawn from multivariate uniform distributions U([0, 1]2) and U([0.5, 1.5]2) , respectively. 
Cover of one class is given by solid circle and solid line segments, and the cover of the other is given 
by dashed circles and dashed line segments. a Standard class covers with Nin(⋅) = Nout(⋅) = NS(⋅, � = 1) 
b composite class cover with Nin(⋅) = NPE(⋅, r = 2) and Nout(⋅) = NS(⋅, � = 1) c standard class covers with 
Nin(⋅) = Nout(⋅) = NPE(⋅, r = 2)
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Cover classifiers	� These classifiers are constructed by class covers only; that is, a 
given point z ∈ ℝ

d is classified as gC(z) = j if z ∈ Cj⧵C1−j or if 
𝜌(z,Cj) < 𝜌(z,C1−j) , hence class of the point z is estimated as j if z is 
only in cover Cj or closer to Cj than C1−j . Here, �(z,Cj) is a dissimilar-
ity measure between point z and the cover Cj . Cover classifiers depend 
on the type of covers which are either composite or standard.

We incorporate PE-PCDs for establishing both of these types of classifiers. Hence, we 
will refer to them as hybrid PE-PCD and cover PE-PCD classifiers. Since the PE proximity 
maps were originally defined for points Xj ∩ CH(X1−j) , we develop hybrid PE-PCD classi-
fiers to account for points outside of the convex hull of the non-target class in a conveni-
ent fashion. However, as we shall see later, cover PE-PCD classifiers have more appeal-
ing properties than hybrid PE-PCD classifiers in terms of both efficiency and classification 
performance. Nonetheless, we consider and compare both types of classifiers, but first we 
define the PE-PCD pre-classifier.

5.1 � PE‑PCD pre‑classifier

Let �(z,C) be a dissimilarity measure between z and the class cover C. The PE-PCD pre-
classifier is given by

Here gP(z) = − 1 denotes a “no decision” case. Given that class covers Cin
0

 and Cin
1

 are the 
unions of PE proximity regions NPE(x, r) of points in dominating sets Sin

0
 and Sin

1
 , the clos-

est cover for a new point z is found by, first, finding the proximity region of a point in the 
cover closest to the point z:

which is expressed based on a dissimilarity measure between the point z and the region 
NPE(s) . For such measures, we employ convex distance functions. Let H be a convex set in 
ℝ

d with x ∈ H where the point x may be viewed as the center of the set H. Thus, the con-
vex distance (or dissimilarity) between z and H be defined by

where d(⋅, ⋅) is the Euclidean distance and t is a point of intersection for the half line 
L(x, z) ∶= {x + �(z − x) ∶ � ∈ [0,∞)} and �(H) . An illustration is given in Fig. 6 for sev-
eral convex sets, including balls and simplices in ℝ2.

For spherical proximity map NS(⋅, �) , the dissimilarity function is defined by putting the 
radius of that ball which is a spherical proximity region: d(x, t) = ��(x) into the denomina-
tor (Priebe et al. 2003a). However, for d-simplices, we characterize the dissimilarity meas-
ure in terms of barycentric coordinates of z with respect to S(x) = NPE(x, r).

(8)gP(z) ∶=

⎧⎪⎨⎪⎩

j if z ∈ Cin
j
⧵Cin

1−j
for j = 0, 1

I(𝜌(z,Cin
1
) < 𝜌(z,Cin

0
)) if z ∈ Cin

0
∩ Cin

1

− 1 otherwise.

�(z,Cin
j
) = min

s∈Sin
j

�(z,N(s))

�(z,H) ∶=
d(z, x)

d(t, x)
,
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Proposition 3  Let {t1, t2,… , td+1} ⊂ ℝ
d be a set of non-coplanar points that are 

the vertices of simplex S(x) = NPE(x, r) with the centroid MC(x) ∈ S(x)o . Then, for 
z ∈ ℝ

d and t ∈ �(S(x)) , the convex distance between z and S which is defined as 
�(z,S(x)) = d(MC(x), z)∕d(MC(x), t) satisfies the following

where t is on the closest face fk of S(x) to z and w(k)

S(x)
(z) is the kth barycentric coordinate of 

z with respect to S(x) . Moreover, �(z,S(x)) ≤ 1 iff z ∈ S(x).

Proof  Let the line segment L(MC(x), z) cross �(S(x)) at the point t ∈ fk for fk being the face 
of S(x) opposite to vertex tk . Thus, for �i ∈ (0, 1) and 𝛽 > 0,

Here, note that � = d(MC(x), z)∕d(MC(x), t) = �(z,S(x)) since z is a convex combination of 
t and MC(x) . Also, since MC(x) is the centroid,

Hence, (1 − �)∕(d + 1) = w
(k)

S(x)
(z) which implies � = 1 − (d + 1)w

(k)

S(x)
(z).

For the second part, we first assume �(z,S(x)) ≤ 1 . Then d(MC(x), z) ≤ d(MC(x), t) and 
MC(x) is in the interior of S(x) as S(x) is convex. Since t is on the face fk of S(x) clos-
est to z, z falls on the line segment joining MC(x) and t, denoted as [MC(x), t] which lies 
in S(x) as well. Hence, z ∈ S(x) . For the reverse direction, assume that z ∈ S(x) . Then 
there exists a face fk of S(x) closest to z. Since fk is the closest face to z and MC(x) is 
in the interior of S(x) as S(x) is convex, the line segment [MC(x), t] lies in S(x) as well, 
and z also lies on this line segment. Then it follows that d(MC(x), z) ≤ d(MC(x), t) , so 
�(z,S(x)) = d(MC(x), z)∕d(MC(x), t) ≤ 1 . 	�  ◻

Observe that in Proposition 3, it also follows (from the proof) that 𝜌(z,S(x)) < 1 iff 
z ∈ S(x)o and �(z,S(x)) = 1 iff z ∈ �(S(x)).

�(z,S(x)) = 1 − (d + 1)w
(k)

S(x)
(z),

z = (1 − �)MC(x) + �t = (1 − �)MC(x) + �

(
d+1∑

i=1;i≠k

�iti

)
.
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Fig. 6   Illustration of a convex distance between a point z and an arbitrary a convex set H, b ball and c 
2-simplex in ℝ2
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For a (convex) proximity region NPE(x, r) , the dissimilarity measure 
�(z,S(x)) = �(z,NPE(x, r)) indicates whether the point z is in the proximity region NPE(x, r) 
or not, since 𝜌(z,S(x)) < 1 if z ∈ NPE(x, r) and ≥ 1 otherwise. Hence, the PE-PCD pre-clas-
sifier gP may be simplified to

Here, without loss of generality, z ∈ Cin
0
⧵Cin

1
 if and only if 𝜌(z,Cin

0
) < 1 . Let 

�(z, x) ∶= �(z,S(x)) be the dissimilarity between x and z, then the dissimilarity meas-
ure �(⋅, ⋅) violates the symmetry axiom of the metric, since �(x, z) ≠ �(z, x) unless 
d(x, t(x)) = d(z, t(z)) where proximity regions NPE(x, r) and NPE(z, r) intersect with the lines 
L(MC(x), z) and L(MC(z), x) at points t(x) and t(z), respectively.

5.2 � Hybrid PE‑PCD classifiers

Constructing hybrid classifiers has many purposes. Some classifiers are designed to solve 
harder classification problems by gathering many weak learning methods (often known as 
ensemble classifiers) while some others have advantages only when combined with another 
single classifier (Woźniak et  al. 2014). Our hybrid classifiers are of the latter type. The 
PE-PCD pre-classifier, gP , is able to classify points in the union of class covers, Cin

0
∪ Cin

1
 , 

however classifying the remaining points in ℝd requires incorporating an alternative clas-
sifier, often one that works for all points in ℝd . We use the PE-PCD pre-classifier, gP(⋅) , to 
classify all points of the test data, and if no decision are made for some of these points, we 
classify them with the alternative classifier gA . Hence, let gH be the hybrid PE-PCD classi-
fier such that

That is, for “no decision” cases where gP(z) = −1 , we rely on the alternative classifier gA ; 
we will use the kNN , SVM and CCCD classifiers as alternative classifiers. The parameters 
are k, the number of closest neighbors to make a majority vote in the kNN classifier; � , the 
scaling parameter of the radial basis function (RBF) kernel of the SVM classifier; and � , 
the parameter of the CCCD classifier that regulates the size of each ball as described in 
Sect. 3.1.

5.3 � Composite and standard cover PE‑PCD classifiers

We propose PE-PCD classifiers gC based on composite and standard covers. The classifier 
gC is defined as

The cover is based on either composite covers or standard covers wherein Xj ⊂ Cj for 
j = 1, 2 , hence a decision can be made without an alternative classifier. Note that com-
posite cover PE-PCD classifiers are, in fact, different types of hybrid classifiers where the 
classifiers are only modelled by class covers but with multiple types of PCDs. Compared 
to hybrid PE-PCD classifiers, cover PE-PCD classifiers have many appealing properties. 

(9)gP(z) ∶=

{
I(𝜌(z,Cin

1
) < 𝜌(z,Cin

0
)) if z ∈ Cin

0
∪ Cin

1

−1 otherwise.

(10)gH(z) ∶=

{
gP(z) if z ∈ Cin

0
∪ Cin

1

gA(z) otherwise.

(11)gC(z) ∶= I(𝜌(z,C1) < 𝜌(z,C0)).
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Since a reduction is done over all target class points Xj , depending on the percentage of 
reduction, classifying a new point z ∈ ℝ

d is computationally faster and more efficient, 
whereas an alternative classifier might not provide such a reduction.

Note that, given the multi-class prototype sets, Sj , the two-class cover PE-PCD classi-
fier, gC , can be modified for the multi-class case as

for a general proximity map N(⋅).

5.4 � Consistency analysis

In this section, we will prove consistency of cover and hybrid PCD classifiers when the 
two class conditional distributions are strictly �-separable. For � ∈ [0,∞) , the regions 
A,B ⊂ ℝ

d are called �-separable if

and strictly  �- separable if, moreover, 𝛿 > 0 . Notice that the definition of �-separability 
allows overlap in the sets A and B with � = 0 . Furthermore, if the continuous distributions 
F and G have �-separable supports, then they are also called �-separable distributions, and 
if 𝛿 > 0 , they are called strictly  �- separable distributions (Devroye et al. 1996).

Recall that cover classifiers are characterized by PCDs associated with proximity 
regions N(x) for x ∈ ℝ

d , and thus, the consistency of such PCD classifiers depends on 
the proximity map N(⋅) . We require that the proximity map N(⋅) satisfies the following 
properties: 

P1	� For all x ∈ ℝ
d , the proximity region N(x) is either an open set or N(x) = {x} and x is 

in the interior of N(x) almost everywhere (a.e.) in Lebesgue measure.
P2	� For two classes, the proximity map N(x) is a function of x from target class and also 

depends on the non-target class points y in such a way that N(x) ∩ y = � a.e. in Leb-
esgue measure.

Notice that P1 implies that N(x) is an open set a.e. in ℝd-Lebesgue measure and P2 
implies that, the set {(x, y) ∶ N(x) ∩ y ≠ �} has zero ℝ2d-Lebesgue measure. Both NS(⋅, �) 
for � ∈ (0, 1] and NPE(⋅, r) for r ∈ (1,∞) satisfy the properties P1 and P2. These will be 
useful in showing that the classifiers based on our class covers attain Bayes-optimal clas-
sification performance for classes with (strictly) �-separable continuous distributions.

In the rest of this section, we assume that we have a random sample Xj of size nj from 
class j with continuous distribution Fj whose support is s(Fj) for j = 0, 1 . Recall that the 
PCD class cover for class j based on N(⋅) is Cj = ∪x∈Sj

N(x) with Sj being a prototype set of 
points for Xj (so Sj ⊆ Xj ). Note that all target class (say, class j) points reside inside the 
class cover Cj w.p. 1 by P1, i.e. Xj ⊂ Cj w.p. 1 for all nj > 0 . Hence, we have the following 
lemma.

Lemma 1  Let Xj = {X1,X2,… ,Xnj
} be a random sample of size nj from a class j with a 

continuous distribution Fj whose support is s(Fj) ⊆ ℝ
d . Also, let the class cover for class j 

(12)g(z) = argmin
j∈J

(
min
s∈Sj

�(z,N(s))

)

inf
x∈A,y∈B

d(x, y) ≥ �
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based on proximity map N(⋅) be denoted as Cj ∶= C(Xj) such that Cj = ∪X∈Sj
N(X) with 

prototype set Sj ⊆ Xj . If N(⋅) satisfies property P1, then we have �(s(Fj)⧵Cj) → 0 a.s. as 
nj → ∞.

Proof  Assume that N(⋅) satisfies property P1. Then, N(X) is open w.p. 1, and 
P(X ∈ N(X)) = 1 for X ∼ Fj , which implies P(Xj ⊂ Cj) = 1 for all nj > 0 . Assume, for a 
contradiction, that �(s(Fj)⧵Cj) → � a.s. for some 𝜀 > 0 as nj → ∞ . Then, as nj → ∞ , there 
exists a region s�(Fj) in s(Fj) with positive Lebesgue measure so that P(X ∈ s𝜀(Fj)) > 0 and 
such X’s are not in Cj with positive probability. That is, P(Xi ∈ s𝜀(Fj)) > 0 for any Xi ∈ Xj , 
which implies P(Xj ∩ s𝜀(Fj) ≠ �) > 0 for all nj > 0 and also in the limit. Therefore, it fol-
lows that P(Xj ⊂ Cj) < 1 for all nj > 0 and also in the limit, which is a contradiction. 	� ◻

Lemma 1 shows that the class cover, Cj , almost surely covers the support of its associ-
ated class (except perhaps on a region of Lebesgue measure zero) as nj → ∞ . In particular, 
if the support s(Fj) is bounded, then P(�(s(Fj)⧵Cj) = 0) = 1 for sufficiently large nj and if 
the support s(Fj) is unbounded, then P(𝜆(s(Fj)⧵Cj) > 0) > 0 for all nj but this probability 
converges to 0 as nj → ∞.

To show consistency of classifiers based on PCD class covers, we have to investigate 
the class covers under the assumption of (strict) �-separability of class supports. Let the 
two classes be labeled as 0 and 1 with strictly �-separable continuous distributions (i.e., 
𝛿 > 0 ), then a proximity map N(⋅) satisfying property P2 establishes pure class covers that 
include none of the non-target class points w.p. 1, i.e. Cj ∩ X1−j = � w.p. 1. In this case, 
we have the following lemma showing that the intersection of the cover of the target class 
and the support of the non-target class is almost surely empty as n1−j → ∞ (except perhaps 
for a region of Lebesgue measure zero). Let Pj be the probability with respect to distribu-
tion Fj for j = 0, 1 and P01 be with respect to the joint distribution F01 of (X, Y) for X ∼ F0 
and Y ∼ F1 . Then, P2 also implies that P1(s(F0) ∩ X1 = �) = 1 . Hence, it also follows that 
P01(X0 ∩ X1 = �) = 1 , since P0(X0 ⊂ s(F0)) = 1.

Lemma 2  Let the target and the non-target classes be labeled as 0 and 1 and 
X0 = {X1,X2,… ,Xn0

} and X1 = {Y1, Y2,… , Yn1} be two random samples from classes 0 
and 1 with class conditional continuous distributions F0 and F1 whose supports are strictly 
�-separable (i.e., 𝛿 > 0 ) in ℝd , respectively. If the proximity map N(⋅) satisfies properties 
P1 and P2, then, for any fixed n0 > 0 , we have �(C0 ∩ s(F1)) → 0 a.s. as n1 → ∞.

Proof  Let n0 > 0 . Notice that s(F1) is fixed and the randomness in �(C0 ∩ s(F1)) is due 
to X0 and X1 , both of which are used in the construction of N(X). Moreover, recall that 
C0 = ∪X∈S0

N(X) for S0 ⊂ X0 being a minimum prototype set of X0 . Note that from P2, 
it follows that P1(N(x) ∩ X1 = �) = 1 for all x ∈ s(F0) and P01(N(X) ∩ X1 = �) = 1 for 
X ∼ F0 . Then, as n1 → ∞ , P01(C0 ∩ X1 = �) → 1 (or equivalently, P01(C0 ∩ X1 ≠ �) → 0 ), 
since C0 is the union of N(X) for X ∈ Sj ⊆ Xj . Now assume, for a contradiction, that 
�(C0 ∩ s(F1)) → � w.p. 1 as n1 → ∞ for some 𝜀 > 0 . Thus, as n1 → ∞ , there exists a region 
s�(F1) in s(F1) with positive measure such that P01(C0 ∩ s�(F1) ≠ �) is positive in the limit 
and hence P01(C0 ∩ X1 ≠ �) is positive in the limit, which is a contradiction. 	�  ◻

Recall that PCD cover classifiers are defined with either standard covers which employ 
only one type of proximity map, or composite covers which employ two (or more) types of 
proximity maps. On the other hand, hybrid classifiers use cover classifiers for data points 
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from one class in the convex hull of points from the other class(es), and use an alternative 
classifier elsewhere.

We show the consistency of cover and hybrid PCD classifiers. That is, e.g., we show 
that the error rate of the cover classifier L(gC) converges to the Bayes optimal error rate, 
which is 0 for continuous class conditional distributions with strictly �-separable supports 
as n0, n1 → ∞ (Devroye et al. 1996). Then, we have the following theorem.

Theorem 6  Let X0 and X1 be two random samples of size n0 and n1 from classes 0 and 1, 
respectively, such that the data set X = X0 ∪ X1 is a random sample from the distribution 
F = �0 F0 + �1 F1 for some �0,�1 ∈ [0, 1] and �0 + �1 = 1 where F0 and F1 are continuous 
class conditional distributions with finite dimensional strictly �-separable supports s(F0) 
and s(F1) , respectively. Then we have the following results.

(1)	 Let the cover classifier gC be based on a standard cover with proximity map N(⋅) 
which satisfies P1 and P2 or based on a composite cover with proximity maps Ni(⋅) 
for i = 1,… , k , each of which satisfies P1 and P2. Then gC is consistent; that is, 
L(gC) → L∗ = 0 as n0, n1 → ∞.

(2)	 Let the hybrid classifier gH be based on gC in Cin ∶= Cin
0
∪ Cin

1
 where Cin

j
 is the cover 

of points Xj ∩ CH(X1−j) for j = 0, 1 and based on an alternative classifier gA which is 
different from gC . If gC is as in part (1) and gA is consistent as n0, n1 → ∞ , then gH is 
consistent as n0, n1 → ∞.

Proof 

(1)	 It suffices to prove part (1) for standard cover classifiers, as the extension to the com-
posite cover case is straightforward, since each Ni(⋅) also satisfies P1 and P2. Let Z be 
a random variable from F. Then Z = Zj ∼ Fj with probability �j for j = 0, 1.

	   Then, by Lemma 1, we have P(Zj ∈ Cj) → 1 as nj → ∞ . And by Lemma 2, 
P(Zj ∈ Cj⧵s(F1−j) → 1 as n1−j → ∞ for any fixed nj > 0 . Furthermore, P(Z ∈ s(F)) = 1 
where s(F) = s(F0) ∪ s(F1) . By Lemmas 1 and 2, as n0, n1 → ∞ , we have 
�(s(F)⧵C0 ∪ C1) → 0 w.p. 1 and P(C0 ∩ C1 ⊂ s(F)c) → 1 and so P(Z ∈ C0 △ C1) → 1 
where C0 △ C1 is the symmetric difference between C0 and C1 . Then, we have 
�(Cj ∩ s(F1−j)) → 0 w.p. 1 for nj > 0 as n1−j → ∞ . Also, P(Zj ∈ Cj⧵C1−j) → �j as 
n0, n1 → ∞ , so P(gC(Zj) = j) → �j (or equivalently P(gC(Zj) ≠ j) → 0 ) for j = 0, 1.

	   Therefore, 

 Hence, L(gC) → 0 as n0, n1 → ∞.
(2)	 First observe that, for j = 0, 1 , CH(Xj) converges to CH(s(Fj)) as nj → ∞ in the sense 

that �(CH(s(Fj))⧵CH(Xj)) → 0 w.p. 1 as nj → ∞ , which implies, for X ∼ Fj , 
P(X ∈ CH(Xj)) → 1 = P(X ∈ s(Fj)) = P(X ∈ CH(s(Fj)))  a s  nj → ∞  ,  s i n c e 
s(Fj) ⊆ CH(s(Fj)) . Let sin

j
∶= s(Fj) ∩ CH(X1−j) . Without loss of generality, we assume 

L(gC) =
∑
j=0,1

P(gC(Zj) ≠ j)

=
∑
j=0,1

P(gC(Z) ≠ j|Z is from class j)P(Z is from class j)

= P(gC(Z0) ≠ 0)�0 + P(gC(Z1) ≠ 1)�1
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sin
0

 or sin
1

 has positive Lebesgue measure, since, otherwise, P(gH(Z) = gA(Z)) → 1 and 
the result follows, since gA is consistent. So, Cin

j
 is constructed with Sin

j
⊂ sin

j
 w.p. 1 for 

j = 0, 1 . Let Fin
j

 be the distribution restricted to sin
j

 (which can also be denoted as Fj|sin
j
 ). 

Then Fin
0

 and Fin
1

 are continuous and strictly �-separable as well. Furthermore, gH = gC 
for points in Cin and gC is consistent by part (1). For j = 0, 1 , let Zj ∼ Fj and let �j be 
the event that Zj ∈ Cin and �j ∶= P(�j) . Since sin

0
 or sin

1
 has positive Lebesgue measure, 

we can not have the case �1 = �2 = 0 . Since Cin is not unique, there exist �sup
j

 and �inf
j

 
such that �inf

j
≤ limn0,n1→∞ �j ≤ �

sup

j
 where �sup

j
 corresponds to the supremum of the 

volume of Cin and �inf
j

 corresponds to the infimum of the volume of Cin in the limit. 
Note also that 

 And, for j = 0, 1 , 

 Hence, L(gH) → LH ≤ LC max
(
�
sup

0
, �

sup

1

)
+ LA

(
1 −min

(
�inf
0
, �inf

1

))
 as n0, n1 → ∞ . 

But, as n0, n1 → ∞ , gC is consistent by part (1) (i.e., by part (1), P(gC(Zj) ≠ j|�j) → 0 
for both j = 0, 1 ), hence LC = 0 . Moreover, 

∑
j=0,1 P(gA(Zj) ≠ j) → LA as n0, n1 → ∞ , 

since the classifier gA is consistent with Bayes error being LA in the limit. Notice also 
that LA = 0 , since the supports of the distributions restricted to the complement of Cin 
are also strictly �-separable. Hence, LH = 0 , which is the desired result.

	�  ◻

As a corollary to Theorem 6 part (1), we have that classifier gC of standard and com-
posite covers with proximity maps NS(⋅, �) for � ∈ (0, 1] and NPE(⋅, r) for r > 1 are con-
sistent; and as a corollary to Theorem 6 part (2), we have that classifier gH is consistent 
provided that gC is based on standard and composite covers with proximity maps NS(⋅, �) 
for � ∈ (0, 1] and NPE(⋅, r) for r > 1 and gA is also consistent. A special case occurs when 
r = 1 ; that is, observe that x ∈ �(NPE(x, r = 1)) , and hence NPE(⋅, r = 1) does not satisfy 
P1. Moreover, in part (1) we showed that a cover PE-PCD classifier is consistent since, as 
n0, n1 → ∞ , the PE-PCD cover excludes all non-target class points almost surely and if the 
support of the target class is bounded, it is a subset of the class cover, or if the support is 
unbounded, probability of observing a point in the support and outside of cover is zero. To 
show that the hybrid PE-PCD classifiers are consistent in part (2), we required alternative 
classifiers to be consistent as well.

In proving Theorem 6 using Lemmas 1 and 2, the assumption of strict �-separability is 
crucial. If this assumption is dropped; that is, if 𝜆(s(F0) ∩ s(F1)) > 0 , then no proximity 
map N(⋅) satisfies both P1 and P2 and consistency is not guaranteed to follow.

6 � Monte Carlo simulations and experiments

In this section, we assess the classification performance of hybrid and cover PE-PCD 
classifiers. We perform simulation studies wherein observations of two classes are drawn 
from separate distributions where X0 is a random sample from a multivariate uniform 

L(gH) = P(gH(Z0) ≠ 0)�0 + P(gH(Z1) ≠ 1)�1.

P(gH(Zj) ≠ j) = P(gH(Zj) ≠ j,�j) + P(gH(Zj) ≠ j,� c
j
)

= P(gH(Zj) ≠ j|�j)P(�j) + P(gH(Zj) ≠ j|� c
j
)(1 − P(�j))

= P(gC(Zj) ≠ j|�j)P(�j) + P(gA(Zj) ≠ j|� c
j
)(1 − P(�j)).
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distribution U([0, 1]d) and X1 is a random sample from U([�, 1 + �]d) for d = 2, 3, 5 with 
the overlapping parameter � ∈ [0, 1] . Here, � determines the level of overlap between the 
two class supports. We regulate � in such a way that the overlapping ratio � is fixed for all 
dimensions, i.e. � = Vol (s(F0) ∩ s(F1))∕Vol (s(F0) ∪ s(F1)) . When � = 0 , the supports are 
well separated, and when � = 1 , the supports are identical: i.e. s(F0) = s(F1) . Hence, the 
closer the � to 1, the more the supports overlap. Observe that � ∈ [0, 1] can be expressed in 
terms of the overlapping ratio � and dimensionality d:

In this simulation study, we train the classifiers with n0 = 400 and n1 = qn0 with the 
imbalance level q = |X1|∕|X0| ∈ {0.1, 0.5, 1.0} and overlapping ratio � = 0.5 . For values 
of q closer to zero, classes of the data set are more imbalanced. On each replication, we 
form a test data with 100 random samples drawn from each of F0 and F1 , resulting in a 
test data set of size 200. This setting is similar to a setting used by Manukyan and Ceyhan 
(2016), who showed that CCCD classifiers are robust to imbalance in data sets. We show 
that the same robustness extends to PE-PCD classifiers in this article. Using all classifiers, 
at each replication, we record F-measures for the test data, and also, we record the correct 
classification rates (CCRs) of each class of the test data separately. We perform these repli-
cations until the standard errors of F-measures of all classifiers are below 0.0005. We refer 
to the CCRs of two classes as “CCR0” and “CCR1”, respectively. We consider the expan-
sion parameters r = 1, 1.1, 1.2,… , 2.9, 3, 5, 7, 9 for the PE-PCD classifiers. Our hybrid PE-
PCD classifiers are referred as PE-SVM, PE-kNN and PE-CCCD classifiers with alterna-
tive classifiers SVM, kNN and CCCD, respectively.

Before the main Monte Carlo simulation, we perform a preliminary (pilot) Monte Carlo 
simulation study to determine the values of optimum parameters of SVM, CCCD and 
kNN classifiers. The same values will be used for alternative classifiers as well. We train 
the gsvm , gcccd and gknn classifiers, and classify the test data sets for each classifier to find 
the optimum parameters. We perform Monte Carlo replications until the standard errors 
of all F-measures are below 0.0005 and record which parameter produced the maximum 
F-measures among the set of all parameters in a trial. Specifically, on each replication, 
we (1) classify the test data set with each � value (2) record the � values with maximum 
F-measures and (3) update the count of the recorded � values. Finally, given a set of counts 
associated with each � value, we appoint the � with the maximum count as the �∗ , the opti-
mum � (or the best performing � ). Later, we use �∗ as the parameter of alternative classifier 
gcccd in our main simulations. Optimal parameter selection process is similar for classifiers 
gknn and gsvm associated with the parameters k and �.

The optimum parameters of each simulation setting are listed in Table 1. We consider 
parameters of SVM � = 0.1, 0.2,… , 4.0 , of CCCD � = 0, 0.1,… , 1 (here, � = 0 is actually 
equivalent to � = � , the machine epsilon), and of kNN k = 1, 2,… , 30 . In Table 1, as q and 
d increase, optimal parameters � and � decrease whereas k increases. Manukyan and Cey-
han (2016) showed that dimensionality d may affect the imbalance between classes when 
the supports overlap. Observe that in Table 1, with increasing d, optimal parameters are 
more sensitive to the changes in imbalance level q. For the CCCD classifier, � = 1 is usu-
ally preferred when the data set is imbalanced, i.e. q = 0.1 or q = 0.5 . Bigger values of � 
are better for the classification of imbalanced data sets, since with � = 1 , the cover of the 
minority class is substantially bigger which increases the domain influence of the points of 
the minority class. For � closer to 0, the class cover of the minority class is much smaller 

(13)� =
Vol (s(F0) ∩ s(F1))

Vol (s(F0) ∪ s(F1))
=

(1 − �)d

2 − (1 − �)d
⟺ � = 1 −

(
2�

1 + �

)1∕d

.



789Machine Learning (2020) 109:761–811	

1 3

compared to the class cover of the majority class, and hence, the CCR1 is much smaller. 
Bigger values of parameter k are also detrimental for imbalanced data sets, the bigger the 
parameter k, the more likely a new point is classified as the majority class since the points 
tend to be labelled as the class of the majority of k nearest neighbors. As for the parameter 
� , support vectors have more influence over the domain as � decreases (Wang et al. 2003). 
Note that � = 1∕(2�2) in the radial basis function (RBF) kernel. The smaller the � , the big-
ger the � . Hence, more points are classified as the majority class with decreasing � since 
the majority class has more influence. Thus, bigger values of � are better for the imbal-
anced data sets.

Average of F-measures and CCRs of three hybrid PE-PCD classifiers are presented in 
Fig.  7. For q = 0.1 , the classifier PE-kNN , for q = 0.5 , the classifier PE-CCCD and, for 
q = 1.0 , the classifier PE-SVM performs better than others. Especially, when the data set 
is imbalanced, the CCR1 determines the performance of a classifier (thus the F-measure); 
that is, generally, the better a method classifies the minority class, the better the method 
performs overall. When the data is balanced (i.e. q = 1 ), PE-SVM is expected to perform 

Table 1   Optimum parameters for 
SVM, CCCD and kNN classifiers 
used in the hybrid PE-PCD 
classifiers

d q � (CCCD) k ( kNN) � (SVM)

2 0.1 1 1 3.8
0.5 1 1 4.0
1.0 0 3 0.1

3 0.1 1 1 2.3
0.5 1 1 0.4
1.0 0 4 0.2

5 0.1 1 1 0.9
0.5 1 4 0.3
1.0 1 10 0.1
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Fig. 7   F-measures and CCRs of the three hybrid PE-PCD classifiers versus expansion parameter 
r = 1, 1.2,… , 2.9, 3, 5, 7, 9 and the alternative classifiers: CCCD, kNN and SVM. The data sets are random 
samples drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([�, 1 + �]d) with several simulation settings based on � = 0.5 
given the Eq. 13, imbalance level q = 0.1, 0.5, 1 , and dimensionality d = 2, 3, 5
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well, however it is known that SVM classifiers are confounded by the imbalanced data sets 
(Akbani et al. 2004). Moreover, when q = 0.1 , PE-kNN performs better than PE-CCCD. 
This result contradicts the results of Manukyan and Ceyhan (2016). The reason for this is 
that hybrid PE-PCD classifiers incorporate alternative classifiers for points outside of the 
convex hull and kNN might perform better for these points. The kNN classifier is prone 
to missclassify points closer to the decision boundary when the data is imbalanced, and 
we expect points outside the convex hull to be far away from the decision boundary in our 
simulation settings.

In Fig. 7, CCR1 increases while CCR0 decreases for some settings of q and d, and vice 
versa for some other settings. Recall that Theorem 3 shows a stochastic ordering of the 
expansion parameter r; that is, with increasing r, there is an increase in the probability of 
exact MDS being less than or equal to some � = 1,… , d + 1 . Hence, with increasing r, 
the proximity region NPE(x, r) gets bigger and the cardinality of the prototype set Sj gets 
lower. Therefore, we achieve a bigger cover of the minority class and more reduction in the 
majority class. The bigger the cover is, the higher the CCR1 is in the imbalanced data sets. 
However, the decrease in the performance, when r increases, may suggest that alternative 
classifiers perform better for these settings. For example, the CCR1 of PE-SVM increases 
as r increases for q = 0.1, 0.5 and d = 2, 3 , but CCR1 of PE-CCCD and PE-kNN decreases 
for r ≥ 1.6 . The higher the r, the more the reduction in data set. However, higher values 
of r may confound the classification performance. Hence, we choose an optimum value 
of r. Observe that for d = 5 , the F-measures of all hybrid PE-PCD classifiers are equal for 
all r. With increasing dimensionality, the probability that a target class point falling in the 
convex hull of the non-target class points decreases, hence most target class points remain 
outside of the convex hull of non-target class points.

In Fig. 8, we compare the composite cover PE-PCD classifier and the standard cover 
PE-PCD classifier. The standard cover is slightly better in classifying the minority class, 
especially when there is imbalance between classes. In general, the standard cover PE-
PCD classifier appear to have higher CCR1 than the composite cover PE-PCD classifiers. 
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Fig. 8   F-measures and CCRs of the two cover PE-PCD classifiers versus expansion parameter 
r = 1, 1.2,… , 2.9, 3, 5, 7, 9 with composite and standard covers. The data sets are random samples drawn as 
X0 ∼ U([0, 1]d) and X1 ∼ U([�, 1 + �]d) with several simulation settings based on � = 0.5 given the Eq. 13, 
imbalance level q = 0.1, 0.5, 1 , and dimensionality d = 2, 3, 5
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However, the composite covers are better when d = 5 . The PE-PCD class covers are surely 
influenced by the increasing dimensionality. Moreover, for q = 0.1, 0.5 , we see that the 
CCR1 of standard cover PE-PCD classifier slightly decreases with r, even though the data 
set is more reduced with increasing r. Hence, we should choose an optimum value of r that 
can still be incorporated to both substantially reduce the data set and to achieve a good 
classification performance.

In Fig. 9, we compare all five classifiers, three hybrid and two cover PE-PCD classi-
fiers. We consider the expansion parameter r = 3 since, in both Figs. 7 and 8, class cov-
ers with r = 3 perform well and, at the same time, substantially reduce the data set. For 
all d = 2, 3, 5 , it appears that all classifiers show comparable performance when q = 1 , 
but PE-SVM and SVM give slightly better results. However, when there is imbalance in 
the data sets, the performances of PE-SVM and SVM degrade, and hybrid and cover PE-
PCD classifiers and CCCD classifiers have higher F-measures than others. Compared to 
all other classifiers, on the other hand, the standard cover PE-PCD classifier is clearly the 
best performing one for d = 2, 3 and q = 0.1, 0.5 . Observe that the standard cover PE-PCD 
classifier achieves the highest CCR1 among all classifiers. Apparently, the standard cover 
constitutes the most robust (to class imbalance) classifier. The performance of standard 
cover PE-PCD classifier is usually comparable to the composite cover PE-PCD classifier, 
but slightly better. However, for d = 5 , the performance of standard cover PE-PCD classi-
fier degrades and composite cover PE-PCD classifiers usually perform better. These results 
show that cover PE-PCD classifiers are more appealing than hybrid PE-PCD classifiers. 
The reason for this is that the cover PE-PCD classifiers have both good classification per-
formance and reduce the data considerably more since hybrid PE-PCD classifiers provide 
a data reduction for only Xj ∩ CH(X1−j) whereas cover PE-PCD classifiers reduce the entire 
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Fig. 9   F-measures and CCRs of the two cover, three hybrid PE-PCD classifiers with expansion parameter 
r = 3 , and kNN , SVM and CCCD classifiers. The composite covers are indicated with “comp.” and stand-
ard covers with “stan.”. The data sets are random samples drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([�, 1 + �]d) 
with several simulation settings based on � = 0.5 , imbalance level q = 0.1, 0.5, 1 and dimensionality 
d = 2, 3, 5
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data set. The level of reduction, however, may decrease as the dimensionality of the data 
set increases.

In Fig. 10, we compare all five classifiers, three hybrid and two cover PE-PCD classifiers 
in a slightly different simulation setting where there exists an inherent class imbalance. We 
perform simulation studies wherein equal number of observations n0 = n1 = n are drawn 
from separate distributions where X0 is a random sample from a multivariate uniform 
distribution U([0, 1]d) and X1 is a random sample from U([0.3, 0.7]d) for d = 2, 3, 5 and 
n = 50, 100, 200, 500 . Observe that the support of one class is entirely inside of the other, 
i.e. s(F1) ⊂ s(F0) . The same simulation setting has been used to highlight the robustness 
of CCCD classifiers to imbalanced data sets (Manukyan and Ceyhan 2016). In Fig. 10, the 
performance of kNN and PE-kNN classifiers degrade as d increases and n decreases. With 
sufficiently high d and low n, the minority class points X0 is sparsely distributed around 
the overlapping region of class supports s(F1) ∩ s(F0) which is the support of X1 . Hence, 
although the number of observations are equal in both classes, there exists a “local” imbal-
ance between classes (Manukyan and Ceyhan 2016). However, CCCD and SVM classi-
fiers, including the associated hybrid PE-PCD classifiers perform fairly well. Although the 
cover PE-PCD classifiers have considerably smaller CCR1, they perform relatively well 
compared to other classifiers and generally have higher CCR0 than other classifiers. Simi-
lar to other simulation settings, cover PE-PCD classifiers are also affected by the increasing 
dimensionality in this setting.

Although the PE-PCD based standard cover classifiers are competitive in classification 
performance, a case should be made on how much they reduce the data sets during the 
training phase. In Fig. 11, we illustrate the percentage of reduction in the training data set, 
and separately, in both minority and majority classes, using PE-PCD for r = 1, 2, 3 . The 
overall reduction increases with r, which is also indicated by Theorem 3, and the reduction 
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Fig. 10   F-measures and CCRs of the two cover, three hybrid PE-PCD classifiers with expansion parameter 
r = 2.2 , and kNN , SVM and CCCD classifiers. The composite covers are indicated with “comp.” and stand-
ard covers with “stan.”. The data sets are random samples drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([0.3, 0.7]d) 
with several simulation settings based on number of observations n = 50, 100, 200, 500 and dimensionality 
d = 2, 3, 5
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in the majority class is much more than in minority class when q = 0.1, 0.5 since proxim-
ity regions of the majority class catch more points unlike the minority class. The major-
ity class is reduced over nearly 60% when q = 0.1 , and 40% when q = 0.5 . Indeed, the 
higher the imbalance between classes, the higher the reduction in the abundantly populated 
classes. On the other hand, as the dimensionality increases, composite covers reduce the 
data set more than the standard covers. The number of the facets and simplices increases 
exponentially with d, and hence the cardinality of minimum dominating set (or the proto-
type set) also increases exponentially with d (see Theorem 5). As a result, composite PE-
PCD covers achieve much higher reduction than standard PE-PCD covers.

7 � Real data examples

In this section, we apply the hybrid and cover PE-PCD classifiers on UCI and KEEL data 
sets (Dua and Graff 2019; Alcalá et al. 2011). Most of these data sets were subjected to 
preprocessing before analysis such as log transformation, deletion of outliers and missing 
value imputation. We start with a trivial but a popular data set, iris with 150 flowers 
classified into three types based on their petal and sepal width and lengths. In Fig. 12, we 
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Fig. 11   The percentage of reduction of the composite (comp.) and standard (stan.) PE-PCD covers. The 
“red.all” indicates the overall reduction in the training data set, 1 − (|S0 + S1|∕(n0 + n1)) , “red.0” the reduc-
tion in the X0 class, 1 − (|S0|∕n0) , and “red.1” the reduction in the X1 class, 1 − (|S1|∕n1) . The data sets are 
random samples drawn as X0 ∼ U([0, 1]d) and X1 ∼ U([�, 1 + �]d) with several simulation settings based on 
� = 0.5 , imbalance level q = 0.1, 0.5, 1 and dimensionality d = 2, 3, 5
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illustrate standard and composite PE-PCD covers, and CCCD covers of the first and the 
third variables of iris data set, sepal and petal lengths. Observe that in composite covers 
of Fig. 12b, only a few or no triangles are used to cover the setosa and virginica classes. 
Points from these classes are almost all outside of the convex hull of the versicolor class 
points, and hence covered mostly by spherical proximity regions. However, the standard 
cover of Fig. 12c covers setosa and virginica classes with polygons since these classes are 
in the outer triangles of the convex hull of the versicolor class.

We first assess the performance of PE-PCD classifiers and other classifiers (i.e. kNN , 
SVM and CCCD) on two real data sets. The first data set, High Time Resolution Uni-
verse Survey (HTRU), is composed of 91192 signals where only 1196 of these signals are 
labelled as pulsars (Jameson et al. 2010; Morello et al. 2014). A pulsar is a ratio emitting 
star that was formerly a massive star being on the verge of collapsing. Detecting whether a 
signal indicates the existence of candidate pulsar is of considerable interest in the field of 
radio astronomy (Lyon et al. 2016). This data set is preprocessed by Lyon et al. (2016) such 
that eight variables are generated to predict whether a signal is a pulsar or not. These fea-
tures are the mean, standard deviations, kurtosis and skewness values of integrated pulse 
profiles and the DM-SNR (dispersion measure and signal-to-noise) curves. In HTRU data 
set, there are 1196 pulsar candidates and 89995 non-pulsar (stars that are not pulsars) can-
didates which makes the data set having an imbalance ratio of 89995∕1196 = 75.24 . We 
randomly split the HTRU data set into training and test data sets which comprise of the 
75% and 25% of the original HTRU data set, respectively, where both training and test sets 
have approximately the same level of imbalance.

Lyon et al. (2016) shows that all eight variables based on the pulse profiles and DM-
SNR curves are fundamental for predicting a pulsar signal, but three variables, that are 
mean, kurtosis and the skewness of the pulse profiles, are more explanatory than the other 
variables. Also, recall that the number of prototypes in PE-PCD classifier increases expo-
nentially with d as shown by Theorem 5. Simulation studies in Sect. 6 also indicated that 
the dimensionality of a data set affects the classification performance. Hence, we apply 
dimensionality reduction to the HTRU data set to mitigate the dimensionality effect. After 
preprocessing the HTRU data set, we used principal component analysis (PCA) to extract 
the three principal components with 96% of variation explained. In Fig. 13, we illustrate 
scatter diagrams of first two principal components. We observe that the classes are almost 
separated with a mild level of overlap.

setosa
versicolor
virginica

(c)(b)(a)

Fig. 12   Class covers of iris data set with variables sepal and petal length. a Standard covers with 
NS(⋅, � = 1) , b composite covers with Nin(⋅) = NPE(⋅, r = 1) and Nout(⋅) = NS(⋅, � = 1) and c standard covers 
with Nin(⋅) = Nout(⋅) = NPE(⋅, r = 1)
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We establish the PE-PCD covers of the HTRU data sets for increasing values of 
r = 1, 1.1, 1.2,… , 2 . Also in Fig.  14, for all values of r, we give the levels of reduction 
and the imbalance ratio of these two classes after reduction, i.e. reduced imbalance ratio. 
In Fig.  14a, we ignore values r > 2 due to no substantial change in either the reduction 
percentage or reduced imbalance ratio. For increasing values of r, there exists a consid-
erable reduction in the number of observations. With r = 1 , the percentage of reduction 
in the number of non-pulsar candidates is almost 99%. Also, the reduction in the pulsar 
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Fig. 13   The first two principal components (PCs) of the HTRU data set. a The scatter diagram of first and 
second PCs. b The density plot of pulsar and non-pulsar candidates with respect to the first PC. Here, grey 
points represent the non-pulsar candidates and black points represent the pulsar candidates
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Fig. 14   a The percentage of reduction and the reduced imbalance ratios of the HTRU training data sets 
reduced by PE-PCDs (standard cover) for all values of r = 1, 1.1, 1.2,… , 2 . We ignore higher values of r 
due to no considerable change in either imbalance ratio or the reduction. b Total reduction in the two target 
classes that are inside and outside of the convex hull (denoted as “in C.H.” and “out C.H.”) of the non-
target class (for example, if the set of pulsar candidates is the target class, then the non-pulsar candidates 
constitute the non-target class). Here, the “red.0” indicates the reduction percentage in the non-pulsar can-
didates (majority class), i.e. |S0|∕|X0| ; and the “red.1” indicates the reduction percentage in pulsar candi-
dates (minority class), i.e. |S1|∕|X1| . “IR” represents the imbalance ratio between the non-pulsar and pulsar 
classes, i.e. IR = |S0|∕|S1|



796	 Machine Learning (2020) 109:761–811

1 3

candidates is 40%, reaching up to 50% with increasing values of r. PE-PCDs achieve a 
reduced imbalance ratio of approximately 3 where the global imbalance ratio of HTRU 
data set was originally 75.24. In Fig. 14b, we illustrate the reduction inside and outside of 
the convex hulls CH(X1−j) , for j = 0, 1 , of both classes for r = 2 . Both inside and outside 
of the convex hull of the non-target class, where the set of pulsar candidates is the non-
target class, non-pulsar candidates achieve higher than 90% reduction. However, only the 
50% of the pulsar candidates in the convex hull of the non-pulsar candidates are chosen as 
members of the prototype set. In both classes, the reduction is over 90% for those target 
class points that are outside of the convex hull of the non-target class. The reduction in the 
minority class (the pulsar candidates) is indeed lower than the reduction in the majority 
class (non-pulsar candidates), but it results in an undersampling of the majority class which 
successfully reduces the imbalance between the number of pulsar and non-pulsar signals.

In Fig.  15a, we illustrate the F-measure of standard cover classifier, SVM, kNN and 
CCCD with parameters r = 1, 1.1,… , 2.9, 3, 5, 6, 7, 8, 9 , � = 0.1, 0.2,… , 4 , k = 1, 2,… , 40 
and � = 0, 0.1,… , 1 measured on the HTRU test data set, respectively. The classification 
performance of SVM seems to be not affected by the increasing values of � ; that is, SVM 
achieves approximately 0.80 F-measure for all � . The parameter k = 1 is not the best per-
forming one for kNN ; however, the best performance is achieved at k = 5 since, looking 
at Fig.  13, there exists some considerable separation between the pulsar and non-pulsar 
candidates. Although the HTRU data is highly imbalanced with IR = 75.24, due to the well 
separation of pulsar and non-pulsar candidates, moderate values of k may perform better. 
CCCD classifiers for all values of � , however, achieves the least F-measure in classifying 
the test data set of HTRU. Moreover, standard cover classifiers with expansion parameter 
r have higher F-measures than CCCDs, where standard cover performs the best at r = 1.5 . 
It was also observed in the simulation studies of Sect. 6 that an optimum value of r is pre-
ferred to achieve a considerable level of reduction while keeping the classification perfor-
mance high. We observe a comparable level of F-measure in both kNN and standard cover 
classifiers while the cover reduces the number of observations and mitigate the effects of 
imbalance in classes.

In Fig. 15b, we illustrate the F-measure of hybrid classifiers and the composite cover 
classifier for PE-PCD parameter r = 1, 1.1,… , 2.9, 3, 5, 6, 7, 8, 9 measured on the HTRU 
test data set. The k, � and � parameters of the alternative classifiers and the parameter 
of the spherical proximity regions of the composite cover are fixed to those values that 
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Fig. 15   a F-measures of the standard cover, kNN , SVM and CCCD classifiers measured on the HTRU test 
data set for increasing values of r, � , k and � , and (b) F-measure of the composite cover and hybrid classi-
fiers for optimum � , k and � along with increasing values of r 
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performed the best in the experiments of Fig. 15a. We observe that the PE-SVM hybrid 
classifier slightly outperforms the SVM classifiers with the best performance achieved 
at r = 1.4 . PE-CCCDs also have higher F-measure then CCCDs, considerably increas-
ing the prediction accuracy of the CCCDs with the addition of the PE-PCDs. All hybrid 
classifiers seem to have similar classification performances, even though lower values 
of r may produce composite cover classifiers with slightly smaller F-measures. The 
increase in the classification performance of the hybrid classifiers may indicate that cor-
rectly classifying the pulsar candidates in the overlapping region of two classes is of 
higher importance. Both Fig. 15a and b indicate that, if the dimensionality of the data 
set is sufficiently reduced, standard classifiers and PE-PCD based hybrid classifiers may 
produce comparable classification performances.

Cover PE-PCD classifiers perform better if the data set has low dimensionality. 
Hence, we reduce the dimensionality of data sets by means of PCA and then classify 
the data set with the cover PE-PCD classifiers trained over this data set in the reduced 
dimension. Although PE-PCD classifiers have computationally tractable MDSs and 
potentially have comparable performance to those other classifiers, the moderately high 
dimensionality of the data sets are detrimental for these classifiers based on PE-PCD 
class covers. Now we apply all classifiers to the Letter data set which is composed of 
20,000 black and white pixels. Each of these pixels represents one of the 26 alphabetic 
letters (Frey and Slate 1991; Dua and Graff 2019), and each pixel is converted into 16 
integer features. For the sake of investigating the performance of standard cover clas-
sifiers under class imbalance, we restrict our attention to successfully recognizing the 
letter “M” where only 792 of examples represent this letter. Thus, the transformed data 
set “LetterM” has an imbalance ratio of 19208/792 = 24.25. We apply dimensional-
ity reduction to the data set after some preprocessing and extract 5 principal compo-
nents with total explained variance of 72%. In Fig. 16, we illustrate two of these prin-
cipal components that illustrate the separability of the LetterM data set. There exists a 
medium level of separability between classes that may help in achieving a high clas-
sification performance. We then randomly split the LetterM data set into training and 
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Fig. 16   The third and fourth principal components (PC) of the LetterM data set. a The scatter diagram of 
two PCs. b The density plots of the minority and majority class with respect to the first PC. Here, black 
points represent letters “M” and grey points represent the other letters
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test data sets that both constitute equally 50% of all observations of the LetterM data set 
with the approximately same level of class imbalance.

In Fig. 17, we establish the PE-PCD cover of LetterM data set for all values of r, and 
then, observe the reduction in the number of observations and the reduced imbalance ratios 
by means of the prototype sets. Although the LetterM data set exhibits some level of sepa-
rability between classes similar to HTRU data set, the reduction in the minority class is far 
less than what was from HTRU. Most reduction is achieved in the observations outside of 
convex hull of the non-target class, but the number of observations in the minority class 
is only reduced to 40% outside of the convex hull. Here, the convex hull becomes smaller 
compared to the entire domain with increasing dimensionality. Outside the convex hull 
of the minority class, we observe a 90% reduction in the majority class while the minor-
ity class achieves only 20% reduction, but the reduced imbalance level is approximately 
2.4. The reduced imbalance ratio does not considerably change with increasing expansion 
parameter r since most points are outside of the convex hull and, by the Theorem 4, the 
number of prototypes (dominating points) outside of the convex hull is fixed for all r.

In Fig.  18a, we illustrate the F-measure of standard cover classifier, SVM, kNN and 
CCCD measured on the LetterM test data set. Contrary to the performance of standard 
cover classifier on HTRU dataset, the cover classifier based on the standard PE-PCD cover 
shows much worse performance compared to the other classifiers. There is almost no 
change in the performance of hybrid classifiers with increasing r since only few number of 
target class points(es) fall into the convex hull of the non-target class(es). Composite cover 
classifiers achieve nearly 0.70 F-measure with increasing r but both PE-CCCD hybrid and 
CCCD classifier outperform the composite cover classifier. CCCDs, kNN , SVM and all 
hybrid classifiers have nearly 0.80 F-measure on the test data while the cover classifiers 
achieve F-measures approximately between 0.60 and 0.70. The best performing values of r 
for composite and standard covers are r = 1.7 and r = 1.9 , respectively. The F-measure 
seems to be stable for increasing values of � and � , but lower values of k perform better for 
kNN . Although it is possible to achieve approximately 0.80 F-measure with other classifi-
ers, the standard cover classifiers suffer from model complexity of the PE-PCD cover 
which depends on d, dimensionality of the data set. This is again due to the results of The-
orem 5 where a dominating set of PE-PCD |Sj| is of complexity O

�
dn

⌈d∕2⌉
1−j

�
 . Here, the car-
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Fig. 17   The percentage of reduction and the reduced imbalance ratios (a) and the total reduction (b) of the 
LetterM data sets. Majority class is letters different from M, and minority class is the letter M. The descrip-
tion and labeling of the plots are as in Fig. 14
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dinality of the dominating set increases exponentially on d which is the total exact mini-
mum number of d-simplices and outer-simplices needed to cover the target class. Although 
the dimensionality reduction may be helpful in reducing the complexity of the class cover, 
one may not be able to reduce the dimensionality of the data in such a way that the reduced 
data set has considerably high fraction of explained variance and still be eligible to be 
trained by PE-PCD based classifiers.

In Table 2, we apply all classifiers on 17 UCI and KEEL data sets including iris, HTRU 
and LetterM data sets. For testing the statistical difference between the F-measures of 
classifiers, we employ the combined 5 × 2 CV F-test (Dietterich 1998; Alpaydın 1999). 
We also use micro F-measure for data sets with multiple number of classes since micro 
F-measure is more suitable for multiple imbalanced classes than macro F-measure (Nar-
asimhan et al. 2016). The test works as an omnibus test for all ten possible 5 × 2 CV t-tests 
(for each five repetitions there are two folds, hence ten folds in total). Basically, if a major-
ity of ten 5 × 2 CV t-tests suggest that two classifiers are significantly different in terms of 
performance, the F-test also suggests a significant difference. Hence, an F-test with high 
p-value suggests that some of the ten t-tests fail to reject the null-hypothesis (i.e. they have 
high p-value); that is, it is very likely that there exist no significant difference between the 
F-measures of two classifiers. We only report the p-values of the difference between the 
F-measures of standard cover classifier with all other classifiers (including composite cover 
and hybrid classifiers). In Table 2, we report on the F-measures of all classifiers along with 
the optimum values of associated tuning parameters. We either reduce the dimensional-
ity of each data set, empirically select some subset of features or use the original set of 
features of each data set (hence called the unreduced data set). We report the best perform-
ing number of extracted or selected features for each data set. We mostly avoid applying 
PE-PCD based hybrid and cover classifiers to unreduced data sets due to the high model 
complexity of PE-PCDs with moderately high number of dimensions (or features), hence 
we only apply SVM, kNN and CCCD classifiers to these unreduced data sets.

Alongside with Table 2, we report on the reduced imbalance ratios (the ratio between 
the majority and minority class after PE-PCDs are applied and the prototype set is 
extracted), and reduction rates of standard and composite cover classifiers of all these 
17 data sets in Table 3. Here, we employ a multi class imbalance ratio notation which 
indicates the reduced imbalance ratio of all classes with one class being the reference 
class; for example, IR = n3∕n1 ∣ n2∕n1 ∣ n1∕n1 = n3∕n1 ∣ n2∕n1 ∣ 1 . We report on the 
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global imbalance ratio q = |X0|∕|X1| for |X0| being cardinality of the majority and |X1| 
of minority class. We also report on the local imbalance ratio of two classes and the 
percentage of minority class members in the overlapping region of two classes. Local 
imbalance ratio and the overlapping ratio of imbalanced classes have also been inves-
tigated by Manukyan and Ceyhan (2016), who showed that, although two classes are 
balanced, there may be some region E ⊂ ℝ

d that two classes show some level of imbal-
ance, and this region E is usually where subsets of two classes are close in proximity, 
e.g., where two classes overlap. We employ one-class SVMs with radial basis function 
(RBF) kernels to estimate the support of each class with � = 0.01 and an optimum � . We 
calculate the imbalance ratio of two classes within the overlapping region of their esti-
mated supports, i.e. the local class imbalance. We also provide the percentage of minor-
ity class members falling into this region. The emphasis is that, the higher the (local) 
class imbalance or the higher the percentage of minority class members in the overlap-
ping region, the smaller the F-measure since it would be harder to predict the true labels 
of the minority class (Manukyan and Ceyhan 2016).

In Tables 2 and 3, we observe that composite and standard cover classifiers usually per-
form the best in lower dimensions; that is, dimensionality reduction helps increasing the 
F-measure and mitigating the drawbacks caused by moderately high number of features. 
However, in order for the feature selection or extraction to succeed, the reduced set of fea-
tures should be explanatory enough to help classifiers achieve a considerable performance. 
We select two features from the AlivaD data set where we aim to predict if a letter recog-
nized as “D” or not. Hence, we reduce the dimensionality of the data set drastically, and as 
a result, cover classifiers nearly achieve the Bayes optimal performance. However, applying 
the classifiers to Pageblocks0 data set, we require four extracted principal components to 
achieve a 99% explained variance where cover classifiers perform poorly against the other 
classifiers because of the rapidly increasing complexity of the PE-PCD based covers. A 
similar argument can be made for LetterM data set since four principal components are 
clearly not enough. F-measure is naturally effected by the overlapping ratio of two classes 
since it would be harder to correctly predict the minority class members closer to the points 
of the majority class. As seen in Table 3, the overlapping ratios of data sets like Iris, Thy-
roid (1 and 2) and Banknote are small and these data sets are also quite balanced. Hence, 
there are a handful of minority class members in the support of the majority class which 
results in a high F-measure. There are some data sets however that, although they exhibit 
some global class imbalance, they do not have any local imbalance within the overlap-
ping region. Shuttle0vs4 and Segment0 data sets are examples of such cases where all 
classifiers, including the cover classifiers, perform well even in reduced dimensions with 
PE-kNN classifier being an exception; that is, a hybrid of PE-PCD and kNN classifiers 
drastically confounds the performance. On the other hand, Yeast data sets have high over-
lapping ratios and both local and global imbalance ratios of these data sets are also nota-
bly high. Although PE-PCD based (hybrid and cover) classifiers perform the best in lower 
dimensions, this may result in a considerable loss of information since the percentage of 
explained variance is, for example in Yeast data sets, nearly 35%. Therefore, all other (non-
hybrid or non-cover) classifiers enjoy high F-measure due to the employment of all the 
features (of unreduced data set). PE-PCD based cover classifiers may also perform well for 
classifying data sets like Ionosphere and Ozone data with moderately high number of fea-
tures; that is, after dimensionality reduction, standard cover classifier achieves comparable 
performance to other classifiers but only underperforms against SVM and PE-SVM clas-
sifiers in classifying the Ionosphere data set. Hybrid classifiers often perform comparable 
to their non-hybrid counterparts, but in some cases, they slightly increase the classification 



805Machine Learning (2020) 109:761–811	

1 3

performance; see for example, the F-measures of PE-SVM classifiers in Yeast 4 and Ozone 
data sets.

In Table 3, we observe that all data sets with number of observations bigger than 5000 
are reduced to at most 10% of the original number of observations; that is, cover classifiers 
prune almost 90% of all observations by only choosing nearly 10% of all observations as 
the members of the prototype (i.e. minimum dominating) set. Moreover, both types of cov-
ers reduce the imbalance between two classes; that is, in all data sets, the reduced imbal-
ance ratio is nearly 2 or lower. The level of reduction of PE-PCD covers is highly depend-
ant on the dimensionality. In Table  2, standard and composite cover classifiers perform 
better in Ozone with fewer dimensions than in Ionosphere data set, hence the cardinality 
of dominating sets in both covers are higher in Ionosphere data where approximately 35% 
of all observations constitute the dominating set. The exponentially increasing complexity 
of the Delaunay tessellation effects both the performance and the model complexity of the 
PE-PCD covers. Optimal values of k, � , � and r is also similarly affected by the global (or 
local) class imbalance levels and the dimensionality. Lower values of k perform better for 
locally imbalanced data sets like Yeast4 and Yeast1289vs7, but � is mostly effected by the 
dimensionality. The higher the dimension d or more the extracted features, the lower the 
gamma, and hence the higher the bandwidth ( � ) of the RBF kernel. But most importantly, 
there is a positive trend in � as the class imbalance increases. CCCDs mostly perform best 
in unreduced data sets, therefore higher values of � are preferred. However, Shuttle0vs4 is a 
well separated data set with CCCD achieving higher F-measure in reduced dimension, and 
hence, optimal � is set to the lowest, i.e. � = 0 . The cardinality of minimum dominating 
set of the PE-PCDs decrease with r, but as it is also demonstrated in Sect. 6, a high value 
of r is detrimental for the performance of the PE-PCD based cover classifiers. Hence, in 
most data sets, moderate values of r achieve the best F-measure. One apparent difference in 
optimum values of r among data sets is between locally imbalanced and balanced data sets. 
Yeast5, Yeast6, LetterM and Segment0 data sets have high global imbalance but low local 
imbalance despite the fact that majority and minority classes overlap. An optimum value 
of r for “global only” imbalanced data sets is high which undersamples majority classes as 
much as possible. The bias in globally imbalanced data sets is originated from the abun-
dant number of majority class members closer to the decision boundary but not in the over-
lapping region, hence higher the r the better the performance.

8 � Summary and discussion

We use proximity catch digraphs (PCDs) to construct semi-parametric classifiers that 
show potential in solving problems with substantial class imbalance. These families of 
random geometric digraphs constitute class covers of a class of interest (i.e. the tar-
get class) in order to generate decision-boundaries for classifiers. PCDs are generalized 
versions of Class Cover Catch Digraphs (CCCDs). For imbalanced data sets, CCCDs 
showed better performance than some other commonly used classifiers in previous stud-
ies (Manukyan and Ceyhan 2016; DeVinney et al. 2002). CCCDs are actually examples 
of PCDs with spherical proximity maps. Our PCDs, however, are based on simplicial 
proximity maps, e.g. proportional-edge (PE) proximity maps. Our PCD, or PE-PCD, 
class covers are extended to be unions of simplicial and polygonal regions whereas orig-
inal PE-PCD class covers were composed of only simplicial regions. The most impor-
tant advantage of these family of PE proximity maps is that their respective digraphs, or 
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namely PE-PCDs, have computationally tractable minimum dominating sets (MDSs). 
The class covers of such digraphs are minimum in complexity, offering maximum 
reduction of the entire data set with comparable and, potentially, better classification 
performance. PE-PCDs are one of many PCD families using simplicial proximity maps 
investigated in Ceyhan (2010). Their construction is also based on the Delaunay tessel-
lations of the non-target class, and similar to PE-PCDs, they enjoy various properties 
that CCCDs do in ℝ , and they can also be used to establish PCD classifiers.

The PE-PCDs are defined in the Delaunay tessellation of the points from the non-
target class (i.e. the class not of interest). PE-PCDs, and associated proximity maps, 
were only defined for the points inside of the convex hull of the non-target class points, 
CH(X1−j) , in previous studies. Here, we introduce the outer simplices associated with 
facets of CH(X1−j) and thus extend the definition of the PE proximity maps to these 
outer simplices. Hence, the class covers of PE-PCDs apply for all target class points 
Xj . PE-PCDs are based on the regions of simplices associated with the vertices of these 
simplices, called M-vertex regions. We characterize these vertex regions with barycen-
tric coordinates of target class points with respect to the vertices of the d-simplices. 
However, the barycentric coordinates only apply for the target class points inside the 
convex hull of non-target class points CH(X1−j) . For those points outside the convex 
hull, we may incorporate the generalized barycentric coordinates of, for example, the 
coordinate system of Warren (1996). Such coordinate systems are convenient for locat-
ing points outside CH(X1−j) since outer simplices are similar to convex d-polytopes even 
though they are unbounded. However, generalized barycentric coordinates of the points 
with respect to these convex polytopes are not unique. Hence, the associated properties 
of MDSs and convex distance measures are not well-defined.

We define two types of classifiers based on PE-PCDs, namely, hybrid and cover PE-
PCD classifiers. We show that these classifiers are better in classifying the minority 
class in particular. This makes cover PE-PCD classifiers more appealing since they pre-
sent slightly better performance than other classifiers (including hybrid PE-PCD clas-
sifiers) with a high reduction in the data set. In hybrid PE-PCD classifiers, alternative 
classifiers are used when PE-PCD pre-classifiers are unable to make a decision on a 
query point. These pre-classifiers are only defined by the simplices provided in the 
Delaunay tessellation of the set X1−j , hence only for target class points in CH(X1−j) . We 
considered alternative classifiers kNN , SVM and CCCD. In both our simulation stud-
ies and real data experiments, there are some cases where hybrid classifiers outperform 
their non-hybrid counterparts; for example, PE-SVMs outperform SVM classifiers in 
dimensionally reduced HTRU data set. This may be an indication that, if used alongside 
with proper alternative classifiers, PE-PCD classifiers could be better in modelling the 
decision boundary closer to the overlapping region of classes. The cover PE-PCD clas-
sifiers, on the other hand, are based on two types of covers: composite covers where the 
target class points inside and outside of the convex hull of the non-target class points 
are covered with separate proximity regions, and standard covers where all points are 
covered with regions based on the same family of proximity maps. For composite cov-
ers, we consider a composition of spherical proximity maps (used in CCCDs) and PE 
proximity maps. We observe that, in general, standard cover classifiers perform slightly 
better or comparable to composite cover classifiers in reduced and imbalanced data sets 
unless the standard cover suffers from the high dimensionality. In general, however, 
results on both hybrid and cover PE-PCD classifiers indicate that when the dimensional-
ity is low and classes are imbalanced, standard cover PE-PCD classifiers achieve either 
comparable or slightly better classification performance than others.
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PE-PCD class covers are low in complexity (with respect to the number of observa-
tions); that is, by finding the MDSs of these PE-PCDs, we can construct class covers with 
minimum number of proximity regions. The minimum dominating set, or the prototype set, 
is viewed as a reduced data set that potentially increases the testing speed of a classifier. 
CCCDs have the same properties, but only for data sets in ℝ . By extending end intervals, 
i.e. intervals with infinite end points, to outer simplices in ℝd for d > 1 , we established 
classifiers having the same appealing properties of CCCDs in ℝ . Experiments on both sim-
ulated and real data sets indicate that the expansion parameter r of the PE proximity maps 
substantially decreases the cardinality of the minimum dominating set, but the classifica-
tion performance decreases if r is very large. Although PE-PCDs substantially reduce the 
number of observations of almost all of the real data sets that are considered in this work, 
higher values of r actually degrade the classification performance of both PE-PCD based 
classifiers. Hence, an optimal choice of r value is preferred. But a major drawback of PE-
PCDs is the exponentially increasing complexity of the prototype set on the dimensionality 
of the data set d. This fact is due to the Delaunay tessellation of the non-target class since 
the number of simplices and facets increase exponentially in d (see Theorem 5). Therefore, 
these class covers become inconvenient for modelling the supports of the points from the 
classes in high dimensions. We employ methods of dimensionality reduction, e.g. principal 
components analysis, to mitigate the effects of high dimensionality. PE-PCD cover classi-
fiers perform well in reduced dimensions only if the extracted set of principal components 
provide a high percentage of explained variance. For some real data sets, however, it is 
inefficient to rely on a few number of features, and hence, PE-PCD classifiers are outper-
formed by other classifiers which make use of a set of higher number of explanatory input 
variables.

PE-PCDs offer classifiers of (exact) minimum complexity based on estimation of the 
class supports. The MDSs of PE-PCDs are computationally tractable, and hence, the 
maximum reduction is achieved in polynomial time (on the size of the training data set). 
This property of PE-PCDs, however, achieved by partitioning of ℝd by Delaunay tessel-
lation, and as a result, the number of the simplices and facets of the convex hull of the 
non-target class determines the complexity of the model which increases exponentially 
fast with the dimensionality d of the data set, i.e. O

�
n
⌈d∕2⌉
1−j

�
 for n1−j being the number of 

non-target class points. Indeed, this leads to an overfitting of the data set. We employ 
PCA to extract the features with the most variation, and thus reduce the dimensions to 
mitigate the effects of dimensionality. PCA, however, is one of the oldest dimensionality 
reduction methods, and there are many dimension reduction methods in literature that 
may potentially increase the classification performance of PCD classifiers. One other 
case to be made on PE-PCD covers is that, with the assumption of strict �-separability 
between two classes in a data set, PE-PCDs can be shown to be consistent and they 
achieve Bayes optimal performance of L∗ = 0 . However, Devroye et al. (1996) suggests 
that classifiers with homogeneous decision regions often lead to overfitting and they are 
best fit for data sets with separable class conditional distributions. The PCDs considered 
in this work, including CCCDs, are pure of non-target class points, hence none of the 
non-target class points reside in the class cover. DeVinney et al. (2002) introduced ran-
dom walk CCCDs (RW-CCCDs) that are non-pure alternatives of CCCDs where some 
non-target class points are allowed inside of the class cover in order to mitigate the 
effects of overfitting. Although PE-PCDs offer class covers with computationally tracta-
ble minimum prototype set, PE-PCDs are also pure class covers, and hence, they also 
build homogeneous regions for decision making. We believe that, as a follow-up to this 
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work, it is worthwhile to define non-pure and relaxed PCDs that constitute both exact 
minimum dominating sets and heterogeneous class covers. Such directed graphs would 
enjoy appealing properties of PCDs and they would also be the building blocks of clas-
sifiers that are consistent for a general set of real life data sets.

Although, our work proves the idea that relatively good performing classifiers with 
minimum prototype sets can be provided with PCDs, a discussion raises if there exist 
PCDs with alternative partitioning methods whose exact minimum dominating sets are 
fixed-parameter tractable with respect to d, unlike PCDs based on Delaunay tessellations. 
A problem is said to be fixed-parameter tractable (FPT), if there exists an algorithm to 
solve the problem, running in f (k)|x|c time where c ∈ ℝ

+ is a constant, f is an arbitrary 
computable and non-decreasing function of the parameter k, and |x| is the size of the input 
x (Downey and Fellows 2013). It is often appealing to try to find an FPT algorithm for a 
problem initially shown to be solvable in O(nf (k)) time (which is not FPT). Note that, as in 
Theorem 5, it only takes at most O(2d) or O(1) time to find the exact extremum points of 
each d-simplex S . Hence, a possible line of research for PCDs could be to employ alter-
native partitioning methods such that ℝd is partitioned in at most O(nc

1−j
) time and the 

extremum points are found in O(2k) with parameter k = d . We believe such a partitioning 
method, say for example a rectangular partitioning scheme with polynomial running time 
on both n and d, that produces less partitioning than a Delaunay tessellation could be more 
appealing for the class cover. Classifiers based on such PCDs and their classification per-
formance are topics of ongoing research.
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Appendix

Proof of Theorem 1

We prove this theorem by induction on dimension d. The proof of the case d = 1 is trivial. 
For S(Y) = (�1, �2) ⊂ ℝ and �1 < �2 , the vertex regions RM(�1) and RM(�2) are the inter-
vals (�1,M) and (M, �2) , respectively ( {x = M} and {x = �i} for i = 1, 2 have zero ℝ-Leb-
esgue measure). For �1 ∈ (0, 1) and �2 = 1 − �1 , let �1�1 + �2�2 be the convex (or barycen-
tric) combination of x ∈ S(Y) . Hence, for m1�1 + m2�2 being the convex combination of 
M, we have x ∈ (�1,M) = RM(�1) if and only if 𝛼1∕𝛼2 > m1∕m2 . The case d = 2 is proved 
in Proposition 1. Thus, there only remains the case d > 2 . Suppose the statement is true for 
all faces of the d-simplices which are d − 1 dimensional, and by that, we will show that the 
statement is also true for the d-simplex which is d dimensional.

It is sufficient to show the result for �1 , as the others follow by symmetry. Let x ∈ RM(�1) 
and note that the elements of the set of (d − 1)-faces, {fj}d+1j=2

 , are adjacent to �1 . Each of 
these faces is of d − 1 dimensions. Hence, they are (d − 1)-simplices and they also have 
their own vertex regions. Thus, let RMi

(�j, fi) be the vertex region of �j with respect to 
(d − 1)-simplex fi for j ≠ i . Note that Mi is the center of fi . Now, let wfi

(z, �j) = wij be the 
barycentric coordinate of point z corresponding to �j with respect to the fi . Observe that wii 
is not defined since �i is not a vertex of the face fi.
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Moreover, let �� = (m�
1
,… ,m�

i−1
,m�

i+1
,… ,m�

d+1
) be the vector of barycentric coordi-

nates of Mi with respect to fi , and note that Mi is a linear combination of M and �i . Also, 
observe that m′

i
 is not defined since the vertex �i is not a vertex of fi . Hence, for � ≥ 1,

Therefore, by the uniqueness of barycentric coordinates, we have m�
t
= �mt for 

t = 1,… , d + 1 and t ≠ i . Note that (1 − �) = 0 since Mi ∈ fi and also fi ⊂ 𝜕(S(Y)) . Hence, 
� = 1 which implies m�

t
= mt for all t ≠ i . Then, m�

1
∕m�

j
= m1∕mj for j = 2, 3,… , d + 1 and 

j ≠ i . We use this result on our induction hypothesis.
Now, for i = 2,… , d + 1 , let the face fi and line defined by x and �i cross at the 

point zi Observe that zi ∈ fi , and since fi is a (d − 1)-simplex and x ∈ RM(�1) , see that 
zi ∈ RMi

(�1, fi) . By induction hypothesis and Equation (14), we observe that zi ∈ RMi
(�1, fi) 

if and only if wi1 > (m�
1
∕m�

j
)wij if and only if wi1 > (m1∕mj)wij for j = 2, 3,… , d + 1 and 

j ≠ i . Since the point x is the convex (and linear) combination of zi and �i , for � ∈ (0, 1) , 
we have

By the uniqueness property of barycentric coordinates, it follows that w(1)

S
(x) = �wi1 and 

w
(j)

S
(x) = �wij . Hence,

Since Eq. (15) is true for all i = 2,… , d + 1 , we see that x ∈ RM(�1) if and only if 
w
(1)

S
(x) > (m1∕mi)w

(i)

S
(x) . Hence, the desired result follows. 	�  ◻
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