
Vol.:(0123456789)

Machine Learning (2020) 109:2063–2097
https://doi.org/10.1007/s10994-020-05886-4

1 3

Unsupervised representation learning with Minimax
distance measures

Morteza Haghir Chehreghani1

Received: 27 June 2019 / Revised: 2 March 2020 / Accepted: 4 June 2020 / Published online: 28 July 2020
© The Author(s) 2020

Abstract
We investigate the use of Minimax distances to extract in a nonparametric way the features
that capture the unknown underlying patterns and structures in the data. We develop a gen-
eral-purpose and computationally efficient framework to employ Minimax distances with
many machine learning methods that perform on numerical data. We study both computing
the pairwise Minimax distances for all pairs of objects and as well as computing the Mini-
max distances of all the objects to/from a fixed (test) object. We first efficiently compute
the pairwise Minimax distances between the objects, using the equivalence of Minimax
distances over a graph and over a minimum spanning tree constructed on that. Then, we
perform an embedding of the pairwise Minimax distances into a new vector space, such
that their squared Euclidean distances in the new space equal to the pairwise Minimax dis-
tances in the original space. We also study the case of having multiple pairwise Minimax
matrices, instead of a single one. Thereby, we propose an embedding via first summing up
the centered matrices and then performing an eigenvalue decomposition to obtain the rel-
evant features. In the following, we study computing Minimax distances from a fixed (test)
object which can be used for instance in K-nearest neighbor search. Similar to the case
of all-pair pairwise Minimax distances, we develop an efficient and general-purpose algo-
rithm that is applicable with any arbitrary base distance measure. Moreover, we investigate
in detail the edges selected by the Minimax distances and thereby explore the ability of
Minimax distances in detecting outlier objects. Finally, for each setting, we perform several
experiments to demonstrate the effectiveness of our framework.

Keywords Representation learning · Distance measure · Computational efficiency ·
Minimax distances

Editors: Larisa Soldatova, Joaquin Vanschoren.

 * Morteza Haghir Chehreghani
 morteza.chehreghani@gmail.com

1 Department of Computer Science and Engineering (CSE), Chalmers University of Technology,
Gothenburg, Sweden

http://orcid.org/0000-0002-2912-7422
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05886-4&domain=pdf

2064 Machine Learning (2020) 109:2063–2097

1 3

1 Introduction

Data is usually described by a set of objects and a corresponding representation. The rep-
resentation can be for example the vectors in a vector space or the pairwise dissimilari-
ties between the objects. In real-world applications, the data is often very complicated and
a priori unknown. Thus, the basic representation, e.g., Euclidean distance, Mahalanobis
distance, cosine similarity and Pearson correlation, might fail to correctly capture the
underlying patterns or classes. Thereby, the raw data needs to be processed further in order
to obtain a more sophisticated representation. Kernel methods are a common approach
to enrich the basic representation of the data and model the underlying patterns (Shawe-
Taylor and Cristianini 2004; Hofmann et al. 2008). However, the applicability of kernels
is confined by several limitations, such as, (1) finding the optimal parameter(s) of a ker-
nel function is often very critical and nontrivial (Nadler and Galun 2007; Luxburg 2007),
and (2) as we will see later, kernels assume a global structure which does not distinguish
between the different type of classes in the data.

A category of distance measures, called link-based measure (Fouss et al. 2007; Che-
botarev 2011), takes into account all the paths between the objects represented in a graph
(where the edge weights indicate the respective pairwise dissimilarities). The path-specific
distance between nodes i and j is computed by summing the edge weights on this path (Yen
et al. 2008). Their link-based distance is then obtained by summing up the path-specific
measures of all paths between them. Such a distance measure is known to better capture
the arbitrarily shaped patterns compared to the basic representations such as Euclidean or
Mahalobis distances. Link-based measures are often obtained by inverting the Laplacian of
the distance matrix, in the context of regularized Laplacian kernel and Markov diffusion
kernel (Yen et al. 2008; Fouss et al. 2012). However, computing all-pairs link-based dis-
tances requires O(N3) runtime, where N is the number of objects; thus it is not applicable
to large-scale datasets.

A more effective distance measure, called Minimax measure, selects the minimum
largest gap among all possible paths between the objects. This measure, known also as
Path-based distance measure, has been first investigated on clustering applications (Fis-
cher and Buhmann 2003; Chehreghani 2016; Pavan and Pelillo 2007). It was also proposed
as an axiom for evaluating clustering methods (Zadeh and Ben-David 2009). A straight-
forward approach to compute all-pairs Minimax distances is to use an adapted variant of
the Floyd–Warshall algorithm. The runtime of this algorithm is O(N3) (Aho and Hopcroft
1974; Cormen et al. 2001). This distance measure has been also integrated into a variant
of K-means providing an agglomerative algorithm whose runtime is O(N2|E| + N3 logN)
(Fischer and Buhmann 2003) (|E| indicates the number of edges in the corresponding
graph).

In addition, Minimax distances have been so far applied to a limited type of classifica-
tion, i.e. to K-nearest neighbor search. The method in Kim and Choi (2007) presents a mes-
sage passing algorithm with forward and backward steps, similar to the sum-product algo-
rithm (Kschischang et al. 2006). The method takes O(N) time, which is in theory equal to
the standard K-nearest neighbor search, but the algorithm needs several visits of the train-
ing dataset. Moreover, this method requires computing a minimum spanning tree (MST)
in advance which might require O(N2) runtime. Later on, a greedy algorithm (Kim and
Choi 2013), proposes to compute the Minimax K nearest neighbors by space partitioning
and using Fibonacci heaps whose runtime is O(logN + K logK) . However, this method is
applicable only to Euclidean spaces and assumes the graph is sparse.

2065Machine Learning (2020) 109:2063–2097

1 3

Motivation Minimax distances enable to cope with arbitrarily shaped classes and struc-
tures in the data. For example, it has been shown that Minimax K-nearest neighbor clas-
sification is effective on non-spherical data, whereas the standard variant, the metric learn-
ing approach (Weinberger and Saul 2009), or the shortest path distance (Tenenbaum et al.
2000) might give poor results, since they ignore the underlying geometry. See for example
Figure 1 in Kim and Choi (2013). In particular, four properties of Minimax distances are
attractive for us:

• They enable to compute the patterns and structures in a non-parametric way, i.e. unlike
many kernel methods, they do not require fixing any critical parameter in advance.

• They extract the structures adaptively, i.e., they adapt appropriately whenever the
classes differ in shape or type.

• They take into account the transitive relations: if object a is similar to b, b is similar to c,
..., to z, then the Minimax distance between a and z will be small, although their direct
distance might be large. This property is particularly useful when dealing with elon-
gated or arbitrarily shaped patterns. Moreover, if a basic pairwise similarity is broken
due to noise, then their Mimimax distance is able to correct it via taking into account
the other paths and relations. For example if the similarity of i and j is broken, then
according to Minimax distances, they might still be similar via i → k → l → … → j.

• Many learning methods perform on a vector representation of the objects. However,
such a representation might not be available. We might be given only the pairwise dis-
tances which do not necessarily induce a metric. Minimax distances satisfy the metric
conditions and enable to compute an embedding, as we will study in this paper.

Contributions Our goal is to develop a generic and computationally efficient framework
wherein many different machine learning algorithms can be applied to Minimax distances,
beyond e.g., K-nearest neighbor classification or the few clustering methods mentioned
before. Within this unified framework, we consider computing both the all-pair pairwise
Miniamx distances and the Minimax distances of all the objects to/from a fixed (test)
object.

1. We first efficiently compute the pairwise Minimax distances between the objects, using
the equivalence of Minimax distances over a graph and over a minimum spanning
tree constructed on that. This approach reduces the runtime of computing the pairwise
Minimax distances to O(N2) from O(N3).

2. Then, we investigate the possibility of embedding the pairwise Minimax distances into a
vector space. This feasibility, allows us to perform an Euclidean embedding of the pair-
wise Minimax distances, such that the pairwise squared Euclidean distances in the new
space equal to the pairwise Minimax distances in the original space. Such an embedding
enables us to apply any numerical learning algorithm on the resultant Minimax vectors.

3. We also consider the cases where there are multiple pairwise Minimax matrices instead
of a single matrix, which might happen when dealing with multiple pairwise relations,
robustness or high-dimensional data. Hence, to obtain a collective embedding, we pro-
pose to first center the individual Minimax matrices and then sum them up. This makes
an embedding feasible, because the resultant matrix is positive semidefinite.

4. In the following, we study computing Minimax distances from a fixed (test) object
which can be used for instance in K-nearest neighbor search. For this case, we propose
an efficient and computational optimal Minimax K-nearest neighbor algorithm whose

2066 Machine Learning (2020) 109:2063–2097

1 3

runtime is O(N) , similar to the standard K-nearest neighbor search, and it can be applied
with any arbitrary base dissimilarity measure.

5. Moreover, we investigate in detail the edges selected by the Minimax distances and
thereby explore the ability of Minimax distances in detecting outlier objects.

6. Finally, we experimentally study our framework in different machine learning prob-
lems (classification, clustering and K-nearest neighbor search) on several synthetic and
real-world datasets and illustrate its effectiveness and superior performance in different
settings.

The rest of the paper is organized as following. In Sect. 2, we introduce the notations and
definitions. In Sect. 3, we develop our framework for computing pairwise Minimax dis-
tances and extracting the relevant features applicable to general machine learning meth-
ods. Here, we also extend our approach for computing and embedding Minimax vectors for
multiple pairwise data relations, i.e., to collective Minimax distances. In Sect. 4, we extend
further our framework for computing the Minimax K-nearest neighbor search and outlier
detection. In Sect. 5, we describe the experimental studies, and finally, we conclude the
paper in Sect. 6.

2 Notations and definitions

A dataset can be modeled by a graph G(�,�) , where O and D respectively indicate the
set of N objects (nodes) and the corresponding edge weights such that �ij shows the pair-
wise dissimilarity between objects i and j. The base pairwise dissimilarities �ij can be
computed for example according to squared Euclidean distances or cosine (dis)similari-
ties between the vectors that represent i and j. In several applications, �ij might be given
directly.1 In general, D might not yield a metric, i.e. the triangle inequality may not hold.
We have recently studied the application of Minimax distances to correlation clustering,
where the triangle inequality does not necessarily hold for the base pairwise dissimilarities
(Chehreghani 2020). In our study, D needs to satisfy three basic conditions:

1. zero self distances, i.e. ∀i,�ii = 0,
2. non-negativity, i.e. ∀i, j,�ij ≥ 0 , and
3. symmetry, i.e. ∀i, j,�ij = �ji.

We assume there are no duplicates, i.e. the pairwise dissimilarity between every two dis-
tinct objects is positive. For this purpose, we may either remove the duplicate objects or
perturb them slightly to make the zero non-diagonal elements of D positive. The goal is
then to use the Minimax distances and the respective features to perform the machine
learning task of interest.

The Minimax (MM) distance between objects i and j is defined as

(1)�
MM
i,j

= min
r∈Rij(�)

{ max
1≤l≤|r|−1

�r(l)r(l+1)},

1 For simplicity of explanation, we assume that the graph is full, i.e. the missing edges are filled by a large
value. However, our analysis can be easily extended to arbitrary graphs (Chehreghani 2017).

2067Machine Learning (2020) 109:2063–2097

1 3

where Rij(�) is the set of all paths between i and j. Each path r is identified by a sequence
of object indices, i.e. r(l) shows the lth object on the path.

3 Features extraction from pairwise Minimax distances

We aim at developing a unified framework for performing arbitrary numerical learning
methods with Minimax distances. To cover different algorithms, we pursue the following
strategy:

1. We compute the pairwise Minimax distances for all pairs of objects i and j in the dataset.
2. We, then, compute an embedding of the objects into a new vector space such that their

pairwise (squared Euclidean) distances in this space equal their Minimax distances in
the original space.

Notice that vectors are the most basic way for data representation, since they render a
bijective mapping between the objects and the measurements. Hence, any machine lean-
ing method which performs on numerical data can benefit from our approach. Such meth-
ods perform either on the objects in a vector space, e.g. logistic regression, or on a kernel
matrix computed from the pairwise relations between the objects. In the later case, the
pairwise Minimax distances can be used for this purpose, for example through an exponen-
tial transformation, or the kernel can be computed from the final Minimax vectors.

3.1 Computing pairwise Minimax distances

Previous works for computing Minimax distances (e.g. applied to clustering) use a variant
of Floyd–Warshall algorithm whose runtime is O(N3) (Aho and Hopcroft 1974; Cormen
et al. 2001), or combine it with K-means in an agglomerative algorithm whose runtime
is O(N2|E| + N3 logN) (Fischer and Buhmann 2003). To reduce such a computational
demand, we follow a more efficient procedure established in two steps: (1) build a mini-
mum spanning tree (MST) over the graph, and then, (2) compute the Minimax distances
over the MST.

I. Equivalence of Minimax distances over a graph and over a minimum spanning tree
on the graph

We exploit the equivalence of Minimax distances over an arbitrary graph and those
obtained from a minimum spanning tree on the graph, as expressed in Theorem 1.2

2 This result may lead to several simplifications for computing the base pairwise distance measure D and
the respective graph G(�,�) , where the graph does not need to be necessarily full. For example, instead of
a full graph, we can compute a minimal (connected) graph that sufficiently includes a minimum spanning
tree. For instance, one might use the K nearest neighbor graph, which is not necessarily full. On the other
hand, we might have no idea about the pairwise dissimilarities. Then we may query them from a user and
infer the rest by Minimax distances. In fact, this result proposes an efficient method for this purpose: due to
equivalence of Minimax distances on a graph and on any minimum spanning tree on that, we may be able
to query significantly smaller number of pairwise dissimilarities that sufficiently represent a MST. This can
be significantly faster than querying or inferring all the pairwise distances to obtain D.

2068 Machine Learning (2020) 109:2063–2097

1 3

Theorem 1 Given graph G(�,�) , a minimum spanning tree constructed on that provides
the sufficient and necessary edges to obtain the pairwise Minimax distances.

Proof The equivalence is concluded in a similar way to the maximum capacity problem
(Hu 1961), where one can show that picking an edge which does not belong to a minimum
spanning tree, yields a larger Minimax distance (i.e., a contradiction occurs).

We here describe a high level proof. Let e��
ij

 denote the edge representing the Minimax
distance between i and j. We investigate two cases:

1. There is only one path between i and j. Then, this path will be part of any minimum
spanning tree constructed over the graph. Since, otherwise, if some edge for example e��

ij

is not selected, then the tree will lose the connectivity, i.e. there will be less edges in the
tree than N − 1 . The same argument holds when there are several paths between i and
j, but all share e��

ij
 such that e��

i,j
 is the largest edge on all of them (Fig. 1a). Then e��

ij
 will

be selected by any minimum spanning tree, as otherwise the tree will be disconnected.
2. There are several paths between i and j, whose largest edges are different. We need to

show that only the path including e��
i,j

 is selected by a minimum spanning tree. To prove,
consider two paths, one including e��

i,j
 and the other containing e���

i,j
 which is the largest

edge on the alternative path (Fig. 1b). It is easy to see that the minimum spanning tree
would choose e��

i,j
 instead of e���

i,j
 : existence of two different paths indicates presence

of at least one cycle. According to the definition of a tree, one edge of a cycle should
be eliminated to yield a tree. In the cycle including e��

i,j
 , according to the definition of

Minimax distances, there is at least one edge not smaller than e��
i,j

 (which is e���
i,j

), as
otherwise e��

i,j
 would not represent the Minimax distance (the minimum of largest gaps)

between i and j. Thereby the minimum spanning tree algorithm keeps e��
i,j

 instead of e���
i,j

 ,
since this choice leads to a tree with a smaller total weight. Notice that the algorithm
cannot discard both e��

i,j
 and e���

i,j
 , because then the connectivity will be lost.

On the other hand, it is necessary to build a minimum spanning tree, e.g. to have at least
N − 1 edges selected given that the graph G is connected. Otherwise, the computed MST
will lose its connectivity and thereby for some pairs of objects there will be no path to be
computed. □

Therefore, to compute the Minimax distances �MM , we need to care only about the
edges which are present in an MST over the graph. Then, the Minimax distances are writ-
ten by

where rij indicates the (only) path between i and j. This result does not depend on the
particular choice of the algorithm used for constructing the minimum spanning tree. The

(2)�
MM
ij

= max
1≤l≤|rij|−1

�rij(l)rij(l+1)
,

(a) (b)

Fig. 1 Equivalence of minimax distances over a graph and over a MST constructed on the graph

2069Machine Learning (2020) 109:2063–2097

1 3

graph that we assume is a full graph, i.e. we compute the pairwise dissimilarities between
all pairs of objects. For full graphs, the straightforward implementation of the Prim’s algo-
rithm (1957) using an auxiliary vector requires O(N2) runtime which is an optimal choice.

 II. Pairwise Minimax distances over a MST

At the next step, after constructing a minimum spanning tree, we compute the pair-
wise Minimax distances over that. A naive and straightforward algorithm would perform
a Depth First Search (DFS) from each node to compute the Minimax distances by keeping
the track of the largest distance between the initial node and each of the traversed nodes. A
single run of DFS requires O(N) runtime and thus the total time will be O(N2) . However,
such a method might lead to visiting some edges multiple times which renders an unneces-
sary extra computation. For instance, a maximal edge weight might appear in many DFSs
such that it is processed several times. Hence, a more elegant approach would first deter-
mine all the objects whose pairwise distances are represented by an edge weight and then
assigns the weight as their Minimax distances. According to Theorem 1, every edge in the
MST represents some Minimax distances. Thus, we first find the edge(s) which represent
only few Minimax distances, namely only one pairwise distance, such that the respective
objects can be immediately identified. Lemma 1 suggest existence of this kind of edges.

Lemma 1 In a minimum spanning tree, for the minimal edge weights we have �MM
ij

= �ij ,
where i and j are the two objects that occur exactly at the two sides of the edge.

Proof Without loss of generality, we assume that the edge weights are distinct. Let emin
denote the edge with minimal weight in the MST. We consider the pair of objects p and q
such that at least one of them is not directly connected to emin and show that emin does not
represent their Minimax distance. In a MST, there is exactly one path between each pair of
objects. Thus, on the path between p and q there is at least another edge whose weight is
not smaller than the weight of emin , which hence represents the Minimax distance between
p and q, instead of emin. □

Lemma 1 yields a dynamic programming approach to compute the pairwise Minimax
distances from a tree. We first sort the edge weights of the MST via for example merge sort
or heap sort (Cormen et al. 2001) which in the worst case require O(N logN) time. We then
consider each object as a separate component. We process the edge weights one by one
from the smallest to the largest, and at each step, we set the Minimax distance of the two
respective components by this weight. Then, we remove the two components and replace
them by a new component constructed from the combination (union) of the two. We repeat
these two steps for all edges of the minimum spanning tree. A main advantage of this algo-
rithm is that whenever an edge is processed, all the nodes that it represents their Minimax
distances are ready in the components connected to the two sides of the edge. Algorithm 1
describes the procedure in detail.

2070 Machine Learning (2020) 109:2063–2097

1 3

Algorithm 1 uses the following data structures.

1. component_list : is a list of lists, wherein each list (component) contains the set of nodes
(objects) that are treated similarly, i.e. they have the same Minimax distance to/from an
external node or component.

2. component_id : a N-dimensional vector containing the ID of the latest component that
each object belongs to.

Each object initially constitutes a separate component. The algorithm, at each step i, pops
out the unselected edge ei which has the smallest weight. For this purpose, we assume that
the vector of the edge weights (i.e. weights) has been sorted in advance. The nodes asso-
ciated to the edges are rearranged according to the ordering of weights and are stored in
indices. If the edge ei does not entirely occur inside a single component, then the nodes
reachable from each side of ei (i.e. from ind1 and ind2) are selected and stored respec-
tively in first_side and scnd_side . For this purpose, we use a vector called component_id
which keeps the ID (index) of the latest component that each node belongs to. Therefore,
the component first_side is obtained by component_list[component_id[ind1]] and similarly
scnd_side by

2071Machine Learning (2020) 109:2063–2097

1 3

component_list[component_id[ind2]] . Then �MM is updated by

Finally, a new component is constructed and added to component_list by combining the
two base components first_side and scnd_side . The ID of this new component is used as
the ID of its members in component_id.

3.2 Embedding of pairwise Minimax distances

In the next step, given the matrix of pairwise Minimax distances �MM , we obtain an
embedding of the objects into a vector space such that their pairwise squared Euclidean
distances in this new space are equal to their Minimax distances in the original space. For
this purpose, in Theorem 2, we investigate a useful property of Minimax distance meas-
ures, called the ultrametric property, and use this property to prove the existence of such an
embedding.

Theorem 2 Given the pairwise distances D, the matrix of Minimax distances �MM induces
an L2

2
 embedding, i.e. there exist a new vector space for the set of objects O wherein the

pairwise squared Euclidean distances are equal to the pairwise Minimax distances in the
original space.

Proof First, we investigate that the pairwise Minimax distances �MM constitute an ultra-
metric. The conditions to be satisfied are:

1. ∀i, j ∶ �
MM
ij

= 0 if and only if i = j. We verify each of the conditions separately. (1) If
i = j, then �MM

ij
= 0 : We have �MM

ii
= �ii = 0 because the smallest maximal gap between

every object and itself is zero. (2) If �MM
ij

= 0 , then �ij = 0 and i = j, because we have
assumed that all the distinct pairwise distances are positive, i.e. zero base or Minimax
pairwise distances can occur only if i = j.

2. ∀i, j ∶ �
MM
ij

≥ 0 . All the edge weights, i.e. the elements of D, are non-negative. Thus the
minimum of them, i.e. min(�) , is also non-negative. Moreover, by definition we have
�

MM
ij

≥ min(�) . Hence, we conclude �MM
ij

≥ min(�) ≥ 0.
3. ∀i, j ∶ �

MM
ij

= �
MM
ji

 . By assumption D is symmetric, therefore, any path from i to j will
also be a path from j to i, and vice versa. Thereby, their maximal weights and the mini-
mum among different paths are identical.

4. ∀i, j, k ∶ �
MM
ij

≤ max{�MM
ik

,�MM
kj

} . We show that otherwise a contradiction occurs. Sup-
pose there is a triplet i, j, k such that �MM

ij
> max{�MM

ik
,�MM

kj
} . Then, according to

the definition of Minimax distance, the path from i to k and then to j must be used for
computing the Minimax distance �MM

ij
 which leads to �MM

ij
≤ max{�MM

ik
,�MM

kj
} , i.e. a

contradiction occurs.

On the other hand, ultrametric matrices are positive definite (Fiedler 1998; Varga and Nab-
ben 1993) and positive definite matrices induce an Euclidean embedding (Schoenberg
1937). □

Notice that we do not require D to induce a metric, i.e. the triangle inequality is not
necessarily fulfilled. After satisfying the feasibility condition, there exist several ways to

(3)
�

MM[first_side, scnd_side] = weights[i],

�
MM[scnd_side, first_side] = weights[i].

2072 Machine Learning (2020) 109:2063–2097

1 3

compute a squared Euclidean embedding. We exploit a method motivated in Young and
Householder (1938) and further analyzed in Torgerson (1958) that is known as multidi-
mensional scaling [25]. This method works based on centering �MM to compute a Mercer
kernel which is positive semidefinite, and then performing an eigenvalue decomposition, as
following:3

1. Center �MM by

A is defined as � = �N − 1

N
�N�

T
N

 , where �N is a vector of length N with 1’s and �N is an
identity matrix of size N.

2. Under this transformation, �MM is positive semidefinite. Thus, we decompose �MM
into its eigenbasis, i.e.,

 where � = (v1,… , vN) contains the eigenvectors vi and � = ����(�1,… , �N) is a
diagonal matrix of eigenvalues �1 ≥ ⋯ ≥ �d ≥ �d+1 = 0 = ⋯ = �N . Note that the
eigenvalues are nonnegative, since �MM is positive semidefinite.

3. Calculate the N × d matrix

 where �d = (v1,… , vd) and �d = diag(�1,… , �d).
Here, d shows the dimensionality of the Minimax vectors, i.e. the number of Minimax fea-
tures. The Minimax dimensions are ordered according to the respective eigenvalues and
thereby we might choose only the first most representative ones, instead of taking them all.

3.3 Embedding of collective Minimax pairwise matrices

We extend our generic framework to the cases where multiple pairwise Minimax matrices
are available, instead of a single matrix. Then, the goal would be to find an embedding
of the objects into a new space wherein their pairwise squared Euclidean distances are
related to the collective Minimax distances over different Minimax matrices. Such a sce-
nario might be interesting in several situations:

• There might exist different type of relations between the objects, where each renders a
separate graph. Then, we compute several pairwise Minimax distances, each for a spe-
cific relation.

• Minimax distances might fail when for example few noise objects connect two compact
classes. Then, the inter-class Minimax distances become very small, even if the objects
from the two classes are connected via only few outliers. To solve this issue, similar
to model averaging, one could use the higher order, i.e. the second, third, ...Minimax
distances, e.g., the second smallest maximal gap. Then, there will be multiple pairwise
Minimax matrices each representing the kth Minimax distance.

(4)�
MM

← −
1

2
��

MM
�.

(5)�
MM = ���

T ,

(6)�
MM
d

= �d(�d)
1∕2,

3 One could instead use more efficient methods such as Globerson et al. (2007) and Khoshneshin and Street
(2010), or use faster approximate of eigenvectors/eigenvalues (Quarteroni et al. 2007).

2073Machine Learning (2020) 109:2063–2097

1 3

• In many real-world applications, we encounter high-dimensional data, the patterns
might be hidden in some unknown subspace instead of the whole space, such that they
are disturbed in the high-dimensional space due to the curse of dimensionality. Mini-
max distances rely on the existence of well-connected paths, whereas such paths might
be very sparse or fluctuated in high dimensions. Thereby, similar to ensemble meth-
ods, it is natural to seek for connectivity paths and thus for Minimax distances in some
subspaces of the original space.4 However, investigating all the possible subspaces is
computationally intractable as the respective cardinality scales exponentially with the
number of dimensions. Hence, we propose an approximate approach based on comput-
ing Minimax distances for each dimension, which leads to having multiple Minimax
matrices.

In all the aforementioned cases, we need to deal with (let say M) different matrices of Min-
imax distances computed for the same set of objects. Then, the next step is to investigate
the existence of an embedding that represents the pairwise collective Minimax distances.
To proof the existence of such an embedding for M = 1, we used the ultrametric property
of the respective Minimac distances and then concluded the positive definiteness. How-
ever, as shown in Theorem 3, the sum of M > 1 Minimax matrices does not necessarily
satisfy the ultrametric property.

Theorem 3 Given M > 1 pairwise Minimax matrices �MM(m),m ∈ {1, ..,M} for the same
set of objects O, then, the accumulative Minimax matrix �aMM = �MM(1) +⋯ + �MM(m)
does not necessarily constitute an ultrametric.

Proof We investigate the ultrametric conditions for �aMM (using the results of the analysis
in Theorem 2):

1. ∀i, j ∶ �
aMM
ij

= 0 , if and only if i = j. We investigate each of the conditions.

 (i) If i = j, then �aMM
ij

= 0 : Since we have �MM
ii

(1) = ⋯ = �
MM
ii

(M) = 0 , then
�

aMM
ii

=
∑M

m=1
�

MM
ii

(m) = 0.
 (ii) If �aMM

ij
= 0 , then i = j : According to our assumption, for i ≠ j we have �ij > 0

and thus �MM
ij

> 0 . Therefore, �aMM
ij

> 0 if i ≠ j , i.e. �aMM
ij

= 0 implies that
i = j.

2. ∀i, j ∶ �
aMM
ij

≥ 0 . We have: ∀1 ≤ m ≤ M,�MM
ij

(m) ≥ 0 . Thus,

3. ∀i, j ∶ �
aMM
ij

= �
aMM
ji

 . We h ave : ∀1 ≤ m ≤ M,�MM
ij

(m) = �
MM
ji

(m) . T h u s ,
∑M

m=1
�

MM
ij

(m) =
∑M

m=1
�

MM
ji

(m) , i.e. �aMM
ij

= �
aMM
ji

.
4. ∀i, j, k ∶ �

aMM
ij

≤ max{�aMM
ik

,�aMM
kj

} . ∀1 ≤ m ≤ M , we have

�
aMM
ij

=

M∑

m=1

�
MM
ij

(m) ≥ 0.

4 An alternative approach would be to perform dimension reduction via e.g. principle component analysis
(PCA) and so on. Our approach can be easily extended to such cases too.

2074 Machine Learning (2020) 109:2063–2097

1 3

 Then,

 However, we need to show that

 Thus, if we can approximate max{
∑M

m=1
�

MM
ik

(m),
∑M

m=1
�

MM
kj

(m)} by ∑M

m=1
max{�MM

ik
(m),�MM

kj
(m)} , then, this condition is satisfied too and thereby �aMM

induces an ultrametric.
 However, in general this approximation is not valid and one can find cases where

�
aMM
ij

> max{�aMM
ik

,�aMM
kj

} . Here, we show an example. Let fix M = 2 and consider the
datasets in Fig. 2. The two datasets represent the same set of objects. They differ only in
the position of the kth object and the other objects are fixed among the two datasets. In
both datasets, the Minimax distance between i and j is equal to a, i.e.

∑M

m=1
�

MM
ij

(m) = 2a .

On the other hand, we have
∑M

m=1
�

MM
ik

(m) = b + a , and similarly
∑M

m=1
�

MM
kj

(m) = a + b .
Thus,

∑M

m=1
�

MM
ij

(m) = 2a > max{
∑M

m=1
�

MM
ik

(m),
∑M

m=1
�

MM
kj

(m)} = a + b , i.e., �aMM
does not induce an ultrametric. □

Theorem 3 indicates that the accumulative Minimax matrix �aMM does not always yield
an ultrametric. However, we do not necessarily need the ultrametric property to compute
an embedding, rather it is only a sufficient condition. Theorem 4 suggests that after com-
puting �MM(m),m ∈ {1, ..,M} , first we center each of them via Eq. 4 and then sum them
up. The resultant matrix �cMM is embeddable as it is positive definite.

Theorem 4 For a set of objects O, we are given M pairwise Minimax matrices
�MM(m),m ∈ {1,… ,M} and the respective centered matrices �MM(m) defined as

Then, the collective matrix �cMM =
∑M

m=1
�MM(m) induces an L2

2
 embedding.

Proof According to Theorem 2, each �MM(m) yields an L2
2
 embedding, which implies that

�MM(m) is positive definite (Torgerson 1958; Young and Householder 1938). On the other

�
MM
ij

(m) ≤ max{�MM
ik

(m),�MM
kj

(m)}.

M∑

m=1

�
MM
ij

(m) ≤

M∑

m=1

max{�MM
ik

(m),�MM
kj

(m)}.

M∑

m=1

�
MM
ij

(m) ≤ max{

M∑

m=1

�
MM
ik

(m),

M∑

m=1

�
MM
kj

(m)}.

(7)�
MM(m) = −

1

2
��

MM(m)�.

(a) (b)

Fig. 2 Two different representation of the same objects. The difference is only in the position of the kth
object. Summing up the pairwise Minimax distances of these two datasets does not lead to an ultrametric

2075Machine Learning (2020) 109:2063–2097

1 3

hand, sum of multiple positive definite matrices (i.e. �cMM) is a positive definite matrix
too (Horn and Johnson 1990). Thus, the eigenvalues of �cMM are non-negative and it
induces an L2

2
 embedding. □

Thereby, instead of summing the �MM(m) matrices, we sum up the �MM(m) ’s and
then perform eigenvalue decomposition, to compute an embedding wherein the pairwise
squared Euclidean distances correspond to the collective pairwise Minimax distances. As
will be mentioned in the experiments, we perform the above computations on the squared
pairwise base dissimilarities.

Efficient calculation of dimension-specific Minimax distances In this paper, we particu-
larly study the use of collective Minimax embedding for high-dimensional data (called the
dimension-specific variant). The dimension-specific variant may require computing pair-
wise Minimax distances for each dimension, which can be computationally expensive.
However, in this setting, the objects stay in an one-dimensional space. A main property
of one-dimensional data is that sorting them immediately gives a minimum spanning tree.
We, then, compute the pairwise distances for each pair of consecutive objects in the sorted
list to obtain the edge weights of the minimum spanning tree. Finally, we compute the pair-
wise Minimax distances from the minimum spanning tree.

4 One‑to‑all Minimax distance measures

In this section, we study computing Minimax distances from a fixed (test) object which
can be in particular used in K-nearest neighbor search. In this setup, we are given a graph
G(�,�) (as the training dataset), and a new object (node) v. O indicates a set of N (train-
ing) objects with the corresponding pairwise dissimilarities D, i.e., D denotes the weights
of the edges in G . The goal is to compute the K objects in O whose Minimax distances
from v are not larger than any other object in O. We assume there is a function d(v,�)
which computes the pairwise dissimilarities between v and all the objects in O. Thereby, by
adding v to G we obtain the graph G+(� ∪ v,� ∪ d(v,�)).

4.1 Minimax K‑nearest neighbor search

We introduce an incremental approach for computing the Minimax K-nearest neighbors of
the new object v, i.e. we obtain the (T + 1)th Minimax neighbor of v given the first T Mini-
max neighbors. Thereby, first, we define the partial neighbors of v as the first Minimax
neighbors of v over graph G+(� ∪ v,� ∪ d(v,�)) , i.e.,

Theorem 5 provides a way to extend NPT (v) step by step until it contains the K nearest
neighbors of v according to Minimax distances.

Theorem 5 Given the (traning) graph G(�,�) and a test node v, assume we have already
computed the first T Minimax neighbors of v (i.e., the set NPT (v)). Then, the node with the

(8)NPT (v) =

{
{i} ⊆ � ∶ |{i}| = T ,∄j ∈ {�⧵NPT (v)} ∶ �

MM
vj

< �
MM
vi

}
.

2076 Machine Learning (2020) 109:2063–2097

1 3

minimal distance to the set {v ∪NPT (v)} gives the (T + 1)th Minimax nearest neighbor of
v.5

Proof Let us call this new (potential) neighbor u. Let eu∗ indicate the edge (with the small-
est weight) connecting u to {v ∪NPT (v)} and p ∈ {v ∪NPT (v)} denote the node at the
other side of eu∗ . We consider two cases:

1. �p,u ≤ �MM
v,p

 , i.e. the weight of eu∗ is not larger than the Minimax distance between v and
p. Then, �MM

v,u
= �MM

v,p
 and therefore u is naturally a valid choice.

2. �p,u > �MM
v,p

 , then we show that there exist no other unselected node u′ (i.e. from
{�⧵NPT (v)}) which has a smaller Minimax distance to v than u. Thereby:

(a) DMM
v,u

> �MM
v,p

 (according to the assumption �p,u > �MM
v,p

). Moreover, it can be
shown that there is no other path from v to u whose maximum weight is smaller
than �p,u . Because, if such a path exists, then there must be a node p� ∈ NPT (v)
which has a smaller distance to an external node like u′ . This leads to a contradic-
tion since u is the closest neighbor of NPT (v).

(b) For any other unselected node u′ we have �MM
v,u′

≥ �p,u . Because computing the
Minimax distance between v and u′ requires visiting an edge whose one side is
inside NPT (v) , but the other side is outside NPT (v) . Among such edges, eu∗ has
the minimal weight, therefore, �MM

v,u′
 cannot be smaller than �p,u.

 Finally, from (a) and (b) we conclude that �MM
v,u

≤ �
MM
v,u′

 for any unselected node
u′ ≠ u . Hence, u has the smallest Minimax distance to v among all unselected nodes.
 □

Theorem 5 proposes a dynamic programming approach to compute the Minimax
K-nearest neighbors of v. Iteratively, at each step, we obtain the next Minimax nearest
neighbor by selecting the external (unselected) node u which has the minimum distance to
the nodes in {v ∪NPT (v)} . This procedure is repeated for K times. Algorithm 2 describes
the steps in detail. Since the algorithm performs based on finding the nearest unselected
node, therefore vector dist is used to keep the minimum distance of unselected nodes to
(one of the members of) {v ∪NPT (v)} . Thereby, the algorithm finds a new neighbor in two
steps: (1) extension: it picks the minimum of dist and adds the respective node to NPT (v) ,
and (2) update: it updates dist by checking if an unselected node has a smaller distance to
the new NPT (v) . Thus dist is updated by dist = min(dist,�min_ind,∶) , except for the mem-
bers of NPT (v).

5 Given a set S ⊂ � , the distance of object i ∈ {�⧵S} to S is obtained by the minimum of the distances
between i and the objects in S.

2077Machine Learning (2020) 109:2063–2097

1 3

Computational complexity Each step of Algorithm 2, either the extension or the update,
requires an O(N) running time. Therefore the total complexity is O(N) which is the same
as for the standard K-nearest neighbor method. The standard K-nearest neighbor algorithm
computes only the first step. Thus our algorithm only adds a second update step, thereby
it is more efficient than the message passing method (Kim and Choi 2007) that requires
more visits of the objects and also builds a complete minimum spanning tree in advance on
G(�,�).

4.2 Minimax K‑NN search, the Prim’s algorithm and computational optimality

According to Theorem 1, computing pairwise Minimax distances requires first computing
a minimum spanning tree over the underlying graph. Thereby, here, we study the connec-
tion between Algorithm 2 (i.e., Minimax K-NN search) and minimum spanning trees. For
this purpose, we first consider a general framework for constructing minimum spanning
trees called generalized greedy algorithm (Gabow et al. 1986). Consider a forest (collec-
tion) of trees

{
Tp
}
 . The distance between the two trees Tp and Tq is obtained by

The nearest neighbor tree of Tp , i.e. T∗
p
 , is obtained by

Then, the edge e∗
p
 represents the nearest tree from Tp . It can be shown that e∗

p
 will belong to

a minimum spanning tree on the graph as otherwise it yields a contradiction (Gabow et al.

(9)ΔTpq = min
i∈Tp

min
j∈Tq

�ij .

(10)T∗
p
= argmin

Tq

ΔTpq, q ≠ p .

2078 Machine Learning (2020) 109:2063–2097

1 3

1986). This result provides a generic way to compute a minimum spanning tree. A greedy
MST algorithm at each step, (1) picks two candidate (base) trees where one is the nearest
neighbor of the other, and (2) combines them via their shortest distance (edge) to build a
larger tree.

This analysis guarantees that Algorithm 2 yields a minimum spanning subtree on
{v ∪NPT (v)} which is additionally a subset of a larger minimum spanning tree on the
whole graph G+(� ∪ v,� ∪ d(v,�)) . In the context of generalized greedy algorithm, Algo-
rithm 2 generates the MST via growing only the tree started from v and the other candidate
trees are singleton nodes. A complete minimum spanning tree would be constructed, if the
attachment continues for N steps, instead of K. This procedure, then, would yield a Prim
minimum spanning tree (Prim 1957). This analysis reveals an interesting property of the
Prim’s algorithm:

The Prim’s algorithm ‘sorts’ the nodes based on their Minimax distances from/to the initial
(test) node v.

Computational optimality This analysis also reveals the ‘computational optimality’ of our
approach (Algorithm 2) compared to the alternative Minimax search methods, e.g. the
method introduced in Kim and Choi (2007). Our algorithm always expands the tree which
contains the initial node v, whereas the alternative methods might sometimes combine the
trees that do not have any impact on the Minimax K-nearest neighbors of v. In particular,
the method in Kim and Choi (2007) constructs a complete MST, whereas we build a par-
tial MST with only and exactly K edges. Any new node that we add to the partial MST,
belongs to the K Minimax nearest neighbors of v, i.e., we do not investigate/add any unnec-
essary node to that.

4.3 One‑to‑all Minimax distances and minimum spanning trees

A straightforward generalization of Algorithm 2 gives sorted one-to-all Minimax distances
from the target (test) v to the all other nodes. We only need to run the steps (extension and
update) for N times instead of K. In Theorem 1, we observed that computing all-pair Min-
imax distances is consistent/equivalent with computing a minimum spanning tress, such
that a MST provide all the necessary and sufficient edge weights for this purpose. Then
later we have proposed an efficient algorithm for the one-to-all problem that also yields
computing a (partial) minimum spanning tree (according to Prim’s algorithm). Therefore,
here we study the following question:

Is it necessary to build a minimum spanning tree to compute the ‘one-to-all’ Minimax
distances, similar to ‘all-pair’ Minimax distances?

We reconsider the proof of Theorem 5 which has led us to Algorithm 2. The proof
investigates two cases: (1) �p,u ≤ �MM

v,p
 , (2) �p,u > �MM

v,p
 . We investigate the first case in

more detail.
Let us look at the largest Minimax distance selected up to step T, i.e., the edge with max-

imal weight whose both sides occur inside {v ∪NPT (v)} and its weight represents a Mini-
max distance. We call this edge emax

T
 . Among different external neighbors of {v ∪NPT (v)} ,

any node u� ∈ {�⧵NPT (v)} whose minimal distance to {v ∪NPT (v)} does not exceed the
weight of emax

T
 can be selected, even if it does not belong to a minimum spanning tree over

G+ . Because, anyway the Minimax distance will be still the weight of emax
T

.

2079Machine Learning (2020) 109:2063–2097

1 3

In general, any node u� ∈ {�⧵NPT (v)} , whose Minimax distance to a selected member
p, i.e. �MM

p,u
 , is not larger than the weight of emax

T
 , can be selected as the next nearest neigh-

bor.6 This is concluded from the following property of Minimax distances:

where p is an arbitrary object (node). In this setting we then have,

1. �MM
v,u

≤ max(�MM
v,p

,�MM
p,u

) , and
2. �MM

v,p
> �MM

p,u
.

Thus, we conclude �MM
v,u

≤ max(�MM
v,p

) , i.e. �MM
v,u

= �MM
v,p

.
An example is shown in Fig. 3, where K is fixed at 2. After computing the first nearest

neighbor (i.e., p), the next one can be any of the remaining objects, as their Minimax dis-
tance to v is the weight of the edge connecting p to v (Fig. 3a) or p to u (Fig. 3b). Thereby,
one could choose a node such that the partial MST on {v ∪NP(v)} is not a subset of any
complete MST on the whole graph. Therefore, computing one-to-all Minimax distances
might not necessarily require taking into account construction of a minimum spanning tree.

Thereby, such an analysis suggests an even more generic algorithm for computing one-
to-all Minimax distances (including Minimax K-nearest neighbor search) which dose not
necessarily yield a MST on the entire graph. To expand NPT (v) , we add a new u′ whose
Minimax distance (not the direct dissimilarity) to {v ∪NPT (v)} is minimal. Algorithm 2 is
only one way, but an efficient way, that even sorts one-to-all Minimax distances.

4.4 Outlier detection with Minimax K‑nearest neighbor search

While performing K-nearest neighbor search, the test objects might not necessarily com-
ply with the structure in the train dataset, i.e. some of the test objects might be outliers
or belong to other classes than those existing in the train dataset. More concretely, when
computing the K nearest neighbors of v, we might realize that v is an outlier or irrelevant
with respect to the underlying structure in O. We study this case in more detail and propose
an efficient algorithm which while computing Minimax K nearest neighbors, it also detects
whether v could be an outlier. Notice that the ability to detect the outliers will be an addi-
tional feature of our algorithm, i.e., we do not aim at proposing the best outlier detection
method, rather, the goal is to maximize the benefit from performing Minimax K-NN while
still having an O(N) runtime.

(11)�
MM
v,u

≤ max(�MM
v,p

,�MM
p,u

),

Fig. 3 Computing Minimax near-
est neighbors (of the red object)
does not necessarily need to
agree with a complete MST on
G+ , as any remaining node can be
replaced with u

(a) (b)

6 We notice that in the second case, i.e. when �p,u > �MM
v,p

 , we need to add an unselected node whose Mini-
max to v (to one of the nodes in NPT (v)) is equal to �p,u . This situation might also yield adding an edge
which does not necessarily belong to a MST over G+ . The argument is similar to the case when �p,u ≤ �MM

v,p
.

2080 Machine Learning (2020) 109:2063–2097

1 3

Thereby, we follow our analysis by investigating another special aspect of Algorithm 2:
as we extend NPT (v) , the edge representing the Minimax distance between v and the new
member u (i.e., the edge with the largest weight on the path indicating the Minimax dis-
tance between v and u) is always connected to v. For this purpose, we reconsider the proof
of Theorem 5. When u is being added to NPT (v) , two special cases might occur:

1. u is directly connected to v, i.e. p = v.
2. u is not directly connected to v (i.e. p ≠ v), but its Minimax distance to v is not repre-

sented by �p,u , i.e., �p,u < �MM
v,p

.

Figure 4a illustrates these situations, where K = 4. Among the nearest neighbors, two are
directly connected to v (i.e., p = v), and the two others are connected to v via the early
members of NPT (v) , but the Minimax distance is still represented by the edges connected
to v. In other words, there is no edge in graph G(�,�) which represents a Minimax dis-
tance, although some edges of G(�,�) are involved in Minimax paths. Thus, the type of
connection between v and its neighbors is different from the type of the distances inside
graph G(�,�) (without test object v). Thereby, in this case we report v as an outlier. Notice
that both of the above mentioned conditions should occur, i.e. if we have always p = v (as
shown in Fig. 4b where the nearest neighbors are always connected to v), then v might not
be labeled as an outlier.

On the other hand, an shown in Fig. 4c, if some edges of G(�,�) contribute in comput-
ing the Minimax K-nearest neighbors of v (in addition to the edges which meet v), then v
has the same type of neighborhood as some other nodes in G . Thereby, it is not labeled as
an outlier.

This analysis suggests an algorithm for simultaneously computing Minimax K-nearest
neighbors and detecting if v is an outlier (Algorithm 3). For this purpose, we use a vector
called updated, which determines the type of nearest neighborhood of each external object
to {v ∪NPT (v)} , i.e.,

1. updatedi = 0 , if v is the node representing the nearest neighbor of i in the set
{v ∪NPT (v)}.

2. updatedi = 1 , otherwise.

At the beginning, NPT (v) is empty. Thereby, updated is initialized by a vector of zeros.
At each update step, whenever we modify an element of the vector dist, we then set the
corresponding index in updated to 1. At each step of Algorithm 2, a new edge is added
to the set of selected edges whose weight is �p,u . As mentioned before, v is labeled as an
outlier if, (1) some of the edges are directly connected to v, and some others indirectly, and

(a) (b) (c)

Fig. 4 The edges representing the Minimax distances can provide useful information for detecting outliers

2081Machine Learning (2020) 109:2063–2097

1 3

(2) no indirect edge weight represents a Minimax distance, i.e. the minimum of the edge
weights directly connected to v (stored in min_direct) is larger than the maximum of the
edge weights not connected to v (stored in max_indrct). The later corresponds to the condi-
tion that �MM

v,p
> �p,u . Thereby, whenever we pick the nearest neighbor of {v ∪NPT (v)} in

the extension step, we then check the updated status of the new member:

1. If updatedmin_ind = 1 , we then update max_indrct by max(max_indrct, distmin_ind).
2. If updatedmin_ind = 0 , we then update min_direct by min(min_direct, distmin_ind).

Finally, if min_direct > max_indrct and max_indrct ≠ −1 (max_indrct is initialized by −1 ;
this condition ensures that at least one indirect edge has been selected), then v is labeled
as an outlier. Algorithm 3 describes the procedure in detail. Compared to Algorithm 2, we
have added: (1) steps 11–15 for keeping the statistics about the direct and indirect edge
weights (i.e., via updating max_indrct and min_direct), (2) an additional step in line 20 for
updating the type of the connection of the external nodes to the set {v ∪NPT (v)} , and (3)
finally checking whether v is an outlier.7

Computational complexity The extension step is done in O(N) via a sequential search.
Lines 11–15 are constant in time and the loop 17–22 requires an O(N) time. Thus, the total

(a) (b)

(c) (d)

Fig. 5 Illustration of DS1, DS2 and the accuracy. Different classes of DS1 have a similar structure as shown
in (a), but the classes are different in DS2 as illustrated in (b). The accuracy scores (shown for LogReg-
MM) are stable w.r.t. the dimensionality of the Minimax vectors (c, d). The straight green line shows the
accuracy for the base LogReg

7 Our goal is not to propose the best outlier detection algorithm, rather, we aim at adding a new feature
(i.e., detecting potential outliers) to Minimax K-nearest neighbor search while we require the runtime to be
still O(N) . Thus, we improve the gain of performing a linear-time Minimax K-NN search query.

2082 Machine Learning (2020) 109:2063–2097

1 3

runtime is O(N) which is identical to standard K-nearest neighbor search over arbitrary
graphs.

5 Experiments

We experimentally study the performance of Minimax distance measures on a variety of
synthetic and real-world datasets and illustrate how the use of Minimax distances as an
intermediate step improves the results. In each dataset, each object is represented by a
vector.8

5.1 Classification with Minimax distances

First, we study classification with Minimax distances. We use logistic regression (LogReg)
and support vector machines (SVM) as the baseline methods and investigate how

8 When not mentioned, we compute the pairwise squared Euclidean distances between the vectors to con-
struct the base distance matrix D.

2083Machine Learning (2020) 109:2063–2097

1 3

performing these methods on the vectors induced from Minimax distances improves the
accuracy of prediction. With SVM, we examine three different kernels: (1) linear (lin), (2)
radial basis function (rbf), and (3) sigmoid (sig), and choose the best result. With Minimax
distances, we only use the linear kernel, since we assume that Minimax distances must be
able to capture the correct classes, such that they can be then discriminated via a linear
separator.

Experiments with synthetic data
We first perform our experiments on two synthetic datasets, called: (1) DS1 (Chang and

Yeung 2008), and (2) DS2 (Veenman et al. 2002), which are shown in Fig. 5. The goal is to
demonstrate the superior ability of Minimax distances to capture the correct class-specific
structures, particularly when the classes have different types (DS2), compared to kernel
methods. Table 1 shows the accuracy scores for different methods. The standard SVM is
performed with three different kernels (lin, rbf and sig), and the best choice which is the rbf
kernel is shown. As mentioned, with Minimax distances, we only use the linear kernel. We
observe that performing classification on Minimax vectors yields the best results, since it
enables the method to better identify the correct classes. The datasets differ in the type and
consistency of the classes. DS1 contains very similar classes which are Gaussian. But DS2

Table 1 Accuracy of different methods on synthetic datasets

Minimax measure particularly improves the results when the classes in the dataset have different shapes and
types (e.g. DS2)

Dataset Standard Minimax

SVM-lin SVM-rbf SVM-sig LogReg SVM-lin LogReg

DS1 0.5749 0.9924 0.4260 0.8066 0.9917 0.9918
DS2 0.5654 0.9295 0.3294 0.6252 0.9950 0.9983

Table 2 Accuracy scores of different methods on UCI datasets, when 60% of the data is used for training

Using Minimax vectors improves the results. The best results are bolded

Data Standard Minimax dim.spec. Minimax

SVM-lin SVM-rbf SVM-sig LogReg SVM-lin LogReg SVM-lin LogReg

UCI1 0.8709 0.8974 0.4468 0.8687 0.6187 0.6086 0.9211 0.9739
UCI2 0.9876 1.0000 0.5577 0.9872 0.9989 1.0000 0.8847 0.9827
UCI3 0.9988 0.5788 0.5349 0.9988 1.0000 1.0000 1.0000 1.0000
UCI4 0.5190 0.5533 0.4250 0.5107 0.5647 0.5747 0.5392 0.5389
UCI5 0.5924 0.6012 0.3371 0.6053 0.5971 0.6671 0.4918 0.6347
UCI6 0.6893 0.7230 0.7344 0.7426 0.7434 0.7377 0.7418 0.7352
UCI7 0.6058 0.7750 0.3596 0.5365 0.7038 0.7115 0.8635 0.8558
UCI8 0.8779 0.9300 0.6536 0.8621 0.9457 0.9450 0.8843 0.9336
UCI9 0.6917 0.7500 0.7500 0.6917 0.7750 0.7500 0.8333 0.8333
UCI10 0.7783 0.9318 0.1498 0.6933 0.9865 0.9870 0.9798 0.9830
UCI11 0.9287 0.9693 0.7635 0.8980 0.9994 0.9994 0.9906 0.9919
UCI12 0.7835 0.7233 0.3019 0.8612 0.5893 0.6757 0.6010 0.8592

2084 Machine Learning (2020) 109:2063–2097

1 3

consists of classes which differ in shape and type. Therefore, for DS1 we are able to find an
optimal kernel (rbf, since the classes are Gaussian) with a global form and parametrization,
which fits with the data and thus yields very good results. However, in the case of DS2,
since classes have different shapes, then a single kernel is not able to capture correctly all
of them. For this dataset, LogReg and SVM with Minimax vectors perform better, since
they enable to adapt to the class-specific structures. Note that in the case of DS1, using
Minimax vectors is equally good to using the optimal rbf kernel. Remember that, to Mini-
max vectors, we apply only SVM with a linear kernel. Figure 5c, d show the accuracy and
eigenvalues w.r.t. different dimensionality of Minimax vectors. As mentioned earlier, the
dimensions of Minimax vectors are sorted according to the respective eigenvalues, since
a larger eigenvalue indicates a higher importance. By choosing only few dimensions, the
accuracy attains its maximal value. We will elaborate in more detail on this further on.

We note that after computing the matrix of pairwise Minimax distances, one can in
principle apply any of the embedding methods (e.g., PCA, SVD, etc) either to the original
pairwise distance matrix or to the pairwise Minimax distance matrix. Therefore, our con-
tribution is orthogonal to such embedding methods. For example on these synthetic data-
sets, when we apply PCA to the original distance matrix, we do not observe a significant
improvement in the results (e.g., 0.7838 on DS1 and 0.6671 on DS2 with LogReg).

Classification of UCI data
We then perform real-world experiments on twelve datasets from different domains,

selected from the UCI repository (Dua and Graff 2019):9

 (1) Balance Scale: contains 625 observations modeling 3 types of psychological experi-
ments.

Table 3 Accuracy of different methods when only 10% of the data is used for training, where using Mini-
max distances often improves the results

The best results are bolded

Data Standard Minimax dim.spec. Minimax

SVM-lin SVM-rbf SVM-sig LogReg SVM-lin LogReg SVM-lin LogReg

UCI1 0.8459 0.8477 0.4566 0.8694 0.5114 0.6021 0.8270 0.7879
UCI2 0.9859 0.9843 0.5305 0.9870 0.9895 0.9916 0.6632 0.9060
UCI3 0.9607 0.5207 0.5069 0.9849 1.0000 1.0000 1.0000 1.0000
UCI4 0.4746 0.5078 0.4082 0.4871 0.4761 0.5206 0.4714 0.4655
UCI5 0.3417 0.4677 0.3385 0.3958 0.4365 0.4844 0.4100 0.5000
UCI6 0.7011 0.7275 0.7347 0.7311 0.7369 0.7362 0.7336 0.7176
UCI7 0.4258 0.4593 0.3352 0.4775 0.5186 0.5758 0.5958 0.6636
UCI8 0.8033 0.7692 0.6256 0.7943 0.9043 0.9097 0.8000 0.8786
UCI9 0.7045 0.7227 0.7136 0.7205 0.7159 0.6750 0.7386 0.7500
UCI10 0.6937 0.5732 0.1053 0.5129 0.8787 0.8775 0.8236 0.8481
UCI11 0.9161 0.9294 0.6203 0.9166 0.9983 0.9983 0.9855 0.9861
UCI12 0.5179 0.3772 0.3129 0.7200 0.3759 0.5315 0.3681 0.7638

9 The specifications of the datasets can be found at https ://archi ve.ics.uci.edu/ml/index .php.

https://archive.ics.uci.edu/ml/index.php

2085Machine Learning (2020) 109:2063–2097

1 3

 (2) Banknote Authentication: includes 1372 images taken from genuine and forged bank-
note-like specimens (number of classes is 2).

 (3) Cloud: consists of 1024 10-dimensional vectors, each dimension representing a spe-
cific parameter.

 (4) Contraceptive Method: contains information of 1473 women, where the three classes
are about the pregnancy status.

 (5) Glass Identification: contains 6 types (classes) of glass w.r.t the oxide content. The
number of instances is 214.

 (6) Haberman Survival: contains the survival of 306 patients who had surgery for breast
cancer. The number of classes is 2.

 (7) Hayes Roth: is about a study on human subjects which contains 160 instances and 3
classes.

 (8) Ionosphere: includes 351 34-dimensional instances collected from radars and organ-
ized into 2 classes.

 (9) Lung Cancer: describes 3 types of pathological lung cancer, including 32 instances
each with 56 dimensions.

 (10) Perfume: consists of odors of 20 different perfumes (classes), where the data is col-
lected via OMX-GR sensor. There are in total 560 measurements.

 (11) Skin Segmentation: the original dataset contains 245,057 instances generated using
skin textures from face images of different people. However, to make the classification
task more difficult, we pick only the first 1000 instances of each class (to decrease the
number of objects per class). The target variable is skin or non-skin sample, i.e. the
number of classes is 2.

 (12) User Knowledge: describes 403 students’ knowledge level (4 classes) about the subject
of Electrical DC Machines.

(a) (b)

(c) (d)

Fig. 6 Accuracy score of LogReg-MM applied to different datasets when we choose different number of
dimensions of Minimax vectors. The straight green lines show the base LogReg result

2086 Machine Learning (2020) 109:2063–2097

1 3

We call these datasets respectively UC1, UCI2, ..., UCI12.

Accuracy scores Table 2 shows the results for different methods applied to the datasets,
when 60% of the objects are used for training. We have repeated the random split of the
data for 20 times and report the average results. The scores and the ranking of different
methods are very consistent among different splits, such that the standard deviations are
low (i.e., maximally about 0.016). We observe that often performing the classification
methods on Minimax vectors improves the classification accuracy. In only very few cases
the standard setup outperforms (slightly). In the rest, either the Minimax vectors or the
dimension-specific variant of Minimax vectors yield a better performance. In particular,

Fig. 7 Eigenspectra for different example datasets. A better Minimax variant often yields a sharper
eigenspectrum

Table 4 Runtimes (in s) of FW-MM and MST-MM for computing pairwise Minimax distances on different
real-world datasets

MST-MM performs significantly faster

Dataset Glass Iden. Haberman Surv. Hayes Roth Perfume Cloud Skin Seg.

Size 160 214 306 560 1024 2000
FW-MM 0.030 0.067 0.230 1.399 18.54 127.12
MST-MM 0.019 0.024 0.080 0.150 0.239 0.540

2087Machine Learning (2020) 109:2063–2097

1 3

the Minimax variant is more appropriate for low dimensional data, whereas the dimension-
specific Minimax variant outperforms on high-dimensional data. We elaborate more on the
choice between them in the ‘model order selection’ section.

Table 3 shows the results when only 10% of the objects are used for training. For this
setting, we observe a consistent performance with the setting where 60% of data is used for
training, i.e. the use of Minimax vectors (either the standard variant or the dimension-spe-
cific one) improves the accuracy scores. In this setting, only with UCI12 the non-Minimax
method performs better. However, even on this dataset, the dimension-specific Minimax
performs very closely to the best result. Such a consistency is observed for other ratios of
train and test sets too.

Model order selection Choosing the appropriate number of dimensions for Minimax vec-
tors (i.e. their dimensionality) constitutes a model order selection problem. We study in
detail how the dimensionality of the Minimax vectors affects the results. Figure 6 shows
the accuracy scores for Minimax-LogReg applied to four of the datasets w.r.t. different
number of dimensions (the other datasets behave similarly). The dimensions are ordered
according to their importance (the value of respective eigenvalue). Choosing a very small
number of dimensions might be insufficient since we might lose some informative dimen-
sions, which yields underfitting. By increasing the dimensionality, the method extracts
more sufficient information from the data, thus the accuracy improves. We note that this
phase occurs for a very wide range of choices of dimensions. However, by increasing the
number of dimensions even more, we might include non-informative or noisy features
(with very small eigenvalues), where then the accuracy stays constant or decreases slightly,
due to overfitting. However, an interesting advantage of this approach is that the overfitting
dimensions (if there exists any) have a very small eigenvalue, thus their impact is negligi-
ble. This analysis leads to a simple and effective model order selection criteria: Fix a small
threshold and pick the dimensions whose respective eigenvalues are larger than the thresh-
old. The exact value of this threshold may not play a critical role or it can be estimated via
a validation set in a supervised learning setting.

Model selection According to our experimental results, very often, either the standard Min-
imax classification or the dimension-specific variant outperform the baselines. In a super-
vised learning setting, the correct choice between these two Minimax variants (i.e., the
model selection task) can be made via measuring the prediction ability, e.g. the accuracy
score. However, this approach might not be applicable for unsupervised learning, e.g. clus-
tering, where the ground truth is not given. We investigate a simple heuristics which can be
employed in any arbitrary setting. When we perform eigen decomposition of the centered
matrix (�MM or �cMM), we normalize the eigenvalues by the largest of them such that the
largest eigenvalue equals 1. Then, the variant that yields a shaper decay in eigenvalues is
supposed to be potentially a better model. A sharper decay of the eigenvalues indicates a
tighter confinement to a low dimensional subspace, i.e. lower complexity in data represen-
tation. This possibly yields a better learning, and thereby a higher accuracy score.

To analyze this heuristics, we observe that in our experiments on Cloud, Glass Identi-
fication, Haberman Survival, Perfume and Skin Segmentation either the accuracy scores
are not significantly distinguishable or there is no consistent ranking of the two different
variants (Minimax or dimension-specific Minimax) such that it is difficult to decide which
one is better. For these datasets the eigenspectra are very similar as shown for example
for Cloud dataset in Fig. 7a. Among the remaining datasets, the heuristics works properly
on Balance Scale, Contraceptive Method, Hayes Roth, Lung Cancer and User Knowledge

2088 Machine Learning (2020) 109:2063–2097

1 3

datasets, where two sample eigenspectra are shown in Fig. 7b, c. Finally, the heuristics fails
only on the two Banknote Authentication and Ionosphere datasets. However, for these data-
sets the accuracy scores as well as the decays are rather similar, as shown for example for
Banknote Authentication in Fig. 7d.

Efficiency As a side study, we also investigate the runtimes of computing pairwise Mini-
max distance via either based on computing an MST (MST-MM) or the Floyd–Warshall
algorithm (FW-MM). The results (in s) have been shown in Table 4 for some of the data-
sets. We observe that MST-MM yields a significantly faster approach to computer the pair-
wise Minimax distances. The difference is even more obvious when the dataset is larger.
We note that the both methods yield the same Minimax distances. We observe consistent
results on the other datasets.

5.2 Experiments on clustering of document scannings

We study the impact of performing Minimax distances on clustering of scannings of the
documents collocated by a large document processing corporation. The dataset contains
the vectors of 675 documents each represented in a 4096 dimensional space. The vectors
contain metadata, the document layout, tags used in the document, the images in the docu-
ment, the text in the document, the author information, the mathematical expressions and
other structural information. This dataset contains 56 clusters some of which have only one
single document. We call this dataset dataset 1. Then, by removing the clusters with only
one or two documents, we obtain dataset 2 which includes 634 documents and 34 clusters.

Table 5 Performance of GMM on original vectors (base), on the standard Minimax vectors (Minimax), and
on the dimension-specific Minimax vectors at subspaces (DimMM) in the clustering task

The number at the front of DimMM shows the dimensionality of the subspace used to compute the dimen-
sion-specific Minimax distances. Different methods are compared w.r.t. adjusted Rand score and adjusted
Mutual Information criteria. We repeat the DimMM variant 10 times and report the mean(std) results. On
all datasets, DimMM yields higher scores of the evaluation criteria

Dataset 1 Dataset 2 Dataset 3

Method Rand score Mutual info. Rand score Mutual info. Rand score Mutual info.

Base 0.2539 0.5914 0.3191 0.6478 0.4268 0.7195

Minimax 0.3033 0.6263 0.3995 0.6943 0.4611 0.7407

DimMM050 0.3605(0.016) 0.6489(0.015) 0.4306(0.016) 0.7052(0.018) 0.4556(0.014) 0.7294(0.018)
DimMM075 0.3767(0.013) 0.6431(0.019) 0.4238(0.014) 0.7003(0.019) 0.5254(0.015) 0.7587(0.018)
DimMM100 0.3728(0.014) 0.6451(0.018) 0.4126(0.011) 0.6996(0.012) 0.5002(0.013) 0.7577(0.016)
DimMM125 0.3538(0.015) 0.6470(0.015) 0.4167(0.017) 0.6985(0.019) 0.4731(0.015) 0.7448(0.019)
DimMM150 0.3431(0.012) 0.6418(0.016) 0.3932(0.013) 0.6960(0.014) 0.4917(0.012) 0.7530(0.014)
DimMM175 0.3484(0.017) 0.6459(0.016) 0.3766(0.018) 0.6896(0.019) 0.4512(0.018) 0.7375(0.017)
DimMM200 0.3351(0.015) 0.6374(0.018) 0.4023(0.011) 0.6948(0.011) 0.4607(0.014) 0.7429(0.016)
DimMM250 0.3322(0.012) 0.6413(0.016) 0.3809(0.013) 0.6866(0.0114) 0.5034(0.011) 0.7530(0.012)
DimMM300 0.3243(0.012) 0.6376(0.015) 0.3942(0.014) 0.6954(0.017) 0.4800(0.016) 0.7469(0.015)
DimMM350 0.3332(0.016) 0.6419(0.018) 0.3831(0.012) 0.6798(0.013) 0.4660(0.011) 0.7452(0.011)
DimMM400 0.3385(0.013) 0.6406(0.013) 0.4089(0.014 0.6944(0.015) 0.4680(0.013) 0.7429(0.012)
DimMM500 0.3272(0.015) 0.6378(0.0179 0.4008(0.016) 0.6929(0.019) 0.4653(0.016) 0.7470(0.017)

2089Machine Learning (2020) 109:2063–2097

1 3

Finally, we obtain dataset 3 which contains the clusters that have at least 5 documents. This
datasets consists of 592 documents and 21 clusters. We compute the pairwise distances of
pairs of documents according to squared Euclidean distance. The goal is to demonstrate
the applicability of Gaussian Mixture Models (GMM) to Minimax distances, as well as to
show if the use of Minimax distances improves the results.

We apply dimension-specific Minimax distances to different subspaces of the original
data. For this purpose, we define the parameter b to be the number of dimensions of the
subspace. Then, we randomly partition the original features (dimensions) such that the
dimensionality of each subset equals b (the last subset might have less dimensions than b).
Note that different subsets have the same number of documents which equals to the number
of documents in the original dataset. For each subset, we compute the pairwise Minimax
distances and obtain multiple Minimax matrices. Thus, we apply the collective Minimax
embedding to compute an embedding in a new space. Finally, we apply GMM to the Mini-
max vectors and compare with the results of GMM on original (base) vectors and GMM on
standard Minimax vectors.

We use adjusted Rand score (Hubert and Arabie 1985) and adjusted Mutual Information
(Vinh et al. 2010) to evaluate the performance of different methods. Rand score computes the
similarity between the estimated and the true clusterings. Mutual Information measures the
mutual information between the two solutions. Note that we compute the adjusted version of
these criteria, such that they yield zero for random clustering. Table 5 shows the results on
the three datasets. The number at the front of different dimension-specific (DimMM) variants
indicates b. We repeat the DimMM variant 10 times and report the mean(std) results. We
observe: (1) computing Minimax distances enables GMM to better capture the underlying
structures, thus yields improving the results. (2) The dimension-specific variant improves the
clusters even further via extracting appropriate structures in different subspaces. (3) However,
the first improvement, i.e., the use or not use of Minimax distances, has a more significant
impact than the choice between the standard or the dimension-specific Minimax variants.
Finally, we note that DimMM is equivalent to the standard Minimax if b = 4096.

5.3 Minimax K‑NN classification

We then examine the performance of our algorithm for K nearest neighbor search with
Minimax distances. We perform our experiments on seven datasets, four selected from 20
newsgroup collection and the others come from image and plant specification.

(1) COMP: a subset of 20 newsgroup contains 2936 documents around computers: ‘comp.
graphics’, ‘comp.os.ms-windows.misc’, ‘comp.sys.ibm.pc.hardware’, ‘comp.sys.mac.
hardware’, ‘comp.windows.x’.

(2) REC: a subset of 20 newsgroup with 2389 documents on sports: ‘rec.autos’, ‘rec.
motorcycles’, ‘rec.sport.baseball’, ‘rec.sport.hockey’.

(3) SCI: a subset of 20 newsgroup having 2373 documents about science: ‘sci.crypt’, ‘sci.
electronics’, ‘sci.med’, ‘sci.space’.

Table 6 Runtime (in s) of
computing L+ for different 20
news group datasets

L
+ is considerably slower

Dataset COMP REC SCI TALK

Runtime 20.67 12.93 11.84 6.55

2090 Machine Learning (2020) 109:2063–2097

1 3

(4) TALK: a subset of 20 newsgroup with 1952 documents related to talk: ‘talk.politics.
guns’, ‘talk.politics.mideast’, ‘talk.politics.misc’, ‘talk.religion.misc’.

(5) IRIS: a common dataset with 150 samples from three species ‘setosa’, ‘virginica’ and
‘versicolor’.

Fig. 8 Comparison of runtime (in s) of different methods on 20 news group datasets. PTMM is significantly
faster than MPMM and is only slightly slower than STND. Figure 10a, b show the accuracy scores, where
Minimax K-NN gives the best results

Fig. 9 Comparison of runtime (in s) of different methods on non-textual datasets. PTMM runs much faster
than MPMM

2091Machine Learning (2020) 109:2063–2097

1 3

(6) OLVT: the Olivetti faces dataset from AT&T which contains pictures from 40 individu-
als from each 10 pictures. The dimensionality is 4096.

(7) DGTS: images of 10 digits each with 64 dimensions (1797 digits in total).

Fig. 10 Accuracy scores of different K-NN methods on 20 new group datasets, where Minimax K-NN gives
the best results

Fig. 11 Comparison of accuracy of different methods on IRIS, OLVT and DGTS datasets. Using Minimax
distance measure improves the results

2092 Machine Learning (2020) 109:2063–2097

1 3

These datasets are well-known and publicly accessible, e.g. via sklearn.datasets.10 For
the 20 newsgroup datasets, we obtain the vectors after eliminating the stop words. Cosine
similarity is known to be a better choice for textual data. Thus, for each pair of docu-
ment vectors �i and �j , we compute their cosine similarity and then their dissimilarity by
1 − cosine(�i, �j) to construct the pairwise dissimilarity matrix D. For non-textual data-
sets, we directly compute the pairwise squared Euclidean distances. Thereby, we construct
graph G(�,�) . Note that the method in Kim and Choi (2013) is not applicable to cosine-
based dissimilarities. We compare our algorithm (called PTMM) against the following
methods.

1. STND: Standard K-NN with the basic dissimilarities D.
2. MPMM: Minimax K-NN proposed in Kim and Choi (2007).
3. Link: Link-based K-NN based on shortest distance algorithm (Dijkstra 1959).

L+ (Fouss et al. 2012; Yen et al. 2008) is a link-based method computed based on the
pseudo inverse of Laplacian matrix. However, this method has two main deficiencies: (1)
it is very slow; as mentioned earlier, its runtime is O(N3) (see Table 6 for runtime results
on 20 newsgroup datasets), and (2) in the way that it is used (e.g. Yen et al. 2008; Kim
and Choi 2013) L+ is computed for all data, including training and test objects, i.e. the test
objects are not completely separated from training. The correct approach would compute
the pseudo inverse of the Laplacian only for the training dataset and then would extend it to
contain the out-of-sample object.

We perform the experiments and compute accuracy in leave-one-out manner, i.e. the
i-th object is left out and its label is predicted via the other objects. In the final voting, the
nearest neighbors are weighted according to inverse of their dissimilarities with the test
object. We calculate the accuracy by averaging over all N objects. M-fold cross validation
could be used instead of the leave-one-out approach. However, the respective ranking of
the runtimes of different methods is independent of the way the accuracy is computed.

Figure 8 illustrates the runtime of different measures on 20 news group datasets. Our
algorithm for computing the Minimax distances (i.e. PTMM) is significantly faster than
MPMM. PTMM is only slightly slower than the standard method and is even slightly faster
than Link. The main source of computational inefficiency of MPMM comes from requir-
ing a MST which needs an O(N2) runtime. PTMM theoretically has the same complexity
as STND (i.e. O(N)) and in practice performs only slightly slower which is due to one

Table 7 Runtime (in s) of
different methods on two-moon
datasets

PTMM performs significantly faster. PTMM and MPMM produce the
same results

Size 5000 10,000 15,000 20,000

PTMM 1.03 4.42 10.96 19.187
MPMM 2.43 13.15 34.72 58.48
L
+ 107.61 1105.13 2855.1 6603.16

10 These datasets can be read and extracted via Python interfaces as described in http://sciki t-learn .org/stabl
e/modul es/class es.html#modul e-sklea rn.datas ets.

http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets

2093Machine Learning (2020) 109:2063–2097

1 3

additional update step. As mentioned L+ is considerably slower, even compared to MPMM
(see Table 6).

To demonstrate the generality of our algorithm, we have performed experiments on data-
sets from other domains. Figure 9 shows the runtime of different methods on non-textual

Fig. 12 o_rate score for different text datasets when PTMMout, STNDout and LINKout are used to predict
outliers. PTMMout yields significantly a higher and more stable o_rate. Figure 13a, b show rate_1 and
rate_2 for COMP

Fig. 13 rate_1 and rate_2 for COMP. Only PTMMout prevents sharp changes

2094 Machine Learning (2020) 109:2063–2097

1 3

datasets (IRIS, OLVT, and DGTS). We observe a consistent performance behavior: PTMM
runs only slightly slower than STND and much faster than MPMM. Link is slightly slower
than PTMM.

The usefulness of Minimax distances for K-NN classification has been investigated in
previous studies, e.g. in Kim and Choi (2007) and Kim and Choi (2013). However, for the
proof of concept, in Figs. 10 and 11, we illustrate the accuracy of different methods on
the textual and non-textual datasets. Note that PTMM and MPMM yield the same accu-
racy scores. They differ only in the way they compute the Minimax nearest neighbors of
v, thereby we have compared them only w.r.t runtime. Consistent to the previous study,
we observe that Minimax measure is always the best choice, i.e. it yields the highest accu-
racy. We emphasize that this is the first study that demonstrates the effectiveness and per-
formance of Minimax K-nearest neighbor classification beyond Euclidean distances (i.e.
cosine similarity, a measure which is known to be more appropriate for textual data). As
mentioned earlier, the previous studies (Kim and Choi 2007, 2013) always build the Mini-
max distances on squared Euclidean measures.

Scalability Finally, we study the scalability of different methods on larger datasets from
two-moons data. As shown in Kim and Choi (2013) only L+ and Minimax measures per-
form correctly on this data which has a non-linear geometric structure. Table 7 compares
the runtime of these two methods for K = 5. PTMM performs significantly faster than
the alternatives, e.g. it is three times faster than MPMM and 250 times faster than L+ for
10,000 objects.

5.4 Outlier detection along with Minimax K‑NN search

At the end, we experimentally investigate the ability of Algorithm 3 for detecting outli-
ers while performing K-nearest neighbor search. We run our experiments on the textual
datasets, i.e., on COMP, REC, SCI, and TALK. We add the unused documents of 20 news
group collection to each dataset to play the role of outliers or the mismatching data source.
This ourlier dataset consists of the 1664 documents of ‘alt.atheism’, ‘misc.forsale’, ‘soc.
religion.christian’ categories. For each document, either from train or from outlier set, we
compute its K nearest neighbors only from the documents of the train dataset and check
whether it is predicted as an outlier or not.

We compare our algorithm (called here PTMMout), against the two others: STND and
Link. These two algorithms do not directly provide outlier prediction. Thereby, in order to
perform a fair comparison, we compute a Prim minimum spanning tree over the set con-
taining v and the objects selected by the K-NN search, where v is the initial node. Then we
check the same conditions to determine whether v is determined as an outlier. We call these
two variants respectively STNDout and LINKout.

We obtain the rate of correct outlier prediction for the outlier dataset, called rate_1,
by the ratio of the number of correct outlier reports to the size of this set. However, an
algorithm might report an artificially high outlier number. Thereby, similar to precision-
recall trade-off, we investigate the train dataset too and compute the ratio of the number
of non-outlier reports to the total size of train dataset and call it rate_2. Finally, similar to
F-measure, we compute the harmonic average of rate_1 and rate_2 and call it o_rate, i.e.

(12)o_rate = 2 ⋅
rate_1 ⋅ rate_2

rate_1 + rate_2
.

2095Machine Learning (2020) 109:2063–2097

1 3

Figure 12 shows the o_rate scores for different datasets and for different values of K.
For all datasets, we observe that PTMMout yields significantly a higher o_rate compared
to the other algorithms. Moreover, the o_rate of PTMMout is considerably stable and con-
stant over different K, i.e. the choice of optimal K is much less critical. For STNDout and
LINKout, o_rate is maximal for only a fairly small range of K (e.g. between 30 and 50)
and then it sharply drops down to zero. Figure 13 illustrates an in-depth analysis of rate_1
and rate_2 for the COMP dataset. Generally, as we increase K, rate_1 decreases but rate_2
increases. The reason is that as we involve more neighbors in NP(v) , then the chance of
having an edge whose both sides are inside NP(v) and its weight represents a Minimax
distance increases. This case might particularly occur when NP(v) contains objects from
more than one class. Thereby, the probability that an object is labeled as a non-outlier
increases. However, this transition is very sharp for STNDout and LINKout, such that for a
relatively small K they label every object (either from train set or from outlier set) as a non-
outlier. Moreover, as mentioned before, even for small K, STNDout and LINKout yield
significantly lower o_rate than PTMMout.

6 Conclusion

We developed a framework to apply Minimax distances to any learning algorithm that
works on numerical data, which takes into account both generality and efficiency. We stud-
ied both computing the pairwise Minimax distances for all pairs of objects and as well as
computing the Minimax distances of all the objects to/from a fixed (test) object. For the all-
pair case, we first employed the equivalence of Minimax distances over a graph and over a
minimum spanning tree constructed on that, and developed an efficient algorithm to com-
pute the pairwise Minimax distances on a tree. Then, we studied computing an embedding
of the objects into a new vector space, such that their pairwise Minimax distance in the
original data space equals to their squared Euclidean distance in the new space. We then
extended our approach to the cases wherein there are multiple pairwise Minimax matri-
ces. In the following, we studied computing Minimax distances from a fixed (test) object
which can be used for instance in K-nearest neighbor search. Moreover, we investigated in
detail the edges selected by the Minimax distances and thereby augmented the Minimax
K-nearest neighbor search with the ability of detecting outlier objects. For each setting, we
demonstrated the effectiveness of our framework via several experimental studies.

Acknowledgements Open access funding provided by Chalmers University of Technology. This work was
partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation (No. 37200022). Parts of this work have been done at Xerox
Research.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

2096 Machine Learning (2020) 109:2063–2097

1 3

References

Aho, A. V., & Hopcroft, J. E. (1974). The design and analysis of computer algorithms (1st ed.). Boston,
MA: Addison-Wesley Longman Publishing Co., Inc.

Chang, H., & Yeung, D.-Y. (2008). Robust path-based spectral clustering. Pattern Recognition, 41(1),
191–203.

Chebotarev, P. (2011). A class of graph-geodetic distances generalizing the shortest-path and the resistance
distances. Discrete Applied Mathematics, 159(5), 295–302.

Chehreghani, M. H. (2017). Efficient computation of pairwise minimax distance measures. In 2017 IEEE
international conference on data mining, ICDM (pp. 799–804). IEEE Computer Society.

Chehreghani, M. H. (2020). Hierarchical correlation clustering and tree preserving embedding. CoRR,
abs/2002.07756.

Chehreghani, M. H. (2016). Adaptive trajectory analysis of replicator dynamics for data clustering. Machine
Learning, 104(2–3), 271–289.

Cormen, T. H., Stein, C., Rivest, R. L., & Leiserson, C. E. (2001). Introduction to algorithms (2nd ed.). New
York: McGraw-Hill Higher Education.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1,
269–271.

Dua, D., & Graff, C. (2019). UCI machine learning repository [http://archi ve.ics.uci.edu/ml]. Irvine, CA:
University of California, School of Information and Computer Science.

Fiedler, M. (1998). Ultrametric sets in euclidean point spaces. ELA. The Electronic Journal of Linear Alge-
bra, 3, 23–30.

Fischer, B., & Buhmann, J. M. (2003). Path-based clustering for grouping of smooth curves and texture seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4), 513–518.

Fouss, F., Francoisse, K., Yen, L., Pirotte, A., & Saerens, M. (2012). An experimental investigation of ker-
nels on graphs for collaborative recommendation and semisupervised classification. Neural Networks,
31, 5372.

Fouss, F., Pirotte, A., Renders, J.-M., & Saerens, M. (2007). Random-walk computation of similarities
between nodes of a graph with application to collaborative recommendation. IEEE Transactions on
Knowledge and Data Engineering, 19(3), 355–369.

Gabow, H. N., Galil, Z., Spencer, T., & Tarjan, R. E. (1986). Efficient algorithms for finding minimum span-
ning trees in undirected and directed graphs. Combinatorica, 6(2), 109–122.

Globerson, A., Chechik, G., Pereira, F., & Tishby, N. (2007). Euclidean embedding of co-occurrence data.
Journal of Machine Learning Research, 8, 2265–2295.

Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statis-
tics, 36(3), 1171–1220.

Horn, R. A., & Johnson, C. R. (Eds.). (1990). Matrix analysis. Cambridge: Cambridge University Press.
Hu, T. C. (1961). The maximum capacity route problem. Operations Research, 9, 898–900.
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), 193–218.
Khoshneshin, M., & Street, W. N. (2010). Collaborative filtering via euclidean embedding. In Proceedings

of the 2010 ACM conference on recommender systems, RecSys 2010, Barcelona, Spain, 26–30 Septem-
ber 2010 (pp. 87–94).

Kim, K.-H., & Choi, S. (2007). Neighbor search with global geometry: A minimax message passing algo-
rithm. In ICML (pp. 401–408).

Kim, K.-H. & Choi, S. (2013). Walking on minimax paths for k-nn search. In AAAI.
Kschischang, F. R., Frey, B. J., & Loeliger, H. A. (2006). Factor graphs and the sum-product algorithm.

IEEE Transactions on Information Theory, 47(2), 498–519.
Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.
Nadler, B., & Galun, M. (2007). Fundamental limitations of spectral clustering. Advanced in Neural Infor-

mation Processing Systems, 19, 1017–1024.
Pavan, M., & Pelillo, M. (2007). Dominant sets and pairwise clustering. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(1), 167–172.
Prim, R. C. (1957). Shortest connection networks and some generalizations. The Bell Systems Technical

Journal, 36(6), 1389–1401.
Quarteroni, A., Sacco, R., & Saleri, F. (2007). Approximation of eigenvalues and eigenvectors. Numerical

Mathematics, 37, 183–244.
Schoenberg, I. J. (1937). On certain metric spaces arising from euclidean spaces by a change of metric and

their imbedding in hilbert space. Annals of Mathematics, 38(4), 787–793.
Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge

University Press.

http://archive.ics.uci.edu/ml

2097Machine Learning (2020) 109:2063–2097

1 3

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500), 2319.

Torgerson, W. S. (1958). Theory and methods of scaling. Hoboken: Wiley.
Varga, R. S., & Nabben R. (1993). On symmetric ultrametric matrices. Numerical Linear Algebra, 193–200.
Veenman, C. J., Reinders, M. J. T., & Backer, E. (2002). A maximum variance cluster algorithm. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24, 1273–1280.
Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings comparison: Vari-

ants, properties, normalization and correction for chance. Journal of Machine Learning Research, 11,
2837–2854.

Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor clas-
sification. Journal of Machine Learning Research, 10, 207–244.

Yen, L., Saerens, M., Mantrach, A., & Shimbo, M. (2008). A family of dissimilarity measures between
nodes generalizing both the shortest-path and the commute-time distances. In KDD (pp. 785–793).

Young, G., & Householder, A. (1938). Discussion of a set of points in terms of their mutual distances. Psy-
chometrika, 3(1), 19–22.

Zadeh, R., & Ben-David, S. (2009). A uniqueness theorem for clustering. In UAI (pp. 639–646).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Unsupervised representation learning with Minimax distance measures
	Abstract
	1 Introduction
	2 Notations and definitions
	3 Features extraction from pairwise Minimax distances
	3.1 Computing pairwise Minimax distances
	3.2 Embedding of pairwise Minimax distances
	3.3 Embedding of collective Minimax pairwise matrices

	4 One-to-all Minimax distance measures
	4.1 Minimax K-nearest neighbor search
	4.2 Minimax K-NN search, the Prim’s algorithm and computational optimality
	4.3 One-to-all Minimax distances and minimum spanning trees
	4.4 Outlier detection with Minimax K-nearest neighbor search

	5 Experiments
	5.1 Classification with Minimax distances
	5.2 Experiments on clustering of document scannings
	5.3 Minimax K-NN classification
	5.4 Outlier detection along with Minimax K-NN search

	6 Conclusion
	Acknowledgements
	References

