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Abstract
Human beings may make random guesses in decision-making. Occasionally, their guesses 
may generate consistency with the real situation. This kind of consistency is termed ran-
dom consistency. In the area of machine leaning, the randomness is unavoidable and ubiq-
uitous in learning algorithms. However, the accuracy (A), which is a fundamental perfor-
mance measure for machine learning, does not recognize the random consistency. This 
causes that the classifiers learnt by A contain the random consistency. The random con-
sistency may cause an unreliable evaluation and harm the generalization performance. To 
solve this problem, the pure accuracy (PA) is defined to eliminate the random consistency 
from the A. In this paper, we mainly study the necessity, learning consistency and leaning 
method of the PA. We show that the PA is insensitive to the class distribution of classifier 
and is more fair to the majority and the minority than A. Subsequently, some novel gener-
alization bounds on the PA and A are given. Furthermore, we show that the PA is Bayes-
risk consistent in finite and infinite hypothesis space. We design a plug-in rule that maxi-
mizes the PA, and the experiments on twenty benchmark data sets demonstrate that the 
proposed method performs statistically better than the kernel logistic regression in terms of 
PA and comparable performance in terms of A. Compared with the other plug-in rules, the 
proposed method obtains much better performance.
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1  Introduction

In the process of decision-making, human beings may make random guesses with-
out logical reasoning when they lack sufficient evidence or detailed knowledge. For 
instance, intern doctors are likely to diagnose patients with colds during flu season, and 
students are likely to choose a lucky option when faced with a difficult multiple-choices 
question. Sometimes, these random guesses may generate consistency with the real situ-
ation. We term this consistency the random consistency.

In the area of machine learning, randomness is unavoidable and ubiquitous in con-
structing classifiers, such as collecting and labeling data, selecting the structures or 
parameters of models and even in setting random operations (Ghahramani 2015). The 
prediction results of the learning models may also contain the random consistency. The 
random consistency produces dishonest feedback, misleads the decision direction and 
harms the improvement of the generalization ability, especially when the tendency of 
random guesses coincides with the class distribution of the real situation.

Eliminating the random consistency from evaluation measures has been well-studied 
in the field of educational psychology, where researchers advocate that the expected 
score for the accurate answer with no insight would be zero rather than one. This elimi-
nation has proven helpful in achieving a higher reliability and validity assessment and 
increasing the performance of examinees (Sabers and Feldt 1968; Diamond and Evans 
1973; Wu et al. 2017; Budescu and Bar-Hillel 1993; Espinosa and Gardeazabal 2010). 
In the field of clustering evaluation, eliminating the random consistency has been an 
increasingly employed method to improve the quality of clustering evaluation (Hubert 
and Arabie 1985; Albatineh et al. 2006; Vinh et al. 2009, 2010; Albatineh and Niewia-
domska-Bugaj 2011; Qian et al. 2016; Li et al. 2018, 2019).

In the area of classification, the accuracy (A) is a vital performance measure in 
model evaluation and learning theory. The original learning theories focus on searching 
the generalization bounds for the error probability (one minus accuracy) (Valiant 1984; 
Bartlett and Mendelson 2003). The traditional algorithms, including logistic regression, 
support vector machine and Adaboost are designed to optimize convex surrogate loss 
functions of the error probability (Zhang 2003; Bartlett et al. 2006). In ensemble learn-
ing, accuracy has been used as the preferential measure to evaluate the performance of 
integration (Zhou et al. 2002; Martinezmunoz and Suarez 2006). Although it is a funda-
mental performance measure, the accuracy does not recognize the random consistency, 
which may limit the performance of the algorithms based on it. In this paper, we aim to 
define a performance measure that eliminates the random consistency from the accuracy 
and to study the learning performance of the measure theoretically and experimentally.

1.1 � Related work

The measure that eliminates the random consistency from the accuracy is referred to 
as the pure accuracy (PA). The PA measure is a kind of non-decomposable measures. 
The non-decomposable measures cannot be decomposed into each individual instance 
(Waegeman et al. 2014; Kotlowski and Dembczynski 2017; Sanyal et al. 2018). Simi-
lar measures include the F-measure, AUC, and balanced error rate (Zhao et al. 2013). 
For the non-decomposable measures, many learning theories and algorithms have been 
developed.
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From the aspect of learning theory, Waegeman et al. (2014) investigated the generali-
zation bound in terms of the F-measure when optimizing the Hamming loss and subset 
zero-one loss in a multi-label learning setting, and concluded that optimizing such losses 
as a surrogate of the F-measure leads to a high worst-case regret. Bayes-risk consistency 
guarantees that by increasing the amount of data, a rule can eventually learn the optimal 
decision with high probability. Agarwal et al. (2005b) show the Bayes-risk consistency of 
the AUC based on a new proposed combinatorial parameter. The key step of their proof is 
the symmetrization by a ghost sample that is the same as that for the classification error 
rate (Devroye et al. 1996). In this paper, to clarify the surrogate relation of PA and A, we 
show the upper bound of PA value for A-optimal rule and the upper bound of A value for 
PA-optimal rule. In addition, we give a Bayes-risk consistency analysis for the pure accu-
racy based on the Rademacher complexity in a finite hypothesis space and based on the VC 
dimension in an infinite space.

In optimizing the non-decomposable measures, Musicant et al. (2003) extended the sup-
port vector machine to optimize the F-measure by setting appropriate parameters in the 
standard SVM. Joachims (2005) proposed a large margin machine for maximizing a convex 
lower bound of non-decomposable measures. Hazan et al. (2010) and Song et al. (2016) 
trained deep neural networks by inferring the gradients of the non-decomposable meas-
ures. Narasimhan and Agarwal (2013) proposed a SVM model for optimizing the AUC 
via a tight convex upper bound. Waegeman et al. (2014) proposed an exact algorithm for 
optimizing the F-measure in the context of multi-label learning. Gao et al. (2016) proposed 
a one-pass AUC optimization algorithm that needed to read the training data only once. 
These methods directly optimize the non-decomposable measures. In addition to these 
direct methods, the plug-in rule is an effective method that learns a posterior probability 
function by the logistic regression method or some other mature methods, and searches a 
threshold that optimizes the objective measure. For optimizing non-decomposable meas-
ures, Narasimhan et al. (2015) simply used the bisection method to determine a threshold. 
The bisection method require the monotonicity of the function being solved. Then, there 
is still much room for improving the effectiveness of the plug-in method. Here, we give an 
interval search method to determine the threshold of the plug-in rule for optimizing the PA.

1.2 � Contributions

We aim to verify the learning ability and Bayes-risk consistency of the PA in this paper. 
First, with regard to the cost-sensitive loss function, we give a non-closed formulation of 
the optimal rule w.r.t the PA. Based on this formulation, we illustrate that the PA is insen-
sitive to the class distribution of classifiers and gets a low bias in minority accuracy and 
majority accuracy compared with A. Second, we give a novel lower and an upper bound 
for the optimal rules w.r.t the A and PA, respectively. These bounds help us clarify the 
surrogate relation between the PA and A. Furthermore, the generalization upper bounds of 
the PA in the worst case are given to analyze the consistency. The proof of these bounds 
employ the same symmetrization technique that was applied to prove the generalization 
upper bound of the accuracy (Devroye et al. 1996) and AUC (Agarwal et al. 2005a). How-
ever, the difference is that the PA has fractional formulation. Thus, the consistent analysis 
of the PA needs to handle the fractional formulation. Last, we design a plug-in rule in 
terms of maximizing the PA and experimentally validate its performance.

Briefly, the major contributions of this paper are summarized as follows:
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•	 Some bounds for the optimal rules w.r.t the PA and A are given. These bounds theoreti-
cally show that the PA-optimal rule is capable of approaching a satisfactory A value for all 
distributions.

•	 Second, we develop an inequality to handle the probability of large deviations of variables 
in fractional form. The generalization bounds for the PA are shown in finite and infinite 
hypothesis space. These bounds verify the Bayes-risk consistency of learning by PA.

•	 We propose a plug-in rule based on the interval search method for optimizing the PA. 
Through it, we experimentally verify the fairness and performance of PA in learning.

The organization of this paper is presented as follows: We give the definition of the PA in 
Sect. 2. In Sect. 3, two examples are given to show the necessity of evaluating classifiers by 
the PA. In Sect. 4, a surrogate analysis between the PA and the A is conducted. In Sect. 5, the 
generalization upper bounds of the PA are developed. We propose a plug-in rule for optimiz-
ing the PA and experimentally validate its performance in Sect. 6. We form a conclusion and 
propose future work in Sect. 7.

In this paper, definitions and theorems which are tagged with a literature reference are 
taken from the literature, while the original ones come without such a tag. All the proofs are 
presented in the “Appendix”.

2 � Preliminaries

We consider the task of binary classification. Let X ⊂ Rd and Y = {+1,−1} be the fea-
ture space and the label space, respectively. The underlying distribution of X × Y is usually 
unknown, and we only have a collection of empirical data SN = {(x1, y1), ..., (xN , yN)} that 
are drawn independently from this distribution. The goal of classification is to learn a classi-
fier h(x) mapping from X  to Y via SN . Let H be the hypothesis space, from which the clas-
sifier h(x) is learnt. To evaluate the performance of classifiers, the confusion matrix is usu-
ally employed. Let TP, FP, FN, TN denote the true positive ℙ(h(X) = +1, Y = +1) , false 
positive ℙ(h(X) = +1, Y = −1) , false negative ℙ(h(X) = −1, Y = +1) and true negative 
ℙ(h(X) = −1, Y = −1) , respectively. Let p and q(h) denote the probability of ℙ(Y = +1) and 
ℙ(h(X) = +1) , respectively. The confusion matrix is shown in Table 1.

Based on the confusion matrix, the accuracy (A) and the error probability (L) are defined 
as:

(1)A(h) = ℙ(h(X) = Y) = TP + TN,

(2)L(h) = ℙ(h(X) ≠ Y) = FP + FN.

Table 1   Confusion matrix h(X) Y

Y = +1 Y = −1 Total (h)

h(X) = +1 TP FP q(h)
h(X) = −1 FN TN 1 − q(h)

Total (Y) p 1 − p 1
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2.1 � The definition of PA

To define the pure accuracy (PA), we begin with giving the definition of random accuracy 
(RA), which aims to measure the random consistency in accuracy. For the classifier h(x) to 
be evaluated, let Hq(h) be the set of all possible binary partitions with the same class distri-
bution as it:

Considering that the output preference of the classifier (tendency of predicting which 
instances as positive) is unknown in advance, we suppose the partitions in Hq(h) are uni-
formly distributed. Because the partitions in Hq(h) have the same output randomness as the 
classifier to be evaluated, we define RA as the expectation accuracy over the partitions in 
Hq(h).

Lemma 1  When the partitions in Hq(h) are distributed uniformly, the expectation accu-
racy of partitions in Hq(h) is:

Definition 1  The RA is defined as:

Definition 2  The PA is defined as:

Definition 3  The pure loss (PL) is defined as:

The denominator of PA guarantees the maximum value to be 1. Note that the formula-
tion of the PA coincides with the definition of Cohen’s � statistic (Cohen 1960; Scott 1955; 
Goodman and Kruskal 1963). The difference between them is how to define the random 
consistency. In the definition of Cohen’s � statistic, random consistency is called as chance 
agreement. The chance agreement is the agreement degree that the two raters give their rat-
ings independently. The chance agreement between the classifier h(X) and the label label Y 
is:

The way we define the RA gives a general framework to measure the random consist-
ency in measures and is helpful to propose new performance measures.

Cohen’s � statistic has been successfully used in the area of psychology (Cameron 
et  al. 2003) and medicine (Blair and Stanley 2008). The advantage of correction for 
the expected agreement by chance has made Cohen’s � statistic commonly be used as 
a reliable performance measure in the area of machine learning (Ferri et al. 2009;). In 
ensemble learning, Kappa-error diagrams have been used to gain insights about the 

(3)Hq(h) =
{
h� ∶ ℙ

(
h�(X) = +1

)
= q(h), h�(X) ∈ {+1,−1}

}
.

(4)�h�∈Hq(h)A(h�) = pq(h) + (1 − p)(1 − q(h)).

(5)RA(h) = pq(h) + (1 − p)(1 − q(h)).

(6)PA(h) =
A(h) − RA(h)

1 − RA(h)
.

(7)PL(h) = 1 − PA(h) =
1 − A(h)

1 − RA(h)
.

(8)ℙ(h(X) = Y) =
∑

l={−1,+1}

ℙ(h(X) = Y = l) = pq(h) + (1 − p)(1 − q(h)).
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effectiveness of classifier ensembles (Kuncheva 2013) and to prune classifiers (Margin-
eantu and Dietterich 1997). In addition, Cohen’s � statistic has been used for feature 
selection (Vieira et al. 2010).

3 � On the advantages of pure accuracy measure

A learning algorithm sensitive to the class distribution may get a decision boundary 
that deviates from the optimal one. Thus, the learning objective should be insensi-
tive to the output class distribution. The extensively applied accuracy does not sat-
isfy this property. We employ Example 1 to show that the PA is satisfactory in this 
respect.

Example 1  (Class distribution insensitivity) In this example, we aim to compare the eval-
uation result of the A and PA on the prediction results with different class distribution. 
Under the settings of N = 100 and p = 0.3 , we randomly generate a binary vector as the 
true label vector. A partition with a fixed class distribution q can be generated by Algo-
rithm 1. The class distribution q is varied from 0 to 1 with a step of 0.05. Under each q, we 
run Algorithm 1 1000 times to generate 1000 partitions and use A and PA to evaluate the 
partitions, respectively. The distributions of the A value and PA value are shown in Fig. 1. 
From Fig. 1, it is easy to observe that the value of A decreases with the increase of q, while 
the value of PA is always near zero. This finding reflects that the A is sensitive to the class 
distribution of classifiers, while the PA is not.

Algorithm 1 Generator of Partition with a Fixed Class Distribution
Require: Data set SN = {(xi, yi), i = 1, 2..., N}, class ratio q ∈ [0, 1].
1: for each i ∈ N do
2: Generating q0 ∼ uniform(0, 1).
3: if q0 < q then h(xi) = +1;
4: else h(xi) = −1
5: end if
6: end for
Ensure: The predicted label h(xi), i = 1, 2...,N .

Further, we give the classifier that maximizes A and PA, respectively.
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Fig. 1   Distribution of A and PA under different q. Under each q, the box plot depicts the A values (left 
panel) and PA values (right panel) of Algorithm 1
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Lemma 2  (Devroye et  al. 1996) Let �(x) = ℙ(Y = +1|X = x) be the conditional class 
probability given X = x . The classifier that maximizes the A or minimizes the L is:

Correspondingly, the minimal error probability is

Theorem 1  The classifier that maximizes the PA is

where PA∗ = PA(h∗
PA
) and p = ℙ(Y = +1).

For the cost-sensitive loss L� = �FP + (1 − �)FN , it is known that when � is smaller, 
more attention will be paid to the minority class to get a smaller L� . According to the proof 
of Theorem 1, PA is equivalent to L� with � = (1∕2 − p)PA∗ + p . Due to PA∗ ≤ 1 , a smaller 
p value will generate a smaller (1∕2 − p)PA∗ + p value. In this case, h∗

PA
 will pay more 

attention to the minority class. Thus, h∗
PA

 may be insensitive to class distribution.
In learning classifiers, the minority class is often overwhelmed by the majority class to 

guarantee a higher overall accuracy (He and Garcia 2009). Then the classifiers learnt by 
optimizing the accuracy or error probability are usually biased to the majority class. This 
phenomenon is particularly desirable to avoid because the minority class is precious and 
inadequately represented. We employ Example 2 to show that the pure accuracy can miti-
gate the classification bias.

Example 2  (Fairness) To measure the bias of the classifier h(X), we use the absolute differ-
ence of the two class accuracy:

Assume that two class data are generated from Gaussian distribution: N(�
1
,�) and 

N(�
2
,�) . The label of the minority class is corrupted by the instance-independent noise at 

the level s1 : ℙ(Ỹ = −1|Y = +1) = s1.
For this learning task, the bias of h∗

A
 is:

where �(∙) is the cumulative distribution function of the standard normal distribution, 
� = (�

1
− �

2
)��−(�

1
− �

2
) and d0 = ln

1−p

p

1

1−2s1
 . Due to the formulation of h∗

PA
 is non-

closed, the bias of it is simulate through a large number of instances. First, a sample that 
obey the distribution of this task are generated with a size of 104 . Then, the threshold that 
optimizes the PA is searched from the range [0, 1] with a step 10−4 , and the bias of h∗

PA
 is 

calculated through the sample.

(9)h∗
A
(x) = argmax

h
A(h) =

{
+1, 𝜂(x) > 1

2
,

−1, otherwise.

(10)L∗ = L(h∗
A
) = �X min{�(X), 1 − �(X)}.

(11)h∗
PA
(x) = argmax

h
PA(h)

(12)=

{
+1, 𝜂(x) > (

1

2
− p)PA∗ + p,

−1, otherwise.

(13)Bias(h) = |ℙ(h(X) = −1|Y = −1) − ℙ(h(X) = +1|Y = +1)|

(14)Bias(h∗
A
) =

�����
�
d0 + �∕2√

�

�
− 1 +�

�
d0 − �∕2√

�

�����,
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Let �
1
= −1 , � = 1 and �

2
 vary from 0 to 2, p vary from 0.05 to 0.35 and the one-side 

noise level s1 vary from 0 to 0.5. The bias curve of h∗
A
 (the dashed line) and that of h∗

PA
 (the 

solid line) are shown in Fig. 2. As Fig. 2 shown, the dashed line is consistently lower than 
the solid line in each case, which demonstrates that learning by PA is more fair than learn-
ing by A under different imbalance degree, overlap degree and noise level.

4 � Surrogate analysis of the optimal rules

The task of classification is to predict the labels of future observations. The optimal clas-
sifier is usually obtained by minimizing a loss function. From the same hypothesis space, 
different loss functions usually obtain different optimal classifiers. In this section, we focus 
on giving some novel bounds for h∗

PA
(x) and h∗

A
(x) to clarify the substitution relationship 

between them in learning classifiers. Theorem  2 (derived by Lemma 3) and Theorem  3 
(derived by Lemma 4) are major results of this section.

Lemma 3  For all distributions, the plug-in rule with � as the decision threshold

satisfies:

when � = 1∕2 , the equality holds.

Lemma 3 gives an upper bound on the error probability of the plug-in rule. Accord-
ing to Lemma 3, we have:

Theorem 2  For all distributions, suppose that p = ℙ(Y = +1) ≤
1

2
 , the error probability 

of h∗
PA

 satisfies:

(15)h𝜌(x) =

{
+1, 𝜂(x) > 𝜌, where 𝜌 ∈ (0,

1

2
],

−1, otherwise,

(16)L(h�) ≤
1 − �

�
L∗,

(a) (b) (c)

Fig. 2   Bias of h∗
A
 and h∗

PA
 as a function of the ratio of majority class (left panel), the Mahalanobis distance 

of the two distributions (middle panel) and the one-side noise level (right panel). The dashed line is the bias 
curve of h∗

A
 , and the solid line is that of h∗

PA
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From Theorem 2, we can conclude that the error probability of the optimal classifier 
learnt by PA satisfies L(h∗

PA
) → L(h∗

A
) as PA∗

→ 1 for all distributions.

Lemma 4  For all distributions, suppose that p = ℙ(Y = +1) ≤
1

2
 , the pure loss of h∗

A
 

satisfies:

Lemma 4 gives the upper bound of the pure loss of h∗
A
 with respect to L∗ . To obtain 

the convergence relation between PL(h∗
A
) with PL(h∗

PA
) , we further amplifying L∗ in 

Theorem 3.

Theorem 3  For all distributions, suppose p ≤
1

2
 , the pure loss of h∗

A
 satisfies:

From Theorem 3, we can conclude that the pure loss of the optimal classifier learnt by 
A satisfies PL(h∗

A
) → PL(h∗

PA
) as L∗ → 0 only when p =

1

2
 . Based on Theorems 2 and 3, we 

can infer that learning by PA can obtain a satisfactory A for all distributions, while learn-
ing by A can obtain a satisfactory PA only when the class distribution is balanced. We also 
employ Example 3 to reflect this phenomenon.

Example 3  (Surrogate analysis) In this example, we aim to analyse the surrogate relation 
of A and PA. Under the settings of N = 100 and p = {0.1, 0.2, 0.5} , we enumerate all pos-
sible values of FP and FN and calculate the A values and PA values. The A value and PA 
value of each pair of (FP, FN) under different p are shown in Fig. 3. From Fig. 3, we can 
observe that under the settings p = {0.1, 0.2} , when the PA value tends to 1, most of the A 
values tends to 1, while when the A value tends to 1, most of the PA values are low. When 
p = 0.5 , the relation between A and PA is linear.

5 � Bayes‑risk consistency analysis of learning by the pure accuracy 
measure

The underlying distribution of X × Y is usually unknown, and we only have a collection of 
the empirical data SN = {(x1, y1), ..., (xN , yN)} that is drawn independently from the distri-
bution. In machine learning, the classifier is generally obtained by the principle of empiri-
cal risk minimization (ERM). The feasibility of the ERM is guaranteed by the property of 
Bayes-risk consistency. The corresponding loss function of PA is PL. Therefore, in this 
section, we validate the learnability of PA by analyzing the Bayes-risk consistency of PL.

(17)L∗ ≤ L(h∗
PA
) ≤

(
1

(
1

2
− p)PA∗ + p

− 1

)
L∗.

(18)PL(h∗
A
) ≤

L∗

p
(

3

2
− p

)
− L∗

(
1

2
− p

) .

(19)PL(h∗
PA
) ≤ PL(h∗

A
)

(20)≤
2(1 − p)

p(3 − 2p) − L∗(1 − 2p)
PL(h∗

PA
).
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For the risk function R, let R̂N(h) be the empirical risk calculated on SN : 
R̂N(h) = �X×Y∈SN

R(h(X), Y) . ERM obtains the optimal rule h∗
R̂N

 from a hypothesis space H 
by minimizing R̂N(h):

To guarantee the feasibility of the ERM, the property of Bayes-risk consistency is 
defined as:

Definition 4  (Devroye et al. 1996) The rule h∗
R̂N

 is Bayes-risk consistent, if for any small 
enough � , it satisfies

The Bayes-risk consistency requires that the empirical optimal hypothesis h∗
R̂N

 has a 
large probability of converging to the universal optimal hypothesis as the number of empir-
ical data tends to infinite.

To analysis the Bayes-risk consistency, the gap between R(h∗
R̂N

) and infh R(h) is usually 
upper bounded by (Devroye et al. 1996):

which is known as the estimation error. The estimation error measures the performance gap 
between the empirical data and the underlying distribution. The convergence of the estima-
tion error ensures that the rule learnt finite samples can be generalized to infinite samples. 
The bound of the estimation error, the so-called generalization bound, is the key factor in 
studying the property of the Bayes-risk consistency.

The Rademacher complexity (Bartlett and Mendelson 2003) and the VC Dimension (Vap-
nik and Chervonenkis 1971) are two complexity measures of the hypothesis space; they have 
a crucial role in bounding the estimation error in the sense of accuracy. Here, we use the gen-
eralization bounds based on them to analyse the Bayes-risk consistency of learning by PA. To 
save space, we omit the definitions of the Rademacher complexity, the VC dimension and the 
corresponding generalization bounds.

(21)h∗
R̂N

= argmin
h∈H

R̂N(h).

(22)lim
N→∞

ℙ(|R(h∗
�RN

) − inf
h
R(h)| > 𝜀) = 0.

(23)R(h∗
R̂N

) − inf
h
R(h) ≤ 2 sup

h∈H

|R̂N(h) − R(h)|,
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Fig. 3   Surrogate analysis of A and PA when p = 0.1 (left panel), p = 0.2 (middle panel) and p = 0.5 (right 
panel)



2257Machine Learning (2020) 109:2247–2281	

1 3

5.1 � The Bayes‑risk consistency of the pure loss measure in a finite hypothesis space

The fractional form of the pure loss leads to that the empirical value of it is not an unbiased 
estimation of the expected value. Therefore, the techniques in deriving the generalization 
bounds of the error probability (Theorem 8 in Bartlett and Mendelson (2003) and Theorem 2 
in Vapnik and Chervonenkis (1971) cannot be directly applied. Here, we establish a bridge 
between the estimation error of the pure loss and that of the error probability; and then obtain 
the Bayes-risk consistency of the pure loss in finite hypothesis space and infinite hypothesis 
space based on Theorem 8 in Bartlett and Mendelson (2003) and Theorem 2 in Vapnik and 
Chervonenkis (1971), respectively.

First, we give the formulation of the empirical error probability L̂N(h) and the empirical 
random accuracy R̂AN(h) to analysis the Bayes-risk consistency:

where hj ∈ Hq(h) , | ∙ | is the cardinality of a set and �{∙} is the indicator function. Then, the 
empirical pure loss P̂LN(h) is

In practice, according to Lemma 1, the empirical random accuracy is computed by:

where

Lemma 5  For two random variables Z1, Z2 ∈ [0, 1] , any � ∈ (0, 1] , let 
� = �Z1�Z2∕(2�Z1 + �Z2) , we have

Lemma 5 links the probability of the large estimation error of the fractional variable to 
that of the numerator and denominator. Based on Lemma 5, we obtain Theorems 4 and 5.

(24)L̂N(h) =

N∑
i=1

�{h(xi) ≠ yi},

(25)R̂AN(h) =
1

N|Hq(h)|
|Hq(h)|∑
j=1

N∑
i=1

�{hj(xi) = yi},

(26)P̂LN(h) =
L̂N(h)

1 − R̂AN(h)
.

(27)R̂AN(h) = 1 − p̂N − (1 − 2p̂N)q̂(h)N ,

(28)p̂N =

N∑
i=1

�{yi = +1},

(29)q̂(h)N =

N∑
i=1

�{h(xi) = +1}.

(30)
ℙ

(||||
Z1

Z2
−

𝔼Z1

𝔼Z2

|||| > 𝜀

)

≤ ℙ
(|Z1 − 𝔼Z1| > 𝛼𝜀

)
+ 3ℙ

(|Z2 − 𝔼Z2| > 𝛼𝜀
)
.
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Theorem 4  Suppose the cardinality of H is finite: |H| < ∞ , then for every h ∈ H , any 
� ∈ (0, 1] , we have

where � = minh∈H
L(h)

2+PL(h)
 and Rc(H) is the Rademacher complexity of H.

Theorem 4 provides the probability of the large estimation error in terms of the number 
of the empirical data in finite hypothesis space. From Theorem 4, we can conclude that 
learning by the PA is Bayes-risk consistency in a finite hypothesis space.

5.2 � The Bayes‑risk consistency of the pure loss measure in an infinite hypothesis 
space

In this section, we consider the Bayes-risk consistency in an infinite hypothesis space. For 
an infinite hypothesis space, the union bound cannot be utilized. We utilize the symmetri-
zation technical to bound the estimation error of the pure loss. Next, we divide the hypoth-
esis space into N + 1 subspaces according to the class probability of hypothesis functions, 
to ensure that each hypothesis subspace has the same degree of random accuracy. Then, 
we employ the VC bound of the error probability to bound the estimation error of the pure 
loss.

Lemma 6  Let S�
N
= {(x�

1
, y�

1
), ..., (x�

N
, y�

N
)} be an independent and identically distributed 

collection as SN and P̂L
�

N
(h) is the corresponding empirical pure loss. Suppose 

N ≥ 5(6 + 4��)�−2�−2 , where � = minh∈H
L(h)

2PL(h)+1
 , � ∈ (0, 1] , then we have

Theorem 5  As the same condition as Lemma 6 and suppose the VC dimension of H is 
finite: dvc(H) < ∞ , we have:

Theorem 5 provides the probability of the large estimation error in terms of the number 
of the empirical data in infinite hypothesis space. From Theorem 5, we can conclude that 
learning by the PA is Bayes-risk consistent in an infinite hypothesis space.

(31)

ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ 8|H| exp
{

−2N

(
𝛼𝜀 −

Rc(H)

2

)2
}

,

(32)
ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ 2ℙ

{
sup
h∈H

||||
�PLN(h) − �PL

�

N
(h)

|||| >
𝜀

2

}
.

(33)
ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ 4(N + 1) exp

{
−

(
𝜀2(1 − |2�pN − 1|)2

16
−

dvc(H) ln(2eN∕dvc(H))

N

)
N

}
.
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6 � Performance validation of learning by the pure accuracy measure

By the Bayes-risk consistency, we have shown that the PA can be utilized to learn clas-
sifiers through minimizing PL. However, due to the fractional form, optimizing PL is a 
challenging task. To handle this challenge, we introduce the plug-in rule and propose an 
interval search method.

The plug-in rule refers to a rule with a formulation of h�∗ (x) = sign(�̂(x) − �∗) , where 
�̂(x) is an estimator of the posterior probability �(x) = ℙ(Y = +1|X = x) and �∗ is a thresh-
old (Koyejo et  al. 2014). The plug-in method mainly contains the following steps: first, 
randomly split the training data SN into S1 and S2 ; second, learn �̂(x) by minimizing a loss 
function on S1 ; third, determine �∗ by maximizing the learning objective on S2.

In Narasimhan et al. (2014), it has been proved that assigning an empirical threshold to 
a suitable posterior probability estimate can optimize the performance measures expressed 
as a function of the TP and TN and p. That is, the plug-in method can optimize a com-
plex performance measure through searching a decision threshold that optimizes the meas-
ure for the posterior probability estimate. The major focus of this section is developing an 
method to search the threshold that optimizes PL rather than to learn the posterior prob-
ability �̂(x).

In this section, first, we introduce the method to learn the posterior probability. Then, 
we discuss some methods of determining the threshold that optimizes PL and propose a 
interval search method. Finally, we experimentally validate the performance of the interval 
search method and the classifier learnt by the PA.

6.1 � Learning �̂(x)

Many methods can be employed to learn �̂(x) . Here, we introduce the kernel logistic 
regression model, which is proven to be a suitable posterior probability estimate (Ingo 
2005; Narasimhan et al. 2014; Menon et al. 2013). The kernel logistic regression model is:

where �i are the variables to be solved and K(∙, ∙) is kernel function. With the optimal �∗
i
 is 

obtained by the gradient descent method, we have

6.2 � The interval search method

As for determining �∗ , different threshold settings correspond to optimizing different learning 
objective functions.

To optimize the accuracy, the threshold �∗ of the plug-in rule is 0.5, and this is the so-
called kernel logistic regression (KLR) method. To optimize the balanced accuracy (BA), 
the threshold �∗ of the plug-in rule is p (Menon et al. 2013).

For the measures in a fractional form, search strategies are effective and simple. An 
intuitive approach to determine the optimal threshold is the point-wise search method, 

(34)max
�j

|S1|∑
i=1

|S1|∑
j=1

�jyjK(xj, xi)yi −

|S1|∑
i=1

log

(
1 + exp

(|S1|∑
j=1

�jyjK(xj, xi)

))

(35)�̂(x) =
1

1 + exp(−
∑�S1�

j=1
�∗
j
yjK(xj, x))

.
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namely, evaluating the fractional measure at each possible threshold and outputting the best 
performing threshold. There is no doubt that exhausting all possible thresholds is impos-
sible. The gird search is a method to handle this, which divide the range of the threshold 
into multiple equal intervals and set the end points as the candidate thresholds. Besides, 
the posterior probabilities on S2 can also be set to the candidate thresholds. We term this 
search strategy the S2-search. The gird search method and the S2-search method search 
the threshold in a limited range. In addition to the point-wise search methods, the bisec-
tion method transforms the fractional measure to a one-dimensional function and obtains 
the optimal threshold by solving the zero root of the one-dimensional function in binary 
(Narasimhan et al. 2015). The bisection requires that the objective function be monotone 
on the interval, while the fractional performance measures are usually non-monotonic with 
respect to the threshold.

In this subsection, we develop a method for searching the optimal threshold via the 
interval search method, and use this method to minimize PL. The interval search method 
is an effective way to search the local minimum of a unimodal function (Chong and Żak 
2011). For a unimodal one-dimensional function f(r) defined in [ � , � ], to obtain the mini-
mum r∗ , the interval search method is based on the idea that it produces a series of inter-
vals [�k, �k] , where [𝛼k+1, 𝛽k+1] ⊂ [𝛼k, 𝛽k] and limk→∞ �k = limk→∞ �k = r∗ . Specifically, the 
interval search method inserts two points in each iteration and produces [�k, �k,�k, �k] . If 
f (𝜆k) < f (𝜇k) , then �k+1 = �k and �k+1 = �k ; otherwise, �k+1 = �k and �k+1 = �k . When the 
interval length is reduced by the ratio of 1 − (

√
5 − 1)∕2 , the interval search method is so-

called gold section method.
For any plug-in rule h�(x) = sign(�̂(x) − �) , we briefly discuss about whether the PL is a 

unimodal function of the threshold � . According to the proof of Theorem 1, the PL is con-
sistent to the cost-sensitive loss with the optimal threshold as the cost weight:

where �∗ is the minimum of L�∗ (�):

and FP(𝛿) = ℙ(𝜂(X) > 𝛿, Y = −1) , FN(�) = ℙ(�(X) ≤ �, Y = +1) . Because

we have:

For 𝛿1 < 𝛿2 , we have:

Thus, if

we have L𝛿∗ (𝛿1) > L𝛿∗ (𝛿2) ; otherwise, L𝛿∗ (𝛿1) < L𝛿∗ (𝛿2).

(36)L�∗ (�) = �∗FP(�) + (1 − �∗)FN(�),

(37)�∗ = argmin
�

L�∗ (�),

(38)FP(𝛿) = ℙ(𝜂(X) > 𝛿, Y = −1) = ℙ(𝜂(X) > 𝛿) − ℙ(𝜂(X) > 𝛿, Y = +1),

(39)
L𝛿∗ (𝛿) = 𝛿∗FP(𝛿) + (1 − 𝛿∗)FN(𝛿)

= 𝛿∗ℙ(𝜂(X) > 𝛿) − 𝛿∗ℙ(Y = +1) + ℙ(𝜂(X) ≤ 𝛿, Y = +1).

(40)
L�∗ (�1) − L�∗ (�2)

= �∗ℙ(�(X) ∈ (�1, �2]) − ℙ(�(X) ∈ (�1, �2], Y = +1).

(41)
ℙ(𝜂(X) ∈ (𝛿1, 𝛿2], Y = +1)

ℙ(𝜂(X) ∈ (𝛿1, 𝛿2])
< 𝛿∗
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The unimodality of PL requires that for 𝛿1 < 𝛿2 < 𝛿∗ , L𝛿∗ (𝛿1) > L𝛿∗ (𝛿2) and for 
𝛿∗ < 𝛿1 < 𝛿2 , L𝛿∗ (𝛿1) < L𝛿∗ (𝛿2) . Thus, when 𝛿∗ < 𝛿1 < 𝛿2 , the unimodality of L�∗ (�) 
requires that the posteriori probability should satisfy condition (41), which signifies that 
there exist a small number of positive objects in the objects with small posterior prob-
abilities. When 𝛿1 < 𝛿2 < 𝛿∗ , the unimodal of L�∗ (�) requires that the posteriori probability 
should satisfy the contrary case of condition (41), which signifies that there exist a large 
number of positive objects in the objects with large posterior probabilities.

According to the above discussion, if the posteriori probability is sufficiently good, PL 
is a unimodal function of � . The interval search method is applied to obtain �∗ . From Theo-
rem 1, we have

Then, we express the plug-in rule as:

and apply the interval search method to finding the optimal r that minimizes P̂L|S2|(hr(x)).
A fixed reduction of the interval is employed. In each iteration, the interval length is 

reduced by the � ∈ (0, 0.5) ratio. The interval search method is thus called as �-interval 
search method and the ratio � is a parameter to be tuned. The interval search method for 
minimizing the PL is shown as Algorithm 2. The time complexity of the �-interval search 
method contains two parts, which are learning �̂(x) and searching �∗ . The time complex-
ity of learning �̂(x) is the same as the gradient descent method, and the time complexity 
of search �∗ is O(N log� �) , where N is the number of training data, � is the reduction ratio 
of the interval and � is the threshold of the stop condition. Learning �̂(x) is the main time 
consuming part. When handling large number of samples, it is suggested to utilize effective 
gradient descent method.

Algorithm 2 The τ -Interval Search Method for Minimizing the PL
Require: The training data SN

Randomly split the training data SN into S1 and S2 with a ratio of 8 : 2 and use S1 to
estimate η(x)
Set α = 0, β = 1, t = 0, = 0.0001
Let λ = α+ τ(β − α) and µ = β − τ(β − α),
Obtain hλ(x) = sign[η(x) − 1

2 − ( 12 − p λ)], hµ(x) = sign[η(x) − 1
2 − ( 12 − p µ)] and

calculate PL|S2|(hλ, Y ) and PL|S2|(hµ, Y ) on S2
while β − , do

IF PL|S2|(hλ(x)) ≤ PL|S2|(hµ(x)), THEN update β = µ ELSE update α = λ;

λ = α+ τ(β − α), µ = β − τ(β − α) and calculate PL|S2|(hλ(x)) and PL|S2|(hµ(x)) on
S2;

t = t+ 1; δt = 1
2 − ( 12 − p λ.

end while
Ensure: The optimal threshold δ∗.

6.3 � Experiments

We validate the performance of the �-interval search on a variety of benchmark data sets. 
By the benchmark data sets, we show that learning by PA is more fair in majority accuracy 

(42)�∗ =
(
1

2
− p

)
PA∗ + p =

1

2
−
(
1

2
− p

)
PL∗.

(43)hr(x) = sign
[
�̂(x) −

(
1

2
−
(
1

2
− p

)
r
)]

,
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and minority accuracy than A and compare the �-interval search method with some other 
plug-in rules to show its effectiveness.

The benchmark data sets are downloaded from the KEEL Data Set Repository 
(Alcalafdez et  al. 2008) and the UCI Machine Learning Repository (Dua and Graff 
2017). These data sets are briefly described in Table 2, including data ID, name, size, 
number of attributes and the imbalance ratio(IR). The posterior probability is gen-
erated by the kernel logistic regression and the kernel function is the RBF kernel 
K(x, x�) = exp(−�||x − x

�||2).
Each data set is randomly divided into a training set, a validation set and a test set at 

a ratio of 3:1:1. The methods are compared in the same division. We randomly divide 
the data set 30 times to obtain an average performance. The parameter � is chosen from 
{2−4, 2−2, 20, 22, 24, 26} and the � is chosen from {0.1, 0.2, 0.3, 0.4} via the validation set. 
Each attribute is linearly scaled to the range [0, 1] using the maximum and minimum 
values in the training data. For each data, we also add 3% and 5% random uniform label 
noise to increase the complexity of the data.

First, to show that learning by PA is more fair than A, we compare the bias [refer 
to Eq. (13)] of KLR and the �-interval method. Figure 4 shows the comparison result. 
Each bar of Fig. 4 is the difference of the mean bias over 30 times between KLR and 
the �-interval method on each benchmark data set. As shown in Fig. 4, we observe that 
16/20, 17/20, 16/20 bars are greater than zero under 0% noise, 3% noise, 5% noise, 
respectively. That is, the bias of KLR is large than that of the �-interval method, which 
reflects the classifiers learnt by PA is more fair than the classifiers learnt by A.

Table 2   Description of data sets

Data ID Data name Attribute Instance IR Download

1 First-order theorem proving1 51 6118 1.02 UCI
2 First-order theorem proving2 51 6118 1.28 UCI
3 First-order theorem proving3 51 6118 1.16 UCI
4 First-order theorem proving4 51 6118 1.14 UCI
5 First-order theorem proving5 51 6118 1.27 UCI
6 Crx 15 653 1.21 KEEL
7 Heart 13 270 1.25 KEEL
8 Australian 14 690 1.25 KEEL
9 Wdbc 30 569 1.68 KEEL
10 Bands 19 365 1.70 KEEL
11 Ionosphere 33 351 1.79 KEEL
12 Wisconsin 9 683 1.86 KEEL
13 Pima 8 768 1.87 KEEL
14 Titanic 3 2201 2.10 KEEL
15 German 20 1000 2.33 KEEL
16 Segment 19 2308 6.02 KEEL
17 Dermatology 34 358 16.90 KEEL
18 Wilt 5 4839 17.54 UCI
19 Flare 11 1066 23.79 KEEL
20 Winequality-red 11 1599 29.17 KEEL
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Second, to validate the performance the proposed method, the A and PA are 
employed as evaluation measures. The benchmark methods are KLR, p-cut (with the 
proportion of the minority class in S2 as the threshold), grid-search, S2-search and 
bisection method. The KLR aims to optimize the A, and p-cut aims to optimize the 
balanced accuracy. The grid-search and S2-search aim to optimize the PA. The bisec-
tion is used to optimize the F1-measure and PA, which are noted as Bisection-F1 and 
Bisection-PA, respectively. Tables 3, 5 and 7 show the mean and the standard deviation 
of A over 30 time comparisons with 0%, 3% and 5% label noise, respectively. Tables 4, 
6 and 8 show the mean and the standard deviation of PA over 30 time comparisons with 
0%, 3% and 5% label noise, respectively. In each row of the tables, the method with the 
maximal evaluation value is underlined and printed in bold type, and the method with a 
dot indicates that the �-interval search is significantly better with regard to the pairwise 
Student’s t test with a level of 0.1. As shown in Tables 3, 4, 5, 6, 7 and 8, the evaluation 
score obtained by the �-interval search is highlighted in bold and is underlined in most 
of the comparisons. In many comparisons, the �-interval search is statistically better 
than other methods.

To further analysis the statical performance of each method, for each method, we 
calculate the gap between the times of the significant wins and the times of signifi-
cant loses. An algorithm a significantly wins b if its mean and standard deviation are 
satisfied:

where t is the number of comparison times; otherwise, a significantly loses b (Please refer 
to reference Li et  al. (2016) for more details). Figure 5 shows the results of the statisti-
cal comparison. Each bar in Fig. 5 represents the gap between the times of the significant 
wins and the times of significant loses. As shown in Fig. 5, we observe that the bar of the 
�-interval search method is the highest w.r.t PA under different noise level. With respect 
to A, the bar of the �-interval search is the highest when the noise level is % and 5%; and 
when the label is not polluted by noise, the bar of the �-interval search is the second high-
est. In general, we can conclude that the �-interval search method can optimize the PA 
value better and also can obtain a satisfactory A value.

(44)𝜇a − 1.96
𝜎a√
t
> 𝜇b + 1.96

𝜎b√
t
,
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Fig. 4   Bias Gap of KLR and the �-interval method under different noise level. Each bar is the mean gap 
over 30 times on each data set



2264	 Machine Learning (2020) 109:2247–2281

1 3

Ta
bl

e 
3  

C
om

pa
ris

on
 o

f a
cc

ur
ac

y 
on

 d
at

a 
w

ith
ou

t n
oi

se

ID
K

LR
p-

cu
t

B
is

ec
tio

n-
F
1

G
rid

-s
ea

rc
h

S
2
-s

ea
rc

h
B

is
ec

tio
n-

PA
�-

in
te

rv
al

1
0.

66
9 

 ±
  0

.0
12

∙
0.

67
0 

 ±
  0

.0
12

0.
64

7 
 ±

  0
.0

11
∙

0.
67

2 
 ±

  0
.0

12
0.

67
2 

 ±
  0

.0
12

0.
67

0 
 ±

  0
.0

13
∙

0.
67
3 

 ±
  0

.0
12

2
0.

67
1 

 ±
  0

.0
13

0.
66

5 
 ±

  0
.0

14
∙

0.
67
2 

 ±
  0

.0
14

0.
67

0 
 ±

  0
.0

14
0.

67
1 

 ±
  0

.0
14

0.
66

8 
 ±

  0
.0

13
0.

67
0 

 ±
  0

.0
14

3
0.

68
3 

 ±
  0

.0
13

∙
0.

68
1 

 ±
  0

.0
12

∙
0.

67
0 

 ±
  0

.0
13

∙
0.

68
4 

 ±
  0

.0
14

0.
68

4 
 ±

  0
.0

14
∙

0.
68

3 
 ±

  0
.0

13
∙

0.
68
8 

 ±
  0

.0
13

4
0.

66
3 

 ±
  0

.0
11

∙
0.

66
2 

 ±
  0

.0
13

∙
0.

65
4 

 ±
  0

.0
11

∙
0.

66
1 

 ±
  0

.0
12

∙
0.

66
1 

 ±
  0

.0
12

∙
0.

66
2 

 ±
  0

.0
11

∙
0.
66
7 

 ±
  0

.0
11

5
0.

68
3 

 ±
  0

.0
13

0.
68

1 
 ±

  0
.0

14
∙

0.
67

0 
 ±

  0
.0

12
∙

0.
68

2 
 ±

  0
.0

16
∙

0.
68

1 
 ±

  0
.0

16
∙

0.
68

3 
 ±

  0
.0

14
0.
68
5 

 ±
  0

.0
12

6
0.

85
9 

 ±
  0

.0
26

∙
0.

86
4 

 ±
  0

.0
23

0.
80

8 
 ±

  0
.0

30
∙

0.
86

0 
 ±

  0
.0

21
∙

0.
85

9 
 ±

  0
.0

22
∙

0.
86

1 
 ±

  0
.0

25
0.
86
8 

 ±
  0

.0
21

7
0.

78
9 

 ±
  0

.0
49

∙
0.

78
6 

 ±
  0

.0
50

∙
0.

79
2 

 ±
  0

.0
53

∙
0.

77
0 

 ±
  0

.0
48

∙
0.

77
6 

 ±
  0

.0
57

∙
0.

78
8 

 ±
  0

.0
51

∙
0.
81
7 

 ±
  0

.0
38

8
0.

85
0 

 ±
  0

.0
30

0.
85

0 
 ±

  0
.0

32
0.

82
1 

 ±
  0

.0
38

∙
0.

84
8 

 ±
  0

.0
31

∙
0.

84
7 

 ±
  0

.0
32

∙
0.

85
0 

 ±
  0

.0
29

0.
85
7 

 ±
  0

.0
25

9
0.

95
4 

 ±
  0

.0
22

∙
0.

95
5 

 ±
  0

.0
22

∙
0.

95
2 

 ±
  0

.0
22

∙
0.

95
5 

 ±
  0

.0
23

∙
0.

95
2 

 ±
  0

.0
23

∙
0.

95
5 

 ±
  0

.0
22

∙
0.
96
5 

 ±
  0

.0
17

10
0.

63
7 

 ±
  0

.0
59

∙
0.

60
2 

 ±
  0

.0
69

∙
0.

62
6 

 ±
  0

.0
60

∙
0.

62
5 

 ±
  0

.0
63

∙
0.

61
7 

 ±
  0

.0
74

∙
0.

60
9 

 ±
  0

.0
67

∙
0.
65
4 

 ±
  0

.0
50

11
0.

84
6 

 ±
  0

.0
42

∙
0.

84
5 

 ±
  0

.0
42

∙
0.

84
6 

 ±
  0

.0
42

∙
0.

84
6 

 ±
  0

.0
46

∙
0.

84
5 

 ±
  0

.0
43

∙
0.

84
6 

 ±
  0

.0
41

∙
0.
86
7 

 ±
  0

.0
32

12
0.

96
6 

 ±
  0

.0
13

∙
0.

96
7 

 ±
  0

.0
13

0.
94

6 
 ±

  0
.0

19
∙

0.
97

0 
 ±

  0
.0

14
0.

96
9 

 ±
  0

.0
14

0.
96

6 
 ±

  0
.0

14
0.
97
1 

 ±
  0

.0
10

13
0.

76
3 

 ±
  0

.0
28

0.
75

0 
 ±

  0
.0

31
∙

0.
75

8 
 ±

  0
.0

30
∙

0.
75

5 
 ±

  0
.0

35
∙

0.
75

6 
 ±

  0
.0

33
0.

76
2 

 ±
  0

.0
29

0.
76
6 

 ±
  0

.0
29

14
0.

77
9 

 ±
  0

.0
16

∙
0.

76
7 

 ±
  0

.0
23

∙
0.

77
7 

 ±
  0

.0
16

∙
0.

77
9 

 ±
  0

.0
19

0.
77

9 
 ±

  0
.0

19
0.

78
0 

 ±
  0

.0
16

0.
78
3 

 ±
  0

.0
17

15
0.

74
2 

 ±
  0

.0
22

∙
0.

71
0 

 ±
  0

.0
27

∙
0.

74
4 

 ±
  0

.0
24

0.
72

5 
 ±

  0
.0

27
∙

0.
72

6 
 ±

  0
.0

28
∙

0.
73

2 
 ±

  0
.0

26
∙

0.
74
6 

 ±
  0

.0
23

16
0.

99
3 

 ±
  0

.0
04

∙
0.

99
2 

 ±
  0

.0
05

∙
0.

99
2 

 ±
  0

.0
05

∙
0.

99
4 

 ±
  0

.0
04

∙
0.

99
5 

 ±
  0

.0
04

∙
0.

99
3 

 ±
  0

.0
05

∙
0.
99
6 

 ±
  0

.0
03

17
0.

99
9 

 ±
  0

.0
04

0.
99

8 
 ±

  0
.0

05
∙

0.
99

6 
 ±

  0
.0

06
∙

0.
99

7 
 ±

  0
.0

06
∙

0.
99

1 
 ±

  0
.0

12
∙

0.
99

9 
 ±

  0
.0

04
1.
00
0 

 ±
  0

.0
03

18
0.
94
6 

 ±
  0

.0
00

0.
71

6 
 ±

  0
.0

66
∙

0.
87

8 
 ±

  0
.0

63
0.

74
3 

 ±
  0

.2
20

∙
0.

75
7 

 ±
  0

.2
07

∙
0.

85
5 

 ±
  0

.0
35

0.
84

3 
 ±

  0
.0

65
19

0.
95
8 

 ±
  0

.0
07

0.
80

0 
 ±

  0
.0

54
∙

0.
94

7 
 ±

  0
.0

13
0.

93
4 

 ±
  0

.0
22

∙
0.

93
5 

 ±
  0

.0
22

∙
0.

92
7 

 ±
  0

.0
21

∙
0.

94
2 

 ±
  0

.0
23

20
0.
96
8 

 ±
  0

.0
02

0.
74

8 
 ±

  0
.0

63
∙

0.
94

5 
 ±

  0
.0

30
0.

93
2 

 ±
  0

.0
28

∙
0.

93
5 

 ±
  0

.0
24

∙
0.

92
4 

 ±
  0

.0
43

∙
0.

94
0 

 ±
  0

.0
37

R
an

k
3.

15
5.

50
4.

75
4.

40
4.

65
4.

05
1.

50



2265Machine Learning (2020) 109:2247–2281	

1 3

Ta
bl

e 
4  

C
om

pa
ris

on
 o

f p
ur

e 
ac

cu
ra

cy
 o

n 
da

ta
 se

ts
 w

ith
ou

t n
oi

se

ID
K

LR
p-

cu
t

B
is

ec
tio

n-
F
1

G
rid

-s
ea

rc
h

S
2
-s

ea
rc

h
B

is
ec

tio
n-

PA
�-

in
te

rv
al

1
0.

33
9 

 ±
  0

.0
25

∙
0.

34
1 

 ±
  0

.0
25

0.
29

3 
 ±

  0
.0

22
∙

0.
34

5 
 ±

  0
.0

23
0.

34
5 

 ±
  0

.0
24

0.
34

0 
 ±

  0
.0

25
∙

0.
34
7 

 ±
  0

.0
24

2
0.

31
8 

 ±
  0

.0
28

∙
0.

32
5 

 ±
  0

.0
28

0.
30

5 
 ±

  0
.0

28
∙

0.
32

8 
 ±

  0
.0

29
0.
32
9 

 ±
  0

.0
28

0.
32

6 
 ±

  0
.0

26
0.

32
7 

 ±
  0

.0
29

3
0.

36
1 

 ±
  0

.0
29

∙
0.

36
3 

 ±
  0

.0
24

∙
0.

32
0 

 ±
  0

.0
27

∙
0.

36
6 

 ±
  0

.0
26

0.
36

5 
 ±

  0
.0

27
0.

36
4 

 ±
  0

.0
27

∙
0.
37
3 

 ±
  0

.0
26

4
0.

32
4 

 ±
  0

.0
22

∙
0.

32
5 

 ±
  0

.0
25

∙
0.

29
5 

 ±
  0

.0
23

∙
0.

32
5 

 ±
  0

.0
24

∙
0.

32
5 

 ±
  0

.0
24

∙
0.

32
4 

 ±
  0

.0
23

∙
0.
33
2 

 ±
  0

.0
23

5
0.

35
6 

 ±
  0

.0
26

∙
0.

36
5 

 ±
  0

.0
26

0.
31

2 
 ±

  0
.0

24
∙

0.
36

2 
 ±

  0
.0

29
0.

36
1 

 ±
  0

.0
29

∙
0.

36
5 

 ±
  0

.0
25

0.
36
9 

 ±
  0

.0
22

6
0.

71
7 

 ±
  0

.0
53

∙
0.

72
7 

 ±
  0

.0
45

0.
60

5 
 ±

  0
.0

64
∙

0.
71

9 
 ±

  0
.0

42
∙

0.
71

8 
 ±

  0
.0

43
∙

0.
72

2 
 ±

  0
.0

50
0.
73
6 

 ±
  0

.0
41

7
0.

57
4 

 ±
  0

.0
99

∙
0.

57
0 

 ±
  0

.1
01

∙
0.

57
1 

 ±
  0

.1
11

∙
0.

53
9 

 ±
  0

.0
97

∙
0.

54
8 

 ±
  0

.1
16

∙
0.

57
4 

 ±
  0

.1
04

∙
0.
62
9 

 ±
  0

.0
79

8
0.

69
7 

 ±
  0

.0
60

0.
69

8 
 ±

  0
.0

64
0.

62
8 

 ±
  0

.0
81

∙
0.

69
3 

 ±
  0

.0
63

∙
0.

69
0 

 ±
  0

.0
65

∙
0.

69
8 

 ±
  0

.0
59

0.
71
1 

 ±
  0

.0
51

9
0.

90
2 

 ±
  0

.0
47

∙
0.

90
3 

 ±
  0

.0
46

∙
0.

89
6 

 ±
  0

.0
48

∙
0.

90
2 

 ±
  0

.0
49

∙
0.

89
6 

 ±
  0

.0
49

∙
0.

90
3 

 ±
  0

.0
47

∙
0.
92
4 

 ±
  0

.0
37

10
0.

19
6 

 ±
  0

.1
15

∙
0.

18
1 

 ±
  0

.1
32

∙
0.

18
8 

 ±
  0

.1
18

∙
0.

18
6 

 ±
  0

.1
23

∙
0.

17
9 

 ±
  0

.1
18

∙
0.

18
5 

 ±
  0

.1
32

∙
0.
22
5 

 ±
  0

.1
08

11
0.

64
7 

 ±
  0

.1
00

∙
0.

64
4 

 ±
  0

.0
99

∙
0.

64
4 

 ±
  0

.1
02

∙
0.

64
9 

 ±
  0

.1
01

∙
0.

65
0 

 ±
  0

.0
96

∙
0.

64
6 

 ±
  0

.0
98

∙
0.
69
8 

 ±
  0

.0
73

12
0.

92
4 

 ±
  0

.0
30

∙
0.

92
7 

 ±
  0

.0
29

0.
87

7 
 ±

  0
.0

44
∙

0.
93

5 
 ±

  0
.0

31
0.

93
1 

 ±
  0

.0
31

0.
92

5 
 ±

  0
.0

31
∙

0.
93
5 

 ±
  0

.0
22

13
0.

44
9 

 ±
  0

.0
71

∙
0.

46
6 

 ±
  0

.0
69

0.
41

5 
 ±

  0
.0

82
∙

0.
45

9 
 ±

  0
.0

72
0.

46
0 

 ±
  0

.0
72

0.
47

0 
 ±

  0
.0

72
0.
47
4 

 ±
  0

.0
66

14
0.

44
4 

 ±
  0

.0
40

∙
0.

43
8 

 ±
  0

.0
42

∙
0.

43
7 

 ±
  0

.0
42

∙
0.

45
2 

 ±
  0

.0
44

0.
45

1 
 ±

  0
.0

43
0.

45
0 

 ±
  0

.0
42

0.
45
8 

 ±
  0

.0
42

15
0.

34
5 

 ±
  0

.0
61

∙
0.

37
2 

 ±
  0

.0
49

0.
34

4 
 ±

  0
.0

70
∙

0.
36

5 
 ±

  0
.0

54
∙

0.
36

7 
 ±

  0
.0

54
∙

0.
37

6 
 ±

  0
.0

59
0.
38
4 

 ±
  0

.0
67

16
0.

97
3 

 ±
  0

.0
17

∙
0.

96
8 

 ±
  0

.0
21

∙
0.

96
9 

 ±
  0

.0
22

∙
0.

97
5 

 ±
  0

.0
17

∙
0.

97
8 

 ±
  0

.0
15

∙
0.

97
3 

 ±
  0

.0
18

∙
0.
98
3 

 ±
  0

.0
14

17
0.

98
6 

 ±
  0

.0
43

∙
0.

98
3 

 ±
  0

.0
44

∙
0.

96
0 

 ±
  0

.0
68

∙
0.

97
2 

 ±
  0

.0
51

∙
0.

88
5 

 ±
  0

.1
95

∙
0.

98
6 

 ±
  0

.0
43

∙
0.
99
6 

 ±
  0

.0
22

18
0.

00
0 

 ±
  0

.0
00

∙
0.

06
3 

 ±
  0

.0
41

0.
03

3 
 ±

  0
.0

50
∙

0.
05

7 
 ±

  0
.0

37
0.

05
7 

 ±
  0

.0
37

0.
05

3 
 ±

  0
.0

47
0.
06
3 

 ±
  0

.0
37

19
0.

14
7 

 ±
  0

.1
40

∙
0.

16
3 

 ±
  0

.0
60

∙
0.

20
8 

 ±
  0

.1
48

∙
0.

24
1 

 ±
  0

.1
25

0.
23

8 
 ±

  0
.1

33
0.

23
1 

 ±
  0

.1
07

0.
25
0 

 ±
   

 ±
  0

.1
36

20
0.

00
4 

 ±
  0

.0
26

∙
0.

05
1 

 ±
  0

.0
38

∙
0.

11
0 

 ±
  0

.1
12

0.
10

9 
 ±

  0
.1

07
0.
11
2 

 ±
  0

.1
13

0.
10

1 
 ±

  0
.0

97
0.

11
0 

 ±
  0

.1
06

R
an

k
5.

15
4.

15
6.

20
3.

60
3.

90
3.

85
1.

15



2266	 Machine Learning (2020) 109:2247–2281

1 3

Ta
bl

e 
5  

C
om

pa
ris

on
 o

f a
cc

ur
ac

y 
on

 d
at

a 
se

ts
 w

ith
 3

%
 n

oi
se

ID
K

LR
p-

cu
t

B
is

ec
tio

n-
F
1

G
rid

-s
ea

rc
h

S
2
-s

ea
rc

h
B

is
ec

tio
n-

PA
�-

in
te

rv
al

1
0.

66
0 

±
 0

.0
11

∙
0.

65
9 

±
 0

.0
11

∙
0.

64
2 

±
 0

.0
13

∙
0.

65
9 

±
 0

.0
11

∙
0.

66
0 

±
 0

.0
10

∙
0.

65
9 

±
 0

.0
11

∙
0.
66
3 

±
 0

.0
12

2
0.
65
7 

±
 0

.0
12

0.
65

0 
±

 0
.0

12
∙

0.
65

4 
±

 0
.0

11
0.

65
6 

±
 0

.0
14

0.
65

5 
±

 0
.0

13
0.

65
4 

±
 0

.0
12

0.
65

6 
±

 0
.0

13
3

0.
67

4 
±

 0
.0

15
∙

0.
67

5 
±

 0
.0

12
∙

0.
66

2 
±

 0
.0

16
∙

0.
67

8 
±

 0
.0

13
0.

67
8 

±
 0

.0
13

0.
67

4 
±

 0
.0

13
∙

0.
67
9 

±
 0

.0
13

4
0.

65
9 

±
 0

.0
12

∙
0.

65
7 

±
 0

.0
13

∙
0.

64
5 

±
 0

.0
12

∙
0.

65
9 

±
 0

.0
12

∙
0.

65
9 

±
 0

.0
12

∙
0.

65
9 

±
 0

.0
13

∙
0.
66
3 

±
 0

.0
10

5
0.

66
7 

±
 0

.0
15

0.
66

3 
±

 0
.0

12
∙

0.
65

8 
±

 0
.0

11
∙

0.
66

5 
±

 0
.0

15
0.

66
5 

±
 0

.0
14

0.
66

6 
±

 0
.0

13
0.
66
9 

±
 0

.0
13

6
0.

82
6 

±
 0

.0
29

0.
82

7 
±

 0
.0

27
0.

78
2 

±
 0

.0
35

∙
0.

83
0 

±
 0

.0
26

0.
82

7 
±

 0
.0

28
∙

0.
82

7 
±

 0
.0

26
0.
83
7 

±
 0

.0
28

7
0.

77
0 

±
 0

.0
55

∙
0.

76
5 

±
 0

.0
49

∙
0.

76
7 

±
 0

.0
45

∙
0.

76
4 

±
 0

.0
55

∙
0.

76
0 

±
 0

.0
55

∙
0.

76
6 

±
 0

.0
50

∙
0.
80
1 

±
 0

.0
43

8
0.

82
9 

±
 0

.0
33

∙
0.

83
0 

±
 0

.0
33

0.
80

0 
±

 0
.0

35
∙

0.
83

1 
±

 0
.0

28
∙

0.
82

9 
±

 0
.0

28
∙

0.
82

9 
±

 0
.0

32
∙

0.
83
9 

±
 0

.0
26

9
0.

90
4 

±
 0

.0
53

∙
0.

89
8 

±
 0

.0
50

∙
0.

89
3 

±
 0

.0
47

∙
0.

90
0 

±
 0

.0
50

∙
0.

90
4 

±
 0

.0
51

∙
0.

90
3 

±
 0

.0
53

∙
0.
93
0 

±
 0

.0
35

10
0.

59
4 

±
 0

.0
54

∙
0.

57
2 

±
 0

.0
67

∙
0.

58
9 

±
 0

.0
61

∙
0.

59
6 

±
 0

.0
52

∙
0.

60
0 

±
 0

.0
51

∙
0.

57
7 

±
 0

.0
67

∙
0.
63
7 

±
 0

.0
46

11
0.

81
1 

±
 0

.0
50

∙
0.

80
9 

±
 0

.0
55

∙
0.

81
6 

±
 0

.0
44

∙
0.

81
0 

±
 0

.0
43

∙
0.

80
8 

±
 0

.0
37

∙
0.

80
8 

±
 0

.0
54

∙
0.
83
6 

±
 0

.0
44

12
0.

93
5 

±
 0

.0
20

0.
93
9 

±
 0

.0
19

0.
91

1 
±

 0
.0

19
∙

0.
93

7 
±

 0
.0

20
0.

93
9 

±
 0

.0
18

0.
93

6 
±

 0
.0

20
0.

93
9 

±
 0

.0
19

13
0.

74
4 

±
 0

.0
30

0.
72

1 
±

 0
.0

29
∙

0.
74

1 
±

 0
.0

29
0.

71
9 

±
 0

.0
42

∙
0.

72
1 

±
 0

.0
43

∙
0.

73
6 

±
 0

.0
31

∙
0.
74
6 

±
 0

.0
34

14
0.

76
5 

±
 0

.0
15

0.
74

4 
±

 0
.0

20
∙

0.
76

3 
±

 0
.0

15
∙

0.
76

2 
±

 0
.0

19
0.

76
2 

±
 0

.0
19

∙
0.

76
4 

±
 0

.0
15

∙
0.
76
8 

±
 0

.0
14

15
0.

72
7 

±
 0

.0
26

∙
0.

68
9 

±
 0

.0
36

∙
0.

72
3 

±
 0

.0
27

∙
0.

71
7 

±
 0

.0
28

∙
0.

71
7 

±
 0

.0
26

∙
0.

71
0 

±
 0

.0
26

∙
0.
74
0 

±
 0

.0
26

16
0.

94
4 

±
 0

.0
19

0.
88

4 
±

 0
.0

36
∙

0.
92

9 
±

 0
.0

20
∙

0.
94

1 
±

 0
.0

23
∙

0.
94

2 
±

 0
.0

23
∙

0.
94

2 
±

 0
.0

21
∙

0.
94
7 

±
 0

.0
20

17
0.

91
4 

±
 0

.0
42

∙
0.

91
4 

±
 0

.0
42

∙
0.

91
4 

±
 0

.0
43

∙
0.

91
7 

±
 0

.0
40

0.
92

0 
±

 0
.0

37
0.

91
4 

±
 0

.0
43

∙
0.
93
0 

±
 0

.0
30

18
0.
91
9 

±
 0

.0
00

0.
65

8 
±

 0
.0

58
∙

0.
83

3 
±

 0
.0

56
0.

68
2 

±
 0

.1
92

∙
0.

68
6 

±
 0

.1
97

∙
0.

79
4 

±
 0

.0
51

0.
78

8 
±

 0
.0

78
19

0.
92
9 

±
 0

.0
07

0.
70

8 
±

 0
.0

52
∙

0.
89

3 
±

 0
.0

32
∙

0.
87

5 
±

 0
.0

46
∙

0.
87

7 
±

 0
.0

47
∙

0.
85

5 
±

 0
.0

62
∙

0.
90

8 
±

 0
.0

39
20

0.
94
0 

±
 0

.0
01

0.
67

3 
±

 0
.0

41
∙

0.
88

6 
±

 0
.0

48
0.

84
7 

±
 0

.1
36

∙
0.

84
7 

±
 0

.1
39

0.
82

1 
±

 0
.0

79
∙

0.
89

3 
±

 0
.0

28
R

an
k

2.
95

5.
70

5.
00

4.
30

4.
00

4.
70

1.
35



2267Machine Learning (2020) 109:2247–2281	

1 3

Ta
bl

e 
6  

C
om

pa
ris

on
 o

f p
ur

e 
ac

cu
ra

cy
 o

n 
da

ta
 se

ts
 w

ith
 3

%
 n

oi
se

ID
K

LR
p-

cu
t

B
is

ec
tio

n-
F
1

G
rid

-s
ea

rc
h

S
2
-s

ea
rc

h
B

is
ec

tio
n-

PA
�-

in
te

rv
al

1
0.

32
0 

±
 0

.0
22

∙
0.

31
9 

±
 0

.0
22

∙
0.

28
2 

±
 0

.0
25

∙
0.

31
8 

±
 0

.0
22

∙
0.

32
0 

±
 0

.0
19

∙
0.

31
9 

±
 0

.0
21

∙
0.
32
6 

±
 0

.0
24

2
0.

28
8 

±
 0

.0
25

∙
0.

29
6 

±
 0

.0
23

0.
27

2 
±

 0
.0

23
∙

0.
30
1 

±
 0

.0
27

0.
30

0 
±

 0
.0

27
0.

29
9 

±
 0

.0
24

0.
29

9 
±

 0
.0

28
3

0.
34

3 
±

 0
.0

31
∙

0.
35

0 
±

 0
.0

25
0.

30
4 

±
 0

.0
33

∙
0.

35
3 

±
 0

.0
25

0.
35

3 
±

 0
.0

25
0.

34
7 

±
 0

.0
26

∙
0.
35
5 

±
 0

.0
27

4
0.

31
6 

±
 0

.0
24

∙
0.

31
6 

±
 0

.0
26

∙
0.

27
7 

±
 0

.0
25

∙
0.

31
9 

±
 0

.0
23

0.
31

9 
±

 0
.0

23
0.

31
7 

±
 0

.0
26

0.
32
5 

±
 0

.0
19

5
0.

32
5 

±
 0

.0
32

∙
0.

32
9 

±
 0

.0
24

0.
28

8 
±

 0
.0

24
∙

0.
32

9 
±

 0
.0

29
0.

32
8 

±
 0

.0
28

0.
33

1 
±

 0
.0

25
0.
33
5 

±
 0

.0
26

6
0.

65
2 

±
 0

.0
59

∙
0.

65
4 

±
 0

.0
56

0.
55

1 
±

 0
.0

74
∙

0.
65

9 
±

 0
.0

51
0.

65
4 

±
 0

.0
56

∙
0.

65
3 

±
 0

.0
53

0.
67
3 

±
 0

.0
56

7
0.

53
6 

±
 0

.1
12

∙
0.

52
8 

±
 0

.1
00

∙
0.

52
2 

±
 0

.0
95

∙
0.

52
2 

±
 0

.1
12

∙
0.

51
3 

±
 0

.1
14

∙
0.

52
8 

±
 0

.1
02

∙
0.
59
7 

±
 0

.0
85

8
0.

65
4 

±
 0

.0
66

∙
0.

65
9 

±
 0

.0
66

0.
58

4 
±

 0
.0

77
∙

0.
65

9 
±

 0
.0

56
∙

0.
65

6 
±

 0
.0

55
∙

0.
65

7 
±

 0
.0

65
0.
67
6 

±
 0

.0
53

9
0.

79
5 

±
 0

.1
15

∙
0.

78
4 

±
 0

.1
08

∙
0.

76
4 

±
 0

.1
04

∙
0.

78
5 

±
 0

.1
10

∙
0.

79
0 

±
 0

.1
15

∙
0.

79
3 

±
 0

.1
14

∙
0.
85
1 

±
 0

.0
74

10
0.

10
8 

±
 0

.1
19

∙
0.

12
2 

±
 0

.1
43

∙
0.

11
4 

±
 0

.1
30

∙
0.

12
4 

±
 0

.0
91

∙
0.

13
0 

±
 0

.0
91

∙
0.

12
6 

±
 0

.1
42

∙
0.
19
3 

±
 0

.0
95

11
0.

57
5 

±
 0

.1
08

∙
0.

57
2 

±
 0

.1
17

∙
0.

58
2 

±
 0

.0
98

∙
0.

56
9 

±
 0

.0
95

∙
0.

56
4 

±
 0

.0
83

∙
0.

56
9 

±
 0

.1
15

∙
0.
63
2 

±
 0

.1
03

12
0.

85
9 

±
 0

.0
42

0.
86
9 

±
 0

.0
40

0.
80

0 
±

 0
.0

45
∙

0.
86

4 
±

 0
.0

43
0.

86
7 

±
 0

.0
39

0.
86

1 
±

 0
.0

43
0.

86
8 

±
 0

.0
41

13
0.

41
0 

±
 0

.0
69

∙
0.

40
4 

±
 0

.0
65

∙
0.

38
7 

±
 0

.0
73

∙
0.

39
4 

±
 0

.0
72

∙
0.

39
7 

±
 0

.0
73

∙
0.

41
5 

±
 0

.0
71

∙
0.
43
2 

±
 0

.0
74

14
0.

41
8 

±
 0

.0
38

0.
40

0 
±

 0
.0

40
∙

0.
41

3 
±

 0
.0

37
∙

0.
42

1 
±

 0
.0

37
0.

42
0 

±
 0

.0
37

0.
42

0 
±

 0
.0

35
0.
42
8 

±
 0

.0
34

15
0.

32
0 

±
 0

.0
62

∙
0.

33
5 

±
 0

.0
69

∙
0.

30
3 

±
 0

.0
64

∙
0.

34
0 

±
 0

.0
53

∙
0.

33
9 

±
 0

.0
50

∙
0.

34
5 

±
 0

.0
54

∙
0.
36
5 

±
 0

.0
57

16
0.

78
2 

±
 0

.0
79

0.
64

1 
±

 0
.0

79
∙

0.
69

5 
±

 0
.1

00
∙

0.
78

1 
±

 0
.0

79
0.

78
3 

±
 0

.0
79

0.
78

3 
±

 0
.0

76
0.
80
0 

±
 0

.0
72

17
0.

49
8 

±
 0

.1
69

0.
50

0 
±

 0
.1

69
0.

49
5 

±
 0

.1
75

∙
0.

50
8 

±
 0

.1
68

0.
50

9 
±

 0
.1

59
0.

50
2 

±
 0

.1
69

0.
55
8 

±
 0

.1
41

18
0.

00
0 

±
 0

.0
00

∙
0.

04
7 

±
 0

.0
41

0.
02

5 
±

 0
.0

48
∙

0.
04
7 

±
 0

.0
33

0.
04

6 
±

 0
.0

32
0.

03
5 

±
 0

.0
43

0.
04

4 
±

 0
.0

36
19

0.
04

6 
±

 0
.0

87
∙

0.
10

0 
±

 0
.0

51
∙

0.
13

1 
±

 0
.0

96
0.

12
8 

±
 0

.0
83

0.
12

8 
±

 0
.0

81
0.
13
5 

±
 0

.0
76

0.
13

3 
±

 0
.1

08
20

0.
00

5 
±

 0
.0

22
∙

0.
06

3 
±

 0
.0

43
∙

0.
10

3 
±

 0
.0

88
0.

10
3 

±
 0

.0
80

0.
09

6 
±

 0
.0

78
∙

0.
10

0 
±

 0
.0

69
0.
12
1 

±
 0

.0
77

R
an

k
5.

10
4.

50
6.

10
3.

45
3.

80
3.

70
1.

35



2268	 Machine Learning (2020) 109:2247–2281

1 3

Ta
bl

e 
7  

C
om

pa
ris

on
 o

f a
cc

ur
ac

y 
on

 d
at

a 
se

ts
 w

ith
 5

%
 n

oi
se

ID
K

LR
p-

cu
t

B
is

ec
tio

n-
F
1

G
rid

-s
ea

rc
h

S
2
-s

ea
rc

h
B

is
ec

tio
n-

PA
�-

in
te

rv
al

1
0.

65
4 

±
 0

.0
12

∙
0.

65
4 

±
 0

.0
12

∙
0.

63
9 

±
 0

.0
14

∙
0.

65
6 

±
 0

.0
12

∙
0.

65
7 

±
 0

.0
12

∙
0.

65
4 

±
 0

.0
12

∙
0.
66
1 

±
 0

.0
11

2
0.

65
0 

±
 0

.0
13

0.
64

6 
±

 0
.0

14
∙

0.
65

0 
±

 0
.0

13
0.

65
0 

±
 0

.0
14

0.
65
1 

±
 0

.0
14

0.
64

8 
±

 0
.0

15
0.

65
1 

±
 0

.0
14

3
0.

66
8 

±
 0

.0
17

∙
0.

66
6 

±
 0

.0
17

∙
0.

65
9 

±
 0

.0
16

∙
0.

67
0 

±
 0

.0
18

∙
0.

66
9 

±
 0

.0
18

∙
0.

66
8 

±
 0

.0
17

∙
0.
67
3 

±
 0

.0
16

4
0.

64
1 

±
 0

.0
13

∙
0.

64
2 

±
 0

.0
13

∙
0.

63
2 

±
 0

.0
13

∙
0.

64
3 

±
 0

.0
11

0.
64

3 
±

 0
.0

11
0.

64
3 

±
 0

.0
12

0.
64
6 

±
 0

.0
11

5
0.

65
7 

±
 0

.0
11

∙
0.

65
4 

±
 0

.0
14

∙
0.

65
1 

±
 0

.0
13

∙
0.

65
8 

±
 0

.0
12

0.
65

8 
±

 0
.0

12
0.

65
7 

±
 0

.0
13

∙
0.
66
1 

±
 0

.0
13

6
0.

82
4 

±
 0

.0
28

∙
0.

82
4 

±
 0

.0
26

∙
0.

77
6 

±
 0

.0
36

∙
0.

82
2 

±
 0

.0
27

∙
0.

82
2 

±
 0

.0
27

∙
0.

82
5 

±
 0

.0
28

∙
0.
83
5 

±
 0

.0
25

7
0.

74
3 

±
 0

.0
51

∙
0.

74
1 

±
 0

.0
58

∙
0.

73
4 

±
 0

.0
55

∙
0.

72
8 

±
 0

.0
59

∙
0.

72
8 

±
 0

.0
57

∙
0.

74
0 

±
 0

.0
55

∙
0.
77
0 

±
 0

.0
48

8
0.

81
2 

±
 0

.0
29

∙
0.

81
2 

±
 0

.0
27

∙
0.

78
7 

±
 0

.0
33

∙
0.

81
0 

±
 0

.0
32

∙
0.

80
9 

±
 0

.0
35

∙
0.

81
3 

±
 0

.0
30

∙
0.
82
2 

±
 0

.0
32

9
0.

88
8 

±
 0

.0
34

∙
0.

88
5 

±
 0

.0
31

∙
0.

85
3 

±
 0

.0
29

∙
0.

88
6 

±
 0

.0
32

∙
0.

88
8 

±
 0

.0
32

∙
0.

88
9 

±
 0

.0
35

∙
0.
91
1 

±
 0

.0
24

10
0.

57
1 

±
 0

.0
59

∙
0.

53
9 

±
 0

.0
55

∙
0.

55
4 

±
 0

.0
59

∙
0.

56
9 

±
 0

.0
66

∙
0.

55
5 

±
 0

.0
79

∙
0.

54
5 

±
 0

.0
58

∙
0.
59
5 

±
 0

.0
50

11
0.

76
3 

±
 0

.0
62

∙
0.

75
9 

±
 0

.0
60

∙
0.

76
6 

±
 0

.0
63

∙
0.

76
2 

±
 0

.0
67

∙
0.

76
5 

±
 0

.0
62

∙
0.

76
0 

±
 0

.0
63

∙
0.
80
2 

±
 0

.0
48

12
0.

91
2 

±
 0

.0
23

∙
0.

91
5 

±
 0

.0
25

0.
88

0 
±

 0
.0

27
∙

0.
91

4 
±

 0
.0

34
0.

91
4 

±
 0

.0
31

0.
91

4 
±

 0
.0

23
0.
91
9 

±
 0

.0
22

13
0.
73
1 

±
 0

.0
26

0.
70

3 
±

 0
.0

31
∙

0.
73

1 
±

 0
.0

30
0.

71
2 

±
 0

.0
30

∙
0.

71
2 

±
 0

.0
31

∙
0.

71
7 

±
 0

.0
25

∙
0.

72
6 

±
 0

.0
31

14
0.

75
0 

±
 0

.0
17

0.
73

2 
±

 0
.0

22
∙

0.
74

8 
±

 0
.0

17
∙

0.
75

0 
±

 0
.0

18
0.

75
0 

±
 0

.0
18

0.
75

0 
±

 0
.0

17
∙

0.
75
4 

±
 0

.0
17

15
0.

71
9 

±
 0

.0
22

0.
68

6 
±

 0
.0

27
∙

0.
71

7 
±

 0
.0

23
0.

70
2 

±
 0

.0
30

∙
0.

70
2 

±
 0

.0
30

∙
0.

70
4 

±
 0

.0
24

∙
0.
72
1 

±
 0

.0
28

16
0.
93
5 

±
 0

.0
12

0.
86

8 
±

 0
.0

25
∙

0.
91

5 
±

 0
.0

09
∙

0.
93

3 
±

 0
.0

15
0.

93
4 

±
 0

.0
15

0.
93

2 
±

 0
.0

16
0.

93
4 

±
 0

.0
13

17
0.

88
5 

±
 0

.0
37

0.
88

0 
±

 0
.0

43
0.

88
5 

±
 0

.0
37

0.
88
8 

±
 0

.0
39

0.
87

6 
±

 0
.0

49
0.

88
5 

±
 0

.0
37

0.
88

5 
±

 0
.0

37
18

0.
90
2 

±
 0

.0
00

0.
65

0 
±

 0
.0

54
∙

0.
80

3 
±

 0
.0

76
0.

63
1 

±
 0

.1
89

∙
0.

62
4 

±
 0

.1
89

∙
0.

76
3 

±
 0

.0
49

∙
0.

79
4 

±
 0

.0
80

19
0.
91
2 

±
 0

.0
08

0.
69

5 
±

 0
.0

36
∙

0.
89

0 
±

 0
.0

28
0.

87
0 

±
 0

.0
40

∙
0.

86
9 

±
 0

.0
47

∙
0.

84
5 

±
 0

.0
62

∙
0.

88
4 

±
 0

.0
27

20
0.
92
1 

±
 0

.0
02

0.
62

9 
±

 0
.0

42
∙

0.
84

3 
±

 0
.0

54
0.

81
7 

±
 0

.1
10

0.
81

9 
±

 0
.1

09
0.

76
6 

±
 0

.0
86

∙
0.

83
6 

±
 0

.0
79

R
an

k
3.

05
5.

70
4.

90
4.

25
4.

10
4.

35
1.

65



2269Machine Learning (2020) 109:2247–2281	

1 3

Ta
bl

e 
8  

C
om

pa
ris

on
 o

f p
ur

e 
ac

cu
ra

cy
 o

n 
da

ta
 se

ts
 w

ith
 5

%
 n

oi
se

ID
K

LR
p-

cu
t

B
is

ec
tio

n-
F
1

G
rid

-s
ea

rc
h

S
2
-s

ea
rc

h
B

is
ec

tio
n-

PA
�-

in
te

rv
al

1
0.

30
8 

±
 0

.0
24

∙
0.

30
9 

±
 0

.0
24

∙
0.

27
5 

±
 0

.0
29

∙
0.

31
3 

±
 0

.0
23

∙
0.

31
4 

±
 0

.0
23

∙
0.

30
8 

±
 0

.0
24

∙
0.
32
2 

±
 0

.0
23

2
0.

27
6 

±
 0

.0
28

∙
0.

28
8 

±
 0

.0
27

0.
26

7 
±

 0
.0

27
∙

0.
29

0 
±

 0
.0

28
0.
29
0 

±
 0

.0
28

0.
28

6 
±

 0
.0

30
0.

29
0 

±
 0

.0
28

3
0.

33
2 

±
 0

.0
35

∙
0.

33
2 

±
 0

.0
33

∙
0.

30
0 

±
 0

.0
32

∙
0.

33
7 

±
 0

.0
35

∙
0.

33
6 

±
 0

.0
36

∙
0.

33
5 

±
 0

.0
35

∙
0.
34
5 

±
 0

.0
33

4
0.

27
9 

±
 0

.0
26

∙
0.

28
6 

±
 0

.0
26

0.
25

2 
±

 0
.0

25
∙

0.
28

9 
±

 0
.0

21
0.

28
9 

±
 0

.0
21

0.
28

7 
±

 0
.0

24
0.
29
1 

±
 0

.0
22

5
0.

30
5 

±
 0

.0
23

∙
0.

31
1 

±
 0

.0
27

∙
0.

27
4 

±
 0

.0
28

∙
0.

31
4 

±
 0

.0
22

0.
31

4 
±

 0
.0

21
0.

31
2 

±
 0

.0
26

∙
0.
31
9 

±
 0

.0
27

6
0.

64
8 

±
 0

.0
57

∙
0.

64
7 

±
 0

.0
53

∙
0.

53
9 

±
 0

.0
75

∙
0.

64
3 

±
 0

.0
54

∙
0.

64
4 

±
 0

.0
54

∙
0.

64
9 

±
 0

.0
58

∙
0.
67
0 

±
 0

.0
49

7
0.

47
8 

±
 0

.1
05

∙
0.

47
6 

±
 0

.1
17

∙
0.

45
1 

±
 0

.1
18

∙
0.

44
9 

±
 0

.1
19

∙
0.

44
6 

±
 0

.1
17

∙
0.

47
4 

±
 0

.1
12

∙
0.
53
4 

±
 0

.0
97

8
0.

62
0 

±
 0

.0
58

∙
0.

62
1 

±
 0

.0
53

∙
0.

55
9 

±
 0

.0
69

∙
0.

61
7 

±
 0

.0
67

∙
0.

61
4 

±
 0

.0
72

∙
0.

62
2 

±
 0

.0
60

∙
0.
64
2 

±
 0

.0
64

9
0.

76
1 

±
 0

.0
71

∙
0.

75
8 

±
 0

.0
65

∙
0.

67
2 

±
 0

.0
68

∙
0.

75
9 

±
 0

.0
68

∙
0.

76
3 

±
 0

.0
68

∙
0.

76
4 

±
 0

.0
73

∙
0.
80
7 

±
 0

.0
54

10
0.

05
1 

±
 0

.1
27

∙
0.

04
4 

±
 0

.1
13

∙
0.

04
9 

±
 0

.1
17

∙
0.

06
4 

±
 0

.0
94

∙
0.

05
9 

±
 0

.0
96

∙
0.

05
0 

±
 0

.1
17

∙
0.
11
1 

±
 0

.0
94

11
0.

47
1 

±
 0

.1
36

∙
0.

46
4 

±
 0

.1
32

∙
0.

47
4 

±
 0

.1
39

∙
0.

46
9 

±
 0

.1
45

∙
0.

46
8 

±
 0

.1
39

∙
0.

46
6 

±
 0

.1
38

∙
0.
55
2 

±
 0

.1
12

12
0.

80
7 

±
 0

.0
52

∙
0.

81
6 

±
 0

.0
53

0.
72

8 
±

 0
.0

64
∙

0.
81

6 
±

 0
.0

71
0.

81
5 

±
 0

.0
66

0.
81

2 
±

 0
.0

50
∙

0.
82
4 

±
 0

.0
49

13
0.

39
1 

±
 0

.0
62

0.
37

9 
±

 0
.0

63
0.

37
6 

±
 0

.0
79

0.
38

2 
±

 0
.0

60
0.

38
1 

±
 0

.0
63

0.
38

7 
±

 0
.0

52
0.
39
4 

±
 0

.0
66

14
0.

38
9 

±
 0

.0
42

0.
37

3 
±

 0
.0

42
∙

0.
38

5 
±

 0
.0

41
∙

0.
39

3 
±

 0
.0

44
0.

39
3 

±
 0

.0
44

0.
39

3 
±

 0
.0

40
0.
40
0 

±
 0

.0
42

15
0.

30
6 

±
 0

.0
57

∙
0.

33
1 

±
 0

.0
55

∙
0.

30
3 

±
 0

.0
66

∙
0.

32
0 

±
 0

.0
66

∙
0.

31
9 

±
 0

.0
71

∙
0.

33
9 

±
 0

.0
51

0.
35
5 

±
 0

.0
60

16
0.
75
9 

±
 0

.0
49

0.
59

8 
±

 0
.0

55
∙

0.
65

5 
±

 0
.0

42
∙

0.
75

4 
±

 0
.0

54
0.

75
5 

±
 0

.0
55

0.
75

2 
±

 0
.0

53
0.

75
8 

±
 0

.0
47

17
0.

40
8 

±
 0

.1
48

0.
40

2 
±

 0
.1

51
0.

40
5 

±
 0

.1
46

0.
41
1 

±
 0

.1
47

0.
39

2 
±

 0
.1

55
0.

41
0 

±
 0

.1
43

0.
40

8 
±

 0
.1

48
18

-0
.0

00
 ±

 0
.0

00
∙

0.
04

3 
±

 0
.0

53
0.

04
3 

±
 0

.0
55

0.
04

9 
±

 0
.0

32
0.

04
7 

±
 0

.0
30

0.
04

0 
±

 0
.0

55
0.
05
3 

±
 0

.0
35

19
0.

06
9 

±
 0

.0
92

∙
0.

10
8 

±
 0

.0
63

∙
0.

16
1 

±
 0

.0
94

0.
15

9 
±

 0
.0

98
0.

15
0 

±
 0

.1
05

∙
0.

16
3 

±
 0

.1
04

∙
0.
19
5 

±
 0

.1
10

20
0.

00
3 

±
 0

.0
15

∙
0.

05
1 

±
 0

.0
36

0.
06
1 

±
 0

.0
62

0.
04

3 
±

 0
.0

57
0.

04
1 

±
 0

.0
58

0.
05

8 
±

 0
.0

48
0.

04
6 

±
 0

.0
54

R
an

k
4.

70
4.

95
5.

75
3.

45
4.

10
3.

60
1.

45



2270	 Machine Learning (2020) 109:2247–2281

1 3

7 � Conclusion

With an increase in the complexity of the data, eliminating random consistency from learn-
ing algorithms has great potential to improve the generalization ability. In this paper, first, 
we have shown that the PA is insensitive to the class distribution of classifiers in evaluation 
and is more fairer than the A in learning classifiers through two vivid examples. Second, 
we have given some novel bounds to show that learning by PA can approach to the optimal 
A and have shown that the empirical risk minimization process of the PA is Bayes-risk 
consistent. Based on these theoretical guarantees, we have proposed a plug-in rule model 
that optimizes the PA. The experimental results have shown the fairness and effectiveness 
of learning by PA. An interesting future work is to establish the other strategies to define 
the random consistency. An analysis of the random consistency for each instance maybe a 
promising direction.
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Appendix: Proofs

Lemma 1  When the partitions in Hq(h) are distributed uniformly, the expectation accuracy 
of partitions in Hq(h) is:

(a) (b)

Fig. 5   Statistical comparison under different noise level. Each bar is the gap between the times of the sig-
nificant wins and the times of significant loses. The significant lose and win is defined according to Eq. (44)

http://creativecommons.org/licenses/by/4.0/
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Proof  Without loss of generality, we assume that q(h) < p . Assuming that the size of data 
is N, we have

where j = 0, ...,Nq(h) and Cm
n

 is the number of combinations of n items taken m at a time. 
From (46), we know that N ⋅ TP(h�) follows the hypergeometric distribution with the size 
of the population selected from be N, Np elements of the population belonging to one 
group and N − Np belonging to the other group, and the number of samples drawn from 
the population be Nq(h). Thus,

Then, according to TN(h�) = 1 − p −
(
q(h) − TP(h�)

)
 , we have:

	�  ◻

Example 2  Assume that two-class data are generated from two Gaussian distributions with 
uncommon means �

1
 , �

2
 , but a common covariance �:

and the probability of the positive class is p = ℙ(Y = +1) . The label of the minority class 
is corrupted by the instance-independent noise at the level s1 : ℙ(Ỹ = −1|Y = +1) = s1 . For 
this learning task, the bias of h∗

A
 is:

where �(∙) is the cumulative distribution function of the standard normal distribution, 
� = (�

1
− �

2
)��−(�

1
− �

2
) and d0 = ln

1−p

p

1

1−2s1
.

Proof  According to Lemma 2, the corrupted conditional class probability ℙ(Ỹ = +1|X = x) 
is needed. Based on the Bayes’ theorem:

(45)�h�∈Hq(h)A(h�) = pq(h) + (1 − p)(1 − q(h)).

(46)ℙh�∈Hq(h)

(
TP(h�) =

j

N

)
=

C
j

Np
C
Nq(h)−j

N−Np

C
Nq(h)

N

,

(47)�h�∈Hq(h)TP(h�) = pq(h).

(48)
�h�∈Hq(h)A(h�) = �h�∈Hq(h)1 − p − q(h) + 2TP(h�)

= 1 − p − q(h) + 2pq(h).

(49)m(x|y = +1) = N(�
1
,�),

(50)m(x|y = −1) = N(�
2
,�)

(51)
Bias(h∗

A
)

=
|||ℙ
(
d(X) < d0|Y = −1

)
− ℙ

(
d(X) > d0|Y = +1

)|||

(52)=
����(�

�
d0 + �∕2√

�

�
− 1 +�

�
d0 − �∕2√

�

�����,

(53)ℙ(Ỹ = +1|X = x)
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Because ℙ(Ỹ = +1) = p(1 − s1) , m(x|̃y = +1) = N(�
1
,�) and

where m(x|y = l, ỹ = −1) = m(x|y = l) is satisfied because the label noise is independent 
on instance: ℙ(Ỹ = −1|Y = l,X = x) = ℙ(Ỹ = −1|Y = l) , we have:

with wT = (�
2
− �

1
)T�−1 and b =

1

2
�
1
T�−1

�
1
− ln p −

1

2
�
2
T�−1

�
2
+ ln(1 − p).

Further, according to Lemma 2, the optimal classifier in the sense of accuracy is

where d(x) = x
��−(�

1
− �

2
) −

1

2
(�

1
+ �

2
)��−(�

1
− �

2
) and d0 = ln

1−p

p

1

1−2s1
.

According to the additivity of the Gaussian distribution, we obtain the probability mass 
function of d(x):

where � = (�
1
− �

2
)��−(�

1
− �

2
) . Then

where �(∙) is the cumulative distribution function of the standard normal distribution. 	
� ◻

Theorem 1  The classifier that maximizes the PA is

(54)=
m(x�̃y = +1)ℙ(Ỹ = +1)∑
l∈{−1,+1} m(x�̃y = l)ℙ(Ỹ = l)

.

(55)
m(x|̃y = −1)

=
∑

l∈{+1,−1}

m(x|y = l, ỹ = −1)ℙ(Y = l|Ỹ = −1)

(56)=
∑

l∈{+1,−1}

m(x|y = l)
ℙ(Ỹ = +1|Y = l)ℙ(Y = l)

ℙ(Ỹ = −1)

(57)=
(1 − p)

(1 − p) + ps1
N(�

2
,�) +

ps1

(1 − p) + ps1
N(�

1
,�),

(58)ℙ(Ỹ = +1|X = x) =
1 − s1

1 + exp (wT
x + b)

(59)h∗
A
(x) =

{
+1, d(x) > d0,

−1, otherwise.

(60)m(d(x)|y = +1) = N(�∕2,�),

(61)m(d(x)|y = −1) = N(−�∕2,�)

(62)
Bias(h∗

A
)

=
|||ℙ
(
d(X) < d0|Y = −1

)
− ℙ

(
d(X) > d0|Y = +1

)|||

(63)=
����(�

�
d0 + �∕2√

�

�
− 1 +�

�
d0 − �∕2√

�

�����,
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where PA∗ = PA(h∗
PA
) and p = ℙ(Y = +1).

Proof  The formulation of the pure accuracy measure is fractional, which hinders obtaining 
the optimal classifier. Here, we resort to the cost-sensitive loss to obtain a non-closed-form 
solution. We begin this proof with two existing definitions and two lemmas:

Definition 5  (Kotlowski and Dembczynski 2017) We refer to a measure as a linear-frac-
tional performance measure if it is non-increasing with FP, FN and formalized as

where a0, a1, a2, b0, b1, b2 ∈ R and b0 + b1FP + b2FN ≥ C1 > 0.

Definition 6  (Elkan 2001) The cost-sensitive loss is defined as 
L�(h) = �FP(h) + (1 − �)FN(h) , where � ∈ (0, 1).

Lemma 7  (Kotlowski and Dembczynski 2017) The regret w.r.t the linear-fractional per-
formance measure � (FP,FN) can be bounded by that w.r.t. L�(h) when � =

� ∗b1−a1

� ∗(b1+b2)−(a1+a2)

where � ∗ = maxh � (h) , L∗
�
= minh L�(h) and C2 =

1

C1

(
� ∗(b1 + b2) − (a1 + a2)

)
.

Lemma 8  (Elkan 2001) The classifier that minimizes L� is

where �(x) = ℙ(Y = 1|X = x).

Because A = 1 − FN − FP , RA = 1 − p − q(h) + 2pq and q(h) = p + FP − FN , we have

According to Lemma 7, the regret of the PA can be bounded by that of L� with 
� = (

1

2
− p)PA∗ + p . Then by Lemma 8, we obtain the formulation. 	�  ◻

Lemma 3  For all distributions, the plug-in rule with � as the decision threshold

satisfies:

(64)h∗
PA
(x) = argmax

h
PA(h)

(65)=

{
+1, 𝜂(x) > (

1

2
− p)PA∗ + p,

−1, otherwise.

(66)� (FP,FN) =
a0 + a1FP + a2FN

b0 + b1FP + b2FN
,

(67)� ∗ − � (h) ≤ C2(L�(h) − L∗
�
),

(68)h∗
L𝜌
(�) =

{
+1, 𝜂(�) > 𝜌,
−1, otherwise.

(69)PA =
A − RA

1 − RA
=

p(1 − p) − pFP − (1 − p)FN

p(1 − p) + (
1

2
− p)(FP − FN)

.

(70)h𝜌(x) =

{
+1, 𝜂(x) > 𝜌, where 𝜌 ∈ (0,

1

2
],

−1, otherwise,
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when � = 1∕2 , the equality holds.

Proof 

	�  ◻

Lemma 4  For all distributions, suppose that p = ℙ(Y = +1) ≤
1

2
 , the pure loss of h∗

A
 

satisfies:

Proof  Let q∗
A
= ℙ(h∗

A
= +1) , FP∗

A
= ℙ(h∗

A
= +1, Y = −1) and FN∗

A
= ℙ(h∗

A
= −1, Y = +1) . 

By definition,

To obtain the upper bound of PL(h∗
A
) , we derive the lower bound of q∗

A
 . Because:

and then, we have

(71)L(h�) ≤
1 − �

�
L∗,

(72)
L(h�)

= ℙ(h�(X) = −1, Y = +1) + ℙ(h�(X) = +1, Y = −1)

(73)= �X∶𝜂(X)<𝜌𝜂(X) + �X∶𝜂(X)≥𝜌(1 − 𝜂(X))

(74)≤ �X∶𝜂(X)<𝜌(1∕𝜌 − 1)𝜂(X) + �X∶𝜂(X)≥𝜌(1 − 𝜂(X))

(75)= �X min{(1∕� − 1)�(X), 1 − �(X)}

(76)≤ (1∕� − 1)�X min{�(X), 1 − �(X)}.

(77)PL(h∗
A
) ≤

L∗

p
(

3

2
− p

)
− L∗

(
1

2
− p

) .

(78)PL(h∗
A
) =

L∗

p + (1 − 2p)q∗
A

.

(79)L∗ = �X∶𝜂(X)≤1∕2𝜂(X) + �X∶𝜂(X)>1∕2(1 − 𝜂(X))

(80)= �X𝜂(X) − �X∶𝜂(X)>1∕2𝜂(X) + �X∶𝜂(X)>1∕2(1 − 𝜂(X))

(81)= p − �X max{2�(X) − 1, 0},

(82)q∗
A
= �X�{�(X) − 1∕2 ≥ 0}

(83)≥ �X max{�(X) − 1∕2, 0}

(84)=
1

2
(p − L∗),
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where �{∙} is the indicator function. Putting the lower bound of q∗
A
 into the formulation of 

PL(h∗
A
) , we obtain the upper bound of PL(h∗

A
) . 	�  ◻

Theorem 3  For all distributions, suppose p ≤
1

2
 , the pure loss of h∗

A
 satisfies:

Proof  For any q(h), we have

hence

Further amplifying the upper bound in Lemma 4:

we obtain the result. 	�  ◻

Lemma 5  For two random variables Z1, Z2 ∈ [0, 1] , any � ∈ (0, 1] , let 
� = �Z1�Z2∕(2�Z1 + �Z2) , we have

Proof  For � ∈ [0, 1] and 𝛾 > 0 , we have

where the first inequality is obtained by

and the second inequality is obtained by

(85)PL(h∗
PA
) ≤ PL(h∗

A
)

(86)≤
2(1 − p)

p(3 − 2p) − L∗(1 − 2p)
PL(h∗

PA
).

(87)1 − RA = p + (1 − 2p)q(h) ≤ 1 − p,

(88)L = (1 − RA)PL ≤ (1 − p)PL.

(89)L∗ ≤ L(h∗
PA
) ≤ (1 − p)PL(h∗

PA
),

(90)
ℙ

(||||
Z1

Z2
−

𝔼Z1

𝔼Z2

|||| > 𝜀

)

≤ ℙ
(|Z1 − 𝔼Z1| > 𝛼𝜀

)
+ 3ℙ

(|Z2 − 𝔼Z2| > 𝛼𝜀
)
.

(91)
ℙ

(||||
Z1

Z2
−

𝔼Z1

𝔼Z2

|||| > 𝜀

)

= ℙ

(||||
Z1 − 𝔼Z1

(Z2 − 𝔼Z2) + 𝔼Z2
+

(𝔼Z2 − Z2)𝔼Z1

(Z2 − 𝔼Z2)𝔼Z2 + (𝔼Z2)
2

|||| > 𝜀

)

(92)≤ ℙ

(||||
Z1 − 𝔼Z1

(Z2 − 𝔼Z2) + 𝔼Z2

|||| > 𝛽𝜀

)
+ ℙ

(||||
(𝔼Z2 − Z2)𝔼Z1

(Z2 − 𝔼Z2)𝔼Z2 + (𝔼Z2)
2

|||| > (1 − 𝛽)𝜀

)

(93)
≤ ℙ

(|Z1 − 𝔼Z1| > 𝛽|𝔼Z2 − 𝛾𝜀|𝜀) + 2ℙ
(|Z2 − 𝔼Z2| > 𝛾𝜀

)

+ ℙ

(
||Z2 − 𝔼Z2

|| >
(1 − 𝛽)𝔼Z1

𝔼Z2

||𝔼Z2 − 𝛾𝜀||𝜀
)
,

(94)ℙ(|a + b| > 𝜀) ≤ ℙ(|a| > 𝛽𝜀) + ℙ(|b| > (1 − 𝛽)𝜀),
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for any events B1,B2 , where Bc
2
 complementary set of B2 . Here, we take the event 

|Z2 − �Z2| ≤ �� as B2 to divide the two terms of the first inequality.
Let

we have

Finally, by the assumption � ≤ 1 , we have � ≥ � and then get the result. 	�  ◻

Theorem 4  Suppose the cardinality of H is finite: |H| < ∞ , then for every h ∈ H , any 
� ∈ (0, 1] , we have

where � = minh∈H
L(h)

2PL(h)+1
 and Rc(H) is the Rademacher complexity of H.

Proof  First, we process the superior limit in probability according to the union bound:

Second, we transform the gap in the sense of PL into that of L by Lemma 5. For every 
h ∈ H , let � = minh∈H

L(h)

2PL(h)+1
 , we have:

(95)ℙ(B1) = ℙ(B1|B2)ℙ(B2) + ℙ(B1|Bc
2
)ℙ(Bc

2
)

(96)≤ ℙ(B1|B2) + ℙ(Bc
2
),

(97)� = �Z1∕(�Z1 + �Z2),

(98)� = �Z1�Z2∕(�Z1 + ��Z1 + �Z2),

(99)
�|�Z2 − ��|
= (1 − �)�Z1|�Z2 − ��|∕�Z2

(100)= � .

(101)ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}
≤ 8|H| exp

{
−2N

(
𝛼𝜀 −

Rc(H)

2

)2
}

,

(102)

ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

= ℙ

{
∃h ∈ H ∶

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤
∑
h∈H

ℙ

{||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ |H| sup
h∈H

ℙ

{||||
�PLN(h) − PL(h)

|||| > 𝜀

}
.

(103)
ℙ

{||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ ℙ

{||||
�LN − L

|||| > 𝛼𝜀

}
+ 3ℙ

{||||
�RAN − RA

|||| > 𝛼𝜀

}
.
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Third, applying Theorem  8 in Bartlett and Mendelson (2003), for every h ∈ H , with 
probability at least 1 − �∕4 , we obtain that:

Let � = 8 exp
{
−2N(�� − Rc(H)∕2)2

}
 , and then:

For the second term in (103), by |Hq(h)| = C
Nq(h)

N
 and the triangle inequality, we have:

According to Theorem  8 in Bartlett and Mendelson (2003), for every function 
hj ∈ Hq(h) , with probability at least 1 − �∕4 , holds that:

because Hq(h) ⊆ H , we have Rc(Hq(h)) ≤ Rc(H) , and then for every function hj ∈ Hq(h) , 
with probability at least 1 − �∕4 , holds that:

Putting � into inequality (108), we obtain for every h ∈ H:

Thus, combining (102), (103), (105)and (109), we obtain the final result. 	�  ◻

Lemma 6  Let S�
N
= {(x�

1
, y�

1
), ..., (x�

N
, y�

N
)} be an independent and identically distributed 

collection as SN and P̂L
�

N
(h) is the corresponding empirical pure loss. Suppose 

N ≥ 5(6 + 4��)�−2�−2 , where � = minh∈H
L(h)

2PL(h)+1
 , � ∈ (0, 1] , then we have

Proof  There exists at least one function h0 ∈ H satisfies |||P̂LN(h0) − PL(h0)
||| ≥ � . For h0,

(104)
||||L̂N − L

|||| ≤
Rc(H)

2
+

√
ln(8∕�)

2N
.

(105)ℙ

{|||�LN − L
||| > 𝛼𝜀

}
≤ 𝛿∕4.

(106)
||||R̂AN(h) − RA(h)

|||| ≤
1

C
Nq(h)

N

C
Nq(h)

N∑
j=1

||||L̂N(hj) − L(hj)
||||.

(107)|||L̂N(hj) − L(hj)
||| ≤

Rc(Hq(h))

2
+

√
ln(8∕�)

2N
,

(108)
||||R̂AN(h) − RA(h)

|||| ≤
Rc(H)

2
+

√
ln(8∕�)

2N
.

(109)ℙ

{|||�RAN(h) − RA(h)
||| > 𝛼𝜀

}
≤ 𝛿∕4.

(110)
ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ 2ℙ

{
sup
h∈H

||||
�PLN(h) − �PL

�

N
(h)

|||| >
𝜀

2

}
.

(111)
ℙ

{
sup
h∈H

||||
�PLN(h) − �PL

�

N
(h)

|||| >
𝜀

2

}

≥ 𝔼SN

[
�

(
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

)
ℙ

{||||
�PL

�

N
(h0) − PL(h0)

|||| <
𝜀

2

||||SN

}]
.
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Here, we omit the detail proof of this inequality because the technique is the same as 
Lemma 2 in Vapnik and Chervonenkis (1971) on accuracy.

According to Lemma 5, let � = minh∈H
L(h)

2PL(h)+1
 , we have:

For the first term of (112), according to the Bernstein’s inequality, we have

where the second inequality is because for any � ∈ [0, 1] , it is satisfied that �(1 − �) ≤ 1∕4 , 
the third inequality is obtained by e−x ≤ (1 + x)−1 for x > 0 and the last inequality is 
obtained by the assumption N ≥ 5(6 + 4��)�−2�−2.

For the second term of (112), by the definition of R̂A
�

N
(h0) , the only difference in the 

proof of the two terms in (112) is the number of terms for summation. Under the assump-
tion on N, we have NCNq(h)

N
≥ 5(6 + 4��)�−2�−2 , and then using the same technique as 

(113), we have

Combing the inequalities (112), (113), (114), we have

Thus, according to (111) and (115), we obtain the final result. 	�  ◻

Theorem 5  As the same condition as Lemma 6 and suppose the VC dimension of H is 
finite: dvc(H) < ∞ , we have

Proof  By Lemma 6,

(112)

ℙ

{||||
�PL

�

N
(h0) − PL(h0)

|||| >
𝜀

2

||||SN

}

≤ ℙ

{||||
�A�
N
(h0) − A(h0)

|||| >
𝛼𝜀

2

||||SN

}
+ 3ℙ

{||||
�RA

�

N
(h0) − RA(h0)

|||| >
𝛼𝜀

2

||||SN

}
.

(113)

ℙ

�����
�A�
N
(h0) − A(h0)

���� >
𝛼𝜀

2

����SN

�

≤ 2 exp

⎧⎪⎨⎪⎩
−

𝛼2𝜀2N

4

2
�
A(h0)(1 − A(h0)) +

𝛼𝜀

6

�
⎫⎪⎬⎪⎭

≤ 2 exp

�
−
3𝛼2𝜀2N

6 + 4𝛼𝜀

�

≤ 2

�
1 +

3𝛼2𝜀2N

6 + 4𝛼𝜀

�−1

≤
1

8
,

(114)ℙ

{||||
�RA

�

N
(h0) − RA(h0)

|||| >
𝛼𝜀

2

||||SN

}
≤

1

8
.

(115)ℙ

{||||
�PL

�

N
(h0) −

�PL(h0)
|||| >

𝜀

2

||||SN

}
≤

1

2
.

(116)
ℙ

{
sup
h∈H

||||
�PLN(h) − PL(h)

|||| > 𝜀

}

≤ 4(N + 1) exp

{
−

(
𝜀2(1 − |2�pN − 1|)2

16
−

dvc(H) ln(2eN∕dvc(H))

N

)
N

}
.
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We divide the hypothesis space H into N + 1 subspaces according to the class distribu-
tion of hypothesis function: H =

⋃
q̂N∈{0,

1

N
,...,1} H

q̂N , where 
Hq̂N = {h ∶

1

N

∑N

i=1
�[h(Xi) = +1] = q̂N , h ∈ H}

. Thus, according to the definition of pure loss and the union bound, we have

We employ Theorem  3.1 in Vapnik and Chervonenkis (1971) for the error terms. 
Besides, for any q̂N , it satisfies that 1 − R̂AN ≥

1−|2p̂N−1|
2

 and dvc(H
q̂N ) ≤ dvc(H) for 

H�qN ⊆ H . Then we have:

Combining (117), (118) and (119), we obtain the final result. 	�  ◻
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