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Abstract
In many application settings, labeling data examples is a costly endeavor, while unlabeled 
examples are abundant and cheap to produce. Labeling examples can be particularly prob-
lematic in an online setting, where there can be arbitrarily many examples that arrive at 
high frequencies. It is also problematic when we need to predict complex values (e.g., mul-
tiple real values), a task that has started receiving considerable attention, but mostly in the 
batch setting. In this paper, we propose a method for online semi-supervised multi-target 
regression. It is based on incremental trees for multi-target regression and the predictive 
clustering framework. Furthermore, it utilizes unlabeled examples to improve its predictive 
performance as compared to using just the labeled examples. We compare the proposed 
iSOUP-PCT method with supervised tree methods, which do not use unlabeled examples, 
and to an oracle method, which uses unlabeled examples as though they were labeled. 
Additionally, we compare the proposed method to the available state-of-the-art methods. 
The method achieves good predictive performance on account of increased consumption of 
computational resources as compared to its supervised variant. The proposed method also 
beats the state-of-the-art in the case of very few labeled examples in terms of performance, 
while achieving comparable performance when the labeled examples are more common.
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1  Introduction

Recently, there has been lot of interest in the research community to develop methods for 
prediction of complex values. One such predictive learning task is the task of multi-target 
regression (MTR), where we want to predict multiple continuous values, called targets, at 
the same time. The targets are assumed to be related, but equally important. Methods for 
MTR can be used directly to produce predictive models or they can be utilized by more 
complex systems, e.g., in recommender systems. Methods for MTR are fairly common in 
the regular batch learning setting, but rarer in the online learning setting.

In the batch learning setting, the entire dataset is available at the start of the learning 
process and the order of the examples in the dataset is generally assumed not to have an 
impact on the learning process. In online learning, the entire dataset is not available at 
the start of the learning process. Instead, we are learning from a data stream, an ordered 
sequence of examples which become available throughout the learning process. This also 
means that there is an inherent time component to online learning, i.e., one example arrives 
either before or after another example.

The datasets in online learning are naturally ordered sequences of examples. To avoid 
the need for arbitrarily large memory storage, each example is processed only once at the 
time of its arrival. Afterwards, it is generally discarded, though, a select number of exam-
ples may be archived for further use. We expect any predictive model to be applicable 
in real-time or near real-time, i.e., at any point throughout the learning process the cur-
rent model can be applied to calculate a prediction. Furthermore, the predictive model is 
expected to be as up to date as possible, i.e., it should incorporate information from all of 
the examples available up to this point in time. To allow the most current predictive model 
to be kept updated, the processing of each individual example should therefore be quick. 
Additionally, in online learning the underlying distribution governing the examples can 
change. When it changes, we talk about concept drift (Gama et al. 2014).

To address several of the above constraints most online learning methods utilize incre-
mental as well as decremental model updating (Cauwenberghs and Poggio 2001; Gama 
2010). Incremental updating includes updating statistics, as well as growing the current 
predictive model. Decremental updating, on the other hand, allows for forgetting, i.e., dis-
carding of information, when updating the current predictive model.

Orthogonally to the learning setting, in data mining tasks we also consider the level of 
supervision. It defines to what degree can a method receive feedback, in terms of which 
components of the data examples are available to the method. In supervised learning, all 
data examples are labeled, i.e., all of their target values are available in the learning pro-
cess. Thus, a method can use these examples to compare its predictions to the true values 
and use this feedback to guide learning. On the other hand, in unsupervised learning, e.g., 
in clustering, there is no feedback whether the produced clusters are better than some other 
potential clusters.

Semi-supervised learning (Chapelle et al. 2006) lies at the midpoint between supervised 
and unsupervised learning. In semi-supervised learning, feedback can be obtained for some 
examples but not for others. In the case of MTR, this means that for some examples, we 
do not have access to the actual target values. These examples are called unlabeled exam-
ples. In many application domains, e.g., quantitive structure-activity relationship (QSAR) 
modeling, unlabeled examples are abundant and cheap to produce, while labeling examples 
can incur significant costs. For example, labeled QSAR datasets contain hundreds of com-
pounds, while unlabeled data are easily reachable in public databases containing thousands 
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of chemical compounds (Levatić et al. 2013). Finally, utilizing the unlabeled examples to 
achieve better performance over just using labeled examples is the primary goal in semi-
supervised learning.

In this paper, we present a method for online semi-supervised multi-target regres-
sion based on an incremental tree-based method for MTR (Osojnik et  al. 2018), named 
iSOUP-Tree, and the predictive clustering framework (Blockeel and De Raedt 1998) and 
its applications to semi-supervised learning tasks in the batch setting (Levatić et al. 2017a, 
b, 2018). To the best of our knowledge, the task of online semi-supervised multi-target 
regression is currently largely unaddressed by the research community, with the exception 
of the work of Sousa and Gama (2016). They use the self-training approach to semi-super-
vised learning, where the method uses its own predictions in place of the missing target 
values for learning.

The remainder of the paper is structured as follows. In Sect. 2, we briefly present the 
background of this work and focus on the iSOUP-Tree method and the predictive clustering 
framework. Next, in Sect. 3, we present the related work in the field of online semi-super-
vised learning for classification and regression, and batch semi-supervised learning for 
multi-target regression. We continue by introducing the iSOUP-PCT and iSOUP-PCTSSL 
methods in Sect. 4. In Sect. 5, we describe our experimental design and in Sect. 6 we pre-
sent the experimental results. Finally, in Sect. 7, we conclude the paper with a brief sum-
mary of contributions and directions for further work.

2 � Background

In this section, we focus on a method for online incremental tree induction for the task of 
multi-target regression and the predictive clustering framework. Both are used as basis of 
our proposed tree-based method for online semi-supervised multi-target regression.

2.1 � Incremental trees for MTR–iSOUP‑tree

iSOUP-Tree (Osojnik et al. 2018) is a supervised incremental tree-based learner that uti-
lizes the Hoeffding inequality (Hoeffding 1963) and a variance-reduction-based splitting 
heuristic. iSOUP-Trees have been used to address the MTR task (Osojnik et  al. 2018), 
as well as the multi-label classification task (Osojnik et al. 2017), in the online learning 
setting.

When growing an iSOUP-Tree, we must consider several split candidates. When dealing 
with numeric attributes, a split S takes the form of a test S ∶ xi ≤ v , where xi is the value of 
the i-th attribute and v is one of the possible values of the attribute. Each split S separates 
the set of accumulated examples S into S

⊤
 and S

⊥
 , which contain the examples for which 

the test is either true or false, respectively.
In particular, when we are evaluating a split, we calculate its relative value using the 

intra-cluster variance reduction ( ICVR ) heuristic

where j indexes the target variables, and Varj is the variance of to the j-th target, i.e.,
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where yj
i
 is the value of j-th target of i-th example and yj is the average value of the j-th 

target on S. Using the Hoeffding inequality we determine whether there is sufficient proba-
bilistic support for choosing the best split based on the ratio of the heuristics of two best 
splits.

Furthermore, iSOUP-Trees can learn regression trees, in which each leaf produces a pre-
diction based on the average values of the targets over the accumulated examples, or model 
trees that utilize leaf models, such as perceptrons (Rosenblatt 1958).

2.2 � Predictive clustering trees

Predictive clustering trees (PCTs) are a state-of-the-art method for structured output predic-
tion in the batch setting for a wide selection of output structures (Struyf and Džeroski 2006; 
Vens et al. 2008; Slavkov and Džeroski 2010; Kocev et al. 2013). They utilize the predictive 
clustering framework (Blockeel and De Raedt 1998), which connects the tasks of predictive 
modeling and clustering. Briefly said, in predictive clustering all attributes are seen as part of 
the domain for clustering and targets for predictive modeling, as well. PCTs work under the 
assumption that grouping similar examples together, i.e., clustering, can improve the predic-
tive performance of the model. They use a modified splitting heuristic that takes into account 
not only the homogeneity of the targets, but also the homogeneity of input attributes. An 
example can be seen in Fig. 1.
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Fig. 1   The regular splitting heuristic seeks to improve the homogeneity in the target space Y (a). The pre-
dictive clustering heuristic additionally seeks to improve homogeneity in the input space X (b). Figure 
adapted from (Blockeel 1998)
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3 � Related work

In this section, we present the related work connected to our proposed method. Here, we 
focus on an overview of methods for online semi-supervised learning (for the tasks of clas-
sification and regression) and methods for semi-supervised structured output prediction 
(SOP) in the batch case. Notably, there are currently no methods for online semi-super-
vised structured output prediction tasks, in particular, for multi-target regression.

Online semi-supervised learning The first incremental method that is able to utilize 
unlabeled examples is the multi-view hidden Markov perceptron (Brefeld et  al. 2005). 
Furao et al. (2007) presented a method for semi-supervised learning based on a self-organ-
izing incremental neural network, which was later extended by Shen et al. (2011).

Additionally, Goldberg et  al. (2008) proposed a manifold regularization method for 
semi-supervised learning that is based on a combination of convex programming with sto-
chastic gradient descent. Later, Goldberg et al. (2011) introduced OASIS, a Bayesian learn-
ing framework for semi-supervised learning.

Sousa and Gama (2016) extended the AMRules method (Duarte et  al. 2016) for 
multi-target regression to the semi-suprevised learning setting by using the self-training 
approach, i.e., using a model’s own predictions as proxies for the missing target values. 
Later, Sousa and Gama (2017) used AMRules in a similar, but slightly different, co-train-
ing approach. In co-training, multiple models are learned and examples which are used for 
the training of a model are labeled with the predictions of one or more of the other learned 
models.

Online semi-supervised classification has also been used to tackle image tracking, e.g., 
by Grabner et al. (2008) and Zeisl et al. (2010).

Batch semi-supervised methods for specific tasks Self-training methods use their own 
predictions of the unlabeled examples as training values in specific circumstances. Zhang 
and Yeung (2009) and Cardona et al. (2015) introduced methods based on Gaussian pro-
cesses for semi-supervised multi-task learning, a task related to multi-target regression. 
Navaratnam et al. (2007) also introduced a Gaussian process based method for semi-super-
vised multi-target regression, though their approach is aimed specifically at applications 
in computer vision. Levatić et al. (2017b) introduced a semi-supervised method for multi-
target regression based on self-training of random forests of predictive clustering trees.

Generally applicable semi-supervised methods Altun et  al. (2006) and Li and Zemel 
(2014) introduced SVM-like methods based on the maximum-margin approach that can 
address multiple SOP tasks. Brefeld and Scheffer (2006) used support vector machines 
(SVMs) in a co-training approach and applied the principle of maximal consensus between 
independent hypotheses. Zien et  al. (2007) introduced transductive SVMs for structured 
output prediction tasks. Notably, their approach addresses transductive semi-supervised 
learning, where the goal is not to produce a reusable predictive model, but instead to pro-
vide the predictions for specific unlabeled examples.

Gönen and Kaski (2014) and Brouard et  al. (2016) proposed methods that can be 
applied to both nominal and continuous structured output prediction tasks, with kernelized 
Bayesian matrix factorization and input output kernel regression, respectively.

Finally, Levatić et al. (2017a, 2018) introduced an inductive method for semi-supervised 
structured output prediction based on predictive clustering trees. The unlabeled examples 
are considered when the tree is grown by impacting the splitting heuristic which takes into 
account the homogeneity of the input attributes in addition to the homogeneity of the out-
put attributes.
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4 � Incremental predictive clustering trees—iSOUP‑PCT 
and iSOUP‑PCTSSL

To address online semi-supervised SOP tasks, we utilize the predictive clustering frame-
work (Blockeel and De Raedt 1998; Struyf and Džeroski 2006). The predictive clustering 
frameworks was successfully used by Levatić et al. (2018) to address the semi-supervised 
structured output prediction in the batch setting. To achieve this goal, we extended the 
iSOUP-Trees (Osojnik et al. 2018) towards predictive clustering trees in an online setting 
and adapted them to handle both labeled and unlabeled data.

In this paper, we focus on online semi-supervised multi-target regression, as an instance 
of online semi-supervised SOP task. Specifically, we adapt the iSOUP-Tree method for 
online MTR toward semi-supervised MTR in three ways. First, we modify the splitting 
heuristic to take into account the homogeneity of the input attributes in addition to the 
homogeneity of the targets. Second, we adapt the extended binary search trees (E-BST, 
(Ikonomovska et al. 2011)) that collect the statistics required to calculate the ICVRheuris-
tics to also record the values of the input attributes. Finally, we modify the initialization of 
the leaf averages after splitting to use as much information as possible from the observed 
labeled examples. The resulting method is called iSOUP-PCT and is implemented in the 
Massive Online Analysis (MOA, (Bifet et al. 2010)) framework.1

4.1 � Predictive clustering splitting heuristic

To take into account the homogeneity of the input attributes in the splitting heuristic, we 
modify the standard intra-cluster variance reduction definition (Levatić et  al. 2018) to 
include the variance of the input attributes

where w ∈ [0, 1] is the level of supervision and Vari(S) is the variance of the values of the 
i-th input attribute over set S. To the best of our knowledge no other methods for online 
prediction (let alone online multi-traget regression) evaluate both the homogeneity of the 
targets and of the input attributes when learning.

When w = 1 the above definition coincides with the regular definition of intra-clus-
ter variance reduction. When w = 0 , we consider the input attributes exclusively, when 
estimating the homogeneity of the different split subsets. In essence instead of trying to 
minimize an evaluation measure, we are grouping the examples according to their similar-
ity, which is equivalent to solving the clustering data mining tasks. In the batch learning 
approach, the w parameter is chosen based on internal cross-validation that determines the 
appropriate w for each individual dataset. In the online scenario, this procedure is unfeasi-
ble. Thus, we select a midpoint value of w = 0.5.
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1  The particular implementation is available at https​://githu​b.com/aosoj​nik/moa.

https://github.com/aosojnik/moa
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4.2 � Maintaining the required statistics

To calculate the variance of an input attribute/target, we require the number of observed 
examples k, the sum of values of the attribute/target � , and the sum of squared values of 
the attribute/target �2 . Variance is then calculated as

In regular iSOUP-Trees, we keep the k, � and �2 statistics only for each target. They are 
stored in an extended binary search tree (E-BST), which holds the statistics given different 
potential split values. One E-BST is kept for each input attribute.

One way of understanding the predictive clustering framework, is that all of the attrib-
utes, input attributes and targets alike, act as targets. In this way, we extend the E-BST tree 
structure to hold the statistics k, � and �2 for input attributes as well as targets. As splits 
can still only occur on input attributes the number of E-BST structures we keep remains 
the same.

This modification, however, incurs a heavy cost on the consumption of resources. In 
a regular E-BST, we use O(n ⋅M) units of memory to record the statistics, where n is the 
number of unique attribute values recorded in the tree and M is the number of targets. In 
the modified E-BST, however, we use O(n(N +M)) units of memory, where N is the num-
ber of input attributes, since we also store the statisics of the input attributes in addition to 
those of the targets.

Given that we keep one E-BST for each input attribute, this increases the total 
memory complexity of the method from O(nmaxMN) to O(nmax(N +M)N) where 
nmax = max{number of distinct values of attribute A} over all attributes A. Therefore, in 
problems where there are strict constraints on memory consumption, we must be careful 
in applying iSOUP-PCTs, especially, when the number of input attributes is large, as the 
complexity is quadratic in the number of attributes.

Notably, this issue does not appear in the batch case. As all examples are available 
throughout the learning process, there is no additional need to record any kind of statistics 
as they can be calculated on the fly. This has propelled semi-supervised PCTs to great per-
formances for SSL data mining tasks (Levatić et al. 2017a).

4.3 � Initializing leaf models

We apply another adaptation in the initialization of new leaf models, when splitting a leaf. 
In particular for semi-supervised learning, we do not recommend the use of leaf models 
such as the perceptron. Usually, when a leaf node is split, the linear coefficients of the 
perceptron in the split leaf are copied to the initial perceptrons of the new leaves. However, 
the perceptron updating procedure only works on labeled examples and in streams with a 
few labeled examples, it takes a while for the two new perceptrons to produce substantially 
different predictions.

To this end, we use the mean regressor in the leaves, which predicts for each target 
the average value of the corresponding observed target values of the accumulate examples. 
It too, however, requires labeled examples to start accurately modeling the different sub-
spaces resulting from the split. To facilitate faster learning, we harness the splitting pro-
cedure. To evaluate various possible splits, we calculate the pre- and post-split variances. 

Var =
1

k

(
�

2 −
1

k
(�)2

)
.
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In particular we have access to the splitting heuristics of both splitting subsets S
⊤
 and S

⊥
 . 

The split we select, is by definition the one that produces the most homogeneous splitting 
subsets. For each leaf corresponding to a splitting subset, we set the appropriate counts 
and sums used by the mean predictor to k and � . These mean predictors utilize the past 
(labeled) examples to the fullest extent.

4.4 � iSOUP‑PCTSSL

The iSOUP-PCT method can be used both in a supervised and semi-supervised fashion. 
When we are using iSOUP-PCTs as a semi-supervised method, i.e., when we learn from 
unlabeled examples in addition to the labeled ones, we name the method iSOUP − PCTSSL . 
iSOUP-PCT is then the variant of the method that learns only from the labeled examples, 
while ignoring the unlabeled ones.

5 � Experimental design

The main goal of this paper is to determine whether and by how much does the use of 
incremental predictive clustering trees increase the performance in the online semi-super-
vised multi-target learning setting. In this section, we present the experimental questions, 
the datasets and evaluation measures used in the experiments and the procedure for validat-
ing the obtained models.

5.1 � Methods

We compare the predictive performance of three methods, iSOUP-Tree, iSOUP-PCT and 
iSOUP − PCTSSL , to an oracle method iSOUP − TreeOracle (or, for brevity, Tree, PCT, 
PCTSSL and Oracle). iSOUP-PCT is a supervised learner, i.e., it learns only from labeled 
examples. On the other hand, iSOUP − PCTSSL is a semi-supervised learner that learns 
from all examples, both labeled and unlabeled. The iSOUP − TreeOracle method is an “ora-
cle” method, which means that it learns from all examples as though they were labeled, 
i.e., it also has access to the target values even for the unlabeled examples. The oracle trees 
show a practical limit of how much can be learned in a semi-supervised scenario with this 
kind of method. AMRulesSSL (Sousa and Gama 2016) is the semi-supervised implementa-
tion of AMRules which uses self-training to utilize unlabeled examples, i.e., the method’s 
predictions are used as proxies for the missing target values.

The major difference between iSOUP − PCTSSL and AMRulesSSL , other than the obvi-
ous use of a different class of model (trees vs. rules), is the approach taken for processing 
of the unlabeled examples. AMRulesSSL uses the self-training approach, i.e., the method 
predicts the target values of the unlabeled examples, which are then artificially labeled with 
these predictions. These self-labeled examples are then fed back into the method’s learning 
process.

On the other hand, iSOUP − PCTSSL uses the predictive clustering approach of maxi-
mizing the homogeneity of the input space in addition to that of the target space. In our 
case, unlabeled examples contribute statistics which impact the estimate of homogeneity of 
the input space while having no impact on the estimate of homogeneity of the target space, 
since the target values are unknown, whereas labeled examples contribute to both estimates 
of homogeneity.
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5.2 � Experimental questions

In this paper, we are interested in how the predictive performance depends on the ratio of 
labeled examples. This shows us whether, at some ratios of labeled to unlabeled examples, 
it is even advisable to use semi-supervised methods. In the online setting, in particular, it 
might not be problematic if only each second example is labeled as we can expect a large 
number of examples. When only each tenth example is labeled, however, the learning rate, 
i.e., tree growth, could be too slow to accurately model the incoming data.

Additionally, we are interested in how the proposed method compares to the state-of-
the-art in this field. Notably, to the best of our knowledge, AMRules (Sousa and Gama 
2016) is the only other method that is capable of addressing the online semi-supervised 
multi-target regression task.

Finally, we are interested in how much memory the compared methods consume. As 
discussed above in Sect. 4, we expect that incremental predictive clustering trees (iSOUP-
PCT and iSOUP-PCTSSL) will consume considerably more memory.

5.3 � Datasets

For the online multi-target regression experiments, we have selected 8 datasets, based on 
their size, looking for diversity in the number of input and target attributes. We consider 
the datasets under the assumption of no concept drift, given that these datasets are usually 
considered as benchmark datasets in the batch setting. A summary of the datasets and their 
properties is shown in Table 1.

The Bicycles dataset is concerned with the prediction of demand for rental bicycles on 
an hourly basis (Fanaee-T and Gama 2013). The 3 targets are the number of casual (non-
registered) users, the number of registered users and the total number of users for a given 
hour, respectively.

The EUNITE03 dataset was part of the competition at the 3rd European Symposium 
on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adap-
tive Systems.2 The data describes a complex process of continuous manufacturing of glass 
products, i.e., the input attributes describe various influences, while the 5 targets describe 
the glass quality.

Table 1   Datasets used in the 
online multi-target regression 
experiments

T number of targets

Dataset No. of examples Attributes T

Bicycles 17,379 12 numeric 3
EUNITE03 8064 29 numeric 5
Forestry Kras 60,607 160 numeric 11
Forestry Slivnica 6218 150 numeric 2
RF1 9005 64 numeric 8
RF2 7679 576 numeric 8
SCM1d 9803 280 numeric 16
SCM20d 8966 61 numeric 16

2  http://www.eunit​e.org/eunit​e/news/Summa​ry%20Com​petit​ion.pdf. Accessed 22 Jan 2018.

http://www.eunite.org/eunite/news/Summary%20Competition.pdf


2130	 Machine Learning (2020) 109:2121–2139

1 3

The data in the Forestry Kras dataset was derived from multi-spectral multi-temporal 
Landsat satellite images and 3D LiDAR recordings of a part of the Kras region in Slovenia 
(Stojanova et al. 2010). Each example corresponds to a spatial unit, i.e., an area of 25 by 25 
meters. For each example, the input attributes and targets were derived from the LandSat 
and LiDAR recordings of the spatial unit. For specifics on the data preparation procedure, 
see (Stojanova et al. 2010). The task is to predict 11 targets, which correspond to properties 
of the vegetation in the observed spatial unit.

The Forestry Slivnica dataset was, as in the previous case, constructed from multi-
spectral multi-temporal Landsat satellite images and 3D LiDAR recordings of a part of the 
Slivnica region in Slovenia (Stojanova 2009). In this dataset, the task is to predict only 2 
target variables: vegetation height and canopy cover.

The river flow datasets, RF1 and RF2, concern the prediction of river network flows for 
48 h at 8 locations on the Mississippi River network (Spyromitros- et al. 2012). Each data 
example comprises observations for each of the 8 locations at a given time point, as well as 
time-lagged observations from 6, 12, 18, 24, 36, 48 and 60 h in the past. In RF1, each loca-
tion contributes 8 input attributes, for a total of 64 input attributes and 8 target variables. 
The RF2 dataset extends RF1 with the precipitation forecast information for each of the 8 
locations and 19 other meteorological sites. Specifically, the precipitation forecast for 6 h 
windows up to 48 h in the future is added, which nets a total of 280 input attributes.

The SCM1d and SCM20d are datasets derived form the Trading Agent Competition in 
Supply Chain Management (TAC SCM) conducted in 2010. The dataset preparation is 
described by Spyromitros- et  al. (2012). The data examples correspond to daily updates 
in a tournament—there are 220 days in each game and 18 games per tournament. The 16 
targets are the predictions of the next day and the 20 day mean price for each of the 16 
products in the simulation, for the SCM1d and SCM20d datasets, respectively.

The Bicycles dataset is available at the UCI Machine Learning Repository3 and the 
RF1, RF2, SCM1d and SCM20d datasets are available at the Mulan multi-target regression 
dataset repository.4 The examples with missing values (on some input attributes) in the 
RF1 and RF2 datasets were removed, so the resulting datasets were somewhat smaller than 
reported in the repository.

5.4 � Evaluation measures

To evaluate the predictive performance of predictive models for multi-target regression, we 
define the average relative mean absolute error ( RMAE ) measure on an evaluation sample 
as

where yj
i
 is a true value of the target j for example i , ŷj

i
 are the predictions of the evaluated 

model and yj(i) is the value predicted by the j-th mean regressor for the i-th example. As 
we will be using the prequential evaluation approach, each prediction ŷi will have been 

RMAE =
1

M

M�

j=1

∑n

i=1

���y
i
j
− ŷ
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3  https​://archi​ve.ics.uci.edu/ml/datas​ets/Bike+Shari​ng+Datas​et. Accessed 22 Jan 2018.
4  http://mulan​.sourc​eforg​e.net/datas​ets-mtr.html. Accessed 22 Jan 2018.

https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
http://mulan.sourceforge.net/datasets-mtr.html
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made using knowledge of only prior examples. We use the mean regressor in place of the 
actual mean of the sample, to approximate the same setting. To avoid the problem for the 
first example, we take the average to be the prediction of the mean regressor based on all 
prior examples. Finally, the RMAE of a perfect regressor is 0, and lower values of the error 
are desired ( ↓).

In this paper, we evaluate the computational efficiency of a method based on how much 
memory it consumes to learn and make predictions on the provided dataset. We use the 
tools available in the MOA framework (Bifet et al. 2010) to directly measure the amount of 
memory in megabytes that the model uses.

5.5 � Experimental setup

Prequential evaluation In the online setting, there is no clear distinction between train-
ing and testing phases and evaluation approaches are designed to be continuous to keep 
pace with the online learning procedure. Due to the real-time nature of online learning, we 
are interested in how the model performs throughout the learning procedure, at each time-
point. Hence, we use each example to both test and train the model. To avoid introducing 
bias into the evaluation procedure, we always test each model on an example before we 
learn from it. Predictive sequential (prequential) evaluation (Dawid 1984) uses an inter-
leaved test-then-train approach. An example is used for training immediately after record-
ing its prediction.

Artificially unlabeled examples In batch semi-supervised learning, the main goal is to 
utilize the cheap and abundant collected data, which is not labeled, to improve the pre-
dictive performance of a predictive model. As these examples are unlabeled, we can also 
not calculate any evaluation measures for them. However, when we evaluating methods for 
semi-supervised tasks, we often artificially unlabel examples. In this case, our main inter-
est is the predictive performance of the model on only the remaining labeled examples, 
even though, in this setting it is possible to calculate the predictive performance on the 
unlabeled examples as well.

In an online semi-supervised learning setting, we view the unlabeled examples differ-
ently. The prequential evaluation approach closely follows the natural streaming process 
with examples arriving unlabeled, after which a predictive model produces its predictions. 
Later on in the stream, the examples may arrive labeled and get used for the purpose of 
learning.

To compare machine learning methods for online semi-supervised predictive mod-
eling, we use the same artificial unlabeling procedure as in the batch setting (Levatić et al. 
2017a). However, we record the predictions on the unlabeled examples and use both the 
predictions on labeled and unlabeled examples to calculate the evaluation measures. Thus, 
we use measures appropriate for the corresponding supervised task.

Labeling ratio In our experiments, we observe three labeling ratios � , generated by the 
following probabilities of labeling, 0.1, 0.2 and 0.5. This yields three variants of each of 
the multi-target regression datasets shown in Table  1. Specifically, for a given labeling 
ratio � , we unlabel each example, except for the first two, with probability 1 − � . The first 
two examples are always labeled, to allow the predictive models to properly initialize. To 
account for the randomness of the unlabeling procedure, we repeat each experiment for a 
given dataset and a given labeling ratio 10 times.

Calculation of the performance measures Unlike the batch setting, where we are 
predominantly interested in the performance on labeled examples, we treat both the 
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(artificially) unlabeled and the labeled examples equally. Therefore, we calculate the 
RMAEevaluation measure for each example on each of the repeated dataset, and record 
their average value once every 1000 examples, i.e., we are averaging over the last 1000 
examples in each of the 10 repetitions of a dataset. When calculating the RMAE , we are 
comparing to the oracle mean regressor, i.e., the average values we divide by are calculated 
on averages of all target values, even on the examples that were artificially unlabeled. We 
present the obtained RMAEvalues as plots to qualitatively compare the observed meth-
ods, as well as the final values of the RMAEonce the methods had processed all of the 
examples.

We record the final memory consumption of the observed methods, i.e., the consumed 
memory after all examples have been processed. To show the evolution of the memory 
consumption of the observed methods, we also record and plot the memory consumption at 
intervals of 1000 examples for select datasets.

Table 2   The predictive 
performance in terms of RMAE

(↓ ) of the compared methods

The best performance for each dataset is shown in bold

Tree PCT PCT
SSL Oracle AMRules

SSL

Results for � = 0.1

 Bicycles 0.7826 0.8836 0.6713 0.6024 0.8218
 EUNITE03 1.0060 0.9997 0.9432 0.9372 0.9465
 Forestry Kras 0.8747 0.8883 0.7960 0.7649 1.0002
 Forestry 

Slivnica
0.9636 0.9636 0.9210 0.8685 1.0069

 RF1 0.9958 0.9848 0.8201 0.9965 0.9790
 RF2 1.0090 1.0090 0.9495 1.0551 1.0019
 SCM1d 0.9831 0.9855 0.9480 0.9050 1.0081
 SCM20d 1.0047 1.0136 0.9701 0.9786 1.0130

Results for � = 0.2

 Bicycles 0.7542 0.7844 0.6373 0.6024 0.7173
 EUNITE03 0.9967 0.9795 0.9419 0.9372 0.7259
 Forestry Kras 0.8339 0.8373 0.7860 0.7649 0.8911
 Forestry 

Slivnica
0.9371 0.9453 0.9059 0.8685 1.0028

 RF1 0.9489 0.9444 0.8401 0.9965 0.8139
 RF2 1.0197 1.0175 0.9343 1.0551 0.9983
 SCM1d 0.9634 0.9931 0.9290 0.9050 1.0041
 SCM20d 0.9984 1.0069 0.9701 0.9786 0.9600

Results for � = 0.5

 Bicycles 0.6624 0.7427 0.6251 0.6024 0.6781
 EUNITE03 0.9743 0.9699 0.9514 0.9372 0.6141
 Forestry Kras 0.8079 0.8086 0.7896 0.7649 0.7656
 Forestry 

Slivnica
0.9063 0.9230 0.8994 0.8685 1.0298

 RF1 0.9071 0.9179 0.8663 0.9965 0.6946
 RF2 0.9626 0.9706 0.9645 1.0551 0.9654
 SCM1d 0.9472 0.9408 0.9121 0.9050 0.9804
 SCM20d 1.0099 0.9960 0.9702 0.9786 0.6532
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6 � Results and discussion

6.1 � Predictive performance

The results of the online semi-supervised multi-target regression experiments are shown in 
Table 2 and Fig. 2.
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SCM1d datasets
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Table 2 shows that on all datasets and for all labeling ratios iSOUP-PCTSSL achieves 
better predictive performance than both the unsupervised iSOUP-Tree and iSOUP-PCT. 
As expected, on most datasets iSOUP-PCTSSL is worse than the iSOUP-TreeOracle, i.e., the 
regression tree that learns from the entire dataset as though it was labeled. Curiously, on 
the RF1, RF2 and SCM20d dataset iSOUP-PCTSSL performs even better than the oracle 
method. On the RF2 dataset, even iSOUP-Tree and iSOUP-PCT outperform the oracle tree. 
This very likely means that mean regressors are not good as leaf models on the RF1 and 
RF2 datasets, as learning from more examples decreases the performance.

Figure 2 shows the evolution of RMAE as more examples are processed on four of the 
datasets: Bicycles, Forestry Kras, RF1 and SCM1d. The results on the remaining four data-
sets are similar and are omitted for brevity. As we expected, the differences between the 
semi-supervised models and regular, supervised models decrease as we go from low to 
high labeling ratios. As the supervised models see more and more labeled examples, the 
benefits of using the semi-supervised iSOUP-PCT method are reduced. In the extreme, 
where all examples are labeled, the iSOUP-Tree and iSOUP-TreeOracle would coincide, as 
would iSOUP-PCT and iSOUP-PCTSSL.

Table 3   The consumption of memory in terms of megabytes of the compared methods

Tree PCT PCT
SSL Oracle AMRules

SSL

� = 0.1

 Bicycles 0.20 0.38 3.49 1.29 0.58
 EUNITE03 1.54 6.86 26.71 5.62 1.54
 Forestry Kras 51.69 1000.27 2879.21 203.41 30.60
 Forestry Slivnica 9.10 265.36 812.26 14.42 12.88
 RF1 2.95 24.03 265.00 10.05 5.37
 RF2 14.79 1006.47 745.31 13.04 10.10
 SCM1d 73.11 1282.54 17,150.37 659.56 46.13
 SCM20d 32.16 141.96 518.00 163.20 9.99
� = 0.2

 Bicycles 0.22 1.17 2.71 1.29 0.61
 EUNITE03 1.82 6.13 19.94 5.62 1.59
 Forestry Kras 51.34 900.19 2205.68 203.41 37.22
 Forestry Slivnica 12.32 425.25 1222.74 14.42 13.29
 RF1 19.48 160.24 282.02 10.05 5.29
 RF2 10.08 704.55 2086.02 13.04 10.24
 SCM1d 184.95 4471.63 17,526.12 659.56 46.23
 SCM20d 23.43 207.23 661.15 163.20 9.99
� = 0.5

 Bicycles 0.73 1.69 3.57 1.29 0.72
 EUNITE03 1.87 14.03 31.74 5.62 1.62
 Forestry Kras 88.25 1644.26 2351.13 203.41 64.60
 Forestry Slivnica 27.72 570.69 2285.14 14.42 13.70
 RF1 3.92 81.46 81.78 10.05 8.81
 RF2 21.23 1478.65 1008.31 13.04 9.65
 SCM1d 599.33 7317.71 15,351.75 659.56 91.00
 SCM20d 80.57 369.19 626.74 163.20 19.55
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The comparison of the results of iSOUP-PCTSSL and AMRulesSSL is also shown 
in Table 2, where the better method is highlighted in strong text. In the case of � = 0.1 , 
iSOUP-PCTSSL outperforms AMRulesSSL on all datasets. In the remaining cases, i.e., 
� = 0.2 and � = 0.5 , the results are not as clear cut, with both methods winning out over 
the other on about half of the datasets. Looking at the evolution of RMAE of AMRulesSSL 
in Fig.  2, we see that its performance is quite inconsistent and very dependent on the 
dataset.

6.2 � Memory consumption

From Table 3, we clearly see that the iSOUP-PCT and iSOUP-PCTSSL methods consume 
significantly more memory than iSOUP-Tree and iSOUP-TreeOracle, respectively. This is 
according to our expectations, based on the earlier analysis of memory complexity, pre-
sented in Sect. 4. Furthermore, the relative increases from regular trees to predictive clus-
tering trees are consistent with the theoretical analysis presented earlier, i.e., they are larger 
for datasets with more input attributes.

In Fig. 3, we show the evolution of memory consumption on the Bicycles and SCM1d 
datasets, which represent the cases with the lowest and highest memory consumptions at 
� = 0.1 , respectively. In the case of the Bicycles dataset, both iSOUP-Tree and iSOUP-
PCT receive only around 1600 labeled examples, and thus their memory consumption 
grows very slowly. On the other hand, the memory consumption of iSOUP-TreeOracle and 
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iSOUP-PCTSSL show a faster rate of growth, given that they process all examples, labeled 
and unlabeled alike. On the SCM1d dataset, we see large decreases in the memory con-
sumption of both predictive clustering tree methods. These result from the decremental 
forgetting of superfluous statistics when leaves are split. In particular, all E-BST tree struc-
tures are removed once a leaf is split and new, empty ones are initialized in the new leaves. 
These patterns are also observed for the iSOUP-Tree methods, however, due to the consid-
erably higher memory consumption of the PCT methods, they are not seen at the shown 
scale.

The large consumption of memory of iSOUP-PCTSSL is a natural consequence of the 
space complexity of the statistics storage. As discuessed earlier in Sect. 4.2, the semi-super-
vised method is quadratic in the number of input attributes, which can result in consider-
able memory consumption. The extremely large consumption of memory of iSOUP-PCTSSL 
on the SCM1d dataset is a combination of a large number of input attributes as well as an 
extremely large number of unique attribute values, i.e., nmax , defined above, is very high.

Both Table  3 and Fig.  3 show that AMRulesSSL convincingly outperforms iSOUP-
PCTSSL in terms of memory consuption. This is expected as AMRulesSSL keeps a set of 
rules of fixed size. On the other hand, the size of the iSOUP-PCTSSL is not constrained 
resulting in considerably larger consumption of memory.

6.3 � Discussion

An important aspect of using iSOUP-PCTs is the trade-off between the use of additional 
resources and the achieved predictive performance. iSOUP-PCTSSLs utilize the unlabeled 
examples to achieve better predictive performance, especially when there are few labeled 
examples. However, the improvement in predictive performance might come at such a high 
increase in memory consumption to make it unfeasible. In particular, this makes them 
uncompetitive in the supervised scenario.

iSOUP-PCTs might also suffer from slower growth than regular iSOUP-Trees, as we 
are averaging additional values in the PCT heuristic, resulting in split candidates that have 
closer heuristic scores. While the iSOUP-PCTSSLs get more examples to calculate the heu-
ristic values, the supervised iSOUP-PCTs receive the same labeled examples as iSOUP-
Trees and generally perform slightly worse. The benefit of the semi-supervised approach 
thus appears to entirely stem from the fact that it can utilize unlabeled examples.

The comparison of iSOUP-PCTSSL and AMRulesSSL is not quite straightforward, 
with the exception of the � = 0.1 scenario. In that case, iSOUP-PCTSSL outperforms 
AMRulesSSL on all of the observed datasets. In the remaining scenarios, it is not possible to 
determine a clear winner, as the performance of the two methods is comparable. We note, 
however, that AMRulesSSL does use a smaller amount of memory.

7 � Conclusions and further work

In this paper, we have extended the incremental tree-based method iSOUP-Tree toward 
the predictive clustering framework and introduced the iSOUP-PCT method for online 
semi-supervised multi-target regression. We have evaluated the introduced method in 
both supervised (iSOUP-PCT) and semi-supervised (iSOUP-PCTSSL) scenarios. We 
have found that the use of iSOUP-PCTs is not warranted when there are no unlabeled 
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examples, i.e., in the supervised scenario. In that case, iSOUP-PCTs consume more 
memory, while producing slightly worse results than iSOUP-Trees. On other hand, in 
the semi-supervised scenario, and in particular, when there is a considerable amount of 
unlabeled examples, iSOUP-PCTSSL outperforms regular iSOUP-Tree, achieving predic-
tive performance close to that of an oracle method, which has access to the target values 
of even the unlabeled examples.

However, the consumption of memory of iSOUP-PCTs considerably higher than that 
of iSOUP-Trees. Thus, we must consider that using iSOUP-PCTs comes at a consider-
able cost of computational resources. We should evaluate whether their use is warranted 
for each particular application scenario.

Comparing the proposed method with the current state-of-the-art, shows us that its 
performace is at least as good as that of the singular state-of-the-art method. In particu-
lar, when there are very few labeled examples (which might translate into an application 
where the labelling is particularly cumbersome or expensive), the propsed method beats 
the state-of-the-art on all observed datasets. The memory consuption, however, as in 
the case of the other experimental questions, remains a considerable problem for the 
proposed method.

We identify several avenues for further work. Given that the main concern related to the 
iSOUP-PCTs is the consumption of memory, we plan to test different techniques to reduce 
memory usage. In particular, using iSOUP-PCTs with the online random forest methodol-
ogy (Oza 2005), where only a subset of input attributes are considered at each tree node, 
could prove beneficial. Random forests thrive on a large number of input attributes, which 
is, on the other hand, the major source of computational complexity of iSOUP-PCT. Fur-
thermore, in this paper we have exclusively used regression trees, as leaf models that are 
commonly used (typically linear) are unable to learn from unlabeled examples. We plan to 
explore other kinds of leaf models that could utilize the unlabeled examples. Finally, we 
intend to extend semi-supervised iSOUP-PCTs to other online SOP tasks, such as multi-
label classification, using problem transformation approaches as in Osojnik et al. (2017).
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