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Abstract
When training a deep neural network for image classification, one can broadly distinguish 
between two types of latent features of images that will drive the classification. We can 
divide latent features into (i) ‘core’ or ‘conditionally invariant’ features C whose distribu-
tion C|Y  , conditional on the class Y, does not change substantially across domains and (ii) 
‘style’ features S whose distribution S|Y  can change substantially across domains. Exam-
ples for style features include position, rotation, image quality or brightness but also more 
complex ones like hair color, image quality or posture for images of persons. Our goal is 
to minimize a loss that is robust under changes in the distribution of these style features. 
In contrast to previous work, we assume that the domain itself is not observed and hence 
a latent variable. We do assume that we can sometimes observe a typically discrete identi-
fier or “ ID variable”. In some applications we know, for example, that two images show 
the same person, and ID then refers to the identity of the person. The proposed method 
requires only a small fraction of images to have ID information. We group observations if 
they share the same class and identifier (Y , ID) = (y, id) and penalize the conditional vari-
ance of the prediction or the loss if we condition on (Y , ID) . Using a causal framework, this 
conditional variance regularization (CoRe) is shown to protect asymptotically against shifts 
in the distribution of the style variables in a partially linear structural equation model. 
Empirically, we show that the CoRe penalty improves predictive accuracy substantially in 
settings where domain changes occur in terms of image quality, brightness and color while 
we also look at more complex changes such as changes in movement and posture.
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1  Introduction

Deep neural networks (DNNs) have achieved outstanding performance on prediction tasks 
like visual object and speech recognition (Krizhevsky et al. 2012; Szegedy et al. 2015; He 
et al. 2015). Issues can arise when the learned representations rely on dependencies that 
vanish in test distributions (see for example Quionero-Candela et al. (2009),Torralba and 
Efros (2011), Csurka (2017) and references therein). Such domain shifts can be caused by 
changing conditions such as color, background or location changes. Predictive performance 
is then likely to degrade. For example, consider the analysis presented in Kuehlkamp et al. 
(2017) which is concerned with the problem of predicting a person’s gender based on 
images of their iris. The results indicate that this problem is more difficult than previous 
studies have suggested due to the remaining effect of cosmetics after segmenting the iris 
from the whole image.1 Previous analyses obtained good predictive performance on certain 
datasets but when testing on a dataset only including images without cosmetics accuracy 
dropped. In other words, the high predictive performance previously reported relied to a 
significant extent on exploiting the confounding effect of mascara on the iris segmenta-
tion which is highly predictive for gender. Rather than the desired ability of discriminat-
ing based on the iris’ texture the systems would mostly learn to detect the presence of 
cosmetics.

More generally, existing biases in datasets used for training machine learning algo-
rithms tend to be replicated in the estimated models (Bolukbasi et al. 2016). For an exam-
ple involving Google’s photo app, see Crawford (2016) and Emspak (2016). In Sect.  5 
we show many examples where unwanted biases in the training data are picked up by the 
trained model. As any bias in the training data is in general used to discriminate between 
classes, these biases will persist in future classifications, raising also considerations of fair-
ness and discrimination (Barocas and Selbst 2016).

Addressing the issues outlined above, we propose Conditional variance Regulariza-
tion (CoRe) to give differential weight to different latent features. Conceptually, we take 
a causal view of the data generating process and categorize the latent data generating fac-
tors into ‘conditionally invariant’ (core) and ‘orthogonal’ (style) features, as in Gong et al. 
(2016). The core and style features are unobserved and can in general be highly nonlinear 
transformations of the observed input data. It is desirable that a classifier only extracts the 
latent core features from the input data as they pertain to the target of interest in a stable 
and coherent fashion. Basing a prediction on the core features alone yields stable predictive 
accuracy even if the style features are altered. Under suitable assumptions, CoRe yields an 
estimator which is approximately invariant under changes in the conditional distribution 
of the style features (conditional on the class labels) and it is asymptotically robust with 
respect to domain shifts, arising through interventions on the style features. CoRe relies on 
the fact that for certain datasets we can observe grouped observations in the sense that we 
observe the same object under different conditions. For instance, such grouping informa-
tion is available 

(i)	 in natural image data when several pictures of the same person are taken;
(ii)	 in medical imaging when several images belonging to the same patient are made;

1  Segmenting eyelashes from the iris is not entirely accurate which implies that the iris images can still 
contain parts of eyelashes, occluding the iris. As mascara causes the eyelashes to be thicker and darker, it is 
difficult to entirely remove the presence of cosmetics from the iris images.
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(iii)	 in speech recognition when multiple recordings from the same speaker are available;
(iv)	 in video data where nearby frames showing the same objects can be exploited to group 

observations;
(v)	 in data augmentation where a transformed data point can be grouped together with the 

original one.

We will show examples for the first and last category. For the last category, we will show 
that pairing the augmented data with the original image they were generated from helps to 
improve accuracy and robustness with respect to the chosen transformation.

Rather than pooling over all examples, CoRe exploits knowledge about this grouping, 
i.e., that a number of instances relate to the same object. By penalizing between-object 
variation of the prediction less than variation of the prediction for the same object, we can 
steer the prediction to be based more on the latent core features and less on the latent style 
features. While the proposed methodology can be motivated from the desire the achieve 
representational invariance with respect to the style features, the causal framework we use 
throughout this work allows to precisely formulate the distribution shifts we aim to protect 
against.

The remainder of this manuscript is structured as follows: Sect. 1.1 starts with a few 
motivating examples, showing simple settings where the style features change in the test 
distribution such that standard empirical risk minimization approaches would fail. In 
Sect. 1.2 we review related work, introduce notation in Sect. 2 and in Sect. 3 we formally 
introduce conditional variance regularization CoRe. In Sect. 4, CoRe is shown to be asymp-
totically equivalent to minimizing the risk under a suitable class of strong interventions in a 
partially linear classification setting, provided one chooses sufficiently strong CoRe penal-
ties. We also show that the population CoRe penalty induces domain shift robustness for 
general loss functions to first order in the intervention strength. The size of the conditional 
variance penalty can be shown to determine the size of the distribution class over which we 
can expect distributional robustness. In Sect. 5 we evaluate the performance of CoRe in a 
variety of experiments.

To summarize, our contributions are the following: 

	 (i)	 Causal framework and distributional robustness We build on the causal frame-
work from Gong et al. (2016) to define distributional shifts for style variables. This 
allows us to formulate the objective of interest in terms of distributional robust infer-
ence. Specifically, the distribution class, on which the estimator should achieve a 
guaranteed performance bound, consists of those distributions that are generated by 
interventions on the latent style variables in a causal model. Our framework allows 
that the domain variable itself is latent.

	 (ii)	 Conditional variance penalties We introduce conditional variance penalties and 
show two robustness properties in Theorems 1 and 2.

	 (iii)	 Software We illustrate our ideas using synthetic and real-data experiments. A Ten-
sorFlow implementation of CoRe as well as code to reproduce some of the experi-
mental results are available at https​://githu​b.com/chris​tinah​einze​/core.

1.1 � Motivating examples

To motivate the methodology we propose, consider the examples shown in Figs. 1 and 2. 
Example 1 shows a setting where a nonlinear decision boundary is required. Here, the core 

https://github.com/christinaheinze/core
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feature corresponds to the distance from the origin while the style feature corresponds to 
the angle between the x1-axis and the vector from the origin to (x1, x2) . Panel (a) shows a 
subsample of the training data where class 1 is associated with red points, dark blue points 
correspond to class 0. Panel (b) additionally shows a subsample of the test data where the 
style—i.e. the distribution of the angle—is intervened upon: class 1 is associated with 
orange squares, cyan squares correspond to class 0. Clearly, a circular decision boundary 
yields optimal performance on both training and test set but is unlikely to be found by a 
standard classification algorithm when only using the training set for the estimation. We 
will return to these examples in Sect. 3.4.

Secondly, we introduce a strong dependence between the class label and the style fea-
ture “image quality” in the third example by manipulating the face images from the CelebA 
dataset (Liu et al. 2015): in the training set images of class “wearing glasses” are associ-
ated with a lower image quality than images of class “not wearing glasses”. Examples are 
shown in Fig. 2a. In the test set, this relation is reversed, i.e. images showing persons wear-
ing glasses are of higher quality than images of persons without glasses, with examples in 
Fig. 2b. We will return to this example in Sect. 5.3 and show that training a convolutional 

(a) Example 1, training set.
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(b) Example 1, test set.
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Fig. 1   Motivating example 1: The distributions are shifted in the test data by style interventions where style 
is the polar angle. Standard estimators achieve error rates of 0% on the training data and test data drawn 
from the same distribution as the training data (panel a). On the shown test set where the distribution of the 
style conditional on Y has changed the error rates are > 50% (panel b)

Fig. 2   Motivating example 2: The goal is to predict whether a person is wearing glasses. The distribu-
tions are shifted in test data by style interventions where style is the image quality. A 5-layer CNN achieves 
0% training error and 2% test error for images that are sampled from the same distribution as the training 
images a, but a 65% error rate on images where the confounding between image quality and glasses is 
changed b. See Sect. 5.3 for more details
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neural network to distinguish between people wearing glasses or not works well on test 
data that are drawn from the same distribution (with error rates below 2%) but fails entirely 
on the shown test data, with error rates worse than 65%.

1.2 � Related work

For general distributional robustness, the aim is to learn

for a given set F  of distributions, twice differentiable and convex loss � , and prediction 
f�(x) . The set F  is the set of distributions on which one would like the estimator to achieve 
a guaranteed performance bound.

Causal inference can be seen to be a specific instance of distributional robustness, where 
we take F  to be the class of all distributions generated under do-interventions on the pre-
dictors X (Meinshausen 2018; Rothenhäusler et  al. 2018). Causal models thus have the 
defining advantage that the predictions will be valid even under arbitrarily large interven-
tions on all predictor variables (Haavelmo 1944; Aldrich 1989; Pearl 2009; Schölkopf et al. 
2012; Peters et al. 2016; Zhang et al. 2013, 2015; Yu et al. 2017; Rojas-Carulla et al. 2018; 
Magliacane et al. 2018). There are two difficulties in transferring these results to the setting 
of domain shifts in image classification. The first hurdle is that the classification task is 
typically anti-causal since the image we use as a predictor is a descendant of the true class 
of the object we are interested in rather than the other way around. The second challenge is 
that the input data consists of pixel intensities and we do not want (or could) guard against 
arbitrary interventions on any or all variables but only would like to guard against a shift 
of the unobserved style features. It is hence not immediately obvious how standard causal 
inference can be used to guard against large domain shifts.

Another line of work uses a class of distributions of the form F = F�(F0) with

with 𝜖 > 0 a small constant and D(F,F0) being, for example, a �-divergence (Namkoong 
and Duchi 2017; Ben-Tal et  al. 2013; Bagnell 2005; Volpi et  al. 2018) or a Wasserstein 
distance (Shafieezadeh-Abadeh et al. 2017; Sinha et al. 2018; Gao et al. 2017). The distri-
bution F0 can be the true (but generally unknown) population distribution P from which 
the data were drawn or its empirical counterpart Pn . The distributionally robust targets 
in Eq.  (2) can often be expressed in penalized form (Gao et al. 2017; Sinha et al. 2018; 
Xu et al. 2009). A Wasserstein-ball is a suitable class of distributions for example in the 
context of adversarial examples (Sinha et al. 2018; Szegedy et al. 2014; Goodfellow et al. 
2015).

In this work, we do not try to achieve robustness with respect to a set of distribu-
tions that are pre-defined by a Kullback-Leibler divergence or a Wasserstein metric as in 
Eq. (2). Instead, we try to achieve robustness against a set of distributions that are gener-
ated by interventions on latent style variables in a causal model (we will make this pre-
cise in Sect. 2). We will formulate the class of distributions over which we try to achieve 
robustness as in Eq. (1) but with the class of distributions in Eq. (2) now replaced with the 
class of distributions F� defined as {F ∶ Dstyle(F,F0) ≤ �}, where F0 is again the distri-
bution the training data are drawn from. The difference to standard distributional robust-
ness approaches listed below Eq. (2) is now that the metric Dstyle measures the shift of the 

(1)argmin
�

sup
F∈F

EF(�(Y , f�(X)))

(2)F�(F0) ∶= {distributions F such that D(F,F0) ≤ �},
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orthogonal style features. We do not know a priori which features are prone to distribu-
tional shifts and which features have a stable (conditional) distribution. The metric is hence 
not known a priori and needs to be inferred in a suitable sense from the data.

Similar to this work in terms of their goals are the work of Gong et  al. (2016) and 
Domain-Adversarial Neural Networks (DANN) proposed in Ganin et  al. (2016), an 
approach motivated by the work of Ben-David et al. (2007). The main idea of Ganin et al. 
(2016) is to learn a representation that contains no discriminative information about the 
origin of the input (source or target domain). This is achieved by an adversarial training 
procedure: the loss on domain classification is maximized while the loss of the target pre-
diction task is minimized simultaneously. The data generating process assumed in Gong 
et al. (2016) is similar to our model, introduced in Sect. 2.1, where we detail the similari-
ties and differences between the models (cf. Fig. 3). Gong et al. (2016) identify the con-
ditionally independent features by adjusting a transformation of the variables to minimize 
the squared MMD distance between distributions in different domains.2 The fundamental 
difference between these very promising methods and our approach is that we use a dif-
ferent data basis. The domain identifier is explicitly observable in Gong et al. (2016) and 
Ganin et al. (2016), while it is latent in our approach. In contrast, we exploit the presence 
of an identifier variable ID that relates to the identity of an object (for example identifying 
a person). In other words, we do not assume that we have data from different domains but 
just different realizations of the same object under different interventions. This also differ-
entiates this work from latent domain adaptation papers from the computer vision literature 
(Hoffman et al. 2012; Gong et al. 2013). Further related work is discussed in Sect. 6.

(a)

Domain D

Y

S(∆)

∆

C

image X(∆)

(b)

Domain D

Y

S(∆)

∆ID

C

image X(∆)

Fig. 3   Observed quantities are shown as shaded nodes; nodes of latent quantities are transparent. Left: data 
generating process for the considered model as in Gong et al. (2016), where the effect of the domain on the 
orthogonal features S is mediated via unobserved noise � . The style interventions and all its descendants are 
shown as nodes with dashed borders to highlight variables that are affected by style interventions. Right: 
our setting. The domain itself is unobserved but we can now observe the (typically discrete) ID variable we 
use for grouping. The arrow between ID and Y can be reversed, depending on the sampling scheme

2  The distinction between ‘conditionally independent’ features and ‘conditionally transferable’ (which is 
the former modulo location and scale transformations) is for our purposes not relevant as we do not make a 
linearity assumption in general.
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2 � Setting

We introduce the assumed underlying causal graph and some notation before discussing 
notions of domain shift robustness.

2.1 � Causal graph

Let Y ∈ Y be a target of interest. Typically Y = ℝ for regression or Y = {1,… ,K} in clas-
sification with K classes. Let X ∈ ℝ

p be predictor variables, for example the p pixels of an 
image. The causal structural model for all variables is shown in panel  (b) of Fig. 3. The 
domain variable D is latent, in contrast to Gong et  al. (2016) whose model is shown in 
panel (a) of Fig. 3. We add the ID variable to the graph. In Fig. 3, Y → ID but in some set-
tings it might be more plausible to consider ID → Y  . For the proposed method both options 
are possible. Together with Y, the ID variable is used to group observations. It is typically 
discrete and relates to the identity of the underlying object. The variable can be assumed to 
be latent in the setting of Gong et al. (2016).

The rest of the graph is in analogy to Gong et al. (2016). The prediction is anti-causal, 
that is the predictor variables X that we use for Ŷ  are non-ancestral to Y. In other words, the 
class label is here seen to be causal for the image and not the other way around.3 The causal 
effect from the class label Y on the image X is mediated via two types of latent variables: 
the so-called core or ‘conditionally invariant’ features C and the orthogonal or style fea-
tures S . The distinguishing factor between the two is that external interventions � are pos-
sible on the style features but not on the core features. If the interventions � have different 
distributions in different domains, then the conditional distributions C|Y = y, ID = id are 
invariant for all (y, id) while S|Y = y, ID = id can change. The style variable can include 
point of view, image quality, resolution, rotations, color changes, body posture, movement 
etc. and will in general be context-dependent.4 The style intervention variable � influences 
both the latent style S , and hence also the image X. In potential outcome notation, we let 
S(� = �) be the style under intervention � = � and X(Y , ID,� = �) the image for class Y, 
identity ID and style intervention � . The latter is sometimes abbreviated as X(� = �) for 
notational simplicity. Finally, f�(X(� = �)) is the prediction under the style intervention 
� = � . For a formal justification of using a causal graph and potential outcome notation 
simultaneously see Richardson and Robins (2013).

To be specific, if not mentioned otherwise we will assume a causal graph as follows. For 
independent �Y , �ID, �style in ℝ,ℝ,ℝq respectively with positive density on their support and 
continuously differentiable functions ky, kid , and kstyle, kcore, kx,

3  If an existing image is classified by a human, then the image is certainly ancestral for the attached label. 
If the label Y refers, however, to the underlying true object (say if you generate images by asking people to 
take pictures of objects or if you record the status of cells after performing a gene knockout), then the more 
fitting model is the one where Y is ancestral for X. We here focus on modeling the underlying true object 
since ultimately the goal is to deploy the trained system in the real world.
4  The type of features we regard as style and which ones we regard as core features can conceivably change 
depending on the circumstances—for instance, is the color “gray” an integral part of the object “elephant” 
or can it be changed so that a colored elephant is still considered to be an elephant?
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The distribution of �style is assumed to be identical across domains, while � can change. In 
more generality, one could discard � and instead allow the distribution of �style to change. 
Here the assumption is slightly more restrictive because of additivity of � in the structural 
equation for the style variable. The core features are here assumed to be a deterministic 
function of Y and ID to allow for theoretical analysis. In more generality (and as indicated 
in the graph), these would also be non-deterministic relations. The theoretical results will 
also require positive density for the style features in an �-ball around the origin, as made 
precise in assumption (A1) later.

The prediction ŷ for y, given X = x , is of the form f�(x) for a suitable function f� with 
parameters � ∈ ℝ

d , where the parameters � correspond to the weights in a DNN, for 
example.

We would like to stress that the above model is fairly general and subsumes many sim-
pler ones as special cases. To give a concrete example, consider the task of classifying a 
health condition Y from medical images X. Style features could be, for example, technical 
noise, orientation or resolution. The unobserved domain D could correspond to different 
hospitals or doctors. Due to the usage of different measuring devices in each of these loca-
tions, the conditional distribution S|Y  will change substantially across different domains. 
In contrast, the core features C , i.e. those image features that carry the actual signal, will 
remain invariant conditional on the underlying health condition Y.

2.2 � Data

We assume we have n data points (xi, yi, idi) for i = 1,… , n , where the observations idi with 
i = 1,… , n of variable ID can also contain unobserved values. Let m ≤ n be the number 
of unique realizations of (Y , ID) and let G1,… ,Gm be a partition of {1,… , n} such that, 
for each j ∈ {1,… ,m} , the realizations (yi, idi) are identical5 for all i ∈ Gj . While our 
prime application is classification, regression settings with continuous Y can be approxi-
mated in this framework by slicing the range of the response variable into distinct bins 
in analogy to the approach in sliced inverse regression (Li 1991). The cardinality of Gj 
is denoted by nj ∶= |Gj| ≥ 1 . Then n =

∑
i ni is again the total number of samples and 

c = n − m is the total number of grouped observations in the following sense: if we count 
all samples in a group except the first one we have, if summing over all groups, a total 
of c = n − m =

∑n

i=1
(ni − 1) observations left that are ‘grouped’ with the first example in 

their corresponding group.
Typically ni = 1 for most samples and occasionally ni ≥ 2 but one can also envisage sce-

narios with larger groups of the same identifier (y, id).

(3)

Y ← ky(D, �Y )

identifier ID ← kid(Y , �ID)

core or conditionally invariant features C ← kcore(Y , ID)

style or orthogonal features S ← kstyle(Y , ID, �style) + �

image X ← kx(C, S).

5  Observations where the ID variable is unobserved are not grouped, that is each such observation is 
counted as a unique observation of (Y , ID).
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2.3 � Domain shift robustness

In this section, we clarify against which classes of distributions we hope to achieve 
robustness. Let � be a suitable loss that maps y and ŷ = f𝜃(x) to ℝ+ . The risk under dis-
tribution F and parameter � is given by

Let F0 be the joint distribution of (ID,Y , S) in the training distribution. A new domain and 
explicit interventions on the style features can now shift the distribution of (ID,Y , S̃) to 
F. We can measure the distance between distributions F0 and F in different ways. Below 
we will define the distance considered in this work and denote it by Dstyle(F,F0) . Once 
defined, we get a class of distributions

and the goal will be to optimize a worst-case loss over this distribution class in the sense of 
Eq. (1), where larger values of � afford protection against larger distributional changes. The 
relevant loss for distribution class F� is then

In the limit of arbitrarily strong interventions on the style features S , the loss is given by

Minimizing the loss L∞(�) with respect to � guarantees an accuracy in prediction which 
will work well across arbitrarily large shifts in the conditional distribution of the style 
features.

A natural choice to define Dstyle is to use a Wasserstein-type distance (see e.g. Villani 
2003). We will first define a distance Dy,id for the conditional distributions

and then set D(F0,F) = E(DY ,ID) , where the expectation is with respect to random ID and 
labels Y. The distance Dy,id between the two conditional distributions of S will be defined 
as a Wasserstein W2

2
(F0,F)-distance for a suitable cost function c(x, x̃) . Specifically, let Πy,id 

be the couplings between the conditional distributions of S and S̃ , meaning measures sup-
ported on ℝq ×ℝ

q such that the marginal distribution over the first q components is equal 
to the distribution of S and the marginal distribution over the remaining q components 
equal to the distribution of S̃ . Then the distance between the conditional distributions is 
defined as

where c ∶ ℝ
q ×ℝ

q
↦ ℝ

+ is a nonnegative, lower semi-continuous cost function. Here, we 
focus on a Mahalanobis distance as cost

EF

[

�(Y , f�(X))
]

.

(4)F� = {F ∶ Dstyle(F0,F) ≤ �}

(5)L�(�) = sup
F∈F�

EF

[

�
(
Y , f�

(
X
))]

.

(6)L∞(�) = lim
�→∞

sup
F∈F�

EF

[

�
(
Y , f�

(
X
))]

.

S|Y = y, ID = id and S̃|Y = y, ID = id,

Dy,id = min
M∈Πy,id

E
[
c(x, x̃)

]
,
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The cost of a shift is hence measured against the variability under the distribution F0 , 
Σy,id = Var(S|Y , ID).6

Clearly, since the core and style features are unobserved, we cannot directly optimize 
the loss (5) but need to infer the metric Dstyle from the input data X. In the next section, we 
will show how this can be achieved. Intuitively, the model in Fig. 3 implies that the vari-
ance conditional on Y , ID stems from the difference in the style features. Hence, we would 
like to minimize the conditional variance of the prediction or loss when we condition on 
Y , ID . This enforces the desired invariance with respect to the style features.

3 � Conditional variance regularization

3.1 � Pooled estimator

Let (xi, yi) for i = 1,… , n be the observations that constitute the training data and ŷi = f𝜃(xi) 
the prediction for yi . The standard approach is to simply pool over all available observa-
tions, ignoring any grouping information that might be available. The pooled estimator 
thus treats all examples identically by summing over the empirical loss as

where the first part is simply the empirical loss over the training data,

In the second part, pen(�) is a complexity penalty, for example a squared �2-norm of the 
weights � in a convolutional neural network as a ridge penalty.

3.2 � CoRe estimator

The CoRe estimator is defined in Lagrangian form for penalty � ≥ 0 as

The penalty Ĉ𝜃 is a conditional variance penalty of the form

c2(x, x̃) = (x − x̃)tΣ−1
y,id

(x − x̃).

(7)𝜃̂pool = argmin
𝜃

Ê
[

𝓁(Y , f𝜃(X))
]

+ 𝛾 ⋅ pen(𝜃),

Ê
[

�(Y , f𝜃(X))
]

=
1

n

n∑

i=1

�
(
yi, f𝜃(xi)

)
.

(8)𝜃̂core(𝜆) = argmin
𝜃

Ê
[

𝓁(Y , f𝜃(X))
]

+ 𝜆 ⋅ Ĉ𝜃 .

(9)conditional-variance-of-prediction: Ĉf ,𝜈,𝜃 ∶= Ê
[
�Var(f𝜃(X)|Y , ID)

𝜈
]

6  As an example, if the change in distribution for S is caused by random shift-interventions � , then 
S̃ ← S + 𝛥 , and the distance Dstyle induced in the distributions is

ensuring that the strength of the shifts is measured against the natural variability Σy,id of the style features.

Dstyle(F0,F) ≤ E
[
E(�tΣ−1

y,id
�|Y = y, ID = id)

]
,
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where typically � ∈ {1∕2, 1} . For � = 1∕2 , we also refer to the respective penalties as 
“conditional-standard-deviation” penalties. In practice in the context of classification and 
DNNs, we apply the penalty  (9) to the predicted logits. The conditional-variance-of-loss 
penalty (10) takes a similar form to Namkoong and Duchi (2017). The crucial difference of 
our approach to Namkoong and Duchi (2017) is that we penalize with the expected condi-
tional variance or standard deviation. The fact that we take a conditional variance is here 
important as we try to achieve distributional robustness with respect to interventions on 
the style variables. Conditioning on ID allows to guard specifically against these interven-
tions. An unconditional variance penalty, in contrast, can achieve robustness against a pre-
defined class of distributions such as a ball of distributions defined in a Kullback-Leibler or 
Wasserstein metric. The population CoRe estimator is defined as in Eq. (8) where empiri-
cal estimates are replaced by their respective population quantities.

Before showing numerical examples, we discuss the estimation of the expected con-
ditional variance in Sect. 3.3 and return to the simple examples of Sect. 1.1 in Sect. 3.4. 
Domain shift robustness in a classification setting for a partially linear version of the struc-
tural equation model  (3) is shown in Sect.  4.1. Furthermore, we discuss the population 
limit of 𝜃̂core(𝜆) in Sect.  4.2, where we show that the regularization parameter � ≥ 0 is 
proportional to the size of the future style interventions that we want to guard against for 
future test data.

3.3 � Estimating the expected conditional variance

Recall that Gj ⊆ {1,… , n} contains samples with identical realizations of (Y , ID) for 
j ∈ {1,… ,m} . For each j ∈ {1,… ,m} , define 𝜇̂𝜃,j as the arithmetic mean across all 
f�(xi), i ∈ Gj . The canonical estimator of the conditional variance Ĉf ,1,𝜃 is then

and analogously for the conditional-variance-of-loss, defined in Eq. (10)7. If there are no 
groups of samples that share the same identifier (y, id) , we define Ĉf ,1,𝜃 to vanish. The CoRe 
estimator is then identical to pooled estimation in this special case.

3.4 � Motivating examples (continued)

We revisit the first example from Sect. 1.1. Figure 4 shows subsamples of the training and 
test set with the estimated decision boundaries for different values of the penalty param-
eter � when using a 2-layer fully connected neural network. Here, n = 20,000 and c = 500 . 
Additionally, grouped examples that share the same (y, id) are visualized: two grouped 
observations are connected by a line or curve, respectively. Ten such groups are shown. 
Panel (a) shows the decision boundaries for � = 0 , equivalent to the pooled estimator, and 
for CoRe with � ∈ {0, 0.05, 0.1, 1} . The pooled estimator misclassifies a large number of 

(10)conditional-variance-of-loss: Ĉ
�,𝜈,𝜃 ∶= Ê

[
�Var(�(Y , f𝜃(X))|Y , ID)

𝜈
]
,

Ĉf ,1,𝜃 ∶=
1

m

m∑

j=1

1

|Gj|

∑

i∈Gj

(f𝜃(xi) − 𝜇̂𝜃,j)
2, where 𝜇̂𝜃,j =

1

|Gj|

∑

i∈Gj

f𝜃(xi)

7  The right hand side can also be interpreted as the graph Laplacian (Belkin et al. 2006) of an appropriately 
weighted graph that fully connects all observations i ∈ Gj for each j ∈ {1,… ,m}.
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test points as can be seen in panel (b), suffering from a test error of ≈ 58% . In contrast, the 
decision boundary of the CoRe estimator with � = 1 aligns with the direction along which 
the grouped observations vary, classifying the test set with almost perfect accuracy (test 
error is ≈ 0%).

4 � Domain shift robustness for the CoRe estimator

We show two properties of the CoRe estimator. First, consistency is shown under the risk 
definition (6) for an infinitely large conditional variance penalty and the logistic loss in a 
partially linear structural equation model. Second, the population CoRe estimator is shown 
to achieve distributional robustness against shift interventions in a first order expansion.

4.1 � Asymptotic domain shift robustness under strong interventions

We analyze the loss under strong domain shifts, as given in Eq. (6), for the pooled and the 
CoRe estimator in a one-layer network for binary classification (logistic regression) in an 
asymptotic setting of large sample size and strong interventions.

Assume the structural equation for the image X ∈ ℝ
p is linear in the style features 

S ∈ ℝ
q (with generally p ≫ q ) and we use logistic regression to predict the class label 

Y ∈ {−1, 1} . Let the interventions � ∈ ℝ
q act additively on the style features S (this is only 

for notational convenience) and let the style features S act in a linear way on the image X 
via a matrix W ∈ ℝ

p×q (this is an important assumption without which results are more 
involved). The core or ‘conditionally invariant’ features are C ∈ ℝ

r , where in general 
r ≤ p but this is not important for the following. For independent �Y , �ID, �style in ℝ,ℝ,ℝq 

(a) Example 1, training set.
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(b) Example 1, test set.
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Fig. 4   The decision boundary as function of the penalty parameters � for Example 1 from Fig. 1. There are 
ten pairs of samples visualized that share the same identifier (y, id) and these are connected by a curve in 
the figures. The decision boundary associated with a solid line corresponds to � = 0 , the standard pooled 
estimator that ignores the groupings. The broken lines are decision boundaries for increasingly strong pen-
alties, taking into account the groupings in the data. Here, we only show a subsample of the data to avoid 
overplotting



315Machine Learning (2021) 110:303–348	

1 3

respectively with positive density on their support and continuously differentiable func-
tions ky, kid, kstyle, kcore, kx,

We assume a logistic regression as a prediction of Y from the image data X:

Given training data with n samples, we estimate � with 𝜃̂ and use here a logistic loss 
��(yi, xi) = log(1 + exp(−yi(x

t
i
�))).

The formulation of Theorem 1 relies on the following assumptions.

Assumption 1  We require the following conditions: 

	(A1)	 Assume the conditional distribution S|Y = y, ID = id under the training distribution 
F0 has positive density (with respect to the Lebesgue measure) in an �-ball in �2-norm 
around the origin for some 𝜖 > 0 for all y ∈ Y and id ∈ I .

	(A2)	 Assume the matrix W  has full rank q.
	(A3)	 Let M ≤ n be the number of unique realizations among n iid samples of (Y , ID) and 

let pn ∶= P(M ≤ n − q) . Assume that pn → 1 for n → ∞.

Assumption (A1) is a key assumption about the style variations we observe in the train-
ing set. It requires that we observe some variance in those directions that we expect to be 
subject to domain shifts in the future. If, on the other hand, the conditional variance in a 
particular direction is vanishing, we also expect it to vanish in the future. A violation of 
this assumption would imply that the guarantee of the CoRe regularization no longer holds. 
Assumption (A3) guarantees that the number c = n − m of grouped examples is at least as 
large as the dimension of the style variables. If we have too few or no grouped examples 
(small c), we cannot estimate the conditional variance accurately. Under these assumptions 
we can prove domain shift robustness.

Theorem  1  (Asymptotic domain shift robustness under strong interventions) Under 
model  (11) and Assumption  1, with probability 1, the pooled estimator  (7) has infinite 
loss (6) under arbitrarily large shifts in the distribution of the style features,

The CoRe estimator (8) 𝜃̂core with � → ∞ is domain shift robust under strong interventions 
in the sense that for n → ∞,

(11)

class Y ← ky(D, �Y )

identifier ID ← kid(Y , �ID)

core or conditionally invariant features C ← kcore(Y , ID)

style or orthogonal features S ← kstyle(Y , ID, �style) + �

image X ← kx(C) +WS.

f�(x) ∶=
exp(xt�)

1 + exp(xt�)
.

L∞(𝜃̂
pool) = ∞.

L∞(𝜃̂
core) →p inf

𝜃
L∞(𝜃).
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A proof is given in “Appendix A”. The respective ridge penalties in both estimators (7) 
and  (8) are assumed to be zero for the proof, but the proof can easily be generalized to 
include ridge penalties that vanish sufficiently fast for large sample sizes. The Lagran-
gian regularizer � is assumed to be infinite for the CoRe estimator to achieve domain 
shift robustness under these strong interventions. The next section considers the popula-
tion CoRe estimator in a setting with weak interventions and finite values of the penalty 
parameter.

4.2 � Population domain shift robustness under weak interventions

The previous theorem states that the CoRe estimator can achieve domain shift robustness 
under strong interventions for an infinitely strong penalty in an asymptotic setting. An open 
question is how the loss (5),

behaves under interventions of small to medium size and correspondingly smaller values of 
the penalty. Here, we aim to minimize this loss for a given value of � and show that domain 
shift robustness can be achieved to first order with the population CoRe estimator using the 
conditional-standard-deviation-of-loss penalty, i.e., Eq. (10) with � = 1∕2 , by choosing an 
appropriate value of the penalty � . Below we will show this appropriate choice of the pen-
alty weight is � =

√
�.

Assumption 2  We require the following conditions: 

	(B1)	 Define the loss under a deterministic shift � as 

 where the expectation is with respect to random (ID,Y , S̃) ∼ F𝜃 , with F� defined by 
the deterministic shift intervention S̃ = S + 𝛿 and (ID,Y , S̃) ∼ F0 . Assume that for all 
� ∈ Θ , h�(�) is twice continuously differentiable with bounded second derivative for 
a deterministic shift � ∈ ℝ

q.
	(B2)	 The spectral norm of the conditional variance Σy,id of S|Y , ID under F0 is assumed to 

be smaller or equal to some � ∈ ℝ for all y ∈ Y and id ∈ I .

The first assumption (B1) ensures that the loss is well behaved under interventions on 
the style variables. The second assumption (B2) allows to take the limit of small condi-
tional variances in the style variables.

If setting � =
√
� and using the conditional-standard-deviation-of-loss penalty, the 

CoRe estimator optimizes according to

The next theorem shows that this is to first order equivalent to minimizing the worst-case 
loss over the distribution class F� . The following result holds for the population CoRe esti-
mator, see below for a discussion about consistency.

L�(�) = sup
F∈F�

EF

[

�
(
Y , f�(X)

)]

h�(�) ∶= EF�
[�(Y , f�(X))],

𝜃̂core(
√
𝜉) = argmin

𝜃

ÊF0

�
𝓁(Y , f𝜃(X))

�
+
√
𝜉 ⋅ Ĉ

𝓁,1∕2,𝜃 .
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Theorem 2  The supremum of the loss over the class of distribution F� is to first-order given 
by the expected loss under distribution F0 with an additional conditional-standard-devia-
tion-of-loss penalty C

�,1∕2,�

A proof is given in “Appendix  B”. The objective of the population CoRe estima-
tor matches thus to first order the loss under domain shifts if we set the penalty weight 
� =

√
� . Larger anticipated domain shifts thus require naturally a larger penalty � in the 

CoRe estimation. The result is possible as we have chosen the Mahalanobis distance to 
measure shifts in the style variable and define F� , ensuring that the strength of shifts on 
style variables are measured against the natural variance on the training distribution F0.

In practice, the choice of � involves a somewhat subjective choice about the strength 
of the distributional robustness guarantee. A stronger distributional robustness property is 
traded off against a loss in predictive accuracy if the distribution is not changing in the 
future. One option for choosing � is to choose the largest penalty weight before the vali-
dation loss increases considerably. This approach would provide the best distributional 
robustness guarantee that keeps the loss of predictive accuracy in the training distribution 
within a pre-specified bound.8

As a caveat, the result takes the limit of small conditional variance of S in the train-
ing distribution and small additional interventions. Under larger interventions higher-order 
terms could start to dominate, depending on the geometry of the loss function and f� . A 
further caveat is that the result looks at the population CoRe estimator. For finite sample 
sizes, we would optimize a noisy version on the rhs of (12). To show domain shift robust-
ness in an asymptotic sense, we would need additional uniform convergence (in � ) of both 
the empirical loss and the conditional variance in that for n → ∞,

While this is in general a reasonable assumption to make, the validity of the assumption 
will depend on the specific function class and on the chosen estimator of the conditional 
variance.

5 � Experiments

We perform an array of different experiments, showing the applicability and advantage of 
the conditional variance penalty for two broad settings: 

1.	 Settings where we do not know what the style variables correspond to but still want 
to protect against a change in their distribution in the future. In the examples we show 

(12)sup
F∈F�

EF

�
𝓁
�
Y , f�(X)

��
= EF0

�
𝓁
�
Y , f�(X)

��
+
√
� ⋅ C

𝓁,1∕2,� + O(max{�, �}).

sup
𝜃

|ÊF0

[
�(Y , f𝜃(X))

]
− EF0

[
�
(
Y , f𝜃(X)

)]
| →p 0, and

sup
𝜃

|Ĉ
�,1∕2,𝜃 − C

�,1∕2,𝜃| →p 0.

8  If some labeled test data are avaiable and our goal is to perform optimally for samples that come from the 
same distribution as those test samples, then we can and should adjust the parameter to minimize estimated 
test error.
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cases where the style variable ranges from fashion (Sect. 5.2), image quality (Sect. 5.3), 
movement (Sect. 5.4) and brightness (“Appendix D.1”), which are all not known explic-
itly to the method. We also include genuinely unknown style variables in Sect. 5.1 (in 
the sense that they are unknown not only to the methods but also to us as we did not 
explicitly create the style interventions).

2.	 Settings where we do know what type of style interventions we would like to protect 
against. This is usually dealt with by data augmentation (adding images which are, say, 
rotated or shifted compared to the training data if we want to protect against rotations 
or translations in the test data; see for example Schölkopf et al. (1996)). The conditional 
variance penalty is here exploiting that some augmented samples were generated from 
the same original sample and we use as ID variable the index of the original image. We 
show that this approach generalizes better than simply pooling the augmented data, in 
the sense that we need fewer augmented samples to achieve the same test error. This 
setting is shown in Sect. 5.5.

We compare against the pooled estimator which has the same architecture as the network 
to which we add the CoRe penalty. For both the pooled and the CoRe estimator we apply 
an �2 penalty as regularization. We would like to stress that the related work discussed in 
Sects. 1.2 and 6 cannot be directly compared to the CoRe estimator as these approaches 
cannot exploit the ID information but rely on having data from different domains avail-
able at training time instead. Since this is a different problem setting, we can only compare 
against the pooled estimator which is a standard approach to classification. As a downside, 
our approach requires availability of an ID variable, which might not always be available9 
To further understand the behavior of the CoRe penalty, we perform a number of analyses 
and ablation studies to show 

	 (i)	 How sensitive the performance of CoRe is to the value of the penalty weight � 
(Sects. 5.1.1, 5.2);

	 (ii)	 How the CoRe penalty differs from a standard �2 penalty (Sect. 5.1.1);
	 (iii)	 How the value of the CoRe penalty can be used as a qualitative measure for the pres-

ence of sample bias (Sects. 5.1.1, 5.2);
	 (iv)	 How sensitive the performance of both the CoRe and the pooled estimator is to label 

shift in the grouped observations (Sect. 5.2.1);
	 (v)	 How the relative performance of both estimators is affected when using pre-trained 

InceptionV3 features (Sect. 5.2.2);
	 (vi)	 How sensitive the performance is to different grouping strategies (Sects. 5.3, “Appen-

dix D.1”, D.3.1, D.4);
	 (vii)	 how sensitive the performance is as a function of the strength of the domain shift 

and the number of grouped observations (“Appendices D.1, D.4, D.5, D.6”).

9  For example, the home office dataset in (Venkateswara et  al. 2017) contains images of various objects 
(kettle, clock etc) from different domains (real world photographs, cliparts, art images and product images). 
If we aim to predict the category of an object, it seems difficult to identify an appropriate ID variable in the 
dataset. However, if we aim instead to predict properties of an object (does it use electricity?), then we can 
use as ID the object category (kettle, clock etc.)
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Details of the network architectures can be found in Appendix “Appendix C”. All reported 
error rates are averaged over five runs of the respective method. A TensorFlow (Abadi et al. 
2015) implementation of CoRe can be found at https​://githu​b.com/chris​tinah​einze​/core.

5.1 � Eyeglasses detection with small sample size

In this example, we explore a setting where training and test data are drawn from the same 
distribution, so we might not expect a distributional shift between the two. However, we 
consider a small training sample size which gives rise to statistical fluctuations between 
training and test data. We assess to which extent the conditional variance penalty can help 
to improve test accuracies in this setting.

Specifically, we use a subsample of the CelebA dataset (Liu et al. 2015) and try to clas-
sify images according to whether or not the person in the image wears glasses. For con-
struction of the ID variable, we exploit the fact that several photos of the same person are 
available and set ID to be the identifier of the person in the dataset. Figure 5 shows exam-
ples from both the training and the test dataset. The conditional variance penalty is esti-
mated across groups of observations that share a common (Y , ID) . Here, this corresponds 
to pictures of the same person where all pictures show the person either with glasses (if 
Y = 1 ) or all pictures show the person without glasses ( Y = 0 ). Statistical fluctuations 
between training and test set could for instance arise if by chance the background of eye-
glass wearers is darker in the training sample than in test samples, the eyeglass wearers 
happen to be outdoors more often or might be more often female than male etc.

Below, we present the following analyses. First, we look at five different datasets and 
analyze the effect of adding the CoRe penalty (using conditional-variance-of-prediction) 
to the cross-entropy loss. Second, we focus on one dataset and compare the four different 
variants of the CoRe penalty in Eqs. (9) and (10) with � ∈ {1∕2, 1}.

5.1.1 � CoRe penalty using the conditional variance of the predicted logits

We consider five different training sets which are created as follows. For each person in 
the standard CelebA training data we count the number of available images and select 
the 50 identities for which most images are available individually. We partition these 
50 identities into 5 disjoint subsets of size 10 and consider the resulting 5 datasets, 

Fig. 5   Eyeglass detection for CelebA dataset with small sample size. The goal is to predict whether a per-
son wears glasses or not. Random samples from training and test data are shown. Groups of observations 
in the training data that have common (Y , ID) here correspond to pictures of the same person with either 
glasses on or off. These are labelled by red boxes in the training data and the conditional variance penalty is 
calculated across these groups of pictures

https://github.com/christinaheinze/core
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containing the images of 10 unique identities each. The resulting 5 datasets have sizes 
{289, 296, 292, 287, 287} . For the validation and the test set, we consider the usual Cel-
ebA validation and test split but balance these with respect to the target variable “Eye-
glasses”. The balanced validation set consists of 2766 observations; the balanced test set 
contains 2578 images. The identities in the validation and test sets are disjoint from the 
identities in the training sets.

Given a training dataset, the standard approach would be to pool all examples. The 
only additional information we exploit is that some observations can be grouped. If 
using a 5-layer convolutional neural network with a standard ridge penalty (details can 
be found in Table 5) and pooling all data, the test error on unseen images ranges from 
18.08 to 25.97%. Exploiting the group structure with the CoRe penalty (in addition to a 
ridge penalty) results in test errors ranging from 14.79 to 21.49%, see Table 1. The rela-
tive improvements when using the CoRe penalty range from 9 to 28.6%.

The test error is not very sensitive to the weight of the CoRe penalty as shown in 
Fig. 6a: for a large range of penalty weights, adding the CoRe penalty decreases the test 
error compared to the pooled estimator (identical to a CoRe penalty weight of 0). This 
holds true for various ridge penalty weights.

While the test error rates shown in Fig. 6 suggest already that the CoRe penalty dif-
ferentiates itself clearly from a standard ridge penalty, we examine next the differential 
effect of the CoRe penalty on the between- and within-group variances. Concretely, the 
variance of the predictions can be decomposed as

where the first term on the rhs is the within-group variance that CoRe penalizes, while a 
ridge penalty would penalize both the within- and also the between-group variance (the 

Var(f�(X)) = E
[
Var(f�(X)|Y , ID)

]
+ Var

[
E(f�(X)|Y , ID)

]
,

Table 1   Eyeglass detection, trained on small subsets (DS1–DS5) of the CelebA dataset with disjoint identi-
ties

For each experimental setting, bold marks the best performing method
We report training and test error as well as the value of the CoRe penalty Ĉf ,1,𝜃 on the training and the test 
set after training, evaluated for both the pooled estimator (“5-layer CNN”) and the CoRe estimator, applied 
to training the same architecture (“+ CoRe ”). The weights of the ridge and the CoRe penalty were chosen 
based on their performance on the validation set

Method Error Penalty value

Training Test Training Test

DS 1 5-layer CNN 0.0% (0.00%) 18.08% (0.24%) 19.14 (1.70) 18.86 (1.87)
+ CoRe 0.0% (0.00%) 15.08% (0.43%) 0.01 (0.01) 0.70 (0.05)

DS 2 5-layer CNN 0.0% (0.00%) 23.81% (0.51%) 6.20 (0.35) 6.97 (0.46)
+ CoRe 0.0% (0.00%) 17.00% (0.75%) 0.00 (0.00) 0.41 (0.04)

DS 3 5-layer CNN 0.0% (0.00%) 18.61% (0.52%) 7.33 (1.40) 7.91 (1.13)
+ CoRe 0.0% (0.00%) 14.79% (0.89%) 0.00 (0.00) 0.26 (0.03)

DS 4 5-layer CNN 0.0% (0.00%) 25.97% (0.24%) 6.19 (0.43) 7.13 (0.54)
+ CoRe 0.0% (0.00%) 21.12% (0.40%) 0.00 (0.00) 0.63 (0.04)

DS 5 5-layer CNN 0.0% (0.00%) 23.64% (0.64%) 20.20 (2.46) 24.85 (3.56)
+ CoRe 0.0% (0.00%) 21.49% (1.27%) 0.00 (0.00) 0.59 (0.10)
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second term on the rhs above). In Fig. 6b we show the ratio between the CoRe penalty and 
the between-group variance where groups are defined by conditioning on (Y , ID) . Specifi-
cally, the ratio is computed as

The results shown in Fig.  6b are computed on dataset 1 (DS 1). While increasing ridge 
penalty weights do lead to a smaller value of the CoRe penalty, the between-group vari-
ance is also reduced such that the ratio between the two terms does not decrease with larger 
weights of the ridge penalty.10 With increasing weight of the CoRe penalty, the variance 
ratio decreases, showing that the CoRe penalty indeed penalizes the within-group variance 
more than the between-group variance.

Table 1 also reports the value of the CoRe penalty after training when evaluated for the 
pooled and the CoRe estimator on the training and the test set. As a qualitative measure 
to assess the presence of sample bias in the data (provided the model assumptions hold), 
we can compare the value the CoRe penalty takes after training when evaluated for the 
pooled estimator and the CoRe estimator. The difference yields a measure for the extent the 
respective estimators are functions of � . If the respective hold-out values are both small, 
this would indicate that the style features are not very predictive for the target variable. If, 
on the other hand, the CoRe penalty evaluated for the pooled estimator takes a much larger 
value than for the CoRe estimator (as in this case), this would indicate the presence of sam-
ple bias.

(13)Ê
[
�Var(f𝜃(X)|Y , ID)

]
∕�Var

[
Ê(f𝜃(X)|Y , ID)

]
.

(a) (b)

Fig. 6   Eyeglass detection, trained on a small subset (DS1) of the CelebA dataset with disjoint identities. a 
Average test error as a function of both the CoRe penalty on x-axis and various levels of the ridge penalty. 
The results can be seen to be fairly insensitive to the ridge penalty. b The variance ratio (13) on test data 
as a function of both the CoRe and ridge penalty weights. The CoRe penalty can be seen to penalize the 
within-group variance selectively, whereas a strong ridge penalty decreases both the within- and between-
group variance

10  In Fig. 18 in the Appendix, the numerator and the denominator are plotted separately as a function of the 
CoRe penalty weight.
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5.1.2 � Other CoRe penalty types

We now compare all CoRe penalty types, i.e., penalizing with (i) the conditional variance 
of the predicted logits Ĉf ,1,𝜃 , (ii) the conditional standard deviation of the predicted log-
its Ĉf ,1∕2,𝜃 , (iii) the conditional variance of the loss Ĉl,1,𝜃 and (iv) the conditional standard 
deviation of the loss Ĉl,1∕2,𝜃 . For this comparison, we use the training dataset 1 (DS 1) from 
above. Table 2 contains the test error (training error was 0% for all methods) as well as the 
value the respective CoRe penalty took after training on the training set and the test set. 
The four CoRe penalty variants’ performance differences are not statistically significant. 
Hence, we mostly focus on the conditional variance of the predicted logits Ĉf ,1,𝜃 in the 
other experiments.

5.1.3 � Discussion

While the distributional shift in this example arises due to statistical fluctuations which 
will diminish as the sample size grows, the following examples are more concerned with 
biases that will persist even if the number of training and test samples is very large. A sec-
ond difference to the subsequent examples is the grouping structure—in this example, we 
consider only a few identities, namely m = 10 , with a relatively large number ni of associ-
ated observations (about thirty observations per individual). In the following examples, m 
is much larger while ni is typically smaller than five.

5.2 � Gender classification with unknown confounding

In the following set of experiments, we work again with the CelebA dataset and the 
5-layer convolutional neural network architecture described in Table 5. This time we 
consider the problem of classifying whether the person shown in the image is male or 
female. We create a confounding in training and test set I by including mostly images 
of men wearing glasses and women not wearing glasses. In test set 2 the association 
between gender and glasses is flipped: women always wear glasses while men never 

Table 2   Eyeglass detection, trained on a small subset (DS1) of the CelebA dataset with disjoint identities

We report training and test error as well as the value of the CoRe penalties Ĉf ,1,𝜃 , Ĉf ,1∕2,𝜃 , Ĉl,1,𝜃 and Ĉl,1∕2,𝜃 
on the training and the test set after training, evaluated for both the pooled estimator and the CoRe estima-
tor. The weights of the ridge and the CoRe penalty were chosen based on their performance on the valida-
tion set. The four CoRe penalty variants’ performance differences are not statistically significant

Method Error Penalty value

Test Training Test

5-layer CNN 18.08% (0.24%) 19.14 (1.70) 18.86 (1.87)

5-layer CNN + CoRe w/ Ĉf ,1,𝜃
15.08% (0.43%) 0.01 (0.01) 0.70 (0.05)

5-layer CNN + CoRe w/ Ĉf ,1∕2,𝜃
15.34% (0.83%) 0.03 (0.01) 0.89 (0.03)

5-layer CNN + CoRe w/ Ĉl,1,𝜃
15.12% (0.27%) 0.00 (0.00) 0.38 (0.03)

5-layer CNN + CoRe w/ Ĉl,1∕2,𝜃
15.59% (0.36%) 0.00 (0.00) 0.35 (0.02)
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wear glasses. Examples from the training and test sets 1 and 2 are shown in Fig. 7. The 
training set, test set 1 and 2 are subsampled such that they are balanced with respect to 
Y, resulting in 16,982, 4224 and 1120 observations, respectively.

To compute the conditional variance penalty, we use again images of the same per-
son. The ID variable is, in other words, the identity of the person and gender Y is con-
stant across all examples with the same ID . Conditioning on (Y , ID) is hence identical 
to conditioning on ID alone. Another difference to the other experiments is that we 
consider a binary style feature here.

5.2.1 � Label shift in grouped observations

We compare six different datasets that vary with respect to the distribution of Y in 
the grouped observations. In all training datasets, the total number of observations is 
16982 and the total number of grouped observations is 500. In the first dataset, 50% of 
the grouped observations correspond to males and 50% correspond to females. In the 
remaining 5 datasets, we increase the number of grouped observations with Y = “man” , 
denoted by � , to 75%, 90%, 95%, 99% and 100%, respectively. Table 3 shows the per-
formance obtained for these datasets when using the pooled estimator compared to the 
CoRe estimator with Ĉf ,1,𝜃 . The results show that both the pooled estimator as well as 
the CoRe estimator perform better if the distribution of Y in the grouped observations 
is more balanced. The CoRe estimator improves the error rate of the pooled estimator 
by ≈ 28 − 39% on a relative scale. Figure  8 shows the performance for � = 50% as a 
function of the CoRe penalty weight. Significant improvements can be obtained across 
a large range of values for the CoRe penalty and the ridge penalty. Test errors become 
more sensitive to the chosen value of the CoRe penalty for very large values of the 
ridge penalty weight as the overall amount of regularization is already large.

Fig. 7   Classification for Y ∈ {woman,man} . There is an unknown confounding here as men are very likely 
to wear glasses in training and test set 1 data, while it is women that are likely to wear glasses in test set 2. 
Estimators that pool all observations are making use of this confounding and hence fail for test set 2. The 
conditional variance penalty for the CoRe estimator is computed over groups of images of the same person 
(and consequently same class label), such as the images in the red box on the left. The number of grouped 
examples c is 500. We vary the proportion of males in the grouped examples between 50 and 100% (cf. 
Sect. 5.2.1)
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5.2.2 � Using pre‑trained Inception V3 features

To verify that the above conclusions do not change when using more powerful features, we 
here compare �2-regularized logistic regression using pre-trained Inception V3 features11 
with and without the CoRe penalty. Table 4 shows the results for � = 0.5 . While the results 
show that both the pooled estimator as well as the CoRe estimator perform better using 
pre-trained Inception features, the relative improvement with the CoRe penalty is still 28% 
on test set 2.

5.2.3 � Ablation experiments

In Sect. D.3.1, we report results for the following two additional baselines: (i) we group 
all examples sharing the same class label and penalize with the conditional variance of the 

(a) (b)

(c)(c) (d)(d)

Fig. 8   Classification for Y ∈ {woman,man} with � = 0.5 . Panels a and b show the test error on test data 
sets 1 and 2 respectively as a function of the CoRe and ridge penalty. Panels c and d show the variance 
ratio (13) (comparing within- and between- group variances) for females and males separately

11  Retrieved from https​://tfhub​.dev/googl​e/image​net/incep​tion_v3/featu​re_vecto​r/1.

https://tfhub.dev/google/imagenet/inception_v3/feature_vector/1
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predicted logits, computed over these two groups; (ii) we penalize the overall variance of 
the predicted logits, i.e., a form of unconditional variance regularization.

5.3 � Eyeglasses detection with known and unknown image quality intervention

We now revisit the second example from Sect. 1.1. We again use the CelebA dataset and 
consider the problem of classifying whether the person in the image is wearing eyeglasses. 
Here, we modify the images in the following way: in the training set and in test set 1, we 
sample the image quality12 for all samples {i ∶ yi = 1} (all samples that show glasses) from 

Table 3   Classification for Y ∈ {woman,man}

For each experimental setting, bold marks the best performing method
We compare six different datasets that vary with respect to the distribution of Y in the grouped observa-
tions. Specifically, we vary the proportion of images showing men between � = 0.5 and � = 1 . In all train-
ing datasets, the total number of observations is 16,982 and the total number of grouped observations is 
500. Both the pooled estimator as well as the CoRe estimator perform better if the distribution of Y in the 
grouped observations is more balanced. The CoRe estimator improves the error rate of the pooled estimator 
by ≈ 28 − 39% on a relative scale. Table 6 in the Appendix additionally contains the standard error of all 
shown results

Method Error Penalty value

Train (%) Test 1 (%) Test 2 (%) Train Test: Females Test: Males

� = .5 5-layer CNN 0.00 2.00 38.54 22.77 74.05 30.67
+ CoRe 6.43 5.85 24.07 0.01 1.61 0.93

� = .75 5-layer CNN 0.00 1.98 43.41 8.23 32.98 11.76
+ CoRe 7.61 6.99 27.05 0.00 1.44 0.62

� = .9 5-layer CNN 0.00 2.00 47.64 9.47 40.51 14.37
+ CoRe 8.76 7.74% 30.63 0.00 1.26 0.42

� = .95 5-layer CNN 0.00 1.89 48.96 13.62 61.01 21.26
+ CoRe 10.45 9.35 29.57 0.00 0.42 0.16

� = .99 5-layer CNN 0.00 1.70 50.11 20.66 70.80 27.80
+ CoRe 11.10 10.51 32.91 0.00 0.00 0.00

� = 1 5-layer CNN 0.00 1.93 49.41 821.32 2524.77 1253.21
+ CoRe 11.12 10.11 35.68 0.00 0.02 0.01

Table 4   Classification for 
Y ∈ {woman,man} with 
� = 0.5 Here, we compared �2

-regularized logistic regression 
based on Inception V3 features 
with and without the CoRe 
penalty

For each experimental setting, bold marks the best performing method
The CoRe estimator improves the performance of the pooled estimator 
by ≈ 28% on a relative scale

Method Error

Train (%) Test 1 (%) Test 2 (%)

Inception V3 5.74 5.53 30.29
Inception V3 + CoRe 6.15 5.85 21.70

12  We use ImageMagick (https​://www.image​magic​k.org) to change the level of the JPEG compression 
through convert -quality q_ij input.jpg output.jpg where qi,j ∼ N(30, 100).

https://www.imagemagick.org
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a Gaussian distribution with mean � = 30 and standard deviation � = 10 . Samples with 
yi = 0 (no glasses) are unmodified. In other words, if the image shows a person wearing 
glasses, the image quality tends to be lower. In test set 2, the quality is reduced in the same 
way for yi = 0 samples (no glasses), while images with yi = 1 are not changed. Figure 9 
shows examples from the training set and test sets 1 and 2. For the CoRe penalty, we cal-
culate the conditional variance across images that share the same ID if Y = 1 , that is across 
images that show the same person wearing glasses on all images. Observations with Y = 0 
(not wearing glasses) are not grouped. Two examples are shown in the red box of Fig. 9. 
Here, we have c = 5000 grouped observations among a total sample size of n = 20,000.

Figure 9 shows misclassification rates for CoRe and the pooled estimator on test sets 1 
and 2. The pooled estimator (only penalized with an �2 penalty) achieves low error rates 
of 2% on test set 1, but suffers from a 65% misclassification error on test set 2, as now the 
relation between Y and the implicit S variable (image quality) has been flipped. The CoRe 
estimator has a larger error of 13% on test set 1 as image quality as a feature is penalized by 
CoRe implicitly and the signal is less strong if image quality has been removed as a dimen-
sion. However, in test set 2 the performance of the CoRe estimator is 28% and improves 
substantially on the 65% error of the pooled estimator. The reason is again the same: the 
CoRe penalty ensures that image quality is not used as a feature to the same extent as for 
the pooled estimator. This increases the test error slightly if the samples are generated from 
the same distribution as training data (as here for test set 1) but substantially improves the 
test error if the distribution of image quality, conditional on the class label, is changed on 
test data (as here for test set 2).

Eyeglasses detection with known image quality intervention To compare to the above 
results, we repeat the experiment by changing the grouped observations as follows. 
Above, we grouped images that had the same person ID when Y = 1 . We refer to this 
scheme of grouping observations with the same (Y , ID) as ‘Grouping setting 2’. Here, 
we use an explicit augmentation scheme and augment c = 5000 images with Y = 1 in 

Training data (n = 20000):

5-layer CNN train. error: 0%
+ CoRe penalty: 10%

Test set 1 (n = 5344):

5-layer CNN test error: 2%
+ CoRe penalty: 13%

Test set 2 (n = 5344):

5-layer CNN test error: 65%
+ CoRe penalty: 29%

Fig. 9   Eyeglass detection for CelebA dataset with image quality interventions (which are unknown to any 
procedure used). The JPEG compression level is lowered for Y = 1 (glasses) samples on training data and 
test set 1 and lowered for Y = 0 (no glasses) samples for test set 2. To the human eye, these interventions 
are barely visible but the CNN that uses pooled data without CoRe penalty has exploited the correlation 
between image quality and outcome Y to achieve a (arguably spurious) low test error of 2% on test set 1. 
However, if the correlation between image quality and Y breaks down, as in test set 2, the CNN that uses 
pooled data without a CoRe penalty has a 65% misclassification rate. The training data on the left show 
paired observations in two red boxes: these observations share the same label Y and show the same person 
ID . They are used to compute the conditional variance penalty for the CoRe estimator that does not suffer 
from the same degradation in performance for test set 2
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the following way: each image is paired with a copy of itself and the image quality is 
adjusted as described above. In other words, the only difference between the two images 
is that image quality differs slightly, depending on the value that was drawn from the 
Gaussian distribution with mean � = 30 and standard deviation � = 10 , determining the 
strength of the image quality intervention. Both the original and the copy get the same 
value of identifier variable ID . We call this grouping scheme ‘Grouping setting 1’. Com-
pare the left panels of Figs. 9 and 10 for examples.

While we used explicit changes in image quality in both above and here, we referred 
to grouping setting 2 as ‘unknown image quality interventions’ as the training sample as 
in the left panel of Fig. 9 does not immediately reveal that image quality is the impor-
tant style variable. In contrast, the augmented data samples (grouping setting 1) we use 
here differ only in their image quality for a constant (Y , ID).

Training data (n = 20000):

5-layer CNN train. error: 0%
+ CoRe penalty: 3%

Test set 1 (n = 5344):

5-layer CNN test error: 2%
+ CoRe penalty: 7%

Test set 2 (n = 5344):

5-layer CNN test error: 65%
+ CoRe penalty: 13%

Fig. 10   Eyeglass detection for CelebA dataset with image quality interventions. The only difference to 
Fig. 9 is in the training data where the paired images now use the same underlying image in two different 
JPEG compressions. The compression level is drawn from the same distribution. The CoRe penalty per-
forms better than for the experiment in Fig. 9 since we could explicitly control that only S ≡ image quality 
varies between grouped examples. On the other hand, the performance of the pooled estimator is not 
changed in a noticeable way if we add augmented images as the (spurious) correlation between image qual-
ity and outcome Y still persists in the presence of the extra augmented images. Thus, the pooled estimator 
continues to be susceptible to image quality interventions

Training data (n = 20000):

5-layer CNN train. error: 4%
+ CoRe penalty: 4%

Test set 1 (n = 20000):

5-layer CNN test error: 3%
+ CoRe penalty: 4%

Test set 2 (n = 20000):

5-layer CNN test error: 41%
+ CoRe penalty: 9%

Fig. 11   Classification into {adult, child} based on stickmen images, where children tend to be smaller and 
adults taller. In training and test set 1 data, children tend to have stronger movement whereas adults tend to 
stand still. In test set 2 data, adults show stronger movement. The two red boxes in the panel with the train-
ing data show two out of the c = 50 pairs of examples over which the conditional variance is calculated. 
The CoRe penalty leads to a network that generalizes better for test set 2 data, where the spurious correla-
tion between age and movement is reversed, if compared to the training data
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Figure  10 shows examples and results. The pooled estimator performs more or less 
identical to the previous dataset. The explicit augmentation did not help as the associa-
tion between image quality and whether eyeglasses are worn is not changed in the pooled 
data after including the augmented data samples. The misclassification error of the CoRe 
estimator is substantially better than the error rate of the pooled estimator. The error rate 
on test set 2 of 13% is also improving on the rate of 28% of the CoRe estimator in grouping 
setting 2. We see that using grouping setting 1 works best since we could explicitly control 
that only S ≡ image quality varies between grouped examples. In grouping setting 2, dif-
ferent images of the same person can vary in many factors, making it more challenging to 
isolate image quality as the factor to be invariant against.

A similar example where S ≡ brightness is summarized in “Appendix D.1”.

5.4 � Stickmen image‑based age classification with unknown movement 
interventions

In this example we consider synthetically generated stickmen images; see Fig. 11 for some 
examples. The target of interest is Y ∈ {adult, child} . The core feature C is here the height 
of each person. The class Y is causal for height and height cannot be easily intervened on 
or change in different domains. Height is thus a robust predictor for differentiating between 
children and adults. As style feature we have here the movement of a person (distribution 
of angles between body, arms and legs). For the training data we created a dependence 
between age and the style feature ‘movement’, which can be thought to arise through a 
hidden common cause D , namely the place of observation. For instance, the images of 
children might mostly show children playing while the images of adults typically show 
them in more “static” postures. The left panel of Fig. 11 shows examples from the training 
set where large movements are associated with children and small movements are associ-
ated with adults. Test set 1 follows the same distribution, as shown in the middle panel. A 
standard CNN will exploit this relationship between movement and the label Y of interest, 
whereas this is discouraged by the conditional variance penalty of CoRe. The latter is pair-
ing images of the same person in slightly different movements as shown by the red boxes in 
the leftmost panel of Fig. 11. If the learned model exploits this dependence between move-
ment and age for predicting Y, it will fail when presented images of, say, dancing adults. 
The right panel of Fig. 11 shows such examples (test set 2). The standard CNN suffers in 
this case from a 41% misclassification rate, as opposed to the 3% on test set 1 data. For as 
few as c = 50 paired observations, the network with an added CoRe penalty, in contrast, 
achieves also 4% on test set 1 data and succeeds in achieving an 9% performance on test 
set 2, whereas the pooled estimator fails on this dataset with a test error of 41%.

These results suggest that the learned representation of the pooled estimator uses move-
ment as a predictor for age while CoRe does not use this feature due to the conditional vari-
ance regularization. Importantly, including more grouped examples would not improve the 
performance of the pooled estimator as these would be subject to the same bias and hence 
also predominantly have examples of heavily moving children and “static” adults (also see 
Fig. 23 which shows results for c ∈ {20, 500, 2000}).

5.5 � MNIST: more sample efficient data augmentation

The goal of using CoRe in this example is to make data augmentation more efficient 
in terms of the required samples. In data augmentation, one creates additional samples 
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by modifying the original inputs, e.g. by rotating, translating, or flipping the images 
(Schölkopf et al. 1996). In other words, additional samples are generated by interven-
tions on style features. Using this augmented data set for training results in invariance 
of the estimator with respect to the transformations (style features) of interest. For 
CoRe we can use the grouping information that the original and the augmented samples 
belong to the same object. This enforces the invariance with respect to the style features 
more strongly compared to normal data augmentation which just pools all samples. 
We assess this for the style feature ‘rotation’ on MNIST (LeCun et al. 1998) and only 
include c = 200 augmented training examples for m = 10,000 original samples, resulting 
in a total sample size of n = 10200 . The degree of the rotations is sampled uniformly at 
random from [35, 70]. Figure 12 shows examples from the training set. By using CoRe 
the average test error on rotated examples is reduced from 22% to 10%. Very few aug-
mented sample are thus sufficient to lead to stronger rotational invariance. The standard 
approach of creating augmented data and pooling all images requires, in contrast, many 
more samples to achieve the same effect. Additional results for m ∈ {1000, 10,000} and 
c ranging from 100 to 5000 can be found in Fig. 22 in Appendix Sect. D.5.

Training data (n = 10200):

3-layer CNN train. error: 0%
+ CoRe penalty: 1%

Test set (n = 10000):

3-layer CNN test error: 22%
+ CoRe penalty: 10%

Fig. 12   Data augmentation for MNIST images. The left shows training data with a few rotated images. 
Evaluating on only rotated images from the test set, a standard network achieves only 22% accuracy. We 
can add the CoRe penalty by computing the conditional variance over images that were generated from the 
same original image. The test error is then lowered to 10% on the test data of rotated images

Training data (n = 1850):

5-layer CNN train. error: 0%
+ CoRe penalty: 0%

Test data 1 (n = 414):

5-layer CNN test error: 24%
+ CoRe penalty: 30%

Test data 2 (n = 414):

5-layer CNN test error: 52%
+ CoRe penalty: 30%

Fig. 13   Elmer-the-Elephant dataset. The left panel shows training data with a few additional grayscale ele-
phants. The pooled estimator learns that color is predictive for the animal class and achieves test error of 
24% on test set 1 where this association is still true but suffers a misclassification error of 53% on test set 2 
where this association breaks down. By adding the CoRe penalty, the test error is consistently around 30%, 
irrespective of the color distribution of horses and elephants



330	 Machine Learning (2021) 110:303–348

1 3

5.6 � Elmer the Elephant

In this example, we want to assess whether invariance with respect to the style feature 
‘color’ can be achieved. In the children’s book ‘Elmer the elephant’13 one instance of a 
colored elephant suffices to recognize it as being an elephant, making the color ‘gray’ no 
longer an integral part of the object ‘elephant’. Motivated by this process of concept forma-
tion, we would like to assess whether CoRe can exclude ‘color’ from its learned representa-
tion by penalizing conditional variance appropriately.

We work with the ‘Animals with attributes 2’ (AwA2) dataset (Xian et  al. 2017) and 
consider classifying images of horses and elephants. We include additional examples by 
adding grayscale images for c = 250 images of elephants. These additional examples do 
not distinguish themselves strongly from the original training data as the elephant images 
are already close to grayscale images. The total training sample size is 1850.

Figure 13 shows examples and misclassification rates from the training set and test sets 
for CoRe and the pooled estimator on different test sets. Examples from these and more test 
sets can be found in Fig. 24. Test set 1 contains original, colored images only. In test set 2 
images of horses are in grayscale and the colorspace of elephant images is modified, effec-
tively changing the color gray to red-brown. We observe that the pooled estimator does not 
perform well on test set 2 as its learned representation seems to exploit the fact that ‘gray’ 
is predictive for ‘elephant’ in the training set. This association is no longer valid for test 
set 2. In contrast, the predictive performance of CoRe is hardly affected by the changing 
color distributions. More details can be found in “Appendix D.7”.

It is noteworthy that a colored elephant can be recognized as an elephant by adding 
a few examples of a grayscale elephant to the very lightly colored pictures of natural 

Table 5   Details of the model architectures used

Dataset Optimizer Architecture

MNIST Adam Input 28 × 28 × 1

CNN Conv 5 × 5 × 16 , 5 × 5 × 32

(same padding, strides = 2 , ReLu activation),
fully connected, softmax layer

Stickmen Adam Input 64 × 64 × 1

CNN Conv 5 × 5 × 16 , 5 × 5 × 32 , 5 × 5 × 64 , 5 × 5 × 128

(same padding, strides = 2 , leaky ReLu activation),
fully connected, softmax layer

CelebA Adam Input 64 × 48 × 3

(all experiments CNN Conv 5 × 5 × 16 , 5 × 5 × 32 , 5 × 5 × 64 , 5 × 5 × 128

using CelebA) (same padding, strides = 2 , leaky ReLu activation),
fully connected, softmax layer

AwA2 Adam Input 32 × 32 × 3

CNN Conv 5 × 5 × 16 , 5 × 5 × 32 , 5 × 5 × 64 , 5 × 5 × 128

(same padding, strides = 2 , leaky ReLu activation),
fully connected, softmax layer

13  https​://en.wikip​edia.org/wiki/Elmer​_the_Patch​work_Eleph​ant.

https://en.wikipedia.org/wiki/Elmer_the_Patchwork_Elephant
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elephants. If we just pool over these examples, there is still a strong bias that elephants 
are gray. The CoRe estimator, in contrast, demands invariance of the prediction for 
instances of the same elephant and we can learn color invariance with a few added gray-
scale images.

6 � Further related work

Encoding certain invariances in estimators is a well-studied area in computer vision and 
machine learning with an extensive body of literature. While a large part of this work 
assumes the desired invariance to be known, fewer approaches aim to learn the required 
invariances from data and the focus often lies on geometric transformations of the input 
data or explicitly creating augmented observations (Sohn and Lee 2012; Khasanova and 
Frossard 2017; Hashimoto et  al. 2017; Devries and Taylor 2017). The main difference 
between this line of work and CoRe is that we do not require to know the style feature 
explicitly, the set of possible style features is not restricted to a particular class of transfor-
mations and we do not aim to create augmented observations in a generative framework.

Recently, various approaches have been proposed that leverage causal motivations 
for deep learning or use deep learning for causal inference, related to e.g. the problems 
of cause-effect inference and generative adversarial networks (Chalupka et  al. 2014; 
Lopez-Paz et al. 2017; Lopez-Paz and Oquab 2017; Goudet et al. 2017; Bahadori et al. 
2017; Besserve et al. 2018; Kocaoglu et al. 2018).

Kilbertus et  al. (2017) exploit causal reasoning to characterize fairness considera-
tions in machine learning. Distinguishing between the protected attribute and its prox-
ies, they derive causal non-discrimination criteria. The resulting algorithms avoiding 
proxy discrimination require classifiers to be constant as a function of the proxy varia-
bles in the causal graph, thereby bearing some structural similarity to our style features.

Distinguishing between core and style features can be seen as some form of disen-
tangling factors of variation. Estimating disentangled factors of variation has gathered 
a lot of interested in the context of generative modeling. As in CoRe, Bouchacourt et al. 
(2018) exploit grouped observations. In a variational autoencoder framework, they aim 
to separate style and content—they assume that samples within a group share a common 
but unknown value for one of the factors of variation while the style can differ. Denton 
and Birodkar (2017) propose an autoencoder framework to disentangle style and content 
in videos using an adversarial loss term where the grouping structure induced by clip 
identity is exploited. Here we try to solve a classification task directly without estimat-
ing the latent factors explicitly as in a generative framework.

In the computer vision literature, various works have used identity information to 
achieve pose invariance in the context of face recognition (Bartlett and Sejnowski 1996; 
Tran et al. 2017). More generally, the idea of exploiting various observations of the same 
underlying object is related to multi-view learning (Xu et al. 2013). In the context of adver-
sarial examples, Kannan et  al. (2018) recently proposed the defense “Adversarial logit 
pairing” which is methodologically equivalent to the CoRe penalty Cf ,1,� when using the 
squared error loss. Several empirical studies have shown mixed results regarding the per-
formance on �∞ perturbations (Engstrom et al. 2018; Mosbach et al. 2018), so far this set-
ting has not been analyzed theoretically and hence it is an open question whether a CoRe-
type penalty constitutes an effective defense against adversarial examples.
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7 � Conclusion

Distinguishing the latent features in an image into CoRe and style features, we have proposed 
conditional variance regularization (CoRe) to achieve robustness with respect to interven-
tions on the style or “orthogonal” features. The main idea of the CoRe estimator is to exploit 
the fact that we often have instances of the same object in the training data. By demanding 
invariance of the classifier amongst a group of instances that relate to the same object, we 
can achieve invariance of the classification performance with respect to interventions on style 
features such as image quality, fashion type, color, or body posture. The training also works 
despite sampling biases in the data.

There are two main application areas: 

1.	 If the style features are known explicitly, we can achieve the same classification perfor-
mance as standard data augmentation approaches with substantially fewer augmented 
samples, as shown for example in Sect. 5.5.

2.	 Perhaps more interesting are settings in which it is unknown what the style features 
are, with examples in Sects. 5.1, 5.2, 5.3, 5.4 and “Appendix D.1”. CoRe regularization 
forces predictions to be based on features that do not vary strongly between instances 
of the same object. We could show in the examples and in Theorems 1 and 2 that this 
regularization achieves distributional robustness with respect to changes in the distribu-
tion of the (unknown) style variables.

An interesting line of work would be to use larger models such as Inception or large ResNet 
architectures (Szegedy et al. 2015; He et al. 2016). These models have been trained to be invari-
ant to an array of explicitly defined style features. In Sect. 5.2.2 we include results which show 
that using Inception V3 features does not guard against interventions on more implicit style 
features. We would thus like to assess what benefits CoRe can bring for training Inception-style 
models end-to-end, both in terms of sample efficiency and in terms of generalization perfor-
mance. While we showed some examples where the necessary grouping information is avail-
able, an interesting possible future direction would be to use video data since objects display 
temporal constancy and the temporal information can hence be used for grouping and condi-
tional variance regularization. Beyond that our results show that it can be worthwhile to collect 
ID information when new datasets are created. As CoRe only requires a subset of the observa-
tions to have ID annotations, in many cases this information might be cheap to collect while it 
can improve performance substantially when future test data is subject to domain shifts.
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Proof of Theorem 1

First part To show the first part, namely that with probability 1,

we need to show that Wt𝜃̂pool ≠ 0 with probability 1. The reason this is sufficient 
is as follows: if Wt� ≠ 0 , then L∞(�) = ∞ as we can then find a v ∈ ℝ

q such that 
� ∶= �tWv ≠ 0 . Assume without limitation of generality that v is normed such that 
E(E(vtΣ−1

y,id
v|Y = y, ID = id)) = 1 . Setting �� = �v for � ∈ ℝ , we have that (ID,Y , S + ��) 

is in the class F|�| if the distribution of (ID,Y , S) is equal to F0 . Furthermore, 
x(��)

t� = x(� = 0)t� + �� . Hence log(1 + exp(−y ⋅ x(��)
t�)) → ∞ for either � → ∞ or 

� → −∞.
To show that Wt𝜃̂pool ≠ 0 with probability 1, let 𝜃̂∗ be the oracle estimator that is con-

strained to be orthogonal to the column space of W:

We show Wt𝜃̂pool ≠ 0 by contradiction. Assume hence that Wt𝜃̂pool = 0 . If this is indeed the 
case, then the constraint Wt� = 0 in (14) becomes non-active and we have 𝜃̂pool = 𝜃̂∗ . This 
would imply that taking the directional derivative of the training loss with respect to any 
� ∈ ℝ

p in the column space of W should vanish at the solution 𝜃̂∗ . In other words, define 
the gradient as g(�) = ∇�Ln(�) ∈ ℝ

p . The implication is then that for all � in the column-
space of W,

and we will show the latter condition is violated almost surely.
As we work with the logistic loss and Y ∈ {−1, 1} , the loss is given by 

�(yi, f�(xi)) = log(1 + exp(−yix
t
i
�)). Define ri(�) ∶= yi∕(1 + exp(yix

t
i
�)) . For all i = 1,… , n 

we have ri ≠ 0 . Then

The training images can be written according to the model as xi = x0
i
+Wsi , where 

X0 ∶= kx(C, �X) are the images in absence of any style variation. Since the style features 
only have an effect on the column space of W in X, the oracle estimator 𝜃̂∗ is identical under 
the true training data and the (hypothetical) training data x0

i
 , i = 1,… , n in absence of style 

variation. As X − X0 = WS , Eq. (16) can also be written as

Since � is in the column-space of W , there exists u ∈ ℝ
q such that � = Wu and we can 

write (17) as

L∞(𝜃̂
pool) = ∞,

(14)𝜃̂∗ = argmin
𝜃∶Wt𝜃=0

Ln(𝜃) with Ln(𝜃) ∶=
1

n

n∑

i=1

�(yi, f𝜃(xi)).

(15)𝛿tg(𝜃̂∗) = 0

(16)g(𝜃̂∗) =
1

n

n∑

i=1

ri(𝜃̂
∗)xi.

(17)𝛿tg(𝜃̂∗) =
1

n

n∑

i=1

ri(𝜃̂
∗)(x0

i
)t𝛿 +

1

n

n∑

i=1

ri(𝜃̂
∗)(si)

tWt𝛿.

(18)𝛿tg(𝜃̂∗) =
1

n

n∑

i=1

ri(𝜃̂
∗)(x0

i
)tWu +

1

n

n∑

i=1

ri(𝜃̂
∗)(si)

tWtWu.
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From (A2) we have that the eigenvalues of WtW are all positive. Also ri(𝜃̂∗) is not a func-
tion of the interventions si , i = 1,… , n since, as above, the estimator 𝜃̂∗ is identical whether 
trained on the original data xi or on the intervention-free data x0

i
 , i = 1,… , n . If we con-

dition on everything except for the random interventions by conditioning on (x0
i
, yi) for 

i = 1,… , n , then the rhs of (18) can be written as

where a ∈ ℝ
q is fixed (conditionally) and B =

1

n

∑n

i=1
ri(𝜃̂

∗)(si)
tWtW ∈ ℝ

q is a random 
vector and B ≠ −a ∈ ℝ

q with probability  1 by (A1) and (A2) Hence the left hand side 
of  (18) is not identically 0 with probability 1 for any given � in the column-space of W. 
This shows that the implication (15) is incorrect with probability 1 and hence completes 
the proof of the first part by contradiction.

Invariant parameter space Before continuing with the second part of the proof, some 
definitions. Let I be the invariant parameter space

For all � ∈ I , the loss (6) for any F ∈ F� is identical to the loss under F0 . That is for all 
� ≥ 0,

The optimal predictor in the invariant space I is

If f� is only a function of the core features C , then � ∈ I . The challenge is that the core fea-
tures are not directly observable and we have to infer the invariant space I from data.

Second part For the second part, we first show that with probability at least pn , as 
defined in (A3), 𝜃̂core = 𝜃̂∗ with 𝜃̂∗ defined as in (14). The invariant space for this model is 
the linear subspace I = {� ∶ Wt� = 0} and by their respective definitions,

Since we use In = In(�) with � = 0,

This implies that for � ∈ In , f�(xi) = f�(xi� ) if i, i� ∈ Gj for some j ∈ {1,… ,m}.14 Since 
f�(x) = f�(x

�) implies (x − x�)t� = 0 , it follows that (xi − xi� )
t� = 0 if i, i� ∈ Gj for some 

j ∈ {1,… ,m} and hence

atu + Btu,

I ∶= {� ∶ f�(x(�)) is constant as function of � ∈ ℝ
q for all x ∈ ℝ

p}.

if � ∈ I, then sup
F∈F�

EF

[

�
(
Y , f�

(
X
))]

= EF0

[

�
(
Y , f�

(
X
))]

.

(19)�∗ = argmin
�

EF0

[

�(Y , f�(X))
]

such that � ∈ I.

𝜃̂∗ = argmin
𝜃

1

n

n∑

i=1

�(yi, f𝜃(xi)) such that 𝜃 ∈ I,

𝜃̂core = argmin
𝜃

1

n

n∑

i=1

�(yi, f𝜃(xi)) such that 𝜃 ∈ In.

In =
{
𝜃 ∶ Ê(V̂ar(f𝜃(X)|Y , ID)) = 0

}
.

14  Recall that (yi, idi) = (yi� , idi� ) if i, i� ∈ Gj as the subsets Gj , j = 1,… ,m , collect all observations that 
have a unique realization of (Y , ID)
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Since S has a linear influence on X in (11), xi − xi� = W(�i − �i� ) if i, i′ are in the same group 
Gj of observations for some j ∈ {1,… ,m} . Note that the number of grouped examples 
n − m is equal to or exceeds the rank q of W with probability pn , using (A3), and pn → 1 for 
n → ∞ . By (A2), it follows then with probability at least pn that In ⊆ {𝜃 ∶ Wt𝜃 = 0} = I . 
As, by definition, I ⊆ In is always true, we have with probability pn that I = In . Hence, with 
probability pn (and pn → 1 for n → ∞ ), 𝜃̂core = 𝜃̂∗ . It thus remains to be shown that

Since 𝜃̂∗ is in I, we have �(y, x(�)) = �(y, x0) , where x0 are the previously defined data in 
absence of any style variance. Hence

that is the estimator is unchanged if we use the (hypothetical) data x0
i
 , i = 1,… , n as train-

ing data. The population optimal parameter vector defined in (19) as

is for all � ≥ 0 identical to

Hence (21) and (22) can be written as

By uniform convergence of L(0)
n

 to the population loss L(0) , we have L(0)(𝜃̂∗) →p L
(0)(𝜃∗) . 

By definition of I and �∗ , we have L∗
∞
= L∞(�

∗) = L(0)(�∗) . As 𝜃̂∗ is in I, we also 
have L∞(𝜃̂

∗) = L(0)(𝜃̂∗) . Since, from above, L(0)(𝜃̂∗) →p L
(0)(𝜃∗) , this also implies 

L∞(𝜃̂
∗) →p L∞(𝜃

∗) = L∗
∞

 . Using the previously established result that 𝜃̂core = 𝜃̂∗ with prob-
ability at least pn and pn → 1 for n → ∞ , this completes the proof.

Proof of Theorem 2

Let F0 be the training distribution of (ID,Y , S) and F a distribution for (ID,Y , S̃) in F� . By 
definition of F� , we can write S̃ = S + 𝛥 for a suitable random variable � ∈ ℝ

q with

Vice versa: if we can write S̃ = S + 𝛥 with � ∈ U� , then the distribution is in F� . While 
X under F0 can be written as X(� = 0) , the distribution of X under F is of the form X(�) 

In ⊆
{
𝜃 ∶ (xi − xi� )

t𝜃 = 0 if i, i� ∈ Gj for some j ∈ {1,… ,m}
}
.

(20)L∞(𝜃̂
∗) →p inf

𝜃
L∞(𝜃).

(21)𝜃̂∗ = argmin
𝜃

1

n

n∑

i=1

�(yi, f𝜃(x
0
i
)) such that 𝜃 ∈ I,

(22)�∗ = argmin
�

EF0

[

�(Y , f�(X))
]

such that � ∈ I.

argmin
�

sup
F∈F�

EF

[

�(Y , f�(X))
]

such that � ∈ I.

𝜃̂∗ = argmin
𝜃∶𝜃∈I

L(0)
n
(𝜃) with L(0)

n
(𝜃) ∶=

1

n

n∑

i=1

�(yi, f𝜃(x
0
i
))

𝜃∗ = argmin
𝜃∶𝜃∈I

L(0)(𝜃) with L(0)(𝜃) ∶= E[�(Y , f𝜃(X
0))].

� ∈ U� , where U� = {� ∶ E(E(�tΣ−1
Y ,ID

�|Y , ID)) ≤ �}.
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or, alternatively, X(
√
�U) with U ∈ U1 . Adopting from now on the latter constraint that 

U ∈ U1 , and using (B2),

where ∇h� is the gradient of h�(�) with respect to � , evaluated at � ≡ 0 . Hence

The proof is complete if we can show that

On the one hand,

This follows for a matrix Σ with Cholesky decomposition Σ = VtV ,

On the other hand, the conditional-variance-of-loss can be expanded as

which completes the proof.

EF

�

�
�
Y , f�(X)

�

= EF0

�

h�(0)
�

+
√
� EF0

�

(∇h�)
tU

�

+ o(�),

sup
F∈F�

EF

�

h�(�)
�

= EF0

�

h�(0)
�

+
√
� sup
U∈U1

EF0

�

(∇h�)
tU

�

+ o(�).

C
�,1∕2,� = sup

U∈U1

EF0

[

(∇h�)
tU

]

+ O(� ).

sup
U∈U1

EF0

[

(∇h�)
tU

]

= EF0

[√

(∇h�)
tΣY ,ID(∇h�)

]

.

max
u∶utΣ−1u≤1

(∇h�)
tu = max

w∶‖w‖2
2
≤1
(∇h�)

tVtw

= ‖V(∇h)‖2 =
√
(∇h)tΣ(∇h).

C
�,1∕2,� = EF0

�√
Var(�(Y , f�(X))�Y , ID)

�
= EF0

��

(∇h�)
tΣY ,ID(∇h�)

�

+ O(� ),

Training data (n = 20000):

5-layer CNN train. error: 0%
+ CoRe penalty: 6%

Test set 1 (n = 5344):

5-layer CNN test error: 4%
+ CoRe penalty: 6%

Test set 2 (n = 5344):

5-layer CNN test error: 37%
+ CoRe penalty: 25%

Fig. 14   Eyeglass detection for CelebA dataset with brightness interventions (which are unknown to any 
procedure used). On training data and test set 1 data, images where people wear glasses tend to be brighter 
whereas on test set 2 images where people do not wear glasses tend to be brighter
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Network architectures

We implemented the considered models in TensorFlow (Abadi et  al. 2015). The model 
architectures used are detailed in Table  5. CoReCoRe and the pooled estimator use the 
same network architecture and training procedure; merely the loss function differs by the 
CoRe regularization term. In all experiments we use the Adam optimizer (Kingma and Ba 
2015). All experimental results are based on training the respective model five times (using 
the same data) to assess the variance due to the randomness in the training procedure. In 
each epoch of the training, the training data xi, i = 1,… , n are randomly shuffled, keeping 
the grouped observations (xi)i∈Ij for j ∈ {1,… ,m} together to ensure that mini batches will 
contain grouped observations. In all experiments the mini batch size is set to 120. For small 
c this implies that not all mini batches contain grouped observations, making the optimiza-
tion more challenging.

Additional experiments

Eyeglasses detection: known and unknown brightness interventions

As in Sect. 5.3 we work with the CelebA dataset and try to classify whether the person in 
the image is wearing eyeglasses. Here we analyze a confounded setting that could arise 
as follows. Say the hidden common cause D of Y and S is a binary variable and indicates 

(a) Group. setting 1, β = 5 (b) Group. setting 1, β = 10 (c) Group. setting 1, β = 20

(d) Group. setting 2, β = 5 (e) Group. setting 2, β = 10 (f) Group. setting 2, β = 20

(g) Group. setting 3, β = 5 (h) Group. setting 3, β = 10 (i) Group. setting 3, β = 20

Fig. 15   Examples from the CelebA eyeglasses detection with brightness interventions, grouping settings 
1–3 with � ∈ {5, 10, 20} . In all rows, the first three images from the left have y ≡ no glasses ; the remain-
ing three images have y ≡ glasses . Connected images are grouped examples. In panels a–c, row 1 shows 
examples from the training set, rows 2–4 contain examples from test sets 2–4, respectively. Panels d–i show 
examples from the respective training sets
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whether the image was taken outdoors or indoors. If it was taken outdoors, then the person 
tends to wear (sun-)glasses more often and the image tends to be brighter. If the image was 
taken indoors, then the person tends not to wear (sun-)glasses and the image tends to be 
darker. In other words, the style variable S is here equivalent to brightness and the structure 
of the data generating process is equivalent to the one shown in Fig. 3. Figure 14 shows 
examples from the training set and test sets. As previously, we compute the conditional var-
iance over images of the same person, sharing the same class label (and the CoRe estimator 
is hence not using the knowledge that brightness is important). Two alternatives for con-
structing grouped observations in this setting are discussed further below. We use c = 2000 
and n = 20,000 . For the brightness intervention, we sample the value for the magnitude of 
the brightness increase resp. decrease from an exponential distribution with mean � = 20 . 
In the training set and test set 1, we sample the brightness value as bi,j = [100 + yiei,j]+ 
where ei,j ∼ Exp(�−1) and yi ∈ {−1, 1} , where yi = 1 indicates presence of glasses and 
yi = −1 indicates absence.15 For test set 2, we use instead bi,j = [100 − yiei,j]+ , so that the 
relation between brightness and glasses is flipped.

Figure  14 shows misclassification rates for CoRe and the pooled estimator on differ-
ent test sets. Examples from all test sets can be found in Fig. 15. First, we notice that the 
pooled estimator performs better than CoRe on test set 1. This can be explained by the fact 
that it can exploit the predictive information contained in the brightness of an image while 
CoRe is restricted not to do so. Second, we observe that the pooled estimator does not per-
form well on test set 2 as its learned representation seems to use the image’s brightness as 
a predictor for the response which fails when the brightness distribution in the test set dif-
fers significantly from the training set. In contrast, the predictive performance of CoRe is 
hardly affected by the changing brightness distributions.

We now discuss two alternatives for constructing different test sets and we vary the 
number of grouped observations in c ∈ {200, 2000, 5000} as well as the strength of the 
brightness interventions in � ∈ {5, 10, 20} , all with sample size n = 20,000 . Generation of 
training and test sets 1 and 2 were already described above. Here, we consider additionally 
test set 3 where all images are left unchanged (no brightness interventions at all) and in test 
set 4 the brightness of all images is increased. Furthermore, we consider three different 
ways of grouping images. Above, we used images of the same person to create a grouped 
observation by sampling a different value for the brightness intervention. We refer to this 
as ‘Grouping setting 2’ here. An alternative is to use the same image of the same person in 
different brightnesses (drawn from the same distribution) as a group over which the con-
ditional variance is calculated. We call this ‘Grouping setting 1’ and it can be useful if we 
know that we want to protect against brightness interventions in the future. For compari-
son, we also evaluate grouping with an image of a different person (but sharing the same 
class label) as a baseline (‘Grouping setting 3’). Examples from the training sets using 
grouping settings 1, 2 and 3 can be found in Fig. 15.

Results for all grouping settings, � ∈ {5, 10, 20} and c ∈ {200, 5000} can be found in 
Fig. 16. We see that using grouping setting 1 works best since we could explicitly control 
that only S ≡ brightness varies between grouping examples. In grouping setting 2, different 
images of the same person can vary in many factors, making it more challenging to isolate 
brightness as the factor to be invariant against. Lastly, we see that if we group images of 

15  Specifically, we use ImageMagick (https​://www.image​magic​k.org) and modify the brightness of each 
image by applying the command convert -modulate b_ij,100,100 input.jpg output.
jpg to the image.

https://www.imagemagick.org
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different persons (‘Grouping setting 3’), the difference between CoRe estimator and the 
pooled estimator becomes much smaller than in the previous settings. Figure  17 shows 
some examples of misclassified observations for Grouping setting 1.

Eyeglasses detection with small sample size

Figure  18 shows the numerator and the denominator of the variance ratio defined in 
Eq. (13) separately as a function of the CoRe penalty weight. In conjunction with Fig. 6b, 
we observe that a ridge penalty decreases both the within- and between-group variance 
while the CoRe penalty penalizes the within-group variance selectively.

(a) (b)

(c) (d)

(e) (f)

Fig. 16   Misclassification rates for the CelebA eyeglasses detection with brightness interventions, grouping 
settings 1–3 with c ∈ {200, 2000, 5000} and the mean of the exponential distribution � ∈ {5, 10, 20}



340	 Machine Learning (2021) 110:303–348

1 3

Gender classification

Additional baselines: Unconditional variance regularization and grouping by class 
label

As additional baselines, we consider the following two schemes: (i) we group all exam-
ples sharing the same class label and penalize with the conditional variance of the 

Fig. 17   CelebA eyeglasses detection with brightness interventions, grouping setting  1. Examples of mis-
classified observations from the test sets

(a) (b)

Fig. 18   Eyeglass detection, trained on a small subset (DS1) of the CelebA dataset with disjoint identities. 
Panel a shows the numerator of the variance ratio defined in Eq. (13) on test data as a function of both the 
CoRe and ridge penalty weights. Panel b shows the equivalent plot for the denominator. A ridge penalty 
decreases both the within- and between-group variance while the CoRe penalty penalizes the within-group 
variance selectively (the latter can be seen more clearly in Fig. 6b
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predicted logits, computed over these two groups; (ii) we penalize the overall variance 
of the predicted logits, i.e., a form of unconditional variance regularization. Figure 19 
shows the performance of these two approaches. In contrast to the CoRe penalty, regu-
larizing with the variance of the predicted logits conditional on Y only does not yield 
performance improvements on test set 2, compared to the pooled estimator (correspond-
ing to a penalty weight of 0). Interestingly, using baseline (i) without a ridge penalty 
does yield an improvement on test set I, compared to the pooled estimator with various 
strengths of the ridge penalty.

Additional results

Table 6 additionally reports the standard errors for the results discussed in Sect. 5.2.

(a) Baseline: Grouping-by-Y (b) Baseline: Grouping-by-Y

(c) Baseline: Unconditional variance penalty (d) Baseline: Unconditional variance penalty

Fig. 19   Classification for Y ∈ {woman,man} with � = 0.5 , using the baselines which (i) penalize the vari-
ance of the predicted logits conditional on the class label Y only; and (ii) penalize the overall variance of 
the predicted logits (cf. Sect. D.3.1). For baseline (i), panels (a) and (b) show the test error on test data sets 
1 and 2 respectively as a function of the “baseline penalty weight” for various ridge penalty strengths. For 
baseline (ii), the equivalent plots are shown in panels (c) and (d). In contrast to the CoRe penalty, regular-
izing with these two baselines does not yield performance improvements on test set 2, compared to the 
pooled estimator (corresponding to a penalty weight of 0)
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Eyeglasses detection: image quality intervention

Here, we show further results for the experiments introduced in Sect.  5.3. Specifi-
cally, we consider interventions of different strengths by varying the mean of the qual-
ity intervention in � ∈ {30, 40, 50} . Recall that we use ImageMagick to modify the 
image quality. In the training set and in test set 1, we sample the image quality value as 
qi,j ∼ N(�, � = 10) and apply the command convert -quality q_ij input.

(a) Group. setting 1, µ = 50 (b) Group. setting 1, µ = 40 (c) Group. setting 1, µ = 30

(d) Group. setting 2, µ = 50 (e) Group. setting 2, µ = 40 (f) Group. setting 2, µ = 30

(g) Group. setting 3, µ = 50 (h) Group. setting 3, µ = 40 (i) Group. setting 3, µ = 30

Fig. 20   Examples from the CelebA image quality datasets, grouping settings 1–3 with � ∈ {30, 40, 50} . 
In all rows, the first three images from the left have y ≡ no glasses ; the remaining three images have 
y ≡ glasses . Connected images are grouped observations over which we calculate the conditional variance. 
In panels a–c, row 1 shows examples from the training set, rows 2–4 contain examples from test sets 2–4, 
respectively. Panels d–i show examples from the respective training sets

(a) (b) (c)

Fig. 21   Misclassification rates for the CelebA eyeglasses detection with image quality interventions, group-
ing settings 1–3 with c = 5000 and the mean of the Gaussian distribution � ∈ {30, 40, 50}
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jpg output.jpg if yi ≡ glasses . If yi ≡ no glasses , the image is not modified. In test 
set 2, the above command is applied if yi ≡ no glasses while images with yi ≡ glasses 
are not changed. In test set 3 all images are left unchanged and in test set 4 the com-
mand is applied to all images, i.e. the quality of all images is reduced.

We run experiments for grouping settings 1–3 and for c = 5000 , where the definition 
of the grouping settings 1–3 is identical to “Appendix D.1”. Figure  20 shows exam-
ples from the respective training and test sets and Fig. 21 shows the corresponding mis-
classification rates. Again, we observe that grouping setting 1 works best, followed by 
grouping setting 2. Interestingly, there is a large performance difference between � = 40 
and � = 50 for the pooled estimator. Possibly, with � = 50 the image quality is not suf-
ficiently predictive for the target.

MNIST: more sample efficient data augmentation

Here, we show further results for the experiment introduced in Sect.  5.5. We vary 
the number of augmented training examples c from 100 to 5000 for m = 10,000 and 
c ∈ {100, 200, 500, 1000} for m = 1000 . The degree of the rotations is sampled uniformly 

(a) (b)

Fig. 22   Data augmentation setting: Misclassification rates for MNIST and S ≡ rotation . In test set 1 all dig-
its are rotated by a degree randomly sampled from [35, 70]. Test set 2 is the usual MNIST test set

Fig. 23   a Examples from the stickmen test set 1 (row 1), test set 2 (row 2) and test sets 3 (row 3). In each 
row, the first three images from the left have y ≡ child ; the remaining three images have y ≡ adult . Con-
nected images are grouped examples. b Misclassification rates for different numbers of grouped examples
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at random from [35, 70]. Figure 22 shows the misclassification rates. Test set 1 contains 
rotated digits only, test set 2 is the usual MNIST test set. We see that the misclassification 
rates of CoRe are always lower on test set 1, showing that it makes data augmentation more 
efficient. For m = 1000 , it even turns out to be beneficial for performance on test set 2.

Stickmen image‑based age classification

Here, we show further results for the experiment introduced in Sect. 5.4. Recall that test 
set 1 follows the same distribution as the training set. In test sets 2 and 3 large movements 
are associated with both children and adults, while the movements are heavier in test set 
3 than in test set 2. Figure D.10b shows results for different numbers of grouping exam-
ples. For c = 20 the misclassification rate of CoRe estimator has a large variance. For 
c ∈ {50, 500, 2000} , the CoRe estimator shows similar results. Its performance is thus not 
sensitive to the number of grouped examples, once there are sufficiently many grouped 
observations in the training set. The pooled estimator fails to achieve good predictive 
performance on test sets 2 and 3 as it seems to use “movement” as a predictor for “age” 
(Fig. 23).

Fig. 24   Examples from the sub-
sampled and augmented AwA2 
dataset (Elmer-the-Elephant 
dataset). Row 1 shows examples 
from the training set, rows 2–5 
show examples from test sets 
1–4, respectively

(a)
(b)

Fig. 25   Elmer-the-Elephant dataset. a Misclassified examples from the test sets. b Misclassification rates on 
test sets 1 to 4
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Elmer the Elephant

The color interventions for the experiment introduced in Sect. 5.6 were created as follows. 
In the training set, if yi ≡ elephant we apply the following ImageMagick command for the 
grouped examples convert -modulate 100,0,100 input.jpg output.
jpg. Test sets 1 and 2 were already discussed in Sect. 5.6: in test set 1, all images are left 
unchanged. In test set 2, the above command is applied if yi ≡ horse . If yi ≡ elephant , we 
sample ci,j ∼ N(� = 20, � = 1) and apply convert -modulate 100,100,100-c_
ij input.jpg output.jpg to the image. Here, we consider again some more test 
sets than in Sect. 5.6. In test set 4, the latter command is applied to all images. It rotates the 
colors of the image, in a cyclic manner.16 In test set 3, all images are changed to grayscale. 
Examples from all four test sets are shown in Fig. 24 and classification results are shown in 
Fig. 25.
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