
Vol.:(0123456789)

Machine Learning (2021) 110:349–391
https://doi.org/10.1007/s10994-020-05930-3

1 3

Kernel machines for current status data

Yael Travis‑Lumer1  · Yair Goldberg1

Received: 17 July 2019 / Revised: 22 September 2020 / Accepted: 4 November 2020 / 
Published online: 30 November 2020 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
In survival analysis, estimating the failure time distribution is an important and difficult 
task, since usually the data is subject to censoring. Specifically, in this paper we consider 
current status data, a type of data where the failure time cannot be directly observed. The 
format of the data is such that the failure time is restricted to knowledge of whether or not 
the failure time exceeds a random monitoring time. We propose a flexible kernel machine 
approach for estimation of the failure time expectation as a function of the covariates, 
with current status data. In order to obtain the kernel machine decision function, we mini-
mize a regularized version of the empirical risk with respect to a new loss function. Using 
finite sample bounds and novel oracle inequalities, we prove that the obtained estimator 
converges to the true conditional expectation for a large family of probability measures. 
Finally, we present a simulation study and an analysis of real-world data that compares the 
performance of the proposed approach to existing methods. We show empirically that our 
approach is comparable to current state of the art, and in some cases is even better.

Keywords Kernel machines · Oracle inequalities · Support vector regression · Survival 
analysis · Universal consistency

1 Introduction

In this paper we aim to develop a general model free method for analyzing current sta-
tus data using machine learning techniques. In particular, we propose a kernel machine 
learning method for estimation of the failure time expectation with current status data. 
Kernel machines, also known as support vector machines, were originally introduced by 
Vapnik in the 1990’s and are firmly related to statistical learning theory (Vapnik 1999). 
Kernel machines are learning algorithms that utilize positive definite kernels (Hof-
mann et  al. 2008). The choice of kernel machines for current status data is motivated 
by the fact that kernel machines can be implemented easily, have fast training speed, 
produce decision functions that have a strong generalization ability, and can guarantee 
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convergence to the optimal solution, under some weak assumptions (Shivaswamy et al. 
2007).

The format of current status data is such that the failure time T is restricted to knowl-
edge of whether or not T exceeds a random monitoring time C. Current status data is 
also known in the literature as type I interval censored data (Huang and Wellner 1997). 
This data format is quite common and includes examples from various fields. Jewell 
and van der Laan (2004) mention a few examples including: studying the distribution 
of the age of a child at weaning given observation points; when conducting a partner 
study of HIV infection over a number of clinic visits; and when a tumor under investi-
gation is occult and an animal is sacrificed at a certain time point in order to determine 
presence or absence of the tumor. For instance, in the last example, when performing 
carcinogenicity testing, T is the time from exposure to a carcinogen and until the pres-
ence of a tumor, and C is the time point at which the animal is sacrificed in order to 
determine presence or absence of the tumor. Clearly, it is difficult to estimate the failure 
time distribution since we cannot observe the failure time T. These examples illustrate 
the importance of this topic and the need to find advanced tools for analyzing such data.

There are several approaches for analyzing current status data. Traditional methods 
include parametric models where the underlying distribution of the survival time is 
assumed to be known, such as Weibull, Gamma, and other distributions with non-nega-
tive support. Other approaches include semiparametric models, such as the Cox propor-
tional hazards model, and the accelerated failure time (AFT) model (see, for example, 
Klein and Moeschberger 2005). Several works including Diamond et  al. (1986), Shi-
boski and Jewell (1992), Jewell and van der Laan (2004) and others, have suggested the 
Cox proportional hazard model for current status data, where the Cox model can be rep-
resented as a generalized linear model with a log-log link function. Other works, includ-
ing Tian and Cai (2006), discussed the use of the AFT model for current status data and 
suggested different algorithms for estimating the model parameters. Additional semipar-
ametric regression models for current status data include proportional odds (Rossini and 
Tsiatis 1996), additive hazards (Lin et  al. 1998), additive transformations (Cheng and 
Wang 2011), linear transformations (Sun and Sun 2005), and linear regression (Shen 
2000). Needless to say that both parametric and semiparametric models demand strin-
gent assumptions on the distribution of interest which can be restrictive. For this reason, 
additional estimation methods are needed.

Nonparametric methods for analyzing current status data were also investigated in the 
literature. Nonparametric maximum likelihood estimation (NPMLE) of the failure time 
distribution function is commonly used with this type of data, and relies on the PAV algo-
rithm of Ayer et al. (1955). Burr and Gomatam (2002) studied nonparametric estimation 
of the conditional distribution function of the failure time given the covariates, based on a 
locally smoothed modification of the NPMLE. Peto (1973), followed by Turnbull (1976), 
both suggested a non-parametric estimator of the survival function, with interval censored 
data, that can also be applied to current status data. Dehghan and Duchesne (2011) gen-
eralized Turnbull’s estimator to include also covariates, by adding weights that depend 
on a univariate kernel function. Wang et  al. (2012) studied nonparametric estimation of 
the marginal distribution function of the failure time using the copula model approach. 
Honda (2004) constructed an estimator for the regression function utilizing a modification 
of maximum rank correlation, and estimated the difference between the regression function 
at some value, to the regression function at a standard fixed point. Note that these works 
are not specifically intended for estimation of the conditional expectation and thus might 
not yield accurate estimates.
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Over the past two decades, some learning algorithms for censored data have been pro-
posed. However, most of these algorithms cannot be applied to current status data but only 
to other, more common, censored data formats. A few recent exceptions include Fu and 
Simonoff (2017), which studied survival trees for interval-censored data, and the subse-
quent works of Yao et  al. (2019) and Cho et  al. (2020), which proposed random forests 
for interval censored data. Over the last decade, several authors suggested the use of ker-
nel machines, or similarly support vector machines, for survival data, including Van Belle 
et al. (2007), Khan and Zubek (2008), Eleuteri and Taktak (2011), Shiao and Cherkassky 
(2013), Wang et al. (2016), Pölsterl et al. (2016), and Goldberg and Kosorok (2017). These 
examples illustrate that initial steps in this direction have already been taken. However, as 
far as we know, the only work based on kernel machines that can also be applied to current 
status data is by Shivaswamy et al. (2007) which has a more computational and less theo-
retic nature. The authors studied the use of kernel machines for regression problems with 
interval censoring and, using simulations, showed that the method is comparable to other 
missing data tools.

We present a kernel machine framework for current status data. We propose a learning 
method, denoted by KM-CSD, for estimation of the failure time conditional expectation. 
We investigate the theoretical properties of the KM-CSD, and in particular, prove consist-
ency for a large family of probability measures. In order to estimate the conditional expec-
tation we use a modified version of the quadratic loss, using the methodology of van der 
Laan and Robins (1998, 2003). Since the failure time T is not observed, our new modified 
loss function is based on the censoring time C and on the current status indicator. Finally, 
in order to obtain the KM-CSD estimator, we minimize a regularized version of the empiri-
cal risk with respect to our new proposed loss. Note that the terminology decision function 
is used in the kernel machine context to describe the obtained estimator.

The kernel machine we present in this work may be referred to as an inverse probabil-
ity weighted complete-case estimator (van der Laan and Robins 2003; Tsiatis 2006, Chap-
ter 6). It is tempting to use the tools described in these books to derive doubly-robust kernel 
machine estimators. In the context of estimating equations with missing data, doubly-
robust estimators are typically constructed by adding an augmentation term. This term is 
constructed by projecting the estimating equation onto the augmentation space (see Tsiatis 
2006, Section 7.4, and Theorem 10.1). However, in our kernel machine setting, the estima-
tor is obtained as the minimizer of a weighted loss function over a reproducing kernel Hil-
bert space (RKHS) and thus it is not clear how meaningful it is to project the loss function 
on the augmentation space. It is also not trivial to add a term to the proposed regularized 
empirical risk minimization problem in a way that yields a convex optimization problem 
over an RKHS, which is essential for deriving the results presented in this paper. While 
doubly-robust estimators for current status data were derived in the semiparametric litera-
ture (Andrews et al. 2005), we do not consider such estimators in this work. To the best of 
our knowledge, the only work that studied doubly-robust estimators in the context of kernel 
machines was done by Liu and Goldberg (2018), however this was done in the context of 
missing responses, and cannot be applied to our case.

The contribution of this work includes the development of a nonparametric estimator 
of the conditional expectation, the development of a kernel machine framework for current 
status data, the development of new oracle inequalities for censored data, and the study of 
the theoretical properties and the consistency of the KM-CSD.

The paper is organized as follows. In Sect. 2 we describe the formal setting of current status 
data and discuss the choice of the quadratic loss for estimating the conditional expectation. 
In Sect. 3 we present the proposed KM-CSD and its corresponding loss function. Section 4 
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contains the main theoretical results, including finite sample bounds and consistency. Sec-
tion 5 contains the simulations and Sect. 6 contains an analysis of real world data. Concluding 
remarks are presented in Sect. 7. The proofs appear in “Appendix C”. The R code for both the 
algorithm and for the simulations, as well as the artificially censored data from Sect. 6.2, can 
be found in the Supplementary Materials.

2  Preliminaries

In this section we present the notation used throughout the paper. First we describe the data 
setting and then we discuss briefly loss functions and risks.

Assume that the data consists of n independent and identically distributed random triplets 
D = {(Z1,C1,�1),… , (Zn,Cn,�n)} . The random vector Z is a vector of covariates that takes 
its values in a compact set Z ⊂ ℝd . The failure-time T is non-negative, the random variable C 
is the non-negative censoring time, where both C and T are contained in the interval [0, �] ≡ Y, 
for some constant 𝜏 > 0 . The indicator � = �{T ≤ C} is the current status indicator at time C, 
obtaining the value 1 when T ≤ C , and 0 otherwise. For example, in carcinogenicity testing, 
an animal is sacrificed at a certain time point in order to determine presence or absence of the 
tumor. In this example, T is the time from exposure to a carcinogen and until the presence of a 
tumor, Z can be any explanatory information collected such as the weight of the animal, C is 
the time point at which the animal is sacrificed, and � is the current status indicator at time C 
(indicating whether the tumor has developed before the censoring time, or not).

We now move to discuss a few definitions of loss functions and risks, following Steinwart 
and Christmann (2008). Let (Z,A) be a measurable space and Y ⊂ ℝ be a closed subset. Then 
a loss function is any measurable function L from Y ×ℝ to [0,∞).

Let L ∶ Y ×ℝ → [0,∞) be a loss function and P be a probability measure on Z × Y . For a 
measurable function f ∶ Z ↦ ℝ , the L-risk of f is defined by 
RL,P(f ) ≡ EP

[
L(Y , f (Z))

]
= ∫

Z×Y
L(y, f (z))dP(z, y) . A function f that achieves the minimum 

L-risk is called a Bayes decision function and is denoted by f ∗ , and the minimal L-risk is 
called the Bayes risk and is denoted by R∗

L,P
 . Finally, the empirical L-risk is defined by 

RL,D(f ) =
1

n

n∑
i=1

L(yi, f (zi)) . It is well known (see, for example, Hastie et al. 2013) that the con-

ditional expectation is the Bayes decision function with respect to the quadratic loss. That is, 
E[Y|Z] = f ∗ = argminf RL,P(f ) , where L is the quadratic loss defined by 
L(Y , f (Z)) = (Y − f (Z))2.

Recall that our goal is to estimate the conditional expectation of the failure-time T given 
the covariates Z. However, in the setting of current status data, the response variable (failure-
time) is not observed, making the estimation procedure more complex. It is not even clear if 
and how loss functions can be defined with current status data. In the following section we 
construct a new modification of the quadratic loss that is based on the censoring time and on 
the current status indicator, and use it to estimate the conditional expectation of the unobserv-
able failure-time.
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3  Kernel machines for current status data

This section is divided into three subsections. We start by describing general kernel 
machines for uncensored data. Then we define a new loss function for current status 
data, utilizing an equality between risks, and incorporate it into the kernel machine 
framework. Finally we define the proposed estimator of the conditional expectation of 
the failure-time, with current status data, and discuss some assumptions regarding the 
censoring mechanism.

3.1  Kernel machines for uncensored data

Let H be a reproducing kernel Hilbert space (RKHS) of functions from Z to ℝ , 
where an RKHS is a function space that can be characterized by some kernel func-
tion k ∶ Z × Z ↦ ℝ . For more information on reproducing kernel Hilbert spaces, we 
refer the reader to (Steinwart and Christmann 2008,  Chapter  4). A continuous kernel 
k for which the corresponding RKHS H is dense in the space of continuous functions 
on Z , C(Z) , is called a universal kernel (see, for example, Steinwart and Christmann 
2008, Definition 4.52). Fix such an RKHS H and denote its norm by ‖⋅‖H . Let {𝜆n} > 0 
be some sequence of regularization constants. A kernel machine decision function for 
uncensored data is defined by:

3.2  Equality between risks

In this subsection we show that the risk can be represented as the sum of two terms

We recall that current status data consists of n independent and identically-distributed ran-
dom triplets D = {(Z1,C1,�1),… , (Zn,Cn,�n)}.

Let F(⋅|Z = z) and G(⋅|Z = z) be the cumulative distribution functions of the failure 
time and censoring, respectively, given the covariates Z = z . Let g(⋅|Z = z) be the den-
sity of G(⋅|Z = z) . Throughout this work we will assume the following: 

 (A1) The censoring time C is independent of the failure time T given the covariates Z.
 (A2) C and T take values in the interval [0, �] ≡ Y and inf

z∈Z,c∈Y

g(c|z) ≥ 2𝜅 > 0 , for some 

𝜅 > 0.

The conditional independence assumption (A1) is a standard identifiability assumption 
in survival analysis (see, for example, Klein and Goel 1992; Klein and Moeschberger 
2005). Assumption (A2) is needed in order to guarantee that integration with respect to 
T and C can be exchanged, and in order to allow for division by the censoring density. 
Similar assumptions were made by van der Laan and Robins (1998).

fD,�n = argmin f∈H�n‖f‖2H +
1

n

n�
i=1

L(Ti, f (Zi)) .

E

[
(1 − �)�(C, f (Z))

g(C|Z)
]
+ E[L(0, f (Z))].



354 Machine Learning (2021) 110:349–391

1 3

Let L ∶ Y ×ℝ ↦ [0,∞) be a loss function differentiable in the first variable. Let 
� ∶ Y ×ℝ ↦ ℝ be the derivative of L with respect to the first variable.

For current status data, we introduce the following two sets of identities. In (1) we use 
integration by parts to show that the risk can be represented as the sum of two terms: 
a = EZ

[∫ �

0
�(t, f (Z))(1 − F(t|Z))dt] and b = E[L(0, f (Z))] . In (2) we show that the term a is 

equivalent to E
[
(1−�)�(C,f (Z))

g(C|Z)
]
 , which can be seen as a generalization of van der Laan and 

Robins (1998, 2003) that also includes loss functions and covariates.
We would like to find the minimizer of RL,P(f ) over a set H of functions f. Note that

and that (1 − 𝛥) = �{T > C} and thus

In summary, we show that the risk can be represented as

The motivation for these equations arises from the fact that we are interested in minimiz-
ing the empirical risk, but unfortunately have no observed failure times T. However, we do 
observe the censoring times C and the current status indicator � , and would like to use the 
observed data for estimation. To that end, we represent the empirical risk as the empirical 
version of the two terms on the RHS of (3). Such an estimator is known as an inverse prob-
ability of censoring weighted (IPCW) average, as it involves re-weighting by the inverse of 
the censoring density.

3.3  Kernel machines for current status data

Hence, in order to estimate the minimizer of RL,P(f ) , one can minimize a regularized ver-
sion of the empirical risk with respect to a new loss function defined by

(1)

RL,P(f ) ≡EZET|ZL(T , f (Z)) = EZ

[
�

�

0

L(t, f (Z))dF(t|Z)
]

=EZ

[
�

�

0

�(t, f (Z))(1 − F(t|Z))dt − L(t, f (Z))(1 − F(t|Z))|�
0

]

=EZ

[
�

�

0

�(t, f (Z))(1 − F(t|Z))dt
]
+ E[L(0, f (Z))],

(2)

E

[
(1 − 𝛥)�(C, f (Z))

g(C|Z)
]
=EZ,T

[
EC

[
�{T > C}�(C, f (Z))

g(C|Z)
||||Z, T

]]

=EZ,T

[
∫

𝜏

0

�{T > c}�(c, f (Z))g(c|Z)
g(c|Z) dc

]

=EZ,T

[
∫

𝜏

0

�{T > c}�(c, f (Z))dc

]

=EZ

[
∫

𝜏

0

�(c, f (Z))∫
𝜏

0

�{t > c}dF(t|Z)dc
]

=EZ

[
∫

𝜏

0

�(c, f (Z))(1 − F(c|Z))dc
]
.

(3)RL,P(f ) = E

[
(1 − �)�(C, f (Z))

g(C|Z)
]
+ E[L(0, f (Z))].
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Note that this function need not be convex nor a loss function. Recall that we are inter-
ested in estimating the conditional expectation. This means that we would like to minimize 
the risk with respect to the quadratic loss. For the quadratic loss, our new loss function 
becomes

Note that this function is convex but not necessarily a loss function since it can obtain 
negative values. However, one can always add a constant to ensure positivity. Since this 
constant does not effect optimization it will be neglected hereafter. For a detailed explana-
tion, see “Appendix B”.

In order to implement this result into the kernel machine framework, we propose to 
define the KM-CSD decision function for current status data by

This is a quadratic programming problem that has a closed form solution. The solution 
requires inverting an (n + 1) × (n + 1) symmetric PSD matrix and can be found in “Appen-
dix A”.

Note that if the censoring mechanism is unknown, we can replace the density g in (4) 
with its estimate ĝ , as long as ĝ is strictly positive on [0, �] ≡ Y ; in this case the kernel 
machine decision function is

(note the use of ĝ instead of g in the denominator).
We note that for current status data, the assumption of some knowledge of the censor-

ing distribution is reasonable, for example, when it is chosen by the researcher (Jewell and 
van der Laan 2004). In other cases, the density can be estimated using either parametric or 
nonparametric density estimation techniques such as kernel estimates. It should be noted 
that the censoring variable itself is fully observed (not censored) and thus simple density 
estimation techniques can be used in order to estimate the density g.

4  Theoretical results

The main goal of our work is to find a ‘good’ estimator of the failure time conditional 
expectation. A good estimator should first and foremost be consistent, that is, its risk 
should converge in probability to the Bayes risk. Additionally, we would like such an esti-
mator to be consistent for a large family of probability measures. The consistency proof is 
based on novel oracle inequalities that are presented below.

We start by proving risk consistency of the KM-CSD learning method for a large family 
of probability measures. We first assume that the censoring mechanism is known, which 
means that the true density of the censoring variable g is known. Using this assumption, 

Ln(D, (Z,C,�, s)) =
(1 − �)�(C, s)

g(C|Z) + L(0, s) .

Ln(D, (Z,C,�, s)) =
(1 − �)2(C − s)

g(C|Z) + s2 .

(4)fD,� = argmin f∈H�‖f‖2H +
1

n

n�
i=1

�
(1 − �i)2(Ci − f (Zi))

g(Ci�Zi) + (f (Zi))
2

�
.

fD,𝜆 = argmin f∈H𝜆‖f‖2H +
1

n

n�
i=1

�
(1 − 𝛥i)2(Ci − f (Zi))

ĝ(Ci�Zi) + (f (Zi))
2

�
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and some additional conditions, we bound the difference between the risk of the KM-CSD 
decision function and the Bayes risk in order to form finite sample bounds. We use this 
result to show that the KM-CSD converges in probability to the Bayes risk. That is, we 
demonstrate that for a large family of probability measures, the KM-CSD learning method 
is consistent. We then consider the case in which the censoring mechanism is unknown, 
and thus the density g needs to be estimated. We estimate the density g using nonparamet-
ric kernel density estimation, and develop a novel finite sample bound. We use this bound 
to prove that the KM-CSD is consistent even when the censoring distribution is unknown.

For simplicity, we use the normalized version of the quadratic loss.

Definition 1 Let L(y, s) = (y−s)2

�2
 be the normalized quadratic loss, let l(y, s) = 2(y − s)�−2 

be its derivative with respect to the first variable, and let 
Ln(D, (Z,C,�, s)) = 1

�2

(
(1−�)2(C−s)

g(C|Z) + s2
)
 be the proposed modified version of this loss.

Since both L and l are convex functions with respect to s, then for any compact set 
S = [−S, S] ⊂ ℝ , Both L and l are bounded and Lipschitz continuous with constants cL and 
cl that depend on S.

Remark 1 L(y, 0) ≤ 1 for all y ∈ Y and �(y, s) ≤ B1 for all (y, s) ∈ Y × S and for some con-
stant B1 > 0.

We need the following additional assumptions: 

 (A3) Z ⊂ ℝd is compact,
 (A4) H is an RKHS of a continuous kernel k with ‖k‖∞ ≤ 1.

Assumptions (A3-A4) are standard technical assumptions in the kernel machines literature.
Define the approximation error by A2(�) = inf

f∈H
�‖f‖2

H
+ RL,P(f ) − R∗

L,P
 . Define 

B2 = cL�
−1∕2 + 1 and B =

B1

2�
+ B2 , where B1 is defined in Remark  1, � is defined in 

Assumption (A2), cL is the Lipschitz constant of the normalized quadratic loss L, and � is 
the regularization parameter.

4.1  Case I: the censoring density g is known

In this section we develop finite sample bounds assuming that the censoring density g is 
known.

Theorem 1 Assume that (A1)–(A4) hold. Then for fixed 𝜆 > 0, n ≥ 1, 𝜀 > 0 , and 𝜃 > 0 , 
with probability not less than 1 − e−�

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ B

�����2 log

�
2N(

�
1

�
BH , ‖⋅‖∞, �)

�
+ 2�

n
+

2cl�

�
+ 4cL�
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where N(�−
1

2BH , ‖⋅‖∞, �) is the covering number of the � − net of 
√

1

�
BH  with respect 

to the supremum norm and where BH  is the closure of the unit ball of H (for further details 
see Steinwart and Christmann 2008) .

The proof of this theorem appears in “Appendix C.1”.
We now move to discuss consistency of the KM-CSD learning method. By definition, 

P-universal consistency means that for any 𝜖 > 0,

where R∗
L,P

 is the Bayes risk. Universal consistency means that (5) holds for all probability 
measures P on Z × Y . However, in survival analysis we have the problem of identifiability 
and thus we will limit our discussion to probability measures that satisfy some identifi-
cation conditions. Let P be the set of all probability measures that satisfy Assumptions 
(A1)–(A2). We say that a learning method is P-universal consistent when (5) holds for all 
probability measures P ∈ P.

In order to show P-universal consistency, we utilize the finite sample bounds of Theo-
rem 1. The following assumption is also needed for proving P-universal consistency: 

 (A5) k is a universal kernel.

Universal kernels are a wide family of kernel functions that include Gaussian and Taylor 
kernels. A kernel k is called universal if the RKHS H of k is dense in the space of continu-
ous functions on Z , C(Z) , with respect to the sup norm. Assumption  (A5) means that 
inf
f∈H

RL,P(f ) = R∗
L,P

 , for all probability measures P on Z × Y.

Corollary 1 Assume the setting of Theorem 1 and that Assumption (A5) holds. Assume 
that there exist constants a ≥ 1 and p > 0 such that log

�
N(BH , ‖⋅‖∞, �)

� ≤ a�−2p . Let �n be 
a sequence such that �n →

n→∞
0 and �1+pn n →

n→∞
∞. Then the KM-CSD learning method is P

-universal consistent.

The proof of this theorem appears in “Appendix C.2”.
Note that the bound on the covering number N(BH , ‖⋅‖∞, �) in Corollary 1 is satisfied 

for smooth kernels, such as polynomial and Gaussian kernels, for arbitrarily small p > 0 
(see Steinwart and Christmann 2008, Section 6.4).

4.2  Case II: the censoring density g is unknown

Here we consider the case in which the censoring mechanism is unknown, and thus the 
density g needs to be estimated. We estimate the density g using nonparametric kernel 
density estimation, and develop a novel finite sample bound. We use this bound to prove 
that the KM-CSD is consistent even when the censoring distribution is unknown. Note that 
asymptotic results for kernel density estimators are well known in the literature (see, for 
example, Silverman 1978). However, to the best of our knowledge, finite sample bounds 
for this case do not exist and hence are developed here.

For simplicity, we assume here that the censoring time C is independent of the covari-
ates Z. One can generalize the estimation procedure to include dependence of the censoring 

(5)lim
n→∞

P(D ∈ (Z × Y)n ∶ RL,P(fD,�n ) ≤ R∗
L,P

+ �) = 1,



358 Machine Learning (2021) 110:349–391

1 3

time C on the covariates Z; for example, the conditional density estimate can be computed 
by the ratio of the joint density estimate to the marginal density estimate. In Lemma 1 we 
construct finite sample bounds on the difference between the estimated density ĝ and the 
true density g. In Theorem 2 we utilize this bound to form finite sample bounds for the 
KM-CSD learning method.

Definition 2 We say that Km ∶ ℝ ↦ ℝ (not to be confused with the kernel function k of 
the RKHS H) is a kernel of order m, if the functions u ↦ ujKm(u) , j = 0, 1,… ,m are inte-
grable and satisfy ∫ ∞

−∞
Km(u)du = 1 and ∫ ∞

−∞
ujKm(u)du = 0, j = 1,… ,m.

Definition 3 The Hölder class 
∑
(�,L) of functions f ∶ ℝ ↦ R is the set of m = ⌊�⌋ 

times differentiable functions whose derivative f (m) satisfies

for any x, x� ∈ ℝ and for some constant L > 0.

Lemma 1 Let Km ∶ ℝ ↦ ℝ be a kernel function of order m = ⌊�⌋ satisfying 
∫ ∞

−∞
K2
m
(u)du < ∞ and define ĝ(x) = (hn)−1

∑n

i=1
Km

�
(Ci − x)∕h

�
 where h is the band-

width. Suppose that the true density g and its estimate ĝ both satisfy g(c), ĝ(c) ≤ gmax < ∞ . 
Let us also assume that g(c) belongs to the Hölder class 

∑
(�,L) . Finally, assume that 

∫ ∞

−∞
|u|𝛽 ||Km(u)

||du < ∞ . Then for any 𝜃 > 0,

where D1 = gmax ∫ ∞

−∞
K2
m
(v)dv and D2 = L|�|�−m∕m! ∫ ∞

−∞
||Km(v)

|||v|�dv are constants, and 
for some � ∈ [0, 1].

The proof of the lemma is based on Tsybakov (2008, Propositions 1.1 and 1.2) together 
with basic concentration inequalities; the proof can be found in “Appendix C.3”.

We now move to construct finite sample bounds for the KM-CSD learning method when 
g is unknown using the above lemma. We assume that ĝ is the kernel density estimate of g,  
such that the conditions of Lemma 1 hold.

Theorem  2 Assume that (A1)–(A4) hold. Assume the setting of Lemma  1 and that 
inf
c∈C

ĝ(c) ≥ 𝜅 > 0, for some 𝜅 > 0 . Then for fixed 𝜆 > 0, 𝜃 > 0, n ≥ 1, 𝜀 > 0 , we have with 

probability not less than 1 − 2e−� that

where � ≡ B1

2�2

(√
2D1�

n2h
+

2gmax�

3n
+ D2 ⋅ h

�

)
.

The proof of the theorem appears in “Appendix C.4”.

|||f
(m)(x) − f (m)(x�)

||| ≤ L||x − x�||�−m

Pr

(
1

n

n∑
i=1

||ĝ(Ci) − g(Ci)
|| >

√
2D1𝜃

n2h
+

2gmax𝜃

3n
+ D2 ⋅ h

𝛽

)
≤ exp(−𝜃)

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ B

�����2log

�
2N(

�
1

�
BH , ‖⋅‖∞, �)

�
+ 2�

n
+

3cl�

�
+ 4cL� + 2�
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Using the above theorem we show that under some mild conditions, the KM-CSD 
decision function converges in probability to the conditional expectation.

Corollary 2 Assume the setting of Theorem  2 and assume that Assumption (A5) holds. 
Assume that there exist constants a ≥ 1 and p > 0 such that log

�
N(BH , ‖⋅‖∞, �)

� ≤ a�−2p . 
Let �n be a sequence such that �n →

n→∞
0 and that �1+pn n →

n→∞
∞. Then the KM-CSD learn-

ing method is P-universal consistent.

The proof of this theorem appears in “Appendix C.5”.
We refer the readers to “Appendix D” for a straightforward derivation of learning 

rates that are based on the same oracle inequalities of Theorem 1 and 2.

5  Simulation study

We test the KM-CSD learning method on simulated data and compare its performance 
to current state of the art. We construct six different data-generating mechanisms, 
including one-dimensional and multi-dimensional settings. For each data type, we com-
pute the squared difference between the KM-CSD decision function and the true failure 
time. We compare this result to results obtained by the Cox model, the AFT model, the 
proportional odds (PO) model, and the survival forests method (ICcforest). As a refer-
ence, we compare all these methods to the Bayes risk, which we calculated using the 
Monte Carlo method.

For each data setting, we considered three cases: (1) the censoring density g is known, 
(2) the censoring density is unknown, and (3) the censoring density is misspecified. For 
simplicity, we assumed that the censoring time C is independent of the covariates Z. For 
the first setting, we used a uniform distribution on [0, �] with density g(C) = 1

�
 . For the sec-

ond setting, the distribution of the censoring variable was estimated using univariate non-
parametric kernel density estimation with a Gaussian kernel. For the third setting, we mis-
specified the censoring distribution using a beta distribution Beta(0.9, 0.9), rescaled to the 
interval [0, �] , with density g(C) = 1

�

C−0.1(1−C)−0.1

�(0.9,0.9)
 , where �(�, �) is the beta function. To 

keep the manuscript short, case (3) appears in “Appendix E”.
Our code is written as a package in R (R Core Team 2020), and uses the R packages 

‘kernlab’ (Karatzoglou et  al. 2019) for kernel function computations, ‘ks’ (Duong et  al. 
2020) for kernel density estimates, and ‘mlr3’ (Lang et al. 2020) and ‘mlr3tuning’ (Becker 
et al. 2020) for hyper-parameter tuning. Figures were produced using the package ‘ggplot2’ 
(Wickham 2016). In order to fit the Cox model to current status data, we used the state of 
the art ‘ICsurv’ R package (McMahan and Wang 2014). In this package, monotone splines 
are used to estimate the cumulative baseline hazard function, and the model parameters are 
then chosen via the EM algorithm. We chose the most commonly used cubic splines. To 
choose the number and locations of the knots, we followed Ramsay (1988) and McMahan 
et al. (2013) who both suggested using a fixed small number of knots and thus we placed 
the knots evenly at the quartiles. For the AFT model, we used the ‘survreg’ function in the 
‘Survival’ R package (Therneau and Lumley 2016), and for the PO model, we used the 
‘ic_sp’ function in the ‘icenReg’ R package (Anderson-Bergman 2020). For the random 
forest implementation we used the ‘ICcforest’ function in the ‘ICcforest’ R package (Yao 
et al. 2020).
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For the kernel of the RKHS H , we used both a linear kernel and a Gaussian RBF ker-

nel k(xi, xj) = exp

(
−
‖‖‖xi − xj

‖‖‖
2

2
∕2�2

)
 , where � and � were chosen using fivefold cross-

validation. Cross validation is commonly used for kernel machine parameter selection 
(see, for example, Steinwart and Christmann 2008). Oracle inequalities for penalized 
risk minimization with multi-fold cross validation were developed by van  der Vaart 
et al. (2006). This result can be applied to kernel machines and justifies the use of cross 
validation for parameter selection. Since in our case the failure time T is not observed, 
using cross-validation with current status data is not trivial. Hence we used fivefold 
cross-validation with respect to the empirical risk obtained by our proposed loss.

We consider the following six failure time distributions, corresponding to the six dif-
ferent data-generating mechanisms: (1) Exponential, (2) Weibull, (3) Multi-Weibull, 
(4) Multi-Log-Normal, (5) an example where the failure time expectation is triangle 
shaped, and (6) an example where the failure time expectation is U-shaped. We present 
below the KM-CSD risks for each case and compare them to risks obtained by other 
methods. The risks are based on 100 iterations per sample size. The Bayes risk is also 
plotted as a reference. The Bayes risk was calculated based on the Monte Carlo method 
where a large number of observations were drawn from the true failure time distribu-
tion; the empirical risk was then calculated.

In Setting 1 (Exponential failure-time), the covariates Z are generated uniformly on 
[0, 1],   the censoring variables C is generated uniformly on [0, �], and the failure time 
T is generated from an Exponential distribution with parameter � = exp(−0.5Z) . The 
failure time was then truncated at � = 3 . Figure 1 compares the results obtained by the 
KM-CSD to results obtained by the other methods, for the exponential distribution, and 
for different sample sizes.

In Setting 2 (Weibull failure-time), the covariates Z are generated uniformly on [0, 1],  
the censoring variables C is generated uniformly on [0, �], and the failure time T is gen-
erated from a Weibull distribution with parameters scale = exp(−0.5Z) , and shape = 2 . 
The failure time was then truncated at � = 1 . The results appear in Fig. 2.

Figures 1 and 2 shows that when g is known, the KM-CSD with a linear kernel pro-
duces risks that are comparable to those of the Cox model and the AFT model, and are 
better than those of the other methods. However, when g is not known, the Cox model 
produces the smallest risks, but its superiority reduces as the sample size grows. Note 
that the exponential distribution in Setting 1 and the Weibull distribution in Setting 2 
both satisfy the Cox proportional hazards (PH) assumption, and the AFT assumption. In 
particular, when the PH assumption holds, estimation based on the Cox model is con-
sistent and efficient; hence, when the PH assumption holds, we will use the Cox model 
as a benchmark.

In Setting 3 (Multi-Weibull failure-time), the covariates Z are generated uniformly 
on [0, 1]10, and the censoring variable C is generated uniformly on [0, �] , as in Set-
ting 1. The failure time T is generated from a Weibull distribution with parameters 
scale = −0.5Z1 + 2Z2 − Z3 and shape = 2 . The failure time was then truncated at � = 2 . 
Note that this model depends only on the first three variables. In Fig. 3, boxplots of risks 
are presented, for the Weibull distribution, with multivariate covariates. Figure  3 shows 
that the ICcforest method produces the lowest risks for smaller sample sizes, but the KM-
CSD with a linear kernel produces the lowest risks for larger sample sizes. This trend 
is observed for both cases (i) and (ii); however, the convergence rate of the KM-CSD is 
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slower for the case where g is unknown, which corresponds to the rates derived in Theo-
rem 3 of “Appendix D”.

In Setting 4 (Multi-Log-Normal), the covariates Z are generated uniformly on [0, 1]10, 
C was generated as before and the failure time T was generated from a Log-Normal dis-
tribution with parameters � =

1

2
(0.3Z1 + 0.5Z2 + 0.2Z3) and � = 1 . The failure time was 

then truncated at � = 7 . Figure 4 presents the risks of the compared methods. Figure 4 
shows that the nonparametric methods produce the lowest risks, with a slight preference 
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Fig. 1  Exponential failure time distribution.The Bayes risk is the dashed line and the boxplots of the fol-
lowing risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, 
Cox, ICcforest, and PO, for sample sizes n = 50, 100, 200, 400, 800
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for the KM-CSD with an RBF kernel in case (i), and a slight preference for the ICcfor-
est method in case (ii).

In Setting 5, we considered a non-smooth conditional expectation function in the shape 
of a triangle. The covariates Z are generated uniformly on [0, 1],  C is generated uniformly 
on [0, �] , and T is generated according to the following

The failure time was then truncated at � = 8 . In Fig. 5, the boxplots of risks are presented. 
As expected, Fig. 5 shows that for a large enough sample size, the non-parametric meth-
ods ICcforest and KM-CSD with an RBF kernel both manage to correctly estimate the 

T =

{
4 + 6 ⋅ Z + 𝜖, Z ≤ 0.5

10 − 6 ⋅ Z + 𝜖, Z > 0.5
, where 𝜖 ∼ N(0, 1).
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Fig. 2  Weibull failure time distribution. The Bayes risk is the dashed line and the boxplots of the following 
risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, Cox, ICc-
forest, and PO, for sample sizes n = 50, 100, 200, 400, 800



363Machine Learning (2021) 110:349–391 

1 3

non-linear conditional expectation function, with some preference for the ICcforest method 
over the KM-CSD with an RBF kernel. This preference may be explained by the fact that 
an RBF kernel produces smooth functions and cannot capture non-differentiable points, 
such as the triangle’s vertex. To test this hypothesis, we derived an additional simulation 
setting where the conditional expectation is quadratic and U-shaped.

In Setting 6, we considered a non-linear conditional expectation function that is U-shaped. 
The two-dimensional covariates Z are generated uniformly on [0, 1]2, C is generated uniformly 
on [0, �] , and T is generated according to the following

T = 1 + 8(�TZ − 1)2 + �, where � ∼ N(0, 1) and � = (1, 1)T .
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Fig. 3  Multi-Weibull failure time distribution. The Bayes risk is the dashed line and the boxplots of the 
following risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, 
Cox, ICcforest, and PO, for sample sizes n = 50, 100, 200, 400, 800
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The failure time was then truncated at � = 9 . In Fig. 6, the boxplots of risks are presented. 
Figure 6 shows that the KM-CSD with an RBF kernel produces the lowest risks, for both 
cases g known and unknown, and is the only method that converges to the Bayes risk.

Finally, Table 1 presents a summary of training times (in milliseconds) and memory 
usage (in bytes) for all the methods considered in the experimental evaluations. The 
summary is based on a sample of size n = 200 drawn from the univariate Weibull simu-
lation setting, and 100 iterations. For benchmarking, we used the ‘mark’ function from 
the R package ’bench’ (Hester 2020). Table 1 shows that the memory allocated to the 
KM-CSD with either kernel is larger than that of AFT and PO, but smaller than that of 
Cox and ICcforest. Additionally, the KM-CSD with either kernel is slower only than 

R
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k
R
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Sample Size

Fig. 4  Multi-LogNormal failure time distribution. The Bayes risk is the dashed line and the boxplots of the 
following risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, 
Cox, ICcforest, and PO, for sample sizes n = 50, 100, 200, 400, 800
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the parametric AFT model, but is faster than all other semiparametric methods (PO and 
Cox), and is substantially faster than the nonparametric method (ICcforest).

To summarize, Figs. 1, 2, 3, 4, 5 and 6 showed that the KM-CSD is comparable to other 
known methods for estimating the failure time distribution with current status data, and in 
certain cases is even better. Specifically, we found that the KM-CSD with an appropriate 
kernel was superior in most settings, especially when the sample size n was large enough, 
and when true density g was known. It should be noted that even when the assumptions of 
the other (semi-) parametric models were true, the KM-CSD estimates were comparable. 
Additionally, when these assumptions fail to hold, the KM-CSD estimates were generally 
better. Furthermore, it seems that the KM-CSD can perform well in higher dimensions. 
Finally, when compared to the non-parametric ICcforest method, the performance of the 
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Fig. 5  Triangle shaped failure time expectation. The Bayes risk is the dashed line and the boxplots of the 
following risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, 
Cox, ICcforest, and PO, for sample sizes n = 50, 100, 200, 400, 800
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Fig. 6  U-shaped failure time expectation. The Bayes risk is the dashed line and the boxplots of the follow-
ing risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, Cox, 
ICcforest, and PO, for sample sizes n = 50, 100, 200, 400, 800

Table 1  Comparison of training 
run times (in milliseconds) and 
memory usage (in bytes) for the 
different methods, for failure 
time data generated according 
to the univariate Weibull 
distribution, and for a sample of 
size n = 200

n_itr Min Median Total_time Mem_alloc

AFT 100 4.06 5.19 523.30 642,456.00
KM linear 100 7.21 8.79 959.19 2,210,784.00
KM RBF 100 11.21 13.49 2189.14 3,216,008.00
PO 100 38.79 41.24 4200.90 415,048.00
Cox 100 108.59 151.48 19,975.32 45,004,712.00
ICcforest 100 5192.21 6830.46 702,177.32 122,276,448.00
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KM-CSD was similar, and for larger sample sizes was even better. In summary, when the 
sample size is large enough ( n ⪆ 500 ), the KM-CSD is comparable and/or better than exist-
ing methods, for all the different simulation settings, including both linear and non-linear 
conditional expectation functions. Additionally, Table 1 showed that the implementation of 
the KM-CSD is computationally cheap, relatively to the non-parametric ICcforest method, 
and the semi-parametric Cox model with splines used to estimate the baseline hazard. As 
nowadays training sets are usually quite large, the requirement on the size of the training 
set does not seem to be restrictive, and is complemented nicely by the relatively low com-
putational cost.

6  Real world data analysis

In this section we test our approach on two real-world data sets, and compare its perfor-
mance to current state of the art. The first data set is current status data from immuno-
logical studies, and the second is real world data concerning news popularity, with artificial 
censoring. Note that the second data set was artificially censored by us, allowing us to train 
our method on current status data, and to test it on the true uncensored data. We used the 
mean squared error (MSE) in order to determine the best fit.

6.1  Current status data from immunological studies

We present an analysis of real world serological data1 on PVB19 and VZV infections. Both 
PVB19 and VZV cause a variety of diseases that mainly occur in childhood. The data was 
collected in Belgium between 2001 and 2003, as described in Hens et al. (2012). Blood 
samples were tested for presence of infection-specific IgG antibodies, reflecting infection 
experience. In addition, age at the time of data collection was registered. These blood sam-
ples are classified as either being seropositive or seronegative, based on some cut-off level, 
thus yielding current status data, with patient age being the monitoring time. The statistical 
analysis included in this paper is based on serological data on 2382 subjects with known 
immunological status for both PVB19 and VZV.

For our analysis, we use the patient’s age at the time of data collection as the monitoring 
time (C). We consider the continuous IgG antibody level of B19 as a covariate (Z) explain-
ing the presence of the current status indicator VZV ( � ). Note that we are treating the IgG 
antibody level of B19 as a baseline covariate, since we only have a single measurement of 
this antibody level. Also note that Hens et al. (2008) and Abrams and Hens (2015) have 
investigated the association between VZV and B19, and have shown that they share the 
same transmission route. Hence, there is a scientific justification for using the continuous 
IgG antibody level of B19 as a covariate explaining the presence of VZV.

We test our proposed KM-CSD on this data and compare it to estimates obtained by 
the Cox model, the AFT model, the PO model, and the survival forest ICcforest. For the 
kernel of the RKHS H , we used both a linear kernel and a Gaussian RBF kernel, where 
the kernel width � and the regularization parameter � were chosen using fivefold cross-
validation. It should be noted that we first standardized the covariates Z (PVB19 antibody 
level) in order to suggest a reasonable selection of kernel widths. As before, the density of 

1 This dataset can be found at https ://www.dropb ox.com/s/h120m l7pc6 8u63d /RCode Book.zip?dl=0.

https://www.dropbox.com/s/h120ml7pc68u63d/RCodeBook.zip?dl=0
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the censoring variable was estimated using nonparametric kernel density estimation with 
a Gaussian kernel. In Fig. 7, we present the results of the estimated expectation of time-
to-infection of VZV, as a function of the covariates, for all six methods: KM with an RBF 
kernel, KM with a linear kernel, AFT, Cox, ICcforest and PO. It should be noted that since 
we do not know the true time-to-infection, we cannot argue that any model is superior. All 
six methods agree that there is a decreasing connection between time to infection of VZV, 
and B19 antibody level. In other words, the higher the level of PVB19, the lower the age of 
infection with VZV. This outcome supports previous research on joint transmission routes 
of VZV and B19. Further serological research can be done in order to better understand 
this relationship.

6.2  Artificially censored real‑world data

For our second analysis, we used real-world data on news popularity,2 with artificial 
censoring. The original data summarizes a set of features regarding articles published 
by Mashable, in a period of two years, as described in Fernandes et  al. (2015). The 
goal is to predict the number of shares of an article in social networks, referred to as 
‘popularity’. Since the number of shares is non-negative, we consider it as our fail-
ure-time T. The original dataset contains 58 predictive attributes. As before, we first 
standardized the covariates Z. In order to reduce the dimensionality of the data, we 
used the LASSO method for subset selection (Tibshirani 1996). For the sake of our 
analysis, we used the six most important explanatory variables. In order to obtain cur-
rent status data, we generated the monitoring times C1,… ,Cn as random exponential 
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Fig. 7  Conditional expectation of time to infection of VZV as a function of the standardized antibody level 
of B19. The following estimates are compared: the KM-CSD with an RBF kernel, the KM-CSD with a lin-
ear kernel, AFT, Cox, ICcforest and PO

2 This dataset can be found at https ://archi ve.ics.uci.edu/ml/datas ets/Onlin e+News+Popul arity .

https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity
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variables with mean equal to the mean number of shares. We then calculated the cur-
rent status indicator by 𝛥 = 1{T<C} . In summary, the artificially censored data consists 
of six covariates, the current status indicator, and the monitoring time generated from 
an exponential distribution. The uncensored data after standardization and dimension-
ality reduction, and its artificially censored version, can be found in the Supplementary 
Materials.

Since the original dataset contains 39,644 entries, we divided it randomly into 35 
training sets of 1000 observations, and one testing set of 4644 observations. The train-
ing sets consisted of the artificially censored data, whereas the testing data contained 
the original uncensored scaled number of shares. We trained the KM-CSD, with both 
a linear and a Gaussian RBF kernel, as well as Cox, AFT, PO, and ICcforest, on each 
training set. As before, the kernel width � and the regularization parameter � were cho-
sen using fivefold cross-validation. For a fair comparison, we estimated the density of 
the censoring variable using nonparametric kernel density estimation with a Gaussian 
kernel, and did not use our knowledge regarding the censoring mechanism.

For each training set, we computed the model predictions on the testing set and 
calculated the corresponding MSE. Since the MSE is sensitive to the overall scale of 
the response variable, we divided the MSE by the empirical variance of the number of 
shares in order to achieve standardized MSE. We did not include the Cox model in the 
graphical representation, since the Cox model produced very high risks. Figure 8 pre-
sents the boxplot of the standardized MSEs (SMSEs), for all remaining five methods: 
KM-CSD with an RBF kernel, KM-CSD with a linear kernel, AFT, ICcforest, and PO. 
It should also be noted that for some training sets, the AFT SMSEs were so high that 
we had to omit them from the graphical representation. Figure 8 shows that the non-
parametric methods are comparable, and produce risk values that are much lower than 
those of the AFT and the PO model.
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Fig. 8  SMSEs of predicted number of shares, based on 35 training sets. The following estimates are com-
pared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, ICcforest, and PO
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7  Concluding remarks

We proposed a kernel-machine approach for estimation of the failure time expectation, 
studied its theoretical properties, presented a simulation study, and tested our approach 
on two real-world data sets. Specifically, we proved that our method is consistent, and 
showed by simulations and analysis of real-world data that our approach is just as good 
as current state of the art, and sometimes even better. We believe this work demonstrates 
an important approach in applying machine learning techniques to current status data. 
However, many open questions remain and many possible generalizations exist. First, 
note that we only studied the problem of estimating the failure time expectation and not 
other distribution related quantities. Further work needs to be done in order to extend 
the kernel machines approach to other estimation problems with current status data, and 
is beyond the scope of this paper. Note that the theory developed here might not hold 
in such generalizations, as the corresponding modified loss function will no longer be 
a convex function. Second, we assumed that the censoring is independent of the failure 
time given the covariates and that the censoring density is positive given the covariates 
over the entire observed time range. It would be worthwhile to study the consequences 
of violation of some of these assumptions. Third, it could be interesting to extend this 
work to other censored data formats such as interval censoring. We believe that further 
development and generalization of kernel machine learning methods for different types 
of censored data is of great interest. Some additional generalization of this work can 
include derivation of doubly-robust estimators and inclusion of time-dependent covari-
ates. For the case of time-dependent covariates, one first needs to define an RKHS over 
the covariate process space and then to define the appropriate empirical risk minimiza-
tion. Since this space is rich, the covering number results discussed in Sect. 4 may not 
hold for this space.

8  Supplementary materials

The appendices referenced in Sects. 3–5, the R code for the algorithm and simulations, 
and the artificially censored data used in Sect. 6.2, are available with this article.

8.1  R code and artificially censored data set

An R package ‘KMforCSD’ containing the R code for both the algorithm and for the 
simulations is available at https ://githu b.com/Yael-Travi s-Lumer /KMfor CSD. The 
‘KMforCSD’ package also contains the data used in Sect. 6.2, including the uncensored 
data after standardization and dimensionality reduction, and its artificially censored ver-
sion. An additional R package ‘mlr3learners.KMforCSD’, that wraps the ‘KMforCSD’ 
package as an MLR3 learner, is available at https ://githu b.com/Yael-Travi s-Lumer /mlr3l 
earne rs.KMfor CSD. The ‘mlr3learners.KMforCSD’ package enables cross validation.
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Appendix A

Computation of the decision function

Equation  (4) is a quadratic optimization problem. Such problems are vastly studied in 
the literature (see, for example, Suykens and Vandewalle 1999) and known solutions 
exist. Specifically, using the representer theorem (Steinwart and Christmann 2008, The-
orem 5.5), the solution of Eq. (4) is given by

Using the Lagrange method, the quadratic optimization problem in (4) can be simplified to 
a set of linear equations (see, for example, Fletcher 1987). Hence, it can be shown that the 
coefficients �1,… , �n and b in the representation of fD,� above can be obtained by

where �n×n is the kernel matrix with entries �ij = k(Zi, Zj) , and where 
vi = (1 − �i)∕g(Ci|Zi) , for 1 ≤ i, j ≤ n . That is, the KM-CSD decision function has a closed 
form.

Appendix B

Non‑negative new modified loss function

Recall that our proposed loss function is

Note that this function is convex but not necessarily a loss function since it can obtain 
negative values. By completing the square,

fD,�(Z) =

n∑
i=1

�ik(Z, Zi) + b.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�1
�2
.

.

.

�n
b

⎞⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

K11 + n� K12 . . . K1n 1

K21 K22 + n� . . . K2n 1

. . . . .

. . . . .

. . . . .

Kn1 Kn2 . . . Knn + n� 1

1 1 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

v1
v2
.

.

.

vn
0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

,

Ln(D, (Z,C,�, s)) =
(1 − �)2(C − s)

g(C|Z) + s2 .
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we observe that the only possibly negative component is −
(

1−�

g(C|Z)
)2

= −
1−�

g(C|Z)2 . In order to 
ensure positivity we add a constant term that does not depend on f, and so our loss becomes

where for a fixed dataset of length n,   the constant a is a = max
1≤i≤n

{
(1 − �i)∕

(
g(Ci|Zi)

)2}
. 

Note that this additional term will not effect the optimization (since L̃n is just a shift by a 
constant of Ln ) and thus will be neglected hereafter.

Appendix C

Proof of Theorem 1

Proof Since Ln(D, (Z,C,�, s)) = �−2
(
(1 − �)2(C − s)∕g(C|Z) + s2

)
 is convex, it implies 

that there exists a unique decision function (see Steinwart and Christmann 2008,  Sec-
tion 5.1). For all distributions Q on Z × Y , we define the kernel machine decision function 
by fQ,� = inf

f∈H
�‖f‖2

H
+ RL,Q(f ). We note that for an RKHS H of a continuous kernel k with 

‖k‖∞ ≤ 1,

Hence,

Hence ���fQ,�
���∞ ≤ ���fQ,�

���H ≤ �−1∕2
√
RL,Q(0) for all f ∈ H . By Remark 1, L(y, 0) ≤ 1 for all 

y ∈ Y and so we conclude that RL,Q(0) ≤ 1 and thus ‖‖‖fQ,�
‖‖‖∞ ≤ ‖‖‖fQ,�

‖‖‖H ≤ �−1∕2 for all dis-
tributions Q on Z × Y.

Recall that the unit ball of H is denoted by BH and its closure by BH  ; since‖‖fP,�‖‖H ≤ �−1∕2 
we can write f ∈ �−1∕2BH  . Since Z ⊂ ℝd is compact, it implies that the ‖⋅‖∞ − closure BH  
of the unit ball BH is compact in �∞(Z) (see Steinwart and Christmann 2008, Corollary 
4.31).

Denote by RLn,D(f ) the empirical risk with respect to the data-dependent loss Ln . Since 
fD,� minimizes �‖f‖2

H
+ RLn,D(f ),

Ln(D, (Z,C,�, s)) =
(1 − �)2(C − s)

g(C|Z) + s2

=

(
s −

1 − �

g(C|Z)
)2

+
2(1 − �)C

g(C|Z) −

(
1 − �

g(C|Z)
)2

L̃n(D, (Z,C,�, f (Z))) =
(1 − �)2(C − f (Z))

g(C|Z) + (f (Z))2 + a,

���fQ,�
���∞ ≤ ‖k‖∞���fQ,�

���H ≤ ���fQ,�
���H.

�
���fQ,�

���
2

H
≤ �

���fQ,�
���
2

H
+ RL,Q(fQ,�) = inf

f∈H
�‖f‖2

H
+ RL,Q(f )

≤ �‖0‖2
H
+ RL,Q(0) = RL,Q(0),

�‖‖fD,�‖‖2H + RLn,D(fD,�) ≤ �‖‖fP,�‖‖2H + RLn,D(fP,�).
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Recall that the approximation error is defined by A2(�) = inf
f∈H

�‖f‖2
H
+ RL,P(f ) − R∗

L,P
 , and 

thus, as in Steinwart and Christmann (2008, Eq. 6.18),

That is,

Note that since L is Lipschitz continuous, |L(y, s) − L(y, s�)| ≤ cL|s − s�| for all s, s� ∈ S.
From the discussion above, we are only interested in bounded functions f ∈ �−1∕2BH .

Then for all f ∈ �−1∕2BH  we have

thus we obtain that for functions f ∈ �−1∕2BH  , the loss L(y, f(z)) is bounded.
For any 𝜖 > 0, let F� be an � − net of �−1∕2BH  . Since BH  is compact, then the cardinality 

of the � − net is

Thus for every f ∈ �−1∕2BH  , there exists a function h ∈ F� with ‖f − h‖ ≤ � , and thus

First we will bound Cn;

where

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

= ���fD,���2H + RL,P(fD,�) − ���fP,���2H − RL,P(fP,�)

= ���fD,���2H + RLn,D(fD,�) − RLn ,D(fD,�) + RL,P(fD,�) − ���fP,���2H − RL,P(fP,�)

≤ ���fP,���2H + RLn,D(fP,�) − RLn,D(fD,�) + RL,P(fD,�) − ���fP,���2H − RL,P(fP,�)

= RLn ,D(fP,�) − RLn ,D(fD,�) + RL,P(fD,�) − RL,P(fP,�)

≤ 2 sup
‖f‖H≤�−1∕2

�RL,P(f ) − RLn ,D(f )�.

(6)���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�) ≤ 2 sup
‖f‖H≤�−1∕2

�RL,P(f ) − RLn ,D(f )�

|L(y, f (z))| ≤ |L(y, f (z)) − L(y, 0)| + L(y, 0) ≤ cL|f (z)| + 1 ≤ cL�
−1∕2 + 1 ≡ B2

�F𝜀� = N
�
𝜆−

1∕2BH , ‖⋅‖∞, 𝜖
�
= N(BH , ‖⋅‖∞,

√
𝜆𝜖) < ∞.

(7)

|RL,P(f ) − RLn,D(f )|
≤ |RL,P(f ) − RL,P(h)| + |RL,P(h) − RLn ,D(h)| + |RLn ,D(h) − RLn,D(f )|
≡ An + Bn + Cn

Cn ≡ ||RLn ,D(h) − RLn,D(f )
||

≤ |||||
1

n

n∑
i=1

[
(1 − �i)�(Ci, h(Zi))

g(Ci|Zi)
]
−

1

n

n∑
i=1

[
(1 − �i)�(Ci, f (Zi))

g(Ci|Zi)
]|||||

+
|||||
1

n

n∑
i=1

[L(0, h(Zi))] −
1

n

n∑
i=1

[L(0, f (Zi))]
|||||

≡ Cn,1 + Cn,2,



374 Machine Learning (2021) 110:349–391

1 3

and where

So we were able to bound Cn by cl�∕2� + cL�.
Similarly, using to the property that E[�] = � for any constant � , it can be shown that 

An ≤ cl�∕2� + cL�.
As an interim summary, we showed that

Recall that the loss L(y, f(z)) is bounded by B2 and that by Remark 1, �(y, s) ≤ B1.
We note that

Combining this with Eq. (6), we obtain that

Cn,1 ≡
|||||
1

n

n∑
i=1

[
(1 − �i)�(Ci, h(Zi))

g(Ci|Zi) −
(1 − �i)�(Ci, f (Zi))

g(Ci|Zi)
]|||||

=
|||||
1

n

n∑
i=1

[
(1 − �i)

g(Ci|Zi)
(
�(Ci, h(Zi)) − �(Ci, f (Zi))

)]|||||
≤ |||||

1

n

n∑
i=1

[
1

g(Ci|Zi)
(
�(Ci, h(Zi)) − �(Ci, f (Zi))

)]|||||
≤ 1

2�

|||||
1

n

n∑
i=1

[
�(Ci, h(Zi)) − �(Ci, f (Zi))

]|||||
≤ 1

2n�

n∑
i=1

|�(Ci, h(Zi)) − �(Ci, f (Zi))|

≤ 1

2n�

n∑
i=1

cl|h(Zi) − f (Zi)| ≤ 1

2n�

n∑
i=1

cl� =
cl�

2�
,

Cn,2 ≡
|||||
1

n

n∑
i=1

[L(0, h(Zi)) − L(0, f (Zi))]
|||||

≤ 1

n

n∑
i=1

||L(0, h(Zi)) − L(0, f (Zi))
||

≤ 1

n

n∑
i=1

cL|h(Zi) − f (Zi)| ≤ 1

n

n∑
i=1

[
cL�

]
= cL�

(8)
sup

f∈�−1∕2BH

|RL,P(f ) − RLn,D(f )| ≤ sup
h∈F�

|RL,P(h) − RLn ,D(h)|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Bn

+
1

�
cl� + 2cL�.

(1 − �)�(C, h(Z))

g(C|Z) + L(0, h(Z)) ≤ �(C, h(Z))

g(C|Z) + L(0, h(Z)) ≤ B1

2�
+ B2 ≡ B
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By the union bound, the last expression is bounded by

which can then be bounded again by 2|F�| exp(−�) , using Hoeffding’s inequality (Stein-
wart and Christmann 2008, Theorem 6.10); where F� is an �-net of �−1∕2BH  with cardinality

Define � = log(2|F�|) + � , then

which concludes the proof.   ◻

Proof of Corollary 1

Proof In Theorem 1 we showed that

with probability not less than 1 − e−�.
Choose � = �n; from Assumption  (A5) together with Lemma  5.15 of Steinwart and 

Christmann (Steinwart and Christmann 2008, 5.15), A2(�n) converges to zero as n goes to 
infinity. By the assumption log

�
N(BH , ‖⋅‖∞, �)

� ≤ a�−2p , we have that

Pr

�
���fD,���2H + RL,P(fD,�) − R∗

L,P
− A2(�) ≥ B

�
2�

n
+

2cl�

�
+ 4cL�

�

≤ Pr

�
2 sup
‖f‖H≤�−1∕2

�RL,P(f ) − RLn ,D(f )� ≥ B

�
2�

n
+

2cl�

�
+ 4cL�

�
(by eq. 6)

≤ Pr

�
2

�
sup
h∈F�

�RL,P(h) − RLn ,D(h)� + 1

�
cl� + 2cL�

�
≥ B

�
2�

n
+

2cl�

�
+ 4cL�

�
(by eq. 8)

= Pr

�
2

�
sup
h∈F�

Bn +
1

�
cl� + 2cL�

�
≥ B

�
2�

n
+

2cl�

�
+ 4cL�

�

= Pr

�
sup
h∈F�

Bn ≥ B

�
�

2n

�
= Pr

�
sup
h∈F�

��RL,P(h) − RLn ,D(h)
�� ≥ B

�
�

2n

�
.

∑
h∈F�

Pr

(
|RL,P(h) − RLn ,D(h)| ≥ B

√
�

2n

)
,

�F𝜀� = N
�
𝜆−

1∕2BH , ‖⋅‖∞, 𝜖
�
< ∞.

Pr

(
�‖‖fD,�‖‖2H + RL,P(fD,�) − R∗

L,P
− A2(�) ≥ B

√
2(log(2|F�|) + �)

n
+

2cl�

�
+ 4cL�

)

≤ exp(−�),

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ B

�����2 log

�
2N(

�
1

�
BH , ‖⋅‖∞, �)

�
+ 2�

n
+

2cl�

�
+ 4cL�,
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Choose � =
�

p

2

� 1

1+p
�

2a

n

� 1

2+2p 1√
�
 and recall that a ≥ 1 . Then for n ≥ p2a

2
 we have

Recall that B is defined by B =
B1

2�
+ cL�

−
1

2 + 1 . Hence, from the assumption on the cover-
ing number we have that

and since �1+pn n →
n→∞

∞ , the right hand side of this converges to 0 as n → ∞ . Finally, from 
the choice of � , it follows that both 2cl�

�
 and 4cL� converge to 0 as n → ∞ . Hence for every 

fixed �,

with probability not less than 1-e−� . The right hand side of this converges to 0 as n → ∞ , 
which implies consistency (Steinwart and Christmann 2008, Lemma 6.5). Since this holds 
for all probability measures P ∈ P , we obtain P-universal consistency.   ◻

log
�
2N(BH , ‖⋅‖∞,

√
��)

�

= log(2) + log
�
N(BH , ‖⋅‖∞,

√
��)

�

≤ log(2) + a
�√

��
�−2p

≤ 1 + a
�√

��
�−2p

.

log
�
2N(BH , ‖⋅‖∞,

√
��)

�

≤ 1 + a
�√

��
�−2p

= 1 + a

��p
2

� 1

1+p
�
2a

n

� 1

2+2p

�−2p

≤ 2a

��p
2

� 1

1+p
�
2a

n

� 1

2+2p

�−2p

.

B

�����2 log

�
2N(

�
1

�
BH , ‖⋅‖∞, �)

�
+ 2�

n

≤
�
B1

2�
+ cL�

−
1

2 + 1

�
������4a

��
p

2

� 1

1+p
�

2a

n

� 1

2+2p

�−2p

+ 2�

n

�n
���fD,�n

���
2

H
+ RL,P(fD,�n ) − R∗

L,P

≤ A2(�n) + B

����2 log
�
2N(

�
1

�n
BH , ‖⋅‖∞, �)

�
+ 2�

n
+

2cl�

�
+ 4cL�
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Proof of Lemma 1

Proof For the sake of completeness, we develop here a finite sample bound on the dif-
ference between the kernel density estimator ĝ and the true density g. While asymptotic 
results for kernel density estimators are well known in the literature (see, for example, Sil-
verman 1978), finite sample bounds were not previously studied. In order to develop our 
bound, we incorporate Bernstein’s inequality in our analysis as described below.

Note that

As in Tsybakov (Tsybakov 2008, Proposition 1.1), for any c0 ∈ Y , define

Then �i(c0) , for i = 1,… , n are i.i.d. random variables with zero mean and with variance:

where the equality before last follows from change of variables and where D1 = gmax ∫v K2
m
(v)dv . 

Thus Var(ĝ(c0)) = Eg

��
1

nh

∑n

i=1
𝜂i(c0)

�2
�
=

1

nh2
Eg

�
𝜂2
1
(c0)

� ≤ D1h

nh2
=

D1

nh
.

Note that Var(|||ĝ(c0) − E

[
ĝ(c

0
)||
]
) = E

[(|||ĝ(c0) − E

[
ĝ(c

0
)
]|||
)2

]
= Var(ĝ(c

0
) − E

[
ĝ(c

0
)
]
) =

Var(ĝ(c
0
)) . Hence Var(|||ĝ(c0) − E

[
ĝ(c0)

||
]
) = Var(ĝ(c0)) ≤ D1

nh
 . Using Bernstein’s inequality, 

for any 𝜃 > 0 we have

For the second term, as in Tsybakov (Tsybakov 2008, Proposition 1.2), we have that

where D2 = L|𝜋|𝛽−m∕m! ∫ ∞

−∞
||Km(v)

|||v|𝛽dv < ∞ , and for some � ∈ [0, 1].

1

n

n∑
i=1

||ĝ(Ci) − g(Ci)
||

≤ 1

n

n∑
i=1

|||ĝ(Ci) − E
[
ĝ(Ci)

]||| +
1

n

n∑
i=1

|||E
[
ĝ(Ci)

]
− g(Ci)

||| ≡ A + B

�i(c0) = Km

(
Ci − c0

h

)
− Eg

[
Km

(
Ci − c0

h

)]
.

Var
[
�i(c0)

]
= Eg

[(
�i(c0)

)2]
= Eg

[(
Km

(
Ci − c0

h

)
− Eg

[
Km

(
Ci − c0

h

)])2
]

≤ Eg

[
K2
m

(
Ci − c0

h

)]
= �u

K2
m

(u − c0

h

)
g(u)du ≤ gmax �u

K2
m

(u − c0

h

)
du

= gmaxh�v

K2
m
(v)dv = D1h

Pr

(
A >

√
2D1𝜃

n2h
+

2gmax𝜃

3n

)
≡ Pr

(
1

n

n∑
i=1

|||ĝ(Ci) − E
[
ĝ(Ci)

]||| >
√

2D1𝜃

n2h
+

2gmax𝜃

3n

)

≤ exp(−𝜃)

B ≡ 1

n

n∑
i=1

|||E
[
ĝ(Ci)

]
− g(Ci)

||| ≤ D2h
𝛽
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In conclusion, we showed that

where h is the bandwidth.   ◻

Proof of Theorem 2

Proof Note that the proof of this theorem is similar to the proof of of Theorem 1 and thus 
we will only discuss the parts of the proof where they differ. As in Theorem 1, Eq. 7,

where

Since An does not depend on the data-set D,  the same bound holds as in the proof of Theo-
rem 1, that is, An ≤ cl�∕2� + cL�.

We bound Cn as follows:

Using the same arguments as in Theorem 1, we can bound Cn by cl�∕� + cL� . Note that the 
only difference is in the denominator of Cn,1 since g−1 ≤ (2�)−1 and ĝ−1 ≤ 𝜅−1.

Pr

(
1

n

n∑
i=1

||ĝ(Ci) − g(Ci)
|| >

√
2D1𝜃

n2h
+

2gmax𝜃

3n
+ D2 ⋅ h

𝛽

)

≤ Pr

(
1

n

n∑
i=1

|||ĝ(Ci) − E
[
ĝ(Ci)

]||| +
1

n

n∑
i=1

|||E
[
ĝ(Ci)

]
− g(Ci)

|||

>

√
2D1𝜃

n2h
+

2gmax𝜃

3n
+ D2 ⋅ h

𝛽

)

≤ Pr

(
1

n

n∑
i=1

|||ĝ(Ci) − E
[
ĝ(Ci)

]||| + D2 ⋅ h
𝛽

>

√
2D1𝜃

n2h
+

2gmax𝜃

3n
+ D2 ⋅ h

𝛽

)

= Pr

(
1

n

n∑
i=1

|||ĝ(Ci) − E
[
ĝ(Ci)

]||| >
√

2D1𝜃

n2h
+

2gmax𝜃

3n

)
≤ exp(−𝜃)

�‖‖fD,�‖‖2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ 2
(
An + Bn + Cn

)

An ≡ |RL,P(f ) − RL,P(v)|, Bn ≡ |RL,P(v) − RLn ,D(v)|, and where Cn ≡ |RLn ,D(v) − RLn ,D(f )|,

Cn ≡ ||RLn ,D(v) − RLn ,D(f )
||

≤ |||||
1

n

n∑
i=1

[
(1 − 𝛥i)�(Ci, v(Zi))

ĝ(Ci)

]
−

1

n

n∑
i=1

[
(1 − 𝛥i)�(Ci, f (Zi))

ĝ(Ci)

]|||||
+
|||||
1

n

n∑
i=1

[L(0, v(Zi))] −
1

n

n∑
i=1

[L(0, f (Zi))]
|||||

≡ Cn,1 + Cn,2
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Recall that the loss L(y, f(z)) is bounded by B2 . Define RLn,D,g(v) by

In other words, RLn,D,g(v) is the empirical risk with the true censoring density function g.
We bound Bn as follows

where

and where

Note that these inequalities hold for all functions v ∈ F𝜀 ⊆ 𝜆−1∕2BH . We would like to 
bound the last expression using Lemma 1. Let

then by Lemma 1

RLn ,D,g(v) =
1

n

n∑
i=1

[
(1 − �i)�(Ci, v(Zi))

g(Ci)

]
+

1

n

n∑
i=1

[L(0, v(Zi))].

Bn = |RL,P(v) − RLn ,D(v)|
≤ |||RL,P(v) − RLn ,D,g(v)

||| +
|||RLn ,D,g(v) − RLn ,D(v)

||| ≡ Bn,1 + Bn,2

(1 − �)�(C, v(Z))

g(C)
+ L(0, v(Z)) ≤ �(C, v(Z))

g(C)
+ L(0, v(Z)) ≤ B1

2�
+ B2 = B

Bn,2 =
|||RLn ,D,g(v) − RLn ,D(v)

|||
=
|||||
1

n

n∑
i=1

[
(1 − 𝛥i)�(Ci, v(Zi))

g(Ci)

]
−

1

n

n∑
i=1

[
(1 − 𝛥i)�(Ci, v(Zi))

ĝ(Ci)

]|||||
=
|||||
1

n

n∑
i=1

[
(1 − 𝛥i)�(Ci, v(Zi))

(
1

g(Ci)
−

1

ĝ(Ci)

)]|||||
≤ 1

n

n∑
i=1

[|||||
�(Ci, v(Zi))

(
1

g(Ci)
−

1

ĝ(Ci)

)|||||

]

=
B1

n

n∑
i=1

[||||
ĝ(Ci) − g(Ci)

g(Ci)ĝ(Ci)

||||
]
≤ B1

2𝜅2n

n∑
i=1

[||ĝ(Ci) − g(Ci)
||
]
.

� =
B1

2�2

(√
2D1�

n2h
+

2gmax�

3n
+ D2 ⋅ h

�

)
,

Pr(Bn,2 > 𝜂) ≤ Pr

(
B1

2𝜅2n

n∑
i=1

[||ĝ(Ci) − g(Ci)
||
]
> 𝜂

)

= Pr

(
B1

2𝜅2n

n∑
i=1

[||ĝ(Ci) − g(Ci)
||
]
>

B1

2𝜅2

(√
2D1𝜃

n2h
+

2gmax𝜃

3n
+ D2 ⋅ h

𝛽

))

= Pr

(
1

n

n∑
i=1

[||ĝ(Ci) − g(Ci)
||
]
>

(√
2D1𝜃

n2h
+

2gmax𝜃

3n
+ D2 ⋅ h

𝛽

))

≤ exp(−𝜃).
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We need to bound the term Bn,1(v) ≡ |||RL,P(v) − RLn,D,g(v)
||| . By the union bound, for all 

𝜇 > 0

We showed that (1 − �)�(C, v(Z))∕g(C) + L(0, v(Z)) ≤ B . Note also that 
RL,P(v) = RLn ,P(v) = RLn ,P,g(v) ; That is, RL,P(v) is the expectation of RLn,D,g(v) . Hence by 
Hoeffding’s inequality, the last term can then be bounded again by 2|F�| exp(−�) , where 
F� is an �-net of �−1∕2BH  with cardinality

Define � = log(2|F�|) + � , then

In conclusion we have that

and the result follows.   ◻

Pr

(
sup
v∈F�

Bn,1(v) ≥ B

√
�

2n

)
= Pr

(
sup
v∈F�

|||RL,P(v) − RLn ,D,g(v)
||| ≥ B

√
�

2n

)

≤ ∑
v∈F�

Pr

(
|RL,P(v) − RLn ,D,g(v)| ≥ B

√
�

2n

)
.

�F𝜀� = N
�
𝜆−

1∕2BH , ‖⋅‖∞, 𝜖
�
< ∞.

Pr

(
sup
v∈F�

Bn,1(v) ≥ B

√
ln(2|F�|) + �

2n

)
≤ exp(−�)

Pr

�
���fD,���2H + RL,P(fD,�) − R∗

L,P
− A2(�) ≥ B

�
2�

n
+

3cl�

�
+ 4cL� + 2�

�

≤ Pr

�
2 sup
‖f‖H≤�−1∕2

�RL,P(f ) − RLn ,D(f )� ≥ B

�
2�

n
+

3cl�

�
+ 4cL� + 2�

�

≤ Pr

�
2

�
sup
v∈F�

�RL,P(v) − RLn ,D(v)� + 3

2�
cl� + 2cL�

�
≥ B

�
2�

n
+

3cl�

�
+ 4cL� + 2�

�

≤ Pr

�
2

�
sup
v∈F�

Bn,1(v) + Bn,2(v)

�
≥ B

�
2�

n
+ 2�

�

≤ Pr

�
sup
v∈F�

Bn,1(v) + Bn,2(v) ≥ B

�
�

2n
+ �

�

≤ Pr

�
sup
v∈F�

Bn,1 ≥ B

�
ln(2�F��) + �

2n

�
+ Pr

�
sup
v∈F�

Bn,2(v) ≥ �

�

≤ exp(−�) + exp(−�) = 2 exp(−�)
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Proof of Corollary 2

Proof Note that the only difference between Corollary 2 and Corollary 1 is in the term 2� . 

Recall that � is defined by � ≡ B1

2�2

(√
2D1�

n2h
+

2gmax�

3n
+ D2 ⋅ h

�

)
 . Choose h such that h →

n→∞
0 

and that h0.5n →
n→∞

∞ . Then � →
n→∞

0 . Choose � = �n and � =
�

p

2

� 1

1+p
�

2a

n

� 1

2+2p 1√
�
 . Then as 

in Corollary 1, all other terms converge to zero as n → ∞ which implies consistency (Stein-
wart and Christmann 2008,  Lemma 6.5). Since this holds for all probability measures 
P ∈ P , we obtain P-universal consistency.   ◻

Appendix D

In this section we derive learning rates for cases I and II.

Definition 4 A learning method is said to learn with rate 𝜖n ⊂ (0, 1] that converges to 
zero if for all n ≥ 1 and all � ∈ (0, 1] , Pr

(
RL,P(fD) − R∗

L,P
≤ cPc��n

) ≥ 1 − � , where c� and 
cP are constants such that c� ∈ [1,∞) and cP > 0.

We demonstrate how to derive learning rates from the same oracle inequalities used for 
the consistency proofs. While faster learning rates can be achieved under further assump-
tions in a similar manner, they further complicate the calculations and are beyond the scope 
of this paper.

Theorem 3 Assume that (A1)–(A4) hold. Choose 0 < 𝜆n < 1 and assume that there exist 
constants a ≥ 1, p > 0 such that log

�
N(BH , ‖⋅‖∞, �)

� ≤ a�−2p . Additionally, assume that 
there exist constants c > 0, 𝛾 ∈ (0, 1] such that A2(�) ≤ c�� . Then

 (i) If g is known, the learning rate is given by n−
�

(1+p)(2�+1).
 (ii) If g is not known and the setup of Theorem 2 holds, then the leraning rate is given 

by n−min
(

�

(1+p)(2�+1)
,

2�

2�+1

)
.

Proof of Theorem 3

Proof Case I
By Theorem 1,

with probability not less than 1 − exp(−�) . For any compact set S = [−S, S] ⊂ ℝ , Both L 
and l are bounded and Lipschitz continuous with Lipschitz constants cL ≤ 2�−2(S + �) and 
cl = 2�−2 . Hence,

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ B

�
2 log

�
2N(�−1∕2BH , ‖⋅‖∞, �)

�
+ 2�

n
+

2cl�

�
+ 4cL�
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where M = 4�−2
(
�−1 + 2(S + �)

)
.

By the assumption log
�
N(BH , ‖⋅‖∞, �)

� ≤ a�−2p , we have that:

Choose � =
�

p

2

� 1

1+p
�

2a

n

� 1

2+2p 1√
�
 . Then

By (9) and (10),

Recall that B2 = cL�
−1∕2 + 1 and B = B1∕2� + B2 , where B1 is some bound on the deriva-

tive of the loss. Since 0 < 𝜆 < 1 , then 1 < 𝜆−1∕2 , and therefor

(9)

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ B

����2 log
�
2N(BH , ‖⋅‖∞,

√
��)

�
+ 2�

n
+

2cl�

�
+ 4cL�

≤ B

����2 log
�
2N(BH , ‖⋅‖∞,

√
��)

�
+ 2�

n
+

4�

��2
+

8(S + �)

�2
�

= B

����2 log
�
2N(BH , ‖⋅‖∞,

√
��)

�
+ 2�

n
+M ⋅ �

log
�
2N(BH , ‖⋅‖∞,

√
��)

�
= log(2) + log

�
N(BH , ‖⋅‖∞,

√
��)

�

≤ log(2) + a
�√

��
�−2p ≤ 2a

�√
��

�−2p

.

(10)a
�√

��
�−2p

= a

��p
2

� 1

1+p
�
2a

n

� 1

2+2p

�−2p

.

(11)

���fD,���2H + RL,P(fD,�) − R∗
L,P

− A2(�)

≤ B

������4a

��
p

2

� 1

1+p
�

2a

n

� 1

2+2p
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+ 2�

n
+M

�p
2

� 1

1+p
�
2a

n

� 1

2+2p 1√
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� 1
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�
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⎞⎟⎟⎟⎟⎟⎠

+
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�
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2

� 1

1+p
�
2a

n

� 1

2+2p

= B

⎛⎜⎜⎜⎜⎝

√
4a

��
p

2

� −p

1+p
�
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n
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�

√
n
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�
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2
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� 1
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�
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=
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� −p
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�
B
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2
�
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� 1
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+
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�
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�
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� 1
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+

�
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Earlier we defined M such that � = 4∕M�2 − 8(S + �) . Thus,

where we define N ≡ 8−1
(
B1M�2 + 8 + 16�−2(S + �)

)
.

Hence we can bound (11) by

Choose

Note that

Consequently, for our choice of B1 , we have that M ≤ 2N or M∕2N ≤ 1 . Note also that 
(p + 1)(2∕p)

p∕1+p ≤ 3, hence:

Since A2(�) ≤ c�� for constants c > 0, and � ∈ (0, 1],

We would like to choose a sequence �n that will minimize the bound in (12).

B2 ≤ cL�
−1∕2 + �−

1∕2 = �−
1∕2(cL + 1) ≤ �−

1∕2

(
2(S + �)

�2
+ 1

)
.
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2�
+

1√
�

�
2(S + �) + �2

�2

�
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B1(M�2 − 8(S + �))

8
+

1√
�

�
2(S + �) + �2

�2

�
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√
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�
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�

8
√
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�
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�2

�

8
√
�

≡ N√
�
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�p
2
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�√
2N√
�

�
2a

n

� 1

2+2p

+
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�

p

2

�
2a

n
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2+2p

�
+

N√
�

�
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2

� −p

1+p N√
�

�√
2
�
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+
Mp
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�
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�
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(
S + �
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�
+ 2S + 2�
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(
1
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4
+ 2 + 4

(
S + �

�2

)
= 2N.

�p
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1+p N√
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�
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2+2p
�
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N
p
�
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2
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1+p

(p + 1)2
N√
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�
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N√
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�

�
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Define

Differentiating W with respect to � and setting to zero yields:

Since the second derivative of W (with respect to �) is positive, � is the minimizer. by (12),

By the choice of �n, the bound in Eq. (13) can be written as

where Q is a constant that does not depend on n or on �.
In conclusion, by choosing a sequence �n that behaves like n−1∕(1+p)(2�+1) , we have that the 

resulting learning rate is given by

Case II
By Theorem 2,

W(�) = c�� +
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�
6
�
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�
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with probability not greater than 2 exp(−�) and where

Choose

and define N = 12−1
(
B1M�2 + 12 + 24�−2(S + �)

)
 , then as in (12), a very similar calcula-

tion shows that

We would like to choose the bandwidth h that minimizes � . The minimum is achieved at h∗ 
where

Substituting this result into � yields

or

Where D̃ is a constant that does not depend on � or on n.
Hence,
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Similarly to Case I, choosing �n ∝ n
−

1

(1+p)(2�+1) minimizes the last bound (note that the choice 
of �n does not depend on � ). Hence the resulting learning rate is given by

where Q is a constant that does not depend on n or on � .   ◻

Appendix E

Simulations with misspecification of the censoring density

In this subsection we examine the effect of misspecification on our kernel machine estima-
tor, for all 6 data-generating mechanisms from Sect. 5. Figures 9 and 10 present the box-
plots of risks for Settings 1–6, where the censoring density is misspecified. We misspeci-
fied the censoring distribution using a beta distribution Beta(0.9,  0.9), rescaled to the 
interval [0, �] , with density g(C) = 1

�

C−0.1(1−C)−0.1

�(0.9,0.9)
 , where �(�, �) is the beta function. Fig-

ures 9 and 10 shows that when the difference between the true censoring density and the 
misspecified density estimate is relatively small (as in our case), misspecification has a 
negligible effect on our estimator.

Pr(RL,P(fD,�n ) −R∗
L,P

≤ Qmax
�
�, 1 +

√
�
�
n
−min

�
�

(1+p)(2�+1)
,

2�

2�+1

�
) ≥ 1 − exp(−�)

Fig. 9  Misspecification for Settings 1–3. The Bayes risk is the dashed line and the boxplots of the following 
risks are compared: the KM-CSD with an RBF kernel, the KM-CSD with a linear kernel, AFT, Cox, ICc-
forest, and PO, for sample sizes n = 50, 100, 200, 400, 800

▸
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