
Vol.:(0123456789)

Machine Learning (2021) 110:2541–2576
https://doi.org/10.1007/s10994-020-05939-8

1 3

Dealing with multiple experts and non‑stationarity in inverse
reinforcement learning: an application to real‑life problems

Amarildo Likmeta1,2  · Alberto Maria Metelli1 · Giorgia Ramponi1 ·
Andrea Tirinzoni1 · Matteo Giuliani1 · Marcello Restelli1

Received: 15 March 2020 / Revised: 17 September 2020 / Accepted: 22 December 2020 /
Published online: 14 March 2021
© The Author(s) 2021

Abstract
In real-world applications, inferring the intentions of expert agents (e.g., human operators)
can be fundamental to understand how possibly conflicting objectives are managed, help-
ing to interpret the demonstrated behavior. In this paper, we discuss how inverse reinforce-
ment learning (IRL) can be employed to retrieve the reward function implicitly optimized
by expert agents acting in real applications. Scaling IRL to real-world cases has proved
challenging as typically only a fixed dataset of demonstrations is available and further
interactions with the environment are not allowed. For this reason, we resort to a class of
truly batch model-free IRL algorithms and we present three application scenarios: (1) the
high-level decision-making problem in the highway driving scenario, and (2) inferring the
user preferences in a social network (Twitter), and (3) the management of the water release
in the Como Lake. For each of these scenarios, we provide formalization, experiments and
a discussion to interpret the obtained results.

Keywords  Inverse reinforcement learning · Model-free IRL · Truly batch IRL · IRL for
real life · Multiple experts IRL · Non-stationary IRL

1  Introduction

Reinforcement learning (RL, Sutton and Barto 2018) is nowadays an established approach
to address a variety of real-world sequential decision making problems. Successful results
have been achieved in numerous fields such as robotics (eg., Kober et al. 2013; Levine
et al. 2016), recommender systems (eg., Shani et al. 2005; Warlop et al. 2018), financial
trading (eg., Dempster and Romahi 2002; Nevmyvaka et al. 2006; Buehler et al. 2019), and
autonomous driving (eg., Kiran et al. 2020).

Editors: Yuxi Li, Alborz Geramifard, Lihong Li, Csaba Szepesvari, Tao Wang.

 *	 Amarildo Likmeta
	 amarildo.likmeta2@unibo.it

1	 Politecnico di Milano, Milan, Italy
2	 Università di Bologna, Bologna, Italy

http://orcid.org/0000-0002-4227-0741
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05939-8&domain=pdf

2542	 Machine Learning (2021) 110:2541–2576

1 3

The crucial component of any application of RL is the definition of the reward function,
which evaluates the quality of the agent’s action in each state. In real-world scenarios, it
is often difficult to design a suitable reward function, able to induce the desired behavior.
This is because the reward function is a succinct representation of the task (Sutton and
Barto 2018), more abstract and connected to “what” objectives (or intentions) the agent is
optimizing rather than “how”. Indeed, it is typically easier to observe the behavior of an
expert agent, possibly a human operator, who plays an optimal policy w.r.t. an unknown
reward function. The goal of Inverse reinforcement learning (IRL, Ng and Russell 2000a;
Abbeel and Ng 2004) is to recover a reward function that explains the expert’s behavior.
IRL can be of enormous importance in real-world applications as it might help justify and
interpret the expert’s choices and identify some trade-offs that a hypothetical human opera-
tor makes, even implicitly. Even more than RL, IRL roots its natural motivations in real-life
applications. Indeed, the experts are usually humans and the demonstrations come from
observing the human who is performing the task. While imitating human behavior is rela-
tively simple, interpreting its decisions is a rather complex task, also considering that for a
human being to communicate precisely these motivations might be hard.

IRL belongs to the broader class of Imitation Learning (IL, Osa et al. 2018) algorithms,
whose high-level purpose is to “learn from demonstrations”. While IRL has the goal of
producing a reward function, other techniques, such as Behavioral Cloning (BC, Argall
et al. 2009), are meant to output an imitating policy, i.e., a policy that performs actions
similarly, in some metric sense, to those demonstrated by the expert. Although BC is typi-
cally simpler and can be cast into a supervised learning problem, the produced policy is
typically non-transferable to different environments. Instead, the reward function generated
by an IRL method encodes the general expert’s intentions and, therefore, can be employed
even under shifts in the environment dynamics. Thus, contrary to the imitating policy, such
a reward function can be employed to perform forward RL in the original environment,
transferred to different domains, or used in simulation. For a detailed review of the state of
the art in IL refer to the recent survey (Osa et al. 2018).

Despite its potential benefits, scaling IRL to real-world applications has historically
demonstrated to be more challenging than RL. The most widespread applications are
limited to the domains where the environment can be accessed or based on simulation,
such as robotics (eg., Ratliff et al. 2006), path planning (eg., Ziebart et al. 2008; Boularias
et al. 2011), or simulated car driving (eg., Abbeel and Ng 2004). The fundamental reasons
behind this slower development can be ascribed to the peculiar requirements needed for
applying IRL to real-world scenarios, which are frequently not met by common IRL algo-
rithms. Those requirements can be summarized as follows:

–	 Batch setting. When dealing with a real application, we cannot always assume to have
access to the environment. Thus, we must account for the fact that only a batch of dem-
onstrations collected by observing the expert is available. Further interaction with the
environment might be impossible, even for just collecting additional data.

–	 Model-Free setting. In addition to the batch requirement, in real-world applications, no
model of the environment dynamics is usually available (even if available it might be
overly simplified to be used effectively) and no interaction is allowed to learn it implic-
itly or explicitly.

Consequently, the range of IRL algorithms that can be actually employed for these
applications is rather small, which we refer to as truly batch model-free. At the best of
our knowledge, they are limited to two categories: the ones that make use of structured

2543Machine Learning (2021) 110:2541–2576	

1 3

classification (Klein et al. 2012, 2013) and those based on the policy gradient (Pirotta and
Restelli 2016; Metelli et al. 2017; Tateo et al. 2017; Ramponi et al. 2020). The previous
requirements are necessary for most real-world scenarios; however, there may be additional
challenges:

–	 Multiple experts. The available data might come from different experts (e.g., differ-
ent human operators), possibly by playing different policies and/or optimizing different
objectives. Therefore, the IRL algorithm should be able to group/cluster agents based
on the demonstrated intentions.

–	 Non-Stationarity. The environment in which the data collection process is carried out
might change over time as well as the policy demonstrated by the expert. Thus, a viable
IRL method must identify the time points at which the agent’s intention changes and
deal with them appropriately.

In this paper, we present three case studies of IRL in real-world scenarios. We employ �
-GIRL (Ramponi et al. 2020), a newly introduced batch model-free IRL approach that is
based on the policy gradient and extends GIRL (Pirotta and Restelli 2016), taking into
account the uncertainty of the gradient estimates, that is presented in Sect. 3.1. Then, we
introduce two extensions of �-GIRL: the first one for dealing with the multiple-intention
setting (MI-�-GIRL, Sect. 3.2) that was already introduced in Ramponi et al. (2020)
and the second one to address the non-stationarity of the reward function (NS-�-GIRL,
Sect. 3.3), which is a novel algorithmic contribution of this work. The subsequent sections
are devoted to the illustration of the case studies. For each of them, we present the setting,
the modelization, the design of the reward function class, the experimental results and their
interpretation. We start with two scenarios in which we address the problem of IRL from
multiple experts. In Sect. 5, we aim at inferring the intentions of humans driving along the
highway; while in Sect. 6, we consider multiple Twitter users that act in the social network
by reposting tweets. Then, we move to a case study in which we tackle the non-stationarity
of the expert’s objectives. This application, presented in Sect. 7, consists in recovering the
intentions of a human operator in charge of controlling the water release of the Como Lake
dam. Finally, we present in Sect. 8 a discussion of the obtained results, highlighting the
strengths and weaknesses of our approach and possible open questions.

2 � Preliminaries

In this section, we introduce the basic concepts about sequential decision-making problems
(Sect. 2.1), we formalize the RL and IRL problems (Sect. 2.2), and we introduce the spe-
cific parametric setting we will employ (Sect. 2.3). Given a set X  , we denote with P(X) the
set of all probability distributions over X .

2.1 � Sequential decision‑making

We model the agent-environment interaction by means of a Markov Decision Pro-
cess (MDP, Puterman 1994). An MDP is a 6-tuple M = (S,A,P,R, � ,�) , where S and
A are the state space and the action space respectively, P ∶ S ×A → P(S) is the transi-
tion model that for each state-action pair (s, a) ∈ S ×A provides the probability distri-
bution of the next state P(⋅|s, a) , R ∶ S ×A → ℝ is the reward function that provides

2544	 Machine Learning (2021) 110:2541–2576

1 3

the reward R(s, a) collected by the agent when performing an action a ∈ A in state
s ∈ S , � ∈ [0, 1] is the discount factor, and � ∈ P(S) is the probability distribution of
the initial state. We denote with M ⧵ R the MDP devoid of the reward function and with
R = {R ∶ S ×A → ℝ} being the set of all reward functions for a given MDP M.

The behavior of an agent acting in an MDP M is modeled by means of a Marko-
vian stationary policy � ∶ S → P(A) that provides for each state s ∈ S the probability
distribution of the action played by the agent �(⋅|s) . A policy � is deterministic if it
prescribes a single action for each state. We denote with � the set of all Markovian sta-
tionary policies.

The execution of a policy � ∈ � in an MDP M generates a sequence of state-action
pairs denoted by � = (S0,A0,… , ST−1,AT−1, ST) and called trajectory such that S0 ∼ � ,
At ∼ �(⋅|St) , St+1 ∼ P(⋅|St,At) for all t ∈ {0,… , T − 1} and T denotes the trajectory length.

2.2 � Reinforcement learning and inverse reinforcement learning

We now focus on the formalization of the reinforcement learning (RL, Sutton and Barto
2018) and the inverse reinforcement learning (IRL, Ng and Russell 2000a) problems.

Let M ⧵ R be an MDP without reward function, given a policy � ∈ � and a reward
function R ∈ R , we define the expected return JM(�,R) as the expected discounted sum
of the rewards collected by executing � in the environment:

where we made the unusual choice of making explicit the dependence on the reward func-
tion R, which will turn useful in the following. For a fixed reward function R ∈ R , we can
look at the expected return JM(�,R) as an index of the performance of a policy � ∈ � in
the MDP M . This viewpoint directly leads to the standard formulation of the RL problem.

(RL Problem) Let M ⧵ R be an MDP without reward function and let RE ∈ R be a
reward function. The RL problem consists in finding an optimal policy, i.e., any policy
�∗

RE
∈ � maximizing the expected return JM(�,RE):

We made explicit the dependence of the optimal policy �∗

RE
 on the reward function RE since

different reward functions may induce different optimal policies. The problem presented
above admits, in general, multiple solutions (Sutton and Barto 2018), although a determin-
istic Markovian stationary optimal policy always exists (Puterman 1994). Typically, when
tackling the RL problem, we are interested in finding just one optimal policy and not the
whole set of optimal policies.

In the IRL setting, however, we take a different perspective. We are given an expert’s
policy �E , i.e., the policy of an agent who behaves optimally w.r.t. some unknown
reward function RE . Our goal consists in finding a reward function, not necessarily equal
to RE , such that �E turns out to be an optimal policy. We will refer to these reward func-
tions as compatible.

(1)
JM(�,R) = �

S0 ∼ �

At ∼ �(⋅|St)
St+1 ∼ P(⋅|St,At)

[
+∞∑
t=0

� tR(St,At)

]
,

(2)�∗

RE ∈ argmax
�∈�

JM(�,RE).

2545Machine Learning (2021) 110:2541–2576	

1 3

(IRL Problem) Let M ⧵ R be an MDP without reward function and let �E ∈ � be an
expert policy. The IRL problem consists in finding a compatible reward function, i.e., any
reward function R∗

�E
∈ R that makes the expert’s policy �E optimal:

Like the RL problem, the IRL problem admits multiple solutions. However, in the IRL
setting the multiplicity of solutions is more critical, leading to the well-known ambi-
guity problem (Ng and Russell 2000a, b). For instance, the constant reward function
R(s, a) = c ∈ ℝ for all (s, a) ∈ S ×A makes any policy (so also �E ) an optimal policy.
Clearly, among all the possible reward functions that make �E optimal, not all of them have
the same ability to “discriminate”, i.e., to capture that variations of �E must be subopti-
mal.1 As a consequence, assessing the quality of a reward function is a challenging task,
especially when, as in real-world scenarios, it is not possible to use the recovered reward to
perform forward learning.

In practice, however, the RL problem cannot be solved exactly as the dynamics of the
environment modeled by P and the reward function R are unknown. Thus, interaction with
the environment is necessary to learn the optimal policy. Similarly, in the IRL setting the
expert’s policy �E is unknown, but a set of demonstrated trajectories D = {�i}

n
i=1

 generated
by running �E in the environment M is usually available.

2.3 � Parametric setting with linear reward

In many real-world scenarios, especially when dealing with continuous state spaces (and
possibly continuous action spaces), it is convenient to resort to a parametric representation
of the policy space (Deisenroth et al. 2013). More formally, a policy �� belongs to a space
of parametric differentiable policies, defined as:2

where � is the policy parameter space. As in Pirotta and Restelli (2016), we restrict our
treatment of IRL to the case in which the expert’s policy �E can be represented within �� ,
i.e., there exists �E such that �E(⋅|s) = ��E (⋅|s) almost surely for all s ∈ S.

Similarly, we model the reward function as a parametric mapping R� , and we enforce
the additional constraint of being a linear mapping defined in terms of a feature function � .
More formally, we define a space of linear reward functions as:

where � ∶ S ×A → ℝ
q is a (state-action) feature function. The simplex constraint on the

reward weights � (i.e., � ∈ ℝ
q

≥0
 and ‖�‖1 = 1 ) allows to avoid the ambiguity of rescaling

rewards by a constant (Pirotta and Restelli 2016).3

(3)R∗

�E ∈

{
R ∈ R ∶ �E ∈ argmax

�∈�
JM(�,R)

}
.

(4)𝛱𝛩 =
{
𝜋� ∶ S → P(A), � ∈ 𝛩 ⊆ ℝ

d
}
,

(5)R =

�
R� = �T� ∶ � ∈ ℝ

q

≥0
, ‖�‖1 = 1

�
,

1  This problem has been partially formalized in the notion of policy rank (Metelli et al. 2017).
2  The differentiability requirement will be necessary for employing policy gradient methods (Sutton et al.
2000; Peters and Schaal 2008).
3  For any 𝛼 ∈ ℝ>0 , the reward functions R and �R induce the same optimal policies.

2546	 Machine Learning (2021) 110:2541–2576

1 3

In this setting, we abbreviate the expected return JM(��,R�) as JM(�,�) , highlighting
the dependence on the policy parameters � and on the reward parameters � . Exploiting the
linearity of the reward function, the expected return decomposes as:

where �(�) denotes the feature expectations (Abbeel and Ng 2004), which are defined in
terms of the feature function � and on the played policy �� as:

Thus, the expected return is a linear combination, through the weights � , of the feature
expectations. This view allows JM(�,�) to be interpreted as a linear scalarization of a
multi-objective problem, in which the different objectives (or intentions in the IRL jargon)
are represented by �(�).

3 � Gradient‑based inverse reinforcement learning

In this section, we revise the class of IRL algorithms, named truly batch model-free, which
employ techniques based on the policy gradient (Sutton et al. 2000; Peters and Schaal
2008) to recover the reward function optimized by the expert (eg., Pirotta and Restelli
2016; Metelli et al. 2017; Tateo et al. 2017; Ramponi et al. 2020). The main advantage of
these approaches that make them suitable for tackling real-world scenarios is that they do
not need to have access to the environment (or to a model of it) and are able to output a
reward function using only a dataset of trajectories generated by the expert’s policy. Unlike
widely known IRL methods, they do not need to solve the forward RL problem in order to
assess the quality of each candidate reward function (thus saving a lot of computational
time, especially in complex and high-dimensional RL problems) and no interaction is nec-
essary to collect additional data. If �� ∈ �� is differentiable w.r.t. to its parameters � , the
policy gradient can be expressed as (Sutton et al. 2000; Peters and Schaal 2008):

(6)
JM(�,�) = �

S0 ∼ �

At ∼ ��(⋅|St)
St+1 ∼ P(⋅|St,At)

[
+∞∑
t=0

� tR�(St,At)

]
= �T�(�),

(7)
�(�) = �

S0 ∼ �

At ∼ ��(⋅|St)
St+1 ∼ P(⋅|St,At)

[
+∞∑
t=0

� t�(St,At)

]
.

∇�J(�,�) = �

S0 ∼ �,

At ∼ ��(⋅|St),
St+1 ∼ P(⋅|St,At)

[+∞∑
t=0

� tR�(St,At)

t∑
l=0

∇� log��(Al|Sl)
]
= ∇��(�)�,

2547Machine Learning (2021) 110:2541–2576	

1 3

where ∇��(�) =
(
∇��1(�)|… |∇��q(�)

)
∈ ℝ

d×q is the Jacobian matrix of the feature
expectations �(�) w.r.t. to the policy parameters � . When the expert’s policy ��E ∈ ��
is an optimal policy for the reward function R�E , �E is a stationary point of the expected
return J(�,�E) =

(
�E

)T
�(�) and, thus, the gradient of ∇�J(�

E,�E) = ∇��(�E)�E must
vanish (first-order necessary conditions for optimality Nocedal and Wright 2006). In other
words, the weight vector �E , associated to the reward function optimized by the expert,
belongs to the null space of the Jacobian ∇��(�E) . This leads to the condition:4

We call all the �E reward vectors that satisfy the above equation weak compatible, respect
to Eq. (3). There are two problems that have to be addressed before applying this condition,
both deriving from the fact that we have access neither to the explicit representation of the
expert’s policy �E nor to the environment model, but just to a dataset D = {�i}

n
i=1

 of trajec-
tories of length T generated by the expert’s policy ��E :

(1)	 Behavioral cloning. To compute the Jacobian ∇��(�E) it is necessary to have access
to a parametric representation of the expert’s policy, to calculate the scores ∇� log��E .
Starting from the dataset of trajectories D = {�i}

n
i=1

 generated by ��E , we can employ
a Maximum Likelihood (ML) procedure to get an estimate �̂

E
 of the expert’s policy

parameters �E

 The ML estimate is known to be consistent under mild assumptions, i.e., �̂
E
→ �E

as the number of trajectories n grows to infinity (Casella and Berger 2002). Other
approaches based on Bayesian techniques (e.g., maximum a posteriori) are suitable
when prior information on �E is available (Tateo et al. 2017).

(2)	 Jacobian estimation. Given a policy parametrization � , it is possible to get an unbiased
estimate of the Jacobian matrix by resorting to sample-based estimators for standard
policy gradient methods, such as REINFORCE (Williams 1992) and G(PO)MDP (Bax-
ter and Bartlett 2001). For the sake of completeness, we report below the G(PO)MDP-
like estimator, defined for all u ∈ {1,… , d} and v ∈ {1,… , q} as:5

(8)if �E ∈ argmax
�∈�

JM(�,�E) then �E ∈ null
(
∇��(�E)

)
.

(9)�̂
E
∈ argmax

�∈�

n∑
i=1

T−1∑
t=0

log��(Ai,t|Si,t).

4  In principle, it is not guaranteed that the null space contains a unique vector even under the simplex con-
straint (Eq. (5)). The multiplicity of the solutions is typically a symptom of a bad feature design. Indeed, it
is always possible to remove one or multiple features to obtain a unique weight vector fulfilling the condi-
tion.
5  The concentration properties of this estimator, being a straightforward extension, can be derived from
those of G(PO)MDP (Papini et al. 2019).

2548	 Machine Learning (2021) 110:2541–2576

1 3

 where buvt is a baseline that can be employed to reduce the variance of the estimate
and obtained extending the classical one employed in G(PO)MDP (Deisenroth et al.
2013 Equation 2.17) for the Jacobian:

 where the expectation is taken w.r.t. the randomness of the trajectories. Being an average
of n independent trajectories, ∇̂��(�) concentrates around its true value ∇��(�) as n grows
to infinity. Furthermore, thanks to the central limit theorem, its distribution is asymptoti-
cally Gaussian (Casella and Berger 2002).

The approximations introduced by estimating the expert’s policy parameters �E via
behavioral cloning and by using samples to compute ∇̂��(�) prevent the direct application
of condition (8) for the determination of the expert’s weights. This is due to the fact that
the estimated Jacobian ∇̂��(�) might result full rank even if the true Jacobian has a rank
smaller than q, leading to a zero-dimensional null space. We will discuss in the following
section how to deal with this problem.

3.1 � ‑gradient inverse reinforcement learning

In this section, we revise the recently presented �-Gradient inverse reinforcement learn-
ing (�-GIRL, Ramponi et al. 2020), which is able to solve the IRL problem in a fully batch
model-free setting, accounting also for the uncertainty on the Jacobian estimate. The basic
idea is to look at the Jacobian estimate ∇̂��(�) as a noisy version of the true Jacobian
∇��(�) . For this purpose, we model ∇̂��(�) as a Gaussian random matrix N

(
�,

1

n
�
)
 ,

which is justified by the central limit theorem, being the estimated Jacobian a sample mean.
Since there exists a weight vector �E , which defines the reward function optimized by

the expert, such that ∇̂��(�)�E = 0 , whenever ∇̂��(�) is full rank, we are allowed to move
its components in order to get a new estimate � having non-empty null space. Using the
Gaussian likelihood model, we formulate the IRL problem as the problem of finding the
weights � and the new Jacobian � that jointly maximize the likelihood of the estimated
Jacobian.6 This leads to the optimization problem:

where ⊗ denotes the Kronecker product and Id is the identity matrix of order d. Clearly,
we need to specify the noise model encoded by the covariance matrix � . In practice, the
sample covariance matrix �̂ is often used in the experiments after applying some necessary

(10)∇̂��uv(�) =
1

n

n∑
i=1

T−1∑
t=0

(
t∑

l=0

∇�u
log��(Ai,l|Si,l)

)
� t
(
�v(Si,t,Ai,t) − buvt

)
,

buvt =

�

��∑t−1

l=0
∇�u

log��(Al�Sl)
�2

� t�v(St,At)

�

�

��∑t−1

l=0
∇�u

log��(Al�Sl)
�2

� ,

min
� ∈ ℝ

q

≥0‖�‖1 = 1

����∇��(�)�
���
2�
(�⊗Id)

T
�(�⊗Id)

�−1 , (𝛴-GIRL)

6  Refer to Section 4 in Ramponi et al. (2020)) for the detailed derivation.

2549Machine Learning (2021) 110:2541–2576	

1 3

correction to enforce the well-conditioning (Ledoit and Wolf 2004). For a specific choice
of � , we reduce to the objective function of GIRL (Pirotta and Restelli 2016):

Finally, we can employ the Gaussian likelihood model to define the likelihood of dataset
D, used to compute ∇̂��(�) , given the weight vector � . We will denote this quantity as
p(D|�):7

where vec denotes the vectorization operator, that, given a matrix, recovers a vector
obtained by stacking its columns.

Remark 1  (On the Suboptimality of the Expert) In principle, if no knowledge about the
reward function optimized by the expert is available, we are unable to detect whether the
expert is suboptimal. This is because, we can always design a reward function in which
the demonstrated behavior is optimal (unless the expert’s contradicts itself). Instead, if we
assume that the reward function optimized by the expert lies in our class of reward func-
tions, i.e., it is linear, and we are unable to find a weight vector making the gradient van-
ish, we can conclude that the expert is suboptimal. In such a case, similarly to Pirotta and
Restelli (2016), instead of looking at the null space of the Jacobian, we will recover the
reward that induces the minimum change in the policy parameters, i.e., the reward that bet-
ter explains the expert demonstrated behavior.

min
� ∈ ℝ

q

≥0‖�‖1 = 1

���∇̂��(�)�
���
2

2
. (GIRL)

(11)p(D��) = max
� ∈ ℝ

d×q

�� = 0

√
n√

(2�)dq det(�)
e
−

n

2

����vec
�
∇̂��(�)−�

�����
2

�−1 ,

7  The notation is taken from (Barratt 2018).

3.2 � Dealing with multiple experts and intentions

In several applications, we have access to demonstrations generated by multiple experts
who possibly optimize different objectives (i.e., different reward functions). The corre-
sponding IRL problem, which consists in recovering the reward function optimized by each

2550	 Machine Learning (2021) 110:2541–2576

1 3

expert, is commonly refered to as IRL about multiple intentions (MI-IRL, Babes et al.
(2011)). Formally, suppose we have a set {E1,… ,Em} of m experts, each of which demon-
strates a policy �Ei ∈ �� by means of ni trajectories, Di = {�1,… , �ni} . Furthermore, there
exist k ≤ m unknown reward functions {R�1

,… ,R�k
} such that the i-th expert optimizes

R�ri

 , where ri ∈ {1,… , k} are the unknown expert-intention assignments. The goal is to
recover the set of k rewards together with the corresponding assignments (Fig. 1). In the
remaining, we assume that we know the identity of the expert who generates each trajec-
tory and the number of intentions k.

We now revise the approach by Ramponi et al. (2020), which extends the �-GIRL
algorithm to the MI-IRL setting. We note that a simple solution would be to run �-GIRL
(or any other IRL algorithm) independently on the sets of trajectories demonstrated by
each different expert. However, this solution is likely to yield poor performance when
each expert provides very small amounts of data, as is common in real-world scenarios.
A more data-efficient solution is to cluster the given trajectories (or equivalently the
experts) according to their underlying intention (Babes et al. 2011) so that it is possible
to run the IRL algorithm on larger datasets (the clusters). Ramponi et al. (2020) build
exactly on top of this idea. Since computing the clusters requires the intentions to be
known and vice versa, the authors propose an expectation-maximization (EM) frame-
work that maximizes the total likelihood of the data. In the E-step, the algorithm uses
the current estimates of the reward weights to compute the probabilities zij that the i-th
expert optimizes the j-th estimated reward. In the M-step, the algorithm uses the current
probabilities zij to update the reward weights. This can be done, for each reward weight,
by solving a weighted version of the �-GIRL objective:

The two steps are then repeated until convergence. The final output of the algorithm are
the estimated reward weights together with the corresponding “soft” expert assignments
(i.e., the probabilities zij ). Refer to Algorithm 1 for the pseudocode of Multiple-Intention �
-GIRL (MI-�-GIRL).

3.3 � Dealing with non‑stationary experts

In many real-world scenarios, the expert who controls a system (e.g., a human operator)
might modify its behavior over time. This is because its objectives might change or the
environment might evolve. We can interpret this phenomenon as a form of non-stationarity

(12)
min

�j ∈ ℝ
q

≥0‖‖‖�j
‖‖‖1 = 1

m∑
i=1

zijni
‖‖‖�∇�� i(�)�j

‖‖‖
2

[
(�j⊗Id)� i(�j⊗Id)

T
]−1 , j ∈ {1,… , k}.

Fig. 1   Plate notation of the
probabilistic model employed
for the clustering procedure.
�j with j ∈ {1,… , k} are the
prior probabilities on the cluster
assignment

2551Machine Learning (2021) 110:2541–2576	

1 3

in the expert’s intentions. In this section, we formalize the problem of IRL with a non-sta-
tionary expert’s reward function. Our setting assumes that we have access to a lifelong tra-
jectory � = (�1|… |�T) obtained from the concatenation of T trajectories D = {�i}

T
i=1

.8
Within the lifelong trajectory � the expert displays a non-stationary behavior since it opti-
mizes k ≤ T reward functions R = (R�1

,… ,R�k
) , where k is referred to as number of

regimes. In particular, there exists a set of indexes T = {t0, t1,… , tk} with
1 = t0 < t1 < ⋯ < tk−1 < tk = T  , inducing the intervals Ij = {tj−1,… , tj − 1} , such that for
each j ∈ {1,… , k} the set of trajectories Dj = {�i}i∈Ij , made of nj = tj − tj−1 + 1 trajecto-
ries, are generated by the expert who optimizes the same reward function R�j

 . We assume
to know the number of regimes k, the subdivision of the lifelong trajectory � in the T trajec-
tories D = {�i}

T
i=1

 , but not the set of indexes T  , nor the reward functions R . Clearly, we
expect that for different intervals Ij not only the reward function changes, but also the pol-
icy performed by the expert (Fig. 2).

A naïve solution would be to treat this problem as a multiple-intention IRL problem in
which each expert Ei generated the dataset consisting of a single trajectory Di = {�i} for
i ∈ {1,… , T} . However, this approach has at least two drawbacks. First, the estimate of
the reward function will likely be very noisy since only one trajectory is available for each
expert. Second, we are totally disregarding that the expert’s intention changes sequentially.
Thus, it would be unrealistic to cluster non-contiguous intervals.

For these reasons, we take inspiration from the change-point detection algo-
rithms (Aminikhanghahi and Cook 2017) and we adapt it to the non-stationary IRL setting.
Given a dataset D of trajectories and a reward weight � we employ the likelihood function
p(D|�) defined in Eq. (11), we define the likelihood of the lifelong trajectory � as the prod-
uct of the likelihoods of the individual trajectories �i:

where � = (�1,… ,�k, t1,… , tk−1) is the concatenation of the parameters. Now we can
derive the objective function that we seek to optimize for the parameters �:

(13)L(�|�) = p(�|�) =

T∏
i=1

k∑
j=1

p(�i|�j)�{i∈Ij},

Fig. 2   Plate notation of the
probabilistic model employed
for the change-point detection
procedure

8  The granularity of the subdivision of the lifelong trajectory to the T sub-trajectories is a design choice,
based on the knowledge of the environment. For instance, in the Como Lake case study, given the cycle-
stationarity of the environment, each sub-trajectory is associated to one year of data. The length of the sub-
trajectories determines the agent’s planning horizon employed in the IRL process.

2552	 Machine Learning (2021) 110:2541–2576

1 3

where we recall that Dj = {�i}i∈Ij . In order to optimize the objective function Q(�) we
adapt the change-point detection algorithm Opt which employs a dynamic programming
approach to determine the optimal solution to the identification of the change points
T (Bellman 1958; Aminikhanghahi and Cook 2017; Truong et al. 2020). The adaptation of
this algorithm to our non-stationary IRL problem is reported in Algorithm 2, which we
name Non-Stationary �-GIRL (NS-�-GIRL). It is worth noting that the optimization of
such objective consists in solving O(T2) IRL problems, one for each 1 ≤ u < v ≤ T:

Q(�) = logL(�|�) =
k∑

j=1

T∑
i=1

�{i∈Ij}
log p(�i|�j)

=

k∑
j=1

∑
i∈Ij

log p(�i|�j)

=

k∑
j=1

log p(Dj|�j),

(14)
min

�uv ∈ ℝ
q

≥0‖‖�uv
‖‖1 = 1

(v − u)

v−1∑
i=u

‖‖‖�∇�� i(�)�uv
‖‖‖
2

[(�uv⊗Id)� i(�uv⊗Id)
T]

−1 .

2553Machine Learning (2021) 110:2541–2576	

1 3

4 � Related works

In recent years, there have been several successful applications of imitation learning meth-
ods to real-world problems. Robotics is perhaps the most common example (Osa et al.
2018). In this setting, learning policies on real robots is often prohibitive due to both sam-
ple-complexity and safety reasons, while expert demonstrations are fairly simple to obtain.
Due to their simplicity, behavioral cloning (BC) methods have received considerable atten-
tion. Kober and Peters (2009) trained a robotic arm to hit a ball in the table-tennis game.
The arm was guided by a human expert to generate trajectories and the ball-hitting pol-
icy was learned directly via BC on these demonstrations. Englert et al. (2013) addressed
the same problem but with an under-actuated robot using a model-based BC technique.
Abbeel et al. (2010) trained policies to drive an RC helicopter from human-teleoperation
trajectories. A similar problem was considered by Ross et al. (2013), who trained a control-
ler for an unmanned aerial vehicle capable of avoiding obstacles (e.g., trees in a forest).
Zhang et al. (2018) trained policies for several robotic manipulation tasks (e.g., grasping
or pushing objects) directly from images, with demonstrations generated in virtual reality.
Finn et al. (2017) used meta-learning to train image-based controllers that adapt to several
manipulation tasks using only a single visual demonstration. For a thorough discussion of
the applications of BC methods, we refer to the recent surveys by Hussein et al. (2017) and
Osa et al. (2018).

Although IRL methods have also enjoyed many success stories in complex robotics
problems, their application in this context is considerably more difficult than BC. In fact,
as mentioned in the introduction, in this kind of problems, a model of the environment is
hardly ever available in practice, it is difficult or unsafe to interact with the real system,
and expert demonstrations are often very limited. Therefore, many traditional IRL tech-
niques are not applicable and model-free and data-efficient (e.g., batch) methods are typi-
cally preferred. Among the notable applications, Boularias et al. (2011) used a model-free
variant of MaxEnt IRL to learn the “ball-in-a-cup” task, in which a robot must swing a ball
connected to a rope into a cup. The task was demonstrated by a human expert only a very
small number of times and the resulting controller was shown successfully on a real robot.
Bogert and Doshi (2014) proposed an IRL method for a real patrolling problem in which
a robot must penetrate the perimeter patrolled by other robots inferring their intentions.
Finn et al. (2016) learned about house-keeping tasks (such as moving dishes and pour-
ing liquids) using a model-free IRL algorithm with non-linear reward functions and visual
demonstrations.

Autonomous driving is another field where the application of imitation learning (and,
in particular, IRL) techniques has received increasing interest. This setting presents even
more complications than robotics problems and, thus, the focus is typically on learning
policies in simulation. However, there have been many attempts to integrate real-world
driving demonstrations and to deploy the resulting controllers to real cars. Several BC
approaches have been proposed for learning end-to-end car-driving policies (which map
raw sensor data to actions) directly from expert demonstrations. These approaches provide
significant evidence of the capabilities of neural network-based controllers but are typically
difficult to deploy on real cars due to safety and interpretability reasons. Codevilla et al.
(2018) and Dosovitskiy et al. (2017) trained end-to-end image-based policies for complex
urban driving domains. The trained models were evaluated in the real-world using a toy
car. Similarly, Pan et al. (2017) adopted an end-to-end imitation learning method for off-
road autonomous driving that was successfully tested using toy cars.

2554	 Machine Learning (2021) 110:2541–2576

1 3

The application of IRL methods is typically on specific driving problems. Ziebart et al.
(2008) considered the problem of predicting driving behavior and route preferences. The
authors applied their MaxEnt IRL algorithm to a large dataset of real GPS data from dif-
ferent taxi cabs and showed that it was able to capture the route choices of the drivers. A
similar problem was considered by Wulfmeier et al. (2017) who extended the approach
of Ziebart et al. (2008) to learn non-linear reward functions. Silver et al. (2013) proposed
a maximum-margin method to learn driving maneuvers from human demonstrations and
successfully tested the resulting controller on a real-world vehicle. Kuderer et al. (2015)
employed the MaxEnt IRL algorithm to learn driving styles from demonstrations in order
to optimize the comfort perceived by passengers in the autonomous vehicle. The approach
uses data obtained by recording real drivers with different driving styles.

5 � Case study 1: Highway driving

5.1 � IRL from multiple experts

Highway driving is a widely employed benchmark for RL and IRL algorithms, thanks
to the potentially simple representation of the environment and the “few-constrained”
possibility in choosing the action. Here we focus on the problem of high-level control,
where the main decision the agent has to make is when to change lanes. This is a quite
common scenario, close to the setting considered in real autonomous vehicles, where
the presence of a low-level controller, which assures compliance with the safety dis-
tance with other vehicles, managing the speed accordingly and maintaining the center
of the lane, is assumed. Therefore, the lane-change problem consists in controlling the
ego vehicle on the highway and deciding when it is convenient to perform a lane change
on the left to overtake, or a lane change on the right, to occupy the rightmost free lane.9
Driver agents in this setting typically aim at proceeding along the highway as fast as
possible, while displaying a “natural” behavior, respectful of driving rules.

In this case study, we consider a mixed real/simulated setting. The demonstrations
are collected by human drivers, but the environment in which humans operate is simu-
lated. We employ SUMO simulator, an open-source, highly portable, microscopic and
continuous road traffic simulation package designed to handle large road networks (Kra-
jzewicz et al. 2012). SUMO focuses on high-level control of the car, integrating an
internal system that controls the vehicle dynamics. This mimics the low-level controller
of autonomous vehicles. Slight changes have been made to the simulator to ensure that
the car-follower models employed in the simulator are aligned with low-level controllers
used in real autonomous driving systems. For this reason, we believe that our setting is
not significantly different from the fully real environment. Furthermore, since we are
interested in recovering a reward function which is a transferable element, rather than an
imitating policy, the simulated environment is less critical than in the BC case.

In this kind of driving problems, the use of classical IRL algorithms is extremely chal-
lenging, since any interaction with the environment (e.g., to learn the optimal policy for
a candidate reward function) must be performed in simulation and must account for the

9  We use the right-hand traffic rules.

2555Machine Learning (2021) 110:2541–2576	

1 3

differences with the real vehicle.10 �-GIRL, on the other hand, requires only agents’ dem-
onstrations and can identify the reward function that the expert optimizes without interact-
ing with the environment. More specifically, we consider the case where we have interac-
tions from multiple agents and we can identify which agent each of our demonstrations
belongs to. The goal is to cluster agents based on their intentions.

The immediate application of the results of IRL in this scenario is in the field of autono-
mous driving. Specifically, we can exploit the clustering of agents based on their intentions
to identify agents that demonstrate unwanted behaviors. This allows removing from the
dataset demonstrations that would result in an imitation policy showing these unwanted
behaviors, such as unsafe driving or non-compliance with driving rules, with a possible
benefit in subsequent BC applications. Furthermore, and most importantly, we can use the

Fig. 3   Range in which the car in front is considered for front distances, highlighted in blue. The value
recorded is highlighted in yellow (Color figure online)

Fig. 4   The ego vehicle lane occupancy during a lane change (Color figure online)

10  Our method uses trajectories collected by human experts in simulation, but we never interact with the
simulator to perform forward RL. Thus, the presence of the simulator is less critical for our approach.

2556	 Machine Learning (2021) 110:2541–2576

1 3

identified reward functions to understand the different trade-offs performed by human driv-
ers. Consequently, those rewards can be employed to train an autonomous controller that
replicates (and possibly improves) the human behavior, only using the demonstrations of
agents that optimize a “safe” reward function. In the following sections, we will refer to the
controlled vehicle as the ego vehicle.

5.2 � System modeling

We present here details about the state representation considered in the lane change sce-
nario. We focus on three-lane highways, but the state space can be generalized to an arbi-
trary number of lanes. The state is composed of 25 high-level features extracted by the
observations of the environment. For two vehicles in each lane, one at the front and one
at the rear of the ego vehicle, we record the distance from the ego vehicle. The distance
considered is the one from the front bumper of the following vehicle to the rear bumper of
the leading vehicle, as shown in Fig. 3. A vehicle is considered in front of the ego vehicle
as long as its front bumper is in front of the rear bumper of the ego vehicle. We also record
their speeds and their lateral positions inside the corresponding lanes, to know if they are
making lane changes. The variables that represent the state of the ego vehicle are its speed,
its position over the lanes, a flag indicating whether the ego vehicle is changing lanes, and
two flags that check whether the ego vehicle has the free-left or the free-right. The free-left
and the free-right are evaluated only for vehicles visible by the sensors, therefore within the
visibility range, otherwise, they are true. The position of the ego vehicle in the lanes is rep-
resented as occupancy weights. For each lane of the highway, we record in what percentage
the ego vehicle is in each lane, considering the offset between the front bumper of the vehi-
cle and the center of the lane. Figure 4 shows an example of a lane change from the third
lane to the second lane (lanes ordered from right to left), together with the corresponding
occupancy arrays. In Fig. 4a the offset between the front bumper of the car (highlighted in
blue) and the center of the lane (highlighted in yellow), is highlighted in green. In this case,
the vehicle is 60% in the third lane and 40 % in the second lane.

The action space in the lane-change highway scenario consists of three actions, car_fol-
lowing, lane_change_right and lane_change_left . The car_following action leaves con-
trol of the car to the low-level controller which follows the planned route, cornering when
necessary, but does not make lane changes. Furthermore, it controls the vehicle speed to
avoid collisions and maintains a safe distance with the vehicle in front. The controller sets
the safety speed considering the vehicles that are in sight of the sensors only and adjusts
it respecting the maximum practicable deceleration and acceleration. The remaining two
actions are the lane changes, left or right. These maneuvers are non-interruptible, once
issued, they cannot be reverted. For more details on the environment modelling see Lik-
meta et al. (2020).

5.3 � Reward design

The lane change scenario is a classic example of a multi-objective task. Humans consider
several objectives, corresponding to the reward features, while driving along highways,
including: (1) going as fast as possible, (2) occupying the rightmost free lane, (3) avoiding
useless lane changes, and (4) keep safety distances with other vehicles. To encode these

2557Machine Learning (2021) 110:2541–2576	

1 3

objectives we employ three reward features. All the features are meant as punishment, so
they have negative values:

–	 Free-right ( �R ): to encode the objective of occupying the rightmost lane we use a
binary feature, activated during the timesteps when the agent could perform a lane
change on the right.

–	 Lane-change ( �L ): a binary feature is used to encode the objective of avoiding too many
lane changes. Since the lane change is non-interruptable and lasts 3s (30 timesteps),
this punishment is given entirely at the beginning of the lane change and has a high
value (30).

Fig. 5   3D inteface used to collect the human demonstrations

Fig. 6   Feature expectations of the human agents in the highway task

2558	 Machine Learning (2021) 110:2541–2576

1 3

–	 Distance front ( �D ): a feature to encode both the safety objective and the maintenance
of the high-speed profile. This is a feature that incorporates the distance of the ego
vehicle from the vehicle in front of it. It grows linearly with the distance to the front
vehicle, the higher the distance of the ego vehicle from the vehicle in front the higher
is its value. It has the highest value (0) when there is no vehicle in front. This objective
also encodes the high-speed objective, since it is the low-level controller that regulates
the speed of the ego vehicle when it is about to violate safety distances. Without any
vehicle ahead, the ego vehicle continues to accelerate until it reaches the maximum
allowed road speed.

5.4 � Data description

In the SUMO simulator, we model scenarios with different road topologies and traf-
fic intensities, randomizing the flow of vehicles, to ensure the generation of sufficiently
general and realistic situations. We set the control frequency to 10 Hz for all our experi-
ments, which means that we choose an action to be performed every 100 ms. During the
simulation, SUMO provides information about the other vehicles around the ego vehicle.
More specifically, we can query SUMO for the positions and velocities of all the cars in
the simulation. This information is also available for the decision-making module in a real
car, being provided by the sensing module. To collect the dataset we built a 3D-interface
on top of the SUMO traffic simulator, connected to the traffic simulator. The 3D interface,
shown in Fig. 5, was used by human drivers to collect trajectories. The dataset consists of
demonstrations provided by 10 different drivers. Each set of demonstrations consists of 50
trajectories each of 400 steps, recorded at 10 Hz, resulting in trajectories equal to 40 s of
driving time, for a total of 5.5 hours of driving.

The agents show different behaviors. To grasp an initial understanding of the differ-
ences, we show in Fig. 6 the feature expectations for all the agents considered. In Appen-
dix A.1, we also show some 2D visualizations of the trajectories of some of the experts.

Fig. 7   Distributions of lane changes for each agent. The y-axis reports the fraction of demonstrated actions
where either a lane change to the left (in blue) or one to the right (in orange) was performed (Color figure
online)

2559Machine Learning (2021) 110:2541–2576	

1 3

Finally, it is worth noting that the distribution of the actions in the dataset is highly unbal-
anced. We want to identify the intentions that drive human agents in changing lanes while
driving, but most of the actions in the dataset are car-following. Figure 7 shows the distri-
butions of lane changes for each agent.

5.5 � Results

The BC phase is performed by means of a one-layer neural network, with 8 hidden units
and a Boltzmann output layer to represent the policy model for the AD task. Different
architectures were explored, but the simpler models were unable to accurately predict the
agents’ behaviors and more complex models did not offer substantial improvements. We
recall that in this task, the BC dataset is highly unbalanced, with most of the actions in
the dataset being car-following (NOP) and only a small portion being lane changes. To
deal with this problem, we employed oversampling over the minority classes. Figure 8
shows the accuracy of all agents’ policies derived via BC, for each action separately. We
can notice that the BC models generally predict the agents’ behaviors well, except for the
4th agent, which seems to have a more non-deterministic response to the state. For agents
Craig and Judy, the column corresponding to the lane-change left is not represented since
the respective agents never performed that action.

Fig. 8   Accuracy (fraction of correctly-predicted actions) of the BC models in the AD task (Color figure
online)

Fig. 9   IRL loss (Eq. 12) in the
Highway domain as a function of
the number of clusters

2560	 Machine Learning (2021) 110:2541–2576

1 3

Table 1   The reward weights
learned by �-GIRL in the AD
task

Reward features N. agents

Free-right Lane-change Distance front

Cluster 1 0.76 0.00 0.24 3
Cluster 2 0.09 0.00 0.91 5
Cluster 3 1.00 0.00 0.00 1
Cluster 4 0.19 0.81 0.00 1

Table 2   Cluster assignment
made by �-GIRL in the AD task

Agents

Cluster 1 Eve, Grace, Alice
Cluster 2 Carol, Erin, Bob, Dan, Chuck
Cluster 3 Craig
Cluster 4 Judy

(a) (b) (c)

Fig. 10   Visualization of the weights of the clusters (Color figure online)

Fig. 11   Intra-cluster BC evaluations (Color figure online)

2561Machine Learning (2021) 110:2541–2576	

1 3

Clustering results We employ Multiple-Intention �-GIRL, as described in Sect. 3.2,
with k = 4 clusters. The results are summarized in Tables 1 and 2, with a visualization
of the reward weights in Fig. 10a. We can identify four clear clusters. The first cluster
includes three agents showing the “best” behavior. These agents keep the right lane while
overtaking slow vehicles. This translates into a high weight for the free-right objective,
since it is a binary feature activated when we could perform a lane change to the right, and
some weight for the distance-front objective. As we mentioned earlier, the distance-front
objective is related to maintaining high speed, as the low-level controller starts to deceler-
ate to maintain safety distances when the front vehicles are too close. In fact, they start
overtaking vehicles only when the low-level controller starts to slow down. It is also inter-
esting to note that the change-lane objective is not given any weight, since changing lanes
without motivation is already suboptimal because it decreases speed while changing lane
and creates unnecessary free-rights. The next cluster contains agents who rarely occupy the
right lane but focus on maintaining a high-speed profile that provides most of the weight
to the front-distance feature. Again, useless lane changes are implicitly optimized, because
they affect the speed of the ego vehicle and are advantageous only when you employ them
to overtake a slow vehicle. Finally, we have two clusters composed of single agents. One
of them tends to keep the right lane, but changes lanes more rarely and takes longer time
to decide to change lanes, while the last agent focuses only on the free right features and
changes lane to the right immediately when given the possibility.

To investigate the robustness of clustering through �-GIRL, we increase the number of
clusters. By construction, the clustering loss function will always separate clusters (Fig. 9).
The remarkable behavior of MI-�-GIRL in this problem is that an overestimation of the
number of clusters can be easily detected since the weights of the separated clusters will
not differ much from the original one. This can be seen in Fig. 10b and c where the newly
added clusters are close to the existing ones.

−80
−60
−40
−20

0

A
ve
re
ge

re
tu
rn

Cluster 1

−80
−60
−40
−20

0

A
ve
re
ge

re
tu
rn

Cluster 2

−80
−60
−40
−20

0

A
ve
re
ge

re
tu
rn

Cluster 3

Trained policy Cluster agents Out of cluster agents

−80
−60
−40
−20

0

A
ve
re
ge

re
tu
rn

Cluster 4

Fig. 12   Average return of the policy trained with the reward function of each cluster and mean of the aver-
age return of the experts divided based on whether they have been assigned to the cluster (Color figure
online)

2562	 Machine Learning (2021) 110:2541–2576

1 3

BC fails to generalize We investigate how transferable the BC policies are between
agents belonging to the same cluster. To this purpose, we took the policies trained to imi-
tate each agent separately and tested them on all demonstrations of their identified clusters
(excluding their own). Figure 11 shows the accuracies of the BC policies of each agent. We
only show 8 agents as the other two are alone in their respective clusters. We can clearly
see that BC may easily fail to generalize across agents who might show slightly different
behaviors while optimizing the same reward functions. Recall, in fact, that for any reward
function, there might exist multiple optimal policies. Hence, agents with the same intent

B
ob

A
lic
e

C
ar
ol

C
hu

ck

C
ra
ig

D
an

E
ri
n

E
ve

G
ra
ce

Ju
dy

−200

−100

0

A
ve
ra
ge

re
tu
rn

Cluster 1

B
ob

A
lic

e

C
ar
ol

C
hu

ck

C
ra
ig

D
an

E
ri
n

E
ve

G
ra
ce

Ju
dy

−100

−50

0

A
ve
ra
ge

re
tu
rn

Cluster 2

Trained policy Cluster agents Out of cluster agents

B
ob

A
lic

e

C
ar
ol

C
hu

ck

C
ra
ig

D
an

E
ri
n

E
ve

G
ra
ce

Ju
dy

−300

−200

−100

0

A
ve
ra
ge

re
tu
rn

Cluster 3

B
ob

A
lic

e

C
ar
ol

C
hu

ck

C
ra
ig

D
an

E
ri
n

E
ve

G
ra
ce

Ju
dy

−150

−100

−50

0

A
ve
ra
ge

re
tu
rn

Cluster 4

Fig. 13   Average return of the policy trained with the reward function of each cluster and average return of
each expert evaluated with the reward function of each cluster (Color figure online)

2563Machine Learning (2021) 110:2541–2576	

1 3

can demonstrate different policies, and BC tends to “overfit” to the specific behavior. IRL
methods, on the other hand, can correctly group different behaviors into the same intent.

Next we investigate how “good” the recovered reward functions fit the behaviour of the
agents assigned to them. Unfortunately, since we do not have the “true” rewards it is hard
to do a quantitative evaluation of the results since we cannot compute the error on the
recovered weights. Nonetheless, given the presence of the simulator, we can train agents
that optimize the recovered reward functions. We used the methods described in Likmeta
et al. (2020), which use parametrized rule-based policies to represent the agent’s policy,
and have shown good performance in this Highway environment. We trained one agent for
each cluster and we compare the expected return of these trained policies, with the average
return of each agent in that specific reward function. For details on the training procedure
see Appendix A.2. The results are shown in Fig. 12. Here we show for each of the 4 clus-
ters, the return of the policy trained in the environment with the reward function of the
cluster in pink, compared to the average return of the agent assigned to that cluster under
the reward function of the cluster in green and the return of the other agents (assigned
to other clusters) under the same reward function, in blue. So every subplot of the figure
shows performances of different policies all evaluated with the same reward which means
that their performances are comparable (comparisons accross clusters cannot be made
since they have different reward functions). As can be expected, in all clusters, the agents
not assigned to that cluster perform poorly. The best performing policy is generally the
policy explicitly optimizing that reward function, except in Cluster 2 where the RL training
procedure failed to recover a good policy. And finally the returns of the policies assigned
to the cluster, have a policy close to the policies which explicitly optimize that return. The
results of Cluster 2, where the trained policy is the one performing the worst, show also the
general difficulty of evaluating the reward functions recovered from our algorithms, since
we are not guaranteed that an agent trained with the given reward functions will achieve
the optimal performcance. Figure 13 shows in detail the performances of each agent in
each cluster.

Clustering via feature expectations Finally, we compare the clustering performed using
�-GIRL, with a clustering based on the features expectations of the agents. To this end, we
cluster the feature expectations of the agents using a K-means with k = 4 clusters. Table 3
shows the results of this clustering. Compared to the clustering done by IRL, we can see
that the first cluster contains agents that show very heterogeneous behaviors. This cluster
contains the three “good” agents, identified by the IRL clustering, together with two agents
that show a greater preference for keeping a high-speed profile (Bob and Dan). It also sep-
arates agent Chuck from the other agents who show a preference towards maintaining a
high-speed and the left lane, because her feature expectations are “far” from the others,
even though the objectives are the same.

Table 3   Cluster assignment
based on the feature expectations

Agents

Cluster 1 Bob, Alice,
Dan, Eve,
Grace

Cluster 2 Carol, Erin
Cluster 3 Craig, Judy
Cluster 4 Chuck

2564	 Machine Learning (2021) 110:2541–2576

1 3

6 � Case study 2: Twitter IRL from multiple experts

Social networks like Twitter and Facebook are actively used by millions of users every day.
Inferring the users’ interests and intentions is a relevant problem in this context with a vari-
ety of possible applications (Piao and Breslin 2018). For instance, understanding why users
perform certain actions, like posting a message or clicking on an ad, and what their pref-
erences are, allows the system to provide personalized recommendations and, in general,
improve the user experience. Similarly, inferred intentions might help detect and counter
dangerous agents, such as bots or fake profiles, who could harm the system or its users.
Several learning-based techniques have been designed for this problem (Saravia et al.
2017; Song et al. 2015; Xu et al. 2011; Sadri et al. 2019). We refer the reader to an inter-
esting survey by Piao and Breslin (2018). To the best of our knowledge, the only previous
work that has applied IRL to this problem is Das and Lavoie (2014), in which the authors
presented an IRL-based algorithm to infer the intentions of Reddit users. Although almost
no previous work has been proposed in this direction, we believe that IRL is a natural and
relevant alternative to address this problem. In fact, common existing techniques typically
focus on learning the users’ behavior, i.e., how users will respond to certain stimuli, in
order to understand what their interests are. However, form our perspective, social network
users are learning agents who act in order to maximize certain objectives, and inferring
these objectives is what really informs us about their interests and behavior.

Here we explore the adoption of IRL methods, precisely the MI-�-GIRL algorithm, to the
problem of inferring the users’ intentions on Twitter. In particular, we try to answer the fol-
lowing questions: “Why does a user decide to retweet a post? What is her intention in deciding
to post the tweet?” This problem poses several challenges from the IRL perspective. First, we
do not have a simulator of the environment and the interaction with the social network might
be time-prohibitive and, in some cases, illegal. Therefore, model-free and batch algorithms are
required. Furthermore, although lots of data are available for free, collecting this data is very
time-consuming and requires significant preprocessing (cleaning, filtering, anonymizing, etc.).
Finally, the problem involves a huge amount of agents whose behaviors and intentions depend
on those of other agents.

6.1 � System modeling

We now describe our simplified model of the user-Twitter interaction. Among the several
actions that a user can perform on Twitter, we restrict our attention to the most common one:
re-tweeting a post. In our model, a user observes a tweet (generated by another user) and has
to decide whether to re-tweet it or not. Intuitively, this simple model allows us to capture most
of the relevant interests and intentions of Twitter users. In fact, there exist several reasons why
a user might decide to re-tweet a post or not. For instance, the user might be personally inter-
ested in the content/topic of the post, or she might think that the post would be appreciated by
other Twitter users, or she might simply intend to re-tweet everything (e.g., a spam bot).

In each episode of interaction with the social network, the agent observes a sequence of
tweets and must decide for each one whether to retweet it or not. The state encodes informa-
tion about the last observed tweet and about the agent’s past behavior. It is modeled by three
variables: the popularity of the tweet, the number of retweets recently performed by the agent,
and the retweet time. The popularity score encodes the likelihood that the general community

2565Machine Learning (2021) 110:2541–2576	

1 3

will like the last observed tweet. It is computed as the average of the number of likes to the
tweet and the number of retweets,

and then normalized by the average popularity-score of the user’s tweets. The num-
ber of retweets performed by the agent is computed on a retweet window of T = 10
steps, i.e., the last 10 observed tweets. Finally, the retweet time is a measure propor-
tional to the time elapsed since the last retweet performed by the agent. It is computed as
�time = 0.1 ⋅ (t − t0) − 1 , where t is the first time the agent receives a tweet that she decides
to retweet after having retweeted at time t0 < t . State transitions work as follows. The next
tweet does not depend on the current one or the agent’s actions since it is generated natu-
rally by the environment (i.e., by other users). Note, however, that the popularity score
of the retweet might, in fact, depend on the past actions since, for example, agents that
retweet interesting content might increase their number of followers and thus the popular-
ity of their retweets. The retweet time is reset to zero if the agent performed a retweet in
the current step or updated accordingly as described above if the agent did not retweet, and
similarly for the number of retweets.

6.2 � Reward design

In this domain, the reward features are the same as the state ones, except that the Pop-
ularity-score is set to zero whenever the agent does not re-tweet. Intuitively, these fea-
tures allow us to capture different interesting intentions. For instance, users who want

Popularity-score =
Nlike + Nretweet

2
,

Table 4   The reward weights
learned by �-GIRL: popularity
score of a retweet, number of
retweets in a window T, and
retweet time ( �

time
)

Reward features N. agents

Popularity N. retweets �
time

Cluster 1 0.56 0.00 0.44 4
Cluster 2 0.16 0.19 0.65 6
Cluster 3 0.78 0.03 0.19 4

Fig. 14   Twitter clustering statistics. Average number of followers (left), followings (center) and retweets
(right) for each cluster

2566	 Machine Learning (2021) 110:2541–2576

1 3

to share content that is interesting to the community typically focus on the popularity
score while keeping reasonable values for the other two features (so that they do not
appear spammers). On the opposite side, users who want to spam every tweet focus on
the number of retweets, ignoring their popularity.

6.3 � Data collection and processing

The dataset was collected using the tweepy API (http://​docs.​tweepy.​org), a Python library
for accessing the Twitter API. We selected 14 Twitter accounts, and we obtained all of
their followed accounts (5745 in total), using the API. For every of these 5759 ( 14 + 5745 )
accounts we collected their tweets and re-tweets from November 2018 to the end of Janu-
ary 2019 using a crawling process. We obtained a total number of 468304 tweets posted
by these accounts on the Social Network. We assumed that each user only observes tweets
from the accounts she follows, hence ignoring those coming from general (not followed)
Twitter users. Furthermore, since a (human) Twitter user is very unlikely to view all the
tweets from her followings while generating trajectory data we considered a probability
of 0.01 that the agent sees each tweet. We used this process to split the tweet data for each
agent into trajectories of 20 tweets, which were used directly to run MI-�-GIRL.

6.4 � Results

We perform behavioral cloning on the agents’ demonstrations employing a two-layer neu-
ral network (8 neurons each). Then, we divide the demonstrations in trajectories of size 20,
which gives us exactly one retweet window in every trajectory. We apply MI-�-GIRL with

Fig. 15   Map of the Lake Como basin

http://docs.tweepy.org

2567Machine Learning (2021) 110:2541–2576	

1 3

k = 3 clusters. The results are shown in Table 4, while Fig. 14 reports some statistics of the
three clusters found.

We can observe that the users in the first cluster seem to be interested in retweeting
posts with high popularity at a high frequency, i.e., they aim at maximizing the popular-
ity score while minimizing the retweet time. This cluster can be interpreted as a grouping
of standard Twitter users. This is also confirmed by Fig. 14, which shows that users in
this cluster follow many other users while having fewer followers, the standard situation
in the social network. The second cluster, on the other hand, groups users who do not aim
at retweeting too often. These are users who do not frequently use the social network, as
they have few retweets and follow a small number of people. The last cluster is perhaps
the most interesting one: these agents tend to retweet all popular tweets. After inspecting
the users assigned by the algorithm to this cluster, we found that they are mostly commer-
cial accounts (e.g., bots, companies, or two HR managers). Not surprisingly, they show the
intention to post popular tweets, but they are uninterested in following other accounts, as
Fig. 14 highlights. For completeness, we show in Appendix B.1 the results of clustering
based on feature expectations.

7 � Case study 3: Como Lake Dam IRL from non‑stationary expert

Lake Como is a sub-alpine lake in northern Italy, characterized by an active storage capac-
ity of 254 Mm3 fed by a 4552 km2 catchment (Fig. 15). The main tributary and only emis-
sary of the lake is the Adda river, the fourth longest Italian river, whose sublacual part
originates in the southeastern branch of the lake and feeds eight run-of-the-river hydroelec-
tric power plants and serves a dense network of irrigation canals belonging to four irriga-
tion districts, with a total irrigated area of 1400 km2 . The southwestern branch of the lake
constitutes a dead-end exposed to flooding events, particularly in the city of Como which
is the lowest point of the lake shoreline. The hydro-meteorological regime is characterized
by scarce discharge in winter and summer, and peaks in late spring and autumn due to
snowmelt and rainfall, respectively. Snowmelt from May to July is the most important con-
tribution to the seasonal lake storage. The agricultural districts downstream prefer to store
snowmelt in the lake to satisfy the peak summer water demands, when the natural inflow is
insufficient to meet irrigation requirements. Yet storing such water increases the lake level
and, consequently, the flood risk, which could instead be minimized by keeping the lake
level as low as possible. The lake regulation has, therefore, to balance flood protection to
the lake shores and water supply to downstream users.

While the objectives that the human operator in charge of deciding the water release are
known, their relative importance is unknown and it might change over time. In this setting,
IRL can help in understanding the operator preferences. This knowledge could lead to the
future development of artificial systems helping the operator by suggesting a suitable water
release amount or even a fully automatic controller. Additionally, exploiting NS-�-GIRL,
we can capture the possible variations in the operator preferences over time.

While RL is receiving growing attention in the water community, the application IRL
is still in its infancy. In Mason (2018), the Cutting-Plane Inverse Reinforcement Learning
algorithm (Pirotta 2016) is first tested in a synthetic case study; the experiments show that
CPIRL is able to identify the specific tradeoff underlying a simulated control policy and to
distinguish among different formulations of the same objective. The same algorithm is also
used to identify changes in the operations of an Alpine hydropower reservoir in response

2568	 Machine Learning (2021) 110:2541–2576

1 3

to the transition from a regulated electric energy market to a free setting. In Mason et al.
(2018), a multilateral negotiation process replaces IRL in the identification of the prefer-
ence among multiple objectives. The method assumes that multiple virtual agents, which
independently optimize different objectives, periodically negotiate a compromise policy
for the operation of the system. The authors also model preference dynamics via periodic
negotiations where the agents’ attitudes in each negotiation step are determined by the
recent system performance.

7.1 � System modeling

The system is modeled as a discrete-time, periodic, nonlinear, stochastic MDP with
a continuous state variable representing the water stored in the lake St , a continuous
action that controls the water released at , a state-transition function affected by the sto-
chastic lake inflow qt+1 to describe the mass balance equation of the lake storage, i.e.

where St is the lake storage at time t; qt+1 the inflow in the time interval [t, t + 1) , rt+1 the
water volume released in the same interval, which coincides with the action at corrected,
where appropriate, with a non-linear release function determining the minimum and maxi-
mum releases feasible for the time interval to respect physical and legal constraints (e.g.,
spills when the lake level exceeds the maximum capacity). In the adopted notation, the
time subscript of a variable indicates the time instant when its value is deterministically
known. The reservoir storage is known at time t by measuring the lake level ht and thus is
denoted as St , while the net inflow is denoted as qt+1 because it can be known only at the
end of the time interval.

7.2 � Reward design

We model the competing interests of flood control and water supply using the following
reward functions, with a specific feature accounting for intense drought events:

(15)St+1 = St + qt+1 − rt+1(St, at, qt+1)

Fig. 16   Lake level and flood thresholds (left); cyclostationary average inflow, release and demand (right).
Shaded areas refer to the historical variability over the 1946–2010 period

2569Machine Learning (2021) 110:2541–2576	

1 3

–	 Water supply deficit ( �D ): the daily water deficit between the lake release rt+1 and the
water demand dt of the downstream system:

–	 Flood risk ( �F ): a penalization function that is large for small releases associated to
high lake levels:

 with rF = 120 and rF = 5.

(16)�D
t
= max(rt − dt, 0).

(17)𝜙F
t
=

⎧⎪⎨⎪⎩

0 if rt+1 > rF

−

�
r
F
−rt+1

r
F
−rF

�2

if rF ≤ rt+1 ≤ r
F

−1 otherwise

,

Fig. 17   Graphical representation
of the weights recovered for one
(left) and five (right) regimes.
The crosses use the same color
coding as the intervals in Fig. 20
(Color figure online)

Fig. 18   Comparison of the historical regulation (red square) with the set of Pareto optimal control poli-
cies (gray circles) exploring the trade-off between flood control and water supply obtained in Giuliani et al.
(2019). The historical regulation reveals a preference for reducing floods, as confirmed by our results in
Fig. 17 (Color figure online)

2570	 Machine Learning (2021) 110:2541–2576

1 3

–	 Drought risk ( �L ): a penalization that is large for large releases associated to low lake
levels:

 with rL = 500 and rL = 5:

7.3 � Data description

The dataset is composed of the historical trajectory of lake levels, inflows, and releases
over the period 1946–2010, which are illustrated in Fig. 16. All data are daily and were
provided by Consorzio dell’Adda (www.​addac​onsor​zio.​it). In Fig. 16 we show the lake
level, together with the inflow and release for a year, averaged over the considered time
interval (1946–2010).

(18)𝜙L
t
=

⎧⎪⎨⎪⎩

0 if rt+1 < rL

−

�
rt+1−r

L

r
L
−rL

�2

if rL ≤ rt+1 ≤ r
L

−1 otherwise

,

Fig. 19   IRL and BC losses as
a function of the number of
regimes. The IRL loss is the
one of Eq. 14. The BC loss is
the cross-entropy of the same
intervals computed by IRL

Fig. 20   Identified year intervals for different number of regimes (Color figure online)

http://www.addaconsorzio.it

2571Machine Learning (2021) 110:2541–2576	

1 3

7.4 � Results

We employed as state representation the concatenation of the lake level ht , the inflow of the
previous day qt , the demand of the current day dt and the actions of the previous two days
at−1 and at−2:

For the preliminary BC phase, we employed a Gaussian policy with fixed variance �2 = 1
and mean which is linear in the state st.

The human operator has a set of preferences that are unknown. First of all, we focus
on the IRL results without any time interval subdivision, i.e., when considering just one
regime. The weights recovered in this case are shown in Fig. 17 left. We notice a slight
predominance of the interest in controlling the floods, whose feature �F is weighted with
�F = 0.47 , whereas the remaining weight is divided between the feature of the demand �D
( �D = 0.34 ) and the control of the drought events �L ( �L = 0.19 ). These preferences can
be validated by comparing the historical data with the set of Pareto optimal control policies
exploring the tradeoff between flood control and water supply obtained in Giuliani et al.
(2019). The mapping of the historical regulation and of the Pareto optimal solutions in the
space of water supply deficit and flood control illustrated in Fig. 18 shows how the opera-
tor is almost Pareto efficient and the historical regulation attains very good performance in
terms of flood control at the cost of high values of water supply deficit.

Since the available data span a time period of 65 years, we investigate whether the
behavior of the lake operator displays a stationary intention or the underlying preferences
change over time. As many environmental systems, the Lake Como is a non-stationary sys-
tem that has undergone several alterations over time, which might have changed the prefer-
ences of the regulator. For this purpose, we employ NS-�-GIRL, described in Sect. 3.3,
by considering a single trajectory the sequence of states and actions observed along a one
year period. The results are shown in Fig. 19 and 20. First of all, looking at the IRL loss
(Fig. 19) we observe a significant improvement moving from one regime to two, then the
loss keeps reducing but with smaller benefits. From an elbow analysis, we can conclude
that a number of regimes of 4 or 5 result suitable for the problem. Looking at the BC loss,
we notice an overall reduction as well, although not monotonic.

Concerning the interval subdivision, according to the properties of the real domain and
the events that occurred, we believe that the most interpretable one is the case with five
regimes. The first two time periods (1946–1949 and 1950–1959) can be seen as set-up
periods in which the operator tries different policies and learns how to operate the dam,
which was constructed in 1946. Overall, this period displays a preference towards reducing
flood risk. Moving to the third period (1960-1988) we appreciate a notable change in the
intentions trade-off. Indeed, the estimated weights increase the preference toward satisfy-
ing the downstream water demand ( �D = 0.47 ) while reducing the interest in avoiding the
floods ( �F = 0.33 ). The notable length of this period can be interpreted as an indicator
of the fact that the human regulator has converged to a stable policy. However, starting
from 1989 we notice a significant variation of trade-off that becomes largely driven by
flood control. In the time interval 1989–2002, most of the weight (0.94) is given to the
feature �F . This change of intention can be justified by the large flood event that occurred
in 1987, registering the highest level in the historic records. This event was followed by
other floods, which might have further consolidated this conservative behavior that mini-
mizes flood risk. In recent years, the climatic conditions in the region have manifested a

(19)st =
(
ht, qt, dt, at−1, at−2

)
.

2572	 Machine Learning (2021) 110:2541–2576

1 3

drying trend inducing a further modification of the operator’s preferences. The summer of
2003–2005–2006 represent extreme, unprecedented drought events (Giuliani et al. 2016).
Our results capture this transition, with the period (2003–2010) that is associated with a
new regime that assigns a high weight to reducing drought risk ( �L = 0.59 ) and supplying
water demand ( �D = 0.41 ) while reducing the importance of flood control.

This analysis allows grasping a general overview of how the operator’s preferences,
which are modeled via intentions, change over time. However, several questions remain
open. First, the choice of a suitable number of regimes, by just observing the data is chal-
lenging. The elbow analysis can provide some suggestions, but still, we needed the domain
expert’s knowledge to understand whether a subdivision is reasonable. Second, the five
regime setting allows us to provide some interpretation but displays limits as well. Spe-
cifically, the subdivision is sometimes inaccurate. We may wonder why the fourth interval
(the one in which the flooding control objective is predominant) begins in 1989 instead
of 1988, being that the Como flooding event occurred in 1987. Third, the results are sig-
nificantly dependent on the choice of the features. A suitable feature design is an iterative
process that needs to account for both the domain peculiarities and the characteristics of
the employed IRL algorithms.

8 � Discussion and conclusions

We tackled the problem of inferring the intentions of human operators in several real-world
scenarios via IRL algorithms. In these settings, it is important to have algorithms that oper-
ate in a model-free, batch manner, since, in most applications, the model of the environ-
ment is not available and there is no possibility of interaction as well. We applied the MI-�
-GIRL algorithm to the Twitter and AD tasks, identifying multiple clusters of agents with
different reward functions. Furthermore, we proposed an extension to the �-GIRL algo-
rithm to deal with non-stationary intentions of the expert and applied it to the real-world
case of the Lake Como dam operation, identifying multiple operating regimes. We inter-
preted these regimes with the evolution of the dam environment supported by historical
data on the climatic events that occurred in the geographical area of the dam.

Although we were able to employ these algorithms in real-life scenarios, it is worth not-
ing that their application should not be seen as a black-box. Being in a fully-batch setting,
without further interaction with the environment, these algorithms depend heavily on the
system modeling phase. A bad design of the state, action, policy and most importantly,
reward space can highly affect the final results. We witnessed this phenomenon in all our
applications, and we believe that it is a price to pay when giving away the possibility to
interact with the environment. Typically, a bad state, action and policy space design can
be detected in the behavioral cloning phase, as usually the accuracy of the imitating policy
is low. Reward design is a more delicate phase, as with most of the IRL algorithms. In
general it is important to avoid features that can cause a constant expected return under
every policy. An example of these kind of features are constant features, features and its
negation and constant conic features combination. We have observed that usually a poor
reward design results in “extreme” reward weights, where all the weight goes to one of the
features. For these reasons, the application of this kind of algorithms requires a close inter-
action with experts of the specific field of application.

As future work, we intend to extend our approach to deal with settings in which the
action space of the demonstrations differs from the action space of the task in which

2573Machine Learning (2021) 110:2541–2576	

1 3

the reward functions will be applied. For instance, in the car driving problem, we might
consider the case where demonstrations come from the low-level control of the vehi-
cle, but the reward function will be applied for the high-level control. Furthermore, we
might consider a more extreme scenario, when we do not observe the actions performed
by the expert but only their effects on the state of the environment.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10994-​020-​05939-8.

Author Contributions  Not Applicable

Funding  Open access funding provided by Alma Mater Studiorum - Università di Bologna within the
CRUI-CARE Agreement.

Availability of data and material  The data relative to the AD task and the Como dam
operation are available in the code repository. The data relative to the Twitter case study
are available upon request because they need to be anonymized.Code availability  The code
of the experiments will be made available at https://​github.​com/​amari​ldoli​kmeta/​irl_​real_​
life.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abbeel, P., Coates, A., & Ng, A. Y. (2010). Autonomous helicopter aerobatics through apprenticeship learn-
ing. The International Journal of Robotics Research, 29(13), 1608–1639.

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In Proceedings
of the Twenty-first International Conference on Machine Learning, ICML ’04, p. 1, New York, NY,
USA. ACM.

Almingol, J., & Montesano, L. (2015). Learning multiple behaviours using hierarchical clustering of
rewards. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
4608–4613.

Aminikhanghahi, S., & Cook, D. J. (2017). A survey of methods for time series change point detection.
Knowledge and Information Systems, 51(2), 339–367.

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57(5), 469–483.

Babes, M., Marivate, V., Subramanian, K., & Littman, M. L. (2011). Apprenticeship learning about multiple
intentions. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp.
897–904.

Barratt, S. (2018). A matrix gaussian distribution. arXiv preprint arXiv:​1804.​11010.

https://doi.org/10.1007/s10994-020-05939-8
https://doi.org/10.1007/s10994-020-05939-8
https://github.com/amarildolikmeta/irl_real_life
https://github.com/amarildolikmeta/irl_real_life
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1804.11010

2574	 Machine Learning (2021) 110:2541–2576

1 3

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal of Artificial Intel-
ligence Research, 15, 319–350.

Bellman, R. (1958). On a routing problem. Quarterly of applied mathematics, 16(1), 87–90.
Bogert, K., & Doshi, P. (2014). Multi-robot inverse reinforcement learning under occlusion with interac-

tions. In Proceedings of the 2014 international conference on Autonomous agents and multi-agent
systems, pp. 173–180. Citeseer.

Boularias, A., Kober, J., & Peters, J. (2011). Relative entropy inverse reinforcement learning. Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp.
182–189.

Buehler, H., Gonon, L., Teichmann, J., & Wood, B. (2019). Deep hedging. Quantitative Finance, 19(8),
1271–1291.

Casella, G., & Berger, R. L. (2002). Statistical inference (Vol. 2). CA: Duxbury Pacific Grove.
Codevilla, F., Miiller, M., López, A., Koltun, V., & Dosovitskiy, A. (2018). End-to-end driving via con-

ditional imitation learning. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1–9. IEEE.

Das, S., & Lavoie, A. (2014). The effects of feedback on human behavior in social media: An inverse
reinforcement learning model. In Proceedings of the 2014 international conference on Autonomous
agents and multi-agent systems, pp. 653–660. International Foundation for Autonomous Agents and
Multiagent Systems.

Deisenroth, M. P., Neumann, G., Peters, J., et al. (2013). A survey on policy search for robotics. Founda-
tions and Trends in Robotics, 2(12), 1–142.

Dempster, M. A. H., & Romahi, Y. S. (2002). Intraday fx trading: An evolutionary reinforcement learn-
ing approach. In International Conference on Intelligent Data Engineering and Automated Learn-
ing, pp. 347–358. Springer.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). Carla: An open urban driving
simulator. arXiv preprint arXiv:​1711.​03938.

Englert, P., Paraschos, A., Deisenroth, M. P., & Peters, J. (2013). Probabilistic model-based imitation
learning. Adaptive Behavior, 21(5), 388–403.

Finn, C., Levine, S., & Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via policy
optimization. In Proceedings of the 33rd International Conference on International Conference on
Machine Learning—Volume 48, ICML’16, pp. 49–58. JMLR.org.

Finn, C., Yu, T., Zhang, T., Abbeel, P., & Levine, S. (2017). One-shot visual imitation learning via meta-
learning. arXiv preprint arXiv:​1709.​04905.

Giuliani, M., Li, Y., Castelletti, A., & Gandolfi, C. (2016). A coupled human-natural systems analysis of
irrigated agriculture under changing climate. Water Resources Research.

Giuliani, M., Zaniolo, M., Castelletti, A., Davoli, G., & Block, P. (2019). Detecting the state of the
climate system via artificial intelligence to improve seasonal forecasts and inform reservoir opera-
tions. Water Resources Research, 55, 9133–9147.

Hussein, A., Gaber, M. M., Elyan, E., & Jayne, C. (2017). Imitation learning: A survey of learning meth-
ods. ACM Computing Surveys (CSUR), 50(2), 1–35.

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., & Pérez, P. (2020).
Deep reinforcement learning for autonomous driving: A survey. arXiv preprint arXiv:​2002.​00444.

Klein, E., Geist, M., Piot, B., & Pietquin, O. (2012). Inverse reinforcement learning through structured
classification. Advances in Neural Information Processing Systems, 25, 1007–1015.

Klein, E., Piot, B., Geist, M., & Pietquin, O. (2013). A cascaded supervised learning approach to inverse
reinforcement learning. In Proceedings of the 2013th European Conference on Machine Learning
and Knowledge Discovery in Databases—Volume Part I, ECMLPKDD’13, pp. 1–16. Springer, Ber-
lin, Heidelberg.

Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The Interna-
tional Journal of Robotics Research, 32(11), 1238–1274.

Kober, J., & Peters, J. R. (2009). Policy search for motor primitives in robotics. Advances in Neural
Information Processing Systems, 21, 849–856.

Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development and applications of
SUMO—Simulation of Urban Mobility. International Journal on Advances in Systems and Meas-
urements, 5(3&4), 128–138.

Kuderer, M., Gulati, S., & Burgard, W. (2015). Learning driving styles for autonomous vehicles from
demonstration. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.
2641–2646. IEEE.

Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis, 88(2), 365–411.

http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1709.04905
http://arxiv.org/abs/2002.00444

2575Machine Learning (2021) 110:2541–2576	

1 3

Levine, S., Finn, C., Darrell, T., & Abbeel, P. (2016). End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1), 1334–1373.

Likmeta, A., Metelli, A. M., Tirinzoni, A., Giol, R., Restelli, M., & Romano, D. (2020). Combining
reinforcement learning with rule-based controllers for transparent and general decision-making in
autonomous driving. Robotics and Autonomous Systems, 131, 103568.

Mason, E. (2018). Beyond full rationality: modeling tradeoff dynamics in multi-objective water manage-
ment. PhD thesis, Politecnico di Milano, Italy.

Mason, E., Giuliani, M., Castelletti, A., & Amigoni, F. (2018). Identifying and modelling dynamic
preference evolution in multipurpose water resources systems. Water Resources Research, 54(4),
3162–3175.

Metelli, A. M., Pirotta, M., & Restelli, M. (2017). Compatible reward inverse reinforcement learning. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., edi-
tors, Advances in Neural Information Processing Systems 30, pp. 2050–2059. Curran Associates, Inc.

Nevmyvaka, Y., Feng, Y., & Kearns, M. (2006). Reinforcement learning for optimized trade execution.
In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pp. 673–
680, New York, NY, USA. Association for Computing Machinery.

Ng, A. Y., & Russell, S. J. (2000a). Algorithms for inverse reinforcement learning. In Proceedings of the
Seventeenth International Conference on Machine Learning, ICML ’00, pp. 663–670, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Ng, A. Y., & Russell, S. J. (2000b). Algorithms for inverse reinforcement learning. In ICML, pp. 663–
670. Morgan Kaufmann.

Nocedal, J., & Wright, S. (2006). Numerical optimization. Berlin: Springer.
Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., Peters, J., et al. (2018). An algorithmic

perspective on imitation learning. Foundations and Trends® in Robotics, 7(1–2), 1–179.
Pan, Y., Cheng, C.-A., Saigol, K., Lee, K., Yan, X., Theodorou, E., & Boots, B. (2017). Agile autono-

mous driving using end-to-end deep imitation learning. arXiv preprint arXiv:​1709.​07174.
Papini, M., Pirotta, M., & Restelli, M. (2019). Smoothing policies and safe policy gradients. arXiv pre-

print arXiv:​1905.​03231.
Peters, J., & Schaal, S. (2008). Reinforcement learning of motor skills with policy gradients. Neural

Networks, 21(4), 682–697.
Piao, G., & Breslin, J. G. (2018). Inferring user interests in microblogging social networks: A survey.

User Modeling and User-Adapted Interaction, 28(3), 277–329.
Pirotta, M. (2016). Reinforcement learning: from theory to algorithms. PhD thesis, Politecnico di

Milano, Italy.
Pirotta, M., & Restelli, M. (2016). Inverse reinforcement learning through policy gradient minimization.

In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pp. 1993–
1999. AAAI Press.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming. New
York, NY, USA: Wiley.

Ramponi, G., Likmeta, A., Metelli, A. M., Tirinzoni, A., & Restelli, M. (2020). Truly batch model-free
inverse reinforcement learning about multiple intentions. In The 23nd International Conference on
Artificial Intelligence and Statistics.

Ratliff, N. D., Bagnell, J. A., & Zinkevich, M. A. (2006). Maximum margin planning. In Proceedings of
the 23rd International Conference on Machine Learning, ICML ’06, pp. 729–736, New York, NY,
USA. ACM.

Ross, S., Melik-Barkhudarov, N., Shankar, K. S., Wendel, A., Dey, D., Bagnell, J. A., & Hebert, M.
(2013). Learning monocular reactive uav control in cluttered natural environments. In 2013 IEEE
international conference on robotics and automation, pp. 1765–1772. IEEE.

Sadri, A. M., Hasan, S., & Ukkusuri, S. V. (2019). Joint inference of user community and interest pat-
terns in social interaction networks. Social Network Analysis and Mining, 9(1), 11.

Saravia, E., Wu, S.-C., & Chen, Y.-S. (2017). A dynamic influence keyword model for identifying
implicit user interests on social networks. In Proceedings of the 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining 2017, pp. 1160–1163.

Shani, G., Heckerman, D., & Brafman, R. I. (2005). An mdp-based recommender system. Journal of
Machine Learning Research, 6(Sep), 1265–1295.

Silver, D., Bagnell, J. A., & Stentz, A. (2013). Learning autonomous driving styles and maneuvers from
expert demonstration. In Experimental Robotics, pp. 371–386. Springer.

Song, X., Nie, L., Zhang, L., Liu, M., & Chua, T.-S. (2015). Interest inference via structure-constrained
multi-source multi-task learning. Twenty-Fourth International Joint Conference on Artificial.
(Intelligence).

http://arxiv.org/abs/1709.07174
http://arxiv.org/abs/1905.03231

2576	 Machine Learning (2021) 110:2541–2576

1 3

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. Adaptive computation
and machine learning: MIT Press, second edition.

Sutton, R. S., McAllester, D. A., Singh, S. P., & Mansour, Y. (2000). Policy gradient methods for reinforce-
ment learning with function approximation. In Solla, S., Leen, T., and Müller, K., editors, Advances in
Neural Information Processing Systems 12, pp. 1057–1063. MIT Press.

Tateo, D., Pirotta, M., Restelli, M., & Bonarini, A. (2017). Gradient-based minimization for multi-expert
inverse reinforcement learning. In 2017 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1–8. IEEE.

Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point detection methods.
Signal Processing, 167, 107299.

Warlop, R., Lazaric, A., & Mary, J. (2018). Fighting boredom in recommender systems with linear rein-
forcement learning. Advances in Neural Information Processing Systems, 31, 1757–1768.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3–4), 229–256.

Wulfmeier, M., Rao, D., Wang, D. Z., Ondruska, P., & Posner, I. (2017). Large-scale cost function learning
for path planning using deep inverse reinforcement learning. The International Journal of Robotics
Research, 36(10), 1073–1087.

Xu, Z., Ru, L., Xiang, L., & Yang, Q. (2011). Discovering user interest on twitter with a modified author-
topic model. In 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent
Agent Technology, vol. 1, pp. 422–429. IEEE.

Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Goldberg, K., & Abbeel, P. (2018). Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE.

Ziebart, B. D., Maas, A., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse reinforcement
learning. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (Vol. 3, pp.
1433–1438).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Dealing with multiple experts and non-stationarity in inverse reinforcement learning: an application to real-life problems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Sequential decision-making
	2.2 Reinforcement learning and inverse reinforcement learning
	2.3 Parametric setting with linear reward

	3 Gradient-based inverse reinforcement learning
	3.1 -gradient inverse reinforcement learning
	3.2 Dealing with multiple experts and intentions
	3.3 Dealing with non-stationary experts

	4 Related works
	5 Case study 1: Highway driving
	5.1 IRL from multiple experts
	5.2 System modeling
	5.3 Reward design
	5.4 Data description
	5.5 Results

	6 Case study 2: Twitter IRL from multiple experts
	6.1 System modeling
	6.2 Reward design
	6.3 Data collection and processing
	6.4 Results

	7 Case study 3: Como Lake Dam IRL from non-stationary expert
	7.1 System modeling
	7.2 Reward design
	7.3 Data description
	7.4 Results

	8 Discussion and conclusions
	References

