
Top program construction and reduction for polynomial time
Meta-Interpretive learning

S. Patsantzis1 • S. H. Muggleton1

Received: 15 May 2020 / Revised: 30 September 2020 / Accepted: 23 December 2020 /
Published online: 8 February 2021
� The Author(s) 2021

Abstract
Meta-Interpretive Learners, like most ILP systems, learn by searching for a correct

hypothesis in the hypothesis space, the powerset of all constructible clauses. We show how

this exponentially-growing search can be replaced by the construction of a Top program:

the set of clauses in all correct hypotheses that is itself a correct hypothesis. We give an

algorithm for Top program construction and show that it constructs a correct Top program

in polynomial time and from a finite number of examples. We implement our algorithm in

Prolog as the basis of a new MIL system, Louise, that constructs a Top program and then

reduces it by removing redundant clauses. We compare Louise to the state-of-the-art

search-based MIL system Metagol in experiments on grid world navigation, graph con-

nectedness and grammar learning datasets and find that Louise improves on Metagol’s

predictive accuracy when the hypothesis space and the target theory are both large, or

when the hypothesis space does not include a correct hypothesis because of ‘‘classification

noise’’ in the form of mislabelled examples. When the hypothesis space or the target theory

are small, Louise and Metagol perform equally well.

Keywords Inductive logic programming � Meta interpretive learning � Machine learning �
Top program construction

1 Introduction

Meta-Interpretive Learning (MIL) (Muggleton et al. 2014) is a new setting for Inductive

Logic Programming (ILP) (Muggleton 1991). ILP algorithms learn logic theories from

examples and background knowledge. MIL learners additionally restrict the set, L, of
clauses that can be constructed from the symbols in the background knowledge and

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Sebastijan Dumančić,
Ute Schmid, Jay Pujara.

& S. Patsantzis
ep2216@ic.ac.uk

S. H. Muggleton
s.muggleton@imperial.ac.uk

1 Imperial College London, London, United Kingdom

123

Machine Learning (2021) 110:755–778
https://doi.org/10.1007/s10994-020-05945-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-2266-4663
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-020-05945-w&domain=pdf
https://doi.org/10.1007/s10994-020-05945-w

examples (the hypothesis language), by means of second-order clauses called metarules
(Muggleton et al. 2014). Each clause in L is an instantiation of a metarule with existen-

tially quantified variables substituted with predicate symbols and constants, in a process

called metasubstitution (examples of metarules from the MIL literature are listed in Table 3

in Sect. 3).

Like other ILP learners, the state-of-the-art MIL system, Metagol (Muggleton et al.

2014), searches the set of hypotheses that are possible to express as subsets of L for a

correct hypothesis that entails all positive examples and no negative examples. The set of

hypotheses expressible in L is the hypothesis space, denoted withH. Each hypothesis inH
is a set of clauses in L, therefore H is the powerset of L and searching H for a correct

hypothesis takes, in the worst case, time exponential in the cardinality of L.
On the other hand, enumerating the clauses in L need only take time polynomial in the

cardinality of L (see Fig. 1). Further, the subset of L that includes only the clauses in

correct hypotheses in H is itself a correct hypothesis: it is the union of all correct

hypotheses in H, and, therefore, the most general, correct set of clauses that entails each

other correct set of clauses in H. We will call this set of clauses in correct hypotheses the

Top program and denote it by >.
In the following sections we develop the framework of the Top program for MIL and

give a polynomial-time algorithm for its construction in Algorithm 1 that is capable of

learning recursive hypotheses and performing predicate invention as described in Sect. 6.2.

We then present a new MIL system, Louise, that implements Algorithm 1 in Prolog and

learns by Top program construction and reduction to remove logically redundant clauses

by application of Gordon Plotkin’s program reduction algorithm (Plotkin 1972). Tables 1

and 2 illustrate the inputs and outputs of Top program construction and reduction as

implemented in Louise.

Contributions In this paper, we make the following contributions:

– Proof that the Top program is a correct hypothesis.

– An algorithm for Top program construction.

Fig. 1 Searching a hypothesis
space H is an exponentially more
complex task than constructing a
hypothesis language L

123

756 Machine Learning (2021) 110:755–778

– Proofs that our algorithm constructs a correct Top program from a finite number of

examples in polynomial time.

– Louise, a new system for MIL by Top program construction and reduction.

– Empirical comparison of Louise to the state-of-the-art MIL system, Metagol.

Table 1 Top program construction. Eþ: positive examples. E�: negative examples. B: background
knowledge;M: metarules. Clauses marked with � in the Generalisation step are removed in the Special-
isation step because they entail negative examples. The Top program is completed in the Specialisation step

Top program construction

MIL problem

Eþ ¼ fpathða; bÞ ; pathða; cÞ g
E� ¼ f pathð1; 2Þ; pathð1; 3Þg
B ¼ fedge alphaða; bÞ; edge alphaðb; cÞ;
: edge alnumða; bÞ; edge alnumðb; cÞ;
: edge alnumð1; 2Þ; edge alnumð2; 3Þg
M ¼ fPðx; yÞ Qðx; yÞ;

Pðx; yÞ Qðx; zÞ;Rðz; yÞg
Generalisation step

pathðx; yÞ edge alnumðx; yÞ�
pathðx; yÞ edge alphaðx; yÞ
pathðx; yÞ pathðx; yÞ
pathðx; yÞ edge alnumðx; zÞ; edge alnumðz; yÞ�
pathðx; yÞ edge alnumðx; zÞ; edge alphaðz; yÞ
pathðx; yÞ edge alphaðx; zÞ; edge alnumðz; yÞ
pathðx; yÞ edge alphaðx; zÞ; edge alphaðz; yÞ
pathðx; yÞ pathðx; zÞ; edge alnumðz; yÞ
pathðx; yÞ pathðx; zÞ; edge alphaðz; yÞ
Specialisation step

pathðx; yÞ edge alphaðx; yÞ
pathðx; yÞ pathðx; yÞ
pathðx; yÞ edge alnumðx; zÞ; edge alphaðz; yÞ
pathðx; yÞ edge alphaðx; zÞ; edge alnumðz; yÞ
pathðx; yÞ edge alphaðx; zÞ; edge alphaðz; yÞ
pathðx; yÞ pathðx; zÞ; edge alnumðz; yÞ
pathðx; yÞ pathðx; zÞ; edge alphaðz; yÞ

Table 2 Reduction of the Top program in Table 1 by Plotkin’s program reduction algorithm (Algorithm 3)

Top program reduction

pathðx; yÞ edge alphaðx; yÞ
pathðx; yÞ edge alnumðx; zÞ; edge alphaðz; yÞ
pathðx; yÞ pathðx; zÞ; edge alnumðz; yÞ
pathðx; yÞ pathðx; zÞ; edge alphaðz; yÞ

123

Machine Learning (2021) 110:755–778 757

Structure In Sect. 2 we place our work in the context of the ILP and MIL literature. In Sect.

3 we describe our Top program construction algorithm and prove its correctness, con-

vergence and polynomial time complexity. In Sect. 4 we describe Louise. In Sect. 5 we

experimentally compare Louise to Metagol. We conclude in Sect. 6 with a summary of our

findings and proposed future work.

2 Related work

The cardinality of H for MIL is upper-bounded by an exponential function of the size of

the target theory, H, (Lin et al. 2014) and when the true cardinality of H approaches this

upper bound, a classical search of H becomes computationally infeasible on modern

hardware. As a result most single-predicate programs learned by Metagol as reported in the

MIL literature have at most 5 clauses. See e.g. (Muggleton et al. 2014; Lin et al. 2014;

Muggleton and Lin 2015; Cropper and Muggleton 2015; Cropper et al. 2016; Cropper and

Muggleton 2016; Muggleton et al. 2018; Morel et al. 2019).

Much of the MIL literature is preoccupied with reducing the size of H as a means of

reducing the maximum size of H and thereby the cost of a search for a correct hypothesis.

In the Episodic learning (Muggleton et al. 2014) and Dependent learning (Lin et al. 2014)

settings, Metagol learns larger multi-predicate programs by incrementally learning small

sub-programs while the variant MetagolAI learns from abstractions and higher-order

background knowledge (Cropper and Muggleton 2016). Such techniques take advantage of

the theory reformulation (Stahl 1993) aspect of predicate invention to reduce the size of H
to fewer than 5 clauses and allow learning to proceed when the complexity of a search ofH
would otherwise be overwhelming. Top program construction is efficient when H is large

and when H is large and does not require predicate invention for the purpose of learning

programs larger than 5 clauses.

Metarules, central to MIL, where originally proposed in (Emde et al. 1983), where the

metarules named Chain, Inverse and Identity in Table 3, representing, respectively, the

concepts of transitivity, reflexivity and symmetry between binary relations formed the

basis of a mechanism for concept discovery. This approach was further developed in

systems like METAXA.3 (Emde 1987), BLIP (Wrobel 1988) and MOBAL (Morik 1993;

Kietz and Wrobel 1992).

Table 3 Examples of second-
order Metarules from the MIL
literature. As is common in the
literature, quantifiers are omitted
and quantification is instead
denoted by capitalisation;
P, Q, R: existentially quantified
second-order variables; X, Y:
existentially quantified first-order
variables; x, y, z: universally
quantified first-order variables

H2
2

metarules

Abduced P(X, Y)

Identity Pðx; yÞ Qðx; yÞ
Inverse Pðx; yÞ Qðy; xÞ
Chain Pðx; yÞ Qðx; zÞ;Rðz; yÞ
Stack Pðx; yÞ Qðx; zÞ;Rðy; zÞ
Queue Pðx; yÞ Qðz; xÞ;Rðz; yÞ
Tailrec Pðx; yÞ Qðx; zÞ;Pðz; yÞ
Precon Pðx; yÞ QðxÞ;Rðx; yÞ
Postcon Pðx; yÞ Qðx; yÞ;RðyÞ

123

758 Machine Learning (2021) 110:755–778

The Top program construction procedure described in Algorithm 1 can be contrasted to

the Rule Discovery Tool (RDT) in MOBAL. RDT employs a generate-and-test algorithm

that conducts a general-to-specific search for a hypothesis that satisfies a user-defined

criterion, guided by a subsumption order over metarules. By contrast, Algorithm 1 does not

conduct a search and is not a generate-and-test procedure, but a resolution-based proof

procedure that restricts the set of constructed clauses by means of the positive examples

then further refines this set by means of the negative examples. Unlike RDT, Algorithm 1

can construct recursive hypotheses, including left-recursive and mutually recursive ones as

discussed in Sect. 4.

Other ILP systems using metarules (also called program schemata) have been proposed

for the specific purpose of learning recursive logic programs, like CRUSTACEAN (Aha

et al. 1994), CILP (Lapointe et al. 1993), Force2 (Marcinkowski and Pacholski 1992),

Sieres (Wirth and O’Rorke 1992), TIM (Idestam-Almquist 1996), Synapse (Flener and

Deville 1993), Dialogs (Flener 1997) and MetaInduce (Hamfelt and Nilsson 1994). Such

systems learn by a subsumption-order search of H and are typically limited to recursive

programs of restricted form (e.g. exactly one base case and one recursive clause), or

require additional inductive biases, only accept examples of one target predicate at a time,

cannot use background knowledge or require ground background knowledge, cannot

perform predicate invention etc. (Flener and Yilmaz 1999). More recent systems ILASP,

(Law et al. 2014), that learns Answer Set Programs (but does not use metarules) and dILP
(Evans and Grefenstette 2018), a deep neural network-based system that uses metarules,

can learn recursive programs but can perform no, or only limited, predicate invention.

Algorithm 1 can construct arbitrary recursive hypotheses without restriction on the number

of clauses, target predicates or background knowledge and can perform predicate invention

in the Dynamic Learning setting as discussed in Sect. 6.2.

A Top theory is used by some ILP systems as e.g. in TopLog (Muggleton et al. 2008)

and MC-TopLog (Muggleton et al. 2012) and in the non-monotonic setting in the ASP-

learning systems TAL (Corapi et al. 2010), ASPAL (Corapi et al. 2011) and RASPAL

(Athakravi et al. 2014). A Top theory is an instance of strong inductive bias used to direct

the search of H which remains expensive and which Top program construction avoids

altogether.

The Top program is a unique object in H that can be constructed without an expensive

search. It is comparable to Least General Generalisation (LGG) (Plotkin 1970, 1971), or

the Bottom clause (Muggleton 1995), also unique, directly constructible objects. The Top

program differs to the LGG and Bottom clause in that it is not a clause but a correct

hypothesis, i.e. a set of clauses.

3 Framework

3.1 Background

We follow the Logic Programming and ILP terminology established in (Nienhuys-Cheng

and de Wolf 1997) which we extend with MIL-specific terms and terminology for second-

order definite clauses and programs, as follows.

123

Machine Learning (2021) 110:755–778 759

3.1.1 Logical notation

C is the set of constants and P the set of predicate symbols. First-order variables are

quantified over C and second-order variables are quantified over P. An atom or literal is

second-order if it contains at least one second-order variable, or a predicate symbol, as a

term, or as an argument of a term. A definite clause is second-order if it contains at least

one second-order literal. A literal is datalog (Ceri et al. 1989) if it contains no function

symbols of arity more than 0. A definite clause is datalog if it contains only datalog literals.

A logic program is definite datalog if it contains only definite datalog clauses.

3.1.2 Meta-Interpretive learning

MIL is a form of ILP where the first-order language of hypotheses, L (a set of clauses), is
defined by a set of metarules, second-order definite clauses with existentially quantified

variables in the place of predicate symbols and constants.

The H2
2 language of definite datalog metarules with at most two body literals of arity at

most 2 has Universal Turing Machine expressivity and is decidable when P and C are finite
(Muggleton and Lin 2015). Examples of H2

2 metarules found in the MIL literature are

given in Table 3.

Each clause in L is an instantiation of a metarule with second-order existentially

quantified variables substituted for symbols in P and first-order existentially quantified

variables substituted for constants in C. A substitution of the existentially quantified

variables in a metarule M is a metasubstitution, denoted as l=M.

A system that performs MIL is a Meta-Interpretive Learner, or MIL-learner (with a

slight abuse of abbreviation to support a natural pronunciation). A MIL-learner is given the

elements of a MIL problem and returns a hypothesis as a solution to the MIL problem. A

MIL problem is a quintuple, T ¼ hEþ;E�;B;M;Hi where: a) positive examples, Eþ, are
ground definite atoms and negative examples, E�, are ground Horn goals, having the

symbol and arity of one or more target predicates; b) the background knowledge, B, is a set
of program clause definitions with definite datalog heads; c)M is a set of metarules; and d)

H is the hypothesis space, a set of hypotheses.

Each hypothesis in H is a set of clauses in L. Each H 2 H is a definition of a target

predicate in Eþ and may include definitions of one or more invented predicates, predicates
other than a target predicate and not defined in B. For each H 2 H, if H ^ B � Eþ and

8e� 2 E� : H ^ B 6� e�, then H is a correct hypothesis.

Typically a MIL learner is not explicitly given H or L, rather those are implicitly

defined byM and the constants C and symbols P in Eþ;E�;B and any invented predicates.

The original MIL-learner, Metagol, searches H for a correct hypothesis by iterative

deepening on the cardinality of hypotheses. Our new MIL-Learner Louise does not search

H and instead constructs, and then reduces, the Top program for T , the set of clauses in all
correct hypotheses in H, defined below:

Definition 1 Let T ¼ hEþ;E�;B;M;Hi be a MIL problem and L the hypothesis lan-

guage. > is the Top program for T iff for all C 2 L where 9eþ 2 Eþ : C ^ B � eþ and

6 9e� 2 E� : C ^ B � e�, C 2 >.

Theorem 1 If H includes a correct hypothesis, > is a correct hypothesis.

123

760 Machine Learning (2021) 110:755–778

Proof Assume Theorem 1 is false and H includes a correct hypothesis. Then either

> ^ B 6� Eþ or 9e� 2 E� : > ^ B � e�. Let H � L. Either H ^ B � Eþ or H 6� >. If
H ^ B � Eþ then > ^ B � Eþ. 8C 2 L either 6 9e� 2 E� : C ^ B � e� or C 62 >. There-
fore 6 9e� 2 E� : > ^ B � e�. Thus the assumption is contradicted and Theorem 1 holds.

h

3.2 Top program construction

Algorithm 1 lists our algorithm for Top program construction. To clarify, the name of

Algorithm 1 is ‘‘Top program construction’’. Section 4 describes our Prolog implemen-

tation of Algorithm 1 as the basis of a new MIL system called ‘‘Louise’’.

In the following sections we prove that Algorithm 1 correctly constructs the Top pro-

gram for a MIL problem in polynomial time and after processing only a finite number of

examples.

3.3 Preliminaries

Finite MIL problem In the following sections, let T k ¼ hEþk ;E�k ;Bk;Mk;Hki where k is

the finite maximum number of body literals in each M 2Mk. Let Ck and Pk be the finite

sets of constants and predicate symbols in Eþk ;E
�
k ;Bk; and let Lk be the hypothesis lan-

guage of clauses constructible withMk; Ck;Pk.

Target theory For each target predicate P 2 T k, let HP, a definition of P, be the target

theory of P such that each clause in HP is an instance of a metarule M 2 Mk. For each P,
BP is the Herbrand base of P; SSðHPÞ � BP is the success set of HP [Bk restricted to

atoms of P; and FFðHPÞ ¼ BP n SSðHPÞ is the finite failure set of HP, restricted to atoms

123

Machine Learning (2021) 110:755–778 761

of P (i.e. the set of atoms p of P such that there exists a finitely-failed resolution tree for

HP [Bk [f pg).
Subsets of Lk Let >0

k � Lk be the set of clauses that entail exactly 0 positive examples

in Eþk with respect to Bk; let >þk � Lk be the set of clauses that entail at least one positive

example in Eþk with respect to Bk; and let >�k � Lk be the set of clauses that entail at least

one positive example in Eþk and at least one negative example in E�k with respect to Bk. Let

>k be the Top program for T k. Note that >0
k \ >þk ¼ ;, >�k � >þk and >þk n >�k ¼ >k.

Inductive soundness and completeness An inductive inference procedure is a) induc-

tively sound, or simply sound, when it derives no clauses that entail one or more negative

examples with respect to background knowledge, and b) inductively complete, or simply

complete, when it derives all clauses that entail one or more positive examples with respect

to background knowledge.

3.4 Inductive soundness and completeness of Algorithm 1

3.4.1 Learning in the limit

Lemma 1 Given Eþk ¼
S

P2T k
SSðHPÞ;Bk;Mk; ;, procedure GENERALISE in Algorithm 1

returns >þk .

Proof Follows from the finiteness of Pk; Ck and the soundness and completeness of SLD

resolution for definite programs (Nienhuys-Cheng and de Wolf 1997). The completeness

of SLD resolution ensures that procedure GENERALISE will derive all clauses in Lk that

entail at least one positive example in Eþk and the soundness of SLD resolution ensures that

procedure GENERALISE will derive no clauses in Lk that do not entail any positive examples

in Eþk . h

Lemma 2 Given E�k ¼
S

P2T k
FFðHPÞ;Bk;Mk;>þk , Procedure SPECIALISE in Algorithm 1

returns >þk n >�k ¼ >k.

Proof Same as for Lemma 1. The completeness of SLD resolution ensures that procedure

SPECIALISE will derive all clauses in Lk that entail at least one negative example in E�k and

the soundness of SLD resolution ensures that procedure SPECIALISE will derive no clauses in

Lk that entail no negative examples in E�k . h

Theorem 2 Algorithm 1 is inductively sound and complete.

Proof Follows directly from Lemmas 1, 2. h

3.4.2 Finite example sets

In this section we show that Algorithm 1 can construct >k from finite Eþk ;E
�
k .

Lemma 3 By Lemma 1, >k � GENERALISE ðEþk ;Bk;Mk; ;Þ. This implies jEþk j � j>kj.

123

762 Machine Learning (2021) 110:755–778

Proof Assume Lemma 3 is false. In this case, >k � GENERALISE ðEþk ;Bk;Mk; ;Þ and
jEþk j\j>kj. Then 9eþ 2 Eþ such that in line 9 of Algorithm 1, the set fl=M :

Ml [Bk [Eþk � eþg ¼ ;. In this case, >k 6� eþ, which contradicts Theorem 1. Therefore

the assumption is false and Lemma 3 holds. h

Lemma 4 By Lemma 2, >þk n >�k ¼ SPECIALISE ðE�k ;Bk;Mk;>þk Þ. This implies

jE�k j � j>�k j.

Proof Assume Lemma 4 is false. In this case,>þk n >�k ¼ SPECIALISE ðE�k ;Bk;Mk;>þk Þ and
jE�k j\j>�k j. Then, 9e� 2 E�k such that, in line 15 of Algorithm 1, the set

fl=M : Ml [Bk [Eþk � e�g ¼ ;. In this case, either >k � e�, which contradicts Theo-

rem 1, or>�k ¼ ; and jE�k j � j>�k j. Therefore the assumption is false and Lemma 4 holds.h

Lemma 5 Algorithm 1 must process at most j>kj positive examples and at most jLk n
>0

k j � j>kj negative examples before constructing >k.

Proof Follows directly from Lemmas 3, 4. Note that >�k ¼ ðLk n >0
kÞ n >k. h

We do not know how to exactly calculate the cardinality of >k, however in the worst case

>k ¼ Lk. It is possible to place a finite upper bound on the cardinality of Lk and therefore,

>k, as follows.

Lemma 6 The cardinalities of Lk;>k are finite.

Proof Lk is the set of clauses constructible with p ¼ jPkj predicate symbols and m ¼
jMkj metarules of at most k body literals. The cardinality of this set is at most mpkþ1

(Cropper and Tourret 2018). This number is finite because p, m, k are finite. >k � Lk

therefore j>kj � jLkj and so j>kj is finite. h

Theorem 3 Algorithm 1 constructs >k after processing a finite number of positive and
negative examples.

Proof Follows directly from Lemmas 5, 6. h

3.5 Time complexity of Algorithm 1

In this section we show that the time complexity of Algorithm 1 is polynomial.

Theorem 4 The time complexity of Algorithm 1 is a polynomial function of jLkj.

Proof Let c ¼ jEþk j. The worst case for the time complexity of Algorithm 1 is when

>k ¼ Lk and each clause in >k entails each positive example in Eþk (and 0 examples in

E�k). This is the worst case because in that case, procedure GENERALISE in Algorithm 1

derives all clauses in Lk from each example in Eþk , i.e. the maximum number of

123

Machine Learning (2021) 110:755–778 763

computations is performed for each example in Eþk . The time complexity of Algorithm 1 is

OðcjLkjÞ or Oðcmpkþ1Þ. h

Remark 1 The number of hypotheses of at most n clauses in Hk is ðmpkþ1Þn (Cropper and
Tourret 2018). Therefore, the time complexity of a classical search of Hk, as in Metagol, is

Oððcmpkþ1ÞnÞ i.e. exponential in jLkj.

4 Implementation

In this section we present a new MIL-learner, Louise (Patsantzis and Muggleton 2019),

written in Prolog, that learns by Top program construction and reduction.1

4.1 Louise’s learning procedure

Louise’s learning procedure is outlined in Algorithm 2. Line numbers listed in this section

refer to the numbered lines in the listing of Algorithm 2.

Learning begins with the encapsulation of a MIL problem (line 1). An encapsulation

e(L) of a literal L ¼ pðs1; . . .; snÞ is a first-order atom mðp; s1; . . .; snÞ where m is an en-
capsulation predicate. The symbol m is chosen arbitrarily and has no special meaning. The

arity of each encapsulation predicate is nþ 1 where n is the arity of the encapsulated

predicate(s). Therefore, a literal of a predicate p/n is encapsulated by a literal of m=ðnþ 1Þ.
An encapsulation e(C) of a definite clause C ¼ fL1; . . .; Lng is the set of encapsulations of
literals in C, feðL1Þ; . . .; eðLnÞg. An encapsulation eðPÞ of a definite program P ¼
fC1; . . .;Cng is the set of encapsulations of clauses in P, feðC1Þ; . . .; eðCnÞg. Table 4

illustrates encapsulation for first order atoms and clauses, and metarules. Encapsulation of

metarules ensures the decidability of unification between metarule literals and literals of

first-order clauses (Muggleton and Lin 2015). Encapsulation of a MIL problem facilitates

the efficient and simple construction of the Top program, >e (line 2), by resolution as

described below.

Our implementation of procedures GENERALISE and SPECIALISE in Louise unifies the

encapsulation of each (positive or negative) example atom to the encapsulated head literal

of each metarule and resolves the metarule’s encapsulated body literals with e(B) and

1 Louise was created alongside a new version of Metagol called Thelma, an acronym for Theory Learning
Machine. Louise was named as a play on words with Thelma, referencing Thelma and Louise (Scott et al.
1991).

123

764 Machine Learning (2021) 110:755–778

eðEþÞ. Resolution with eðEþÞ permits the derivation of clauses that have body literals with

the symbol of a target predicate and therefore the construction of a recursive Top program.

Because eðEþÞ is a set of ground atoms, each encapsulated body literal with the symbol of

a target predicate has a finite refutation sequence so recursive clauses can be derived

without resolution entering an infinite recursion. When eðEþÞ includes multiple target

predicates mutually recursive clauses can be derived. Table 5 lists an example of a Top

program with mutually recursive clauses derived from resolution with the encapsulation of

the background predicate predecessor/2 in e(B) and the encapsulated examples of the two

target predicates, odd/1 and even/1 in eðEþÞ.
>e, the result of resolving the body literals of encapsulated metarules with e(B) and

eðEþÞ is a set of metasubstitutions. Metasubstitutions in >e are applied to the corre-

sponding metarules (noted as M:>e on line 3) yielding a set of encapsulated definite

clauses, the encapsulated Top program.

Redundant clauses are removed from the encapsulated Top program by Algorithm 3

(line 3). The set of clauses remaining after reduction, >r , is then excapsulated and returned

as the learned hypothesis, a definition of the target predicates in Eþ (line 4). Excapsulation

is the opposite process of encapsulation. An excapsulation, xðeðLÞÞ ¼ L of an encapsulated

literal, eðLÞ ¼ mðp; s1; . . .; snÞ, is a first order literal L ¼ pðs1; . . .; snÞ. An excapsulation,

xðeðCÞÞ ¼ C, of an encapsulated clause eðCÞ ¼ feðL1Þ; . . .; eðLnÞg, is a first order definite
clause C ¼ fL1; . . .; Lng where each Li is the excapsulation of a literal in e(C). An

excapsulation, xðeðPÞÞ ¼ P of an encapsulated program, eðPÞ, is a set of first order

definite clauses P ¼ fC1; . . .;Cng where each Ci is the excapsulation of a clause in eðPÞ.

Table 4 Encapsulation of atoms and clauses, including metarules. The excapsulation of an encapsulated
atom or clause is the same as its un-encapsulated form

Atom or clause Encapsulation

edge(a, b) m(edge, a, b)

Pðx; yÞ Qðx; zÞ;Rðz; yÞ mðP; x; yÞ mðQ; x; zÞ;mðR; z; yÞ
pathðx; yÞ edgeðx; zÞ; edgeðz; yÞ mðpath; x; yÞ mðedge; x; zÞ;mðedge; z; yÞ

Table 5 Multi-predicate MIL problem for odd/1 and even/1 and mutually recursive hypotheses learned by
Louise

Even and odd

MIL problem

Eþ ¼ fevenð0Þ ; evenðsðsð0ÞÞÞ ; oddðsð0ÞÞ ; oddðsðsðsð0ÞÞÞÞ g
E� ¼ f evenðsð0ÞÞ; evenðsðsðsð0ÞÞÞÞ; oddð0Þ; oddðsðsð0ÞÞÞg
B ¼ fpredecessorðsð0Þ; 0Þ:

predecessorðsðsðxÞÞ; sðxÞÞ predecessorðsðxÞ; xÞ:g
M ¼ fPðxÞ Qðx; yÞ;RðyÞg
Learned hypothesis

even(0).

evenðxÞ predecessorðx; yÞ; oddðyÞ:
oddðxÞ predecessorðx; yÞ; evenðyÞ:

123

Machine Learning (2021) 110:755–778 765

4.2 Plotkin’s program reduction

In Algorithm 2, the Top program, >e, is reduced by Gordon Plotkin’s program reduction

algorithm, described in (Plotkin 1972) as Theorem 3.3.1.2, reproduced here as Algorithm 3

in Plotkin’s original notation.

In Algorithm 3, U 	 W means that ‘‘U generalises W’’. The generalisation of W by U is

considered with respect to a theorem, Th (sic). In the context of Algorithm 2, Th is the

union of the encapsulated Eþ;B andM and applied Top program. In our implementation

of Plotkin’s algorithm in Louise, U 	 W is true iff W can be derived from U by Prolog’s

SLD-Resolution.

5 Experiments

A MIL system that learns by Top program construction should outperform a search-

based MIL system when the complexity of a search of H is maximised. Metagol’s iterative

deepening search orders H by hypothesis size and the complexity of its search is max-

imised when H and the target theory, H, are both large, therefore Louise should outper-

form Metagol when both these conditions hold. We formalise this expectation as

Experimental Hypothesis 1:

Experimental Hypothesis 1 Louise outperforms Metagol when H and H are large.

When H does not contain a correct hypothesis, e.g. when Eþ;E� have mislabelled

examples (‘‘classification noise’’), a search-based MIL system must exit with failure and its

accuracy is minimal. In the worst case, H is additionally large and the MIL system must

perform an exhaustive search before returning with failure. Algorithm 1 constructs as much

of > as possible given the elements of a MIL problem and so returns an approximately

correct hypothesis when a correct hypothesis does not exist. In such situations we should

expect Louise to outperform Metagol. We formalise this expectation as Experimental

Hypothesis 2:

Experimental Hypothesis 2 Louise outperforms Metagol when H does not include a
correct hypothesis.

WhenH orH are small, Louise should not have an advantage over Metagol. A special case

of this is when H includes a single hypothesis which is, tautologically, the set of clauses in

123

766 Machine Learning (2021) 110:755–778

all correct hypotheses, i.e. the Top program. In that special case, Louise and Metagol

should perform equally well. We formalise this expectation as Experimental Hypothesis 3:

Experimental Hypothesis 3 Louise and Metagol perform equally when H ¼ f>g.

To test these three experimental hypotheses we compare Metagol and Louise on a real-

world dataset and two synthetic datasets summarised in Table 6. The synthetic Coloured

graph dataset can be configured to include ‘‘noise’’ in the form of mislabelled examples

and has two variants with a small and large H, marked with (1) and (2) respectively in

Table 6.

5.1 Experiment setup

We compare Metagol and Louise in a series of ‘‘learning curve’’ experiments, where we

vary the number of training examples and measure predictive accuracy and training time.

Each learning curve experiment proceeds for k ¼ 100 steps. In each step we sample, at

random and without replacement, a proportion, s, of Eþ;E� to form a training partition.

Remaining examples form the testing partition. S is taken from the sequence:

S ¼ h0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9i. At each step, we train each learner on the

training partition and measure the accuracy of the returned hypothesis on the testing

partition and the duration of training in seconds. We set a time limit of 300 sec. for each

training step. If a training step exhausts this time limit, we calculate the accuracy of the

empty hypothesis on the testing partition. Finally, we return the mean and standard error of

the accuracy and duration for the same sampling ratio s at each step2.

All experiments were run on a PC with 32 8-core Intel Xeon E5-2650 v2 CPUs clocked

at 2.60GHz, with 251 Gb of RAM, running Ubuntu 16.04.6. Running each instance of the

learning curve experiment (one instance per dataset) occupied one core of the machine at

100% of capacity (experiments were run in parallel as background linux jobs). The longest-

running experiment was on the Coloured Graph with False Negatives dataset with large H
(described in Sect. 5.4) and took three days for Metagol (but only a few hours for Louise)

to complete. The shortest-running experiment was on the M:tG Fragment dataset

Table 6 Dataset summary

jEþj jE�j |B| jMj jHj maxjLj maxjHj

Experiment datasets & MIL problems

Grid world 625 0 19 5 jEþj 81,450,625 2.037104e?4944

Coloured graph (1) 108 74 9 4 4 46,656 4.738381e?18

Coloured graph (2) 108 74 1 4 4 64 16,777,216

M:tG fragment 1348 0 60 1 36 216,000 1.097324e?192

|B|: number of BK definitions. H: target theory. Grid world H is not known but jEþj approximates its

cardinality. maxjLj is calculated as jMjjBjkþ1, where k is the number of literals in metarules: 3 for Grid

world, otherwise 2. maxjHj is calculated as maxjLjjHj. See Lemma 6 and Remark 1. |B|: number of BK
definitions

2 Experiment code and datasets are available from: https://github.com/stassa/ml/2020.

123

Machine Learning (2021) 110:755–778 767

https://github.com/stassa/ml/2020

(described in Sect. 5.5) and took both systems about 11 minutes to complete. Other

experiments were completed in about 8 hours on average.

5.2 A note on metarule selection

In MIL practice, metarules are typically selected manually, according to user intuition or

domain knowledge, although minimal sets of metarules for language fragments such as H2
2

(see Sect. 3.1.2) have been identified, e.g. in (Cropper and Muggleton 2015; Cropper and

Tourret 2018). For the experiments described in the following sections, we have manually

selected metarules as follows.

For the Coloured Graph (Sect. 5.4) and M:tG Fragment (Sect. 5.5) datasets where H
was known, we extracted metarules from the clauses of H with Louise’s metarule
extraction module. This defines Prolog predicates to ‘‘lift’’ sets of program clauses to the

second order, by variabilisation of their predicate symbols and constants, and encapsulate

them as metarules.3

For the Grid World dataset in Sect. 5.3, were H was not known, we initially selected the

Chain metarule (Table 3), that represents transitivity, such as the relation between con-

secutive moves over contiguous ‘‘cells’’ in a grid world, reflecting our intuition about the

likely structure of H. Algorithm 1 can construct recursive instances of metarules without

restriction, but Metagol imposes a lexicographic ordering on the predicate symbols in

metasubstitutions (Muggleton and Lin 2015) which precludes recursive instances of Chain
and in general requires recursive metarules to be specified explicitly. Adding one metarule

for each recursive variant of Chain would increase the size of H and penalise Metagol’s

time complexity; but omitting any recursive metarules would penalise the expressivity of L
only for Metagol. We elected to add the tail-recursive version of Chain, Tailrec (Table 3),
as the only explicitly recursive metarule, by way of a compromise. Finally, we defined

three variants of Chain, listed in Table 7, each with one or two body literals of arity 3, to

allow the use of higher-order moves defined as arity-3 predicates.

5.3 Experiment 1: Grid world

We create a generator for navigation problems where an agent must move to a goal

location on an empty grid world represented as a Cartesian plane with the origin at (0, 0)

and extending to a point (w, h). Our generator takes as parameters the w, h dimensions of

the grid world and generates a) all navigation tasks between pairs of locations in the grid

world as atoms of the target predicate, move/2 and b) a set of primitive moves that move

the agent up, down, left or right. We define a set of composite moves that each combine

two primitive moves and two higher-order moves that repeat a primitive or composite

move twice or thrice. To form a MIL problem for this dataset we give all move/2 atoms as

positive examples, all primitive, composite and higher-order moves as background

knowledge and as metarules Chain and Tailrec from Table 3, and three arity-3 variants of

Chain necessary for the use of higher-order moves. No navigation task is impossible on an

empty grid world, therefore there are no negative examples. Table 7 illustrates the elements

of the MIL problem.

We do not know the target theory for this problem but in preliminary experiments

Louise learns a hypothesis of 2567 clauses from all examples and Metagol a hypothesis

3 When H is not known, it is sometimes useful to extract metarules from B.

123

768 Machine Learning (2021) 110:755–778

equal in size to a small training sample of 5 examples, indicating a large H and H. We run

our experiment in a 4
 4 world for only 10 steps after Metagol runs for more than a day

when trained on 6 examples in a larger world.

5.3.1 Grid world—results

Figures 2a and 3a plot the accuracy and training time results of the Grid world experiment,

respectively. Louise quickly learns a correct hypothesis that generalises well on the testing

partition whereas Metagol exhausts the training time limit of 300 s. early in the experi-

ment, when the training partition includes only 62 examples. This confirms Experimental

Hypothesis 1.

5.4 Experiment 2: Coloured graph

To test Experimental Hypothesis 2 we create a generator for MIL problems with a defi-

nition of the predicate connected/2, illustrated in Table 8, as a target theory, representing

the connectedness relation on a directed, acyclic, two-colour graph. Our generator can

produce three datasets with different kinds of mislabelled examples: False Positives (with

Table 7 Grid world dataset. In navigation tasks and primitive moves each list of the form ½R;G;W
 H� is a
grid world-state listing the location of the agent (R), its goal (G) and the world dimensions W
 H. In
primitive moves, G is a variable binding to the coordinates of the task’s goal (which remains unchanged
during a move). In composite and higher-order moves Ss and Gs are variables binding to the world states at
the start and end of a move, respectively. In higher-order moves the literal move(M) nondeterministically
generates the predicate symbols of primitive and composite moves. In variants of Chain, existentially
quantified variables fQ;Rg of literals with arity 3 can only take values from the set of predicate symbols of
higher-order moves that also have arity 3, whereas existentially quantified variables fM;M1;M2g of literals
with arity 2 can only take values from the set of symbols of primitive and composite moves that have arity 2.
For example, in the first body literal in Tri-Chain 1, a possible metasubstitution is
fQ=double move;M=move downg resulting in a literal double moveðmove down; x; zÞ i.e. a double-move
downwards

Navigation tasks (positive examples)

moveð½0=0; 0=0; 4
 4�; ½0=0; 0=0; 4
 4�Þ: moveð½0=0; 0=2; 4
 4�; ½0=2; 0=2; 4
 4�Þ:
moveð½0=0; 0=1; 4
 4�; ½0=1; 0=1; 4
 4�Þ: moveð½0=0; 0=3; 4
 4�; ½0=3; 0=3; 4
 4�Þ:
Primitive moves

move upð½0=0;G; 4
 4�; ½0=1;G; 4
 4�Þ: move rightð½0=0;G; 4
 4�; ½1=0;G; 4
 4�Þ:
move downð½0=1;G; 4
 4�; ½0=0;G; 4
 4�Þ: move leftð½1=0;G; 4
 4�; ½0=0;G; 4
 4�Þ:
Composite moves

move right twiceðSs;GsÞ move rightðSs; Ss1Þ;move rightðSs1;GsÞ:
move right then upðSs;GsÞ move rightðSs; Ss1Þ;move upðSs1;GsÞ:
Higher - order moves

double moveðM; Ss;GsÞ moveðMÞ; callðM; Ss; Ss1Þ; callðM; Ss1;GsÞ:
triple moveðM; Ss;GsÞ moveðMÞ; callðM; Ss; Ss1Þ; double moveðM; Ss1;GsÞ:
Triadic Chain variants

Tri-Chain 1: Pðx; yÞ QðM; x; zÞ;Rðz; yÞ
Tri-Chain 2: Pðx; yÞ Qðx; zÞ;RðM; z; yÞ
Tri-Chain 3: Pðx; yÞ QðM1; x; zÞ;RðM2; z; yÞ

123

Machine Learning (2021) 110:755–778 769

negative examples mislabelled as positive), False Negatives (with positive examples

mislabelled as negative) and Ambiguities (with examples simultaneously labelled positive

and negative). A fourth dataset, No Noise is noise-free. We ‘‘label’’ examples as positive or

negative by inclusion in Eþ or E�, respectively. Table 9 outlines the mislabelling process.

To create a MIL problem for each dataset we begin by generating all positive and

negative atoms of connected/2 forming the initial Eþ;E�. We select a proportion N of each

set of examples at random and without replacement and mislabel them as described above.

N ¼ 0:2 for each ‘‘noisy’’ dataset and N ¼ 0 for the No Noise dataset. We give as

background knowledge the definitions of the three arity-2 predicates used to define the

target theory, ancestor/2, red parent=2 and blue parent=2 and additional definitions

(omitted for brevity) of the predicates red child=2, blue child=2, parent/2, child/2. We

give as metarules Identity, Inverse, Stack, Queue from Table 3, that match the clauses of

the target theory. The background knowledge and metarules suffice to reconstruct the

target theory, but mislabelled examples allow a correct hypothesis to be formed only for

the No Noise problem.

Fig. 2 Learning curve experiment results (accuracy). Red circles: Metagol. Blue triangles: Louise. x-axis:
size of training partition; y-axis: accuracy on testing partition. Error bars: standard error

123

770 Machine Learning (2021) 110:755–778

5.4.1 Coloured graph - results

Figures 2c and 3c plot the accuracy and training time results of the Coloured graph

experiment, respectively. In the three ‘‘noisy’’ datasets a correct hypothesis does not exist

in H and so Metagol’s accuracy is that of the empty hypothesis (varying according to

mislabelled examples). Metagol tests a learned hypothesis against the negative examples

only once the hypothesis is completed, then backtracks to try a new hypothesis if the test

fails. This causes much backtracking in the False Negatives dataset, so much so that

Metagol exhausts the training time limit of 300 sec. for most of the experiment. Louise

outperforms Metagol in all but the No Noise dataset, although its performance fluctuates as

the chance of processing mislabelled examples increases with the size of the training

partition. In the No Noise dataset a short, correct hypothesis exists -the target theory- and

Metagol finds it earlier in the experiment than Louise. The hypothesis space for this

problem includes many over-general hypotheses formed with predicates other than

ancestor/2 which suffices to express the target theory. Additional background predicates

Fig. 3 Learning curve experiment results (training times). Red circles: Metagol. Blue triangles: Louise.
x-axis: size of training partition; y-axis: mean time of a training step. Error bars: standard error

123

Machine Learning (2021) 110:755–778 771

may be seen as, in a sense, ‘‘redundant’’ and it is this redundancy that leads to Louise’s

reduced early accuracy with No Noise.

We repeat the experiment with the redundant predicates removed, leaving ancestor/2 as

the only background predicate. Figures 2d and 3d plot the accuracy and training time

results, respectively. The size of H is now reduced by several orders of magnitude (see

Table 6). Metagol’s predictive accuracy remains unchanged but it can exhaustively search

H and exit with failure much more quickly in the ‘‘noisy’’ datasets. Louise’s accuracy

improves on the No Noise dataset but deteriorates in the False Negatives dataset. Louise

performs worse than the empty hypothesis in the Ambiguities dataset, where the combi-

nation of mislabelled positive and negative examples forces Algorithm 1 to form a Top

program that entails not only few positive, but also many negative examples.

The results in this section support Experimental Hypothesis 2.

Table 8 Target theory and (par-
tial) BK definitions of Coloured
graph datasets

Coloured Graph: MIL problem

Target theory

connectedðx; yÞ ancestorðx; yÞ:
connectedðx; yÞ ancestorðy; xÞ:
connectedðx; yÞ ancestorðz; xÞ; ancestorðz; yÞ:
connectedðx; yÞ ancestorðx; zÞ; ancestorðy; zÞ:
Background knowledge

ancestorðx; yÞ parentðx; yÞ:
ancestorðx; yÞ parentðx; zÞ; ancestorðz; yÞ:
parentðx; yÞ blue parentðx; yÞ:
parentðx; yÞ red parentðx; yÞ:
blue parentða; cÞ: red parentðk; cÞ: blue(a). red(i).

blue parentða; nÞ: red parentðk; nÞ: blue(b). red(j).

blue parentðb; iÞ: red parentðl; iÞ: blue(c). red(k).

Table 9 Composition of positive
and negative example sets in
Coloured graph datasets

Coloured Graph: mislabelled examples Eþ E�

No Noise Eþ E�

Ambiguities Eþ [E�m E� [Eþm

False positives Eþ [E�m E� n E�m
False negatives Eþ n Eþm E� [Eþm

Eþm � Eþ and E�m � E� are sets of ‘‘mislabelled’’ examples selected at

random and without replacement. Examples are mislabelled by
including them in the opposite set of examples. For the Ambiguities

dataset, mislabelled examples are included in both Eþ and E�. For the
false positive and false negative examples, mislabelled examples are
removed from one and added to the other set

123

772 Machine Learning (2021) 110:755–778

5.5 Experiment 3: M:tG Fragment

When each positive example in a MIL problem is entailed by exactly one clause in H,

H ‘‘collapses’’ to a single correct hypothesis. This permits us to test Experimental

Hypothesis 3.

Magic: the Gathering (M:tG) is a Collectible Card Game played with cards printed with

instructions in a Controlled Natural Language (CNL) for which no complete formal

specification is published. We hand-craft a grammar in Definite Clause Grammar form for

a simple fragment of the M:tG CNL that includes only expressions beginning with one of

the three ‘‘keyword actions’’ destroy, exile and return. We manually extract the rules of the

grammar from two sources: a) examples of strings on cards and b) semi-formal specifi-

cations of expressions provided in the game’s rulebook (Wizards of the Coast LLC 2018).

Such specifications are provided for only a few expressions in the language, most of which

are pre-terminals denoting card types (e.g. permanent type==0 in Table 10). Each example

string has a single parse tree and so is entailed by exactly one rule in our grammar.

To set up a MIL problem for this dataset we generate all 1348 strings entailed by our

grammar to use as positive examples of the predicate ability/2 (the start symbol of the

grammar). We use the 60 nonterminals and pre-terminals in our hand-crafted grammar as

background knowledge and use Chain as the only metarule. The 36 productions of our

grammar where the start symbol, ability/2 is the nonterminal on the left-hand side are all

instances of Chain, therefore Chain is sufficient to construct a correct representation of our

Table 10 M:tG fragment dataset: examples of positive example strings and background knowledge com-
prised of grammar productions in Definite Clause Grammars form. Tokens in square braces are terminals,
other tokens are nonterminals. ‘‘�!’’ can be read as ‘‘expands to’’

M:tG Fragment

Positive examples

ability([destroy, target, artifact], []).

abilityð½exile; all; ‘Djinns’�; ½�Þ:
abilityð½exile; target; ‘Hippogriff ’�; ½�Þ:
abilityð½return; an; artifact; from; a; graveyard; to; its; ‘ownern‘s’; hand�; ½�Þ:
abilityð½return; target; planeswalker; to; its; ‘ownern‘s’; hand�; ½�Þ:
ability([return, all, creatures, from, your, graveyard, to, the, battlefield], []).

Background knowledge

ability �! destroy verb; target permanent:

destroy verb �! ½destroy�:
target permanent �! target; permanent type:

target �! ½target�:
permanent type �! ½artifact�:
permanent type �! ½creature�:
permanent type �! ½enchantment�:
permanent type �! ½land�:
permanent type �! ½planeswalker�:

123

Machine Learning (2021) 110:755–778 773

grammar. Examples of the elements of the MIL problem for this dataset are given in

Table 10.

5.5.1 M:tG Fragment—results

Figures 2b and 3b plot the accuracy and training time results, respectively, of the M:tG

Fragment experiment. Louise and Metagol learn identical hypotheses (i.e. the Top pro-

gram) and their accuracy curves coincide. Louise is slightly faster for most of the

experiment but its training time ‘‘spikes’’ towards the end of the experiment, likely because

of redundancy in the examples set that causes the same clauses to be derived from different

examples, multiple times4. Metagol only learns a single clause from each example thereby

avoiding this duplication of effort. Even so Louise’s training times remain under 3.0 sec.

for the entire experiment. The results of this experiment confirm our Experimental

Hypothesis 3.

We note that the hypothesis learned by Metagol and Louise in this experiment is exactly

the target theory for the M:tG Fragment MIL problem and the size of this target theory is

36 clauses, just over 7 times larger than any program learned by Metagol previously

reported in the MIL literature. This further supports Experimental Hypothesis 1. When H
is small, even when H is large, Louise does not have a clear advantage over Metagol.

5.6 Discussion

The results in the previous sections show that Louise outperforms Metagol when Metagol

cannot find a correct hypothesis within the training time limit. This is most evident in

Experiment 1 (Figs. 2a and 3a) where bothH andH are large and Metagol’s search is at its

most expensive, and in the noisy datasets in Experiment 2 (Figs. 2c, d, 3c,d) where no

correct hypothesis exists in H.
Metagol learns in two stages: first it finds a hypothesis, H, that is not too-specific (i.e.

H ^ B � Eþ); then it tests H against E�. If H is over-general (i.e. if H ^ B � e� 2 E�)
Metagol backtracks and searches for a new H. False positives in Eþ cause Metagol to find

over-general hypotheses that lead to much backtracking, increasing training times early in

the False Positives and Ambiguities experiments with large H (Fig. 3c). Later in the same

experiments, the number of false positives sampled increases and the number of not-too-

specific hypotheses diminishes allowing Metagol to exit quickly with failure. False neg-

atives in E� cause many hypotheses to appear over-general causing much backtracking in

the False Negatives experiment with large H (Fig. 3c False Negatives). In the small-H
experiments, H is small enough that Metagol’s search can exit quickly with failure

(Fig. 3d).

Louise does not test hypotheses for generality and instead returns the best-possible Top

program without performing a search or backtracking so its training times stay short with

both large and small H (Fig. 3c, d) with small fluctuations caused by redundancies in

Eþ;E�. Louise’s accuracy suffers whenH includes many over-general hypotheses because

of irrelevant background knowledge (Fig. 2c No Noise). However, Louise can complete a

learning attempt and return a result in situations where Metagol continues to search for a

very long time (Fig. 3a, c False Negatives). These observations indicate that Louise is

4 This inefficiency is addressed in the current version of Louise by a variant of Algorithm 1 that uses a
coverset algorithm, discussion of which is left for future work

123

774 Machine Learning (2021) 110:755–778

better suited than Metagol to learning in large, complex problem domains with classifi-

cation noise.

6 Conclusions and future work

6.1 Conclusions

We have shown that a costly search of the MIL hypothesis space, H, for a correct

hypothesis can be replaced by the construction of a Top program, >, the set of clauses in

all correct hypotheses, which is itself a correct hypothesis that can be constructed without

search, from a finite number of examples and in polynomial time with Algorithm 1.

We have implemented Algorithm 1 in Prolog as the basis of a new MIL system, called

Louise, that learns by Top program construction and reduction. We have compared Louise

to the state-of-the-art search-based MIL system, Metagol, and shown that Louise outper-

forms Metagol when the size of H and the target theory, H, are both large, because of

Metagol’s exponential time complexity, or when the hypothesis space does not include a

correct hypothesis. The latter is the case e.g. when a MIL problem includes classification

noise and we have shown that Louise is more robust to certain kinds of noise than Metagol.

Louise does not have an advantage over Metagol when H or H are small and we have

found to our surprise that Metagol can learn a hypothesis 7 times larger than any program

previously learned by Metagol, as reported in the MIL literature, when H includes a single

hypothesis which is, tautologically, >.

6.2 Future work

An important limitation of our approach, demonstrated in Sect. 5.4.1, is that Algorithm 1 is

forced to learn an over-general Top program when H includes many over-general

hypotheses and there are insufficient negative examples to eliminate over-general clauses.

In addition, Plotkin’s algorithm may not always remove clauses that are not logically

redundant but entail overlapping sets of examples. Louise implements two additional

program reduction procedures that address these limitations by selecting subsets of the Top

program that comprise correct hypotheses of minimal size (and with clauses entailing non-

overlapping sets of examples).

Louise is capable of predicate invention by recursive Top program construction in an

incremental learning setting named Dynamic Learning (an example of predicate invention

in Louise’s Dynamic Learning setting is listed in Table 11). Finally, Louise implements a

form of examples invention by semi-supervised learning similar to (Dumancic et al. 2019).

Table 11 Definite Clause Grammar hypothesis for the anbn language learned by Louise with Dynamic
Learning. The definition of predicate ‘$1’ is invented

anbn grammar

‘$1’ ðx; yÞ ‘S’ðx; zÞ; ‘B’ðz; yÞ:
‘S’ðx; yÞ ‘A’ðx; zÞ;‘$1’ (z, y).
‘S’ðx; yÞ ‘A’ðx; zÞ; ‘B’ðz; yÞ:

123

Machine Learning (2021) 110:755–778 775

We have omitted discussion of these features for the sake of brevity but plan to include

them in upcoming work.

As a MIL system, Louise relies on the selection of relevant metarules, which is cur-

rently left to user expertise. Selection of strong inductive biases by user expertise (or

intuition) is common in machine learning, e.g. in the selection and careful fine-tuning of a

neural network architecture, priors in Bayesian learning, kernels in Support Vector

Machines, etc. Previous work in the MIL literature has addressed the issue of automatic

selection of metarules, e.g. (Cropper and Muggleton 2015) and (Cropper and Tourret

2018). Louise includes libraries for metarule extraction from arbitrary Prolog programs

(including background knowledge definitions), as described in Sect. 5.2; for metarule

generation; and for metarule combination by unfolding. Finally, predicate invention can

effectively extend the set of metarules in a MIL problem beyond those given initially by a

user, as first noted in (Cropper and Muggleton 2015) and investigated further in our

upcoming work on the Dynamic Learning setting. A more complete discussion of auto-

matic selection of metarules is left for future work.

The observation noted in Sect. 5.5 that when each positive example is entailed by

exactly one clause in the target theory, the MIL hypothesis space includes a single pro-

gram, merits further theoretical and empirical investigation.

We have shown the existence of finite upper bounds on the numbers of examples

necessary for Top program construction with Algorithm 1, but we have not derived sample

complexity results. Previous work in the MIL literature, e.g. (Cropper and Muggleton

2016), has derived sample complexity results for a search of H under PAC Learning

assumptions (Valiant 1984) and according to the Blumer Bound (Blumer et al. 1987). Such

results can also be derived for Top program construction.

We have situated the Top program construction framework in the context of MIL but a

Top program should exist in any ILP setting. Such a more general description of our

framework remains to be done. Similarly, Top program construction should be possible to

implement in a different language, other than Prolog, such as Answer Set Programming

(ASP) etc. Indeed, MIL has also been implemented in ASP, as hexmil in (Kaminski et al.

2018) and future work should compare our Prolog implementation of Louise against this

MIL implementation.

Finally, we are eager to test Louise’s mettle on novel experimental applications, par-

ticularly real-world applications in domains that have traditionally proven hard for ILP

because of the size of H, as e.g. in machine vision.

Acknowledgements The first author acknowledges support from the UK’s EPSRC for financial support of
her studentship. The second author acknowledges support from the UK’s EPSRC Human-Like Computing
Network, for which he acts as director. We thank Lun Ai, Wang-Zhou Dai and Céline Hocquette for reading
and discussing early versions of this paper and the anonymous reviewers for suggesting valuable
improvements to the paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

776 Machine Learning (2021) 110:755–778

http://creativecommons.org/licenses/by/4.0/

References

Aha, D. W., Lapointe, S., Ling, C. X., & Matwin, S. (1994). Inverting implication with small training sets. In
F. Bergadano & L. De Raedt (Eds.), Machine Learning: ECML-94 (pp. 29–48). Berlin, Heidelberg:
Springer.

Athakravi, D., Corapi, D., Broda, K., & Russo, A. (2014). Learning through hypothesis refinement using
answer set programming. In G. Zaverucha, V. Santos Costa, & A. Paes (Eds.), Inductive logic pro-
gramming (pp. 31–46). Berlin, Heidelberg: Springer.

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Occam’s razor. Information Pro-
cessing Letters, 24(6), 377–380. https://doi.org/10.1016/0020-0190(87)90114-1.

Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted to know about datalog (and never dared
to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1), 146–166.

Corapi, D., Russo, A., Lupu, E. (2010). Inductive logic programming as abductive search. In Hermenegildo
MV, Schaub T (eds) Technical Communications of the 26th International Conference on Logic Pro-
gramming, ICLP 2010, July 16-19, 2010, Edinburgh, Scotland, UK, Schloss Dagstuhl—Leibniz-Zen-
trum fuer Informatik, LIPIcs, vol. 7, pp. 54–63, https://doi.org/10.4230/LIPIcs.ICLP.2010.54

Corapi, D., Russo, A., Lupu, E. (2011). Inductive logic programming in answer set programming. In
Muggleton S, Tamaddoni-Nezhad A, Lisi FA (eds) Inductive Logic Programming—21st International
Conference, ILP 2011, Windsor Great Park, UK, July 31–August 3, 2011, Revised Selected Papers,
Springer, Lecture Notes in Computer Science, vol. 7207, pp. 91–97, https://doi.org/10.1007/978-3-642-
31951-8_12

Cropper, A., Muggleton, S. (2016). Learning higher-order logic programs through abstraction and invention.
In Proceedings of the 25th International Joint Conference Artificial Intelligence (IJCAI 2016), IJCAI,
pp. 1418–1424, http://www.doc.ic.ac.uk/*shm/Papers/metafunc.pdf

Cropper, A., Muggleton, S.H. (2015). Logical minimisation of meta-rules within Meta-Interpretive
Learning. In Proceedings of the 24th International Conference on Inductive Logic Programming,
pp 65–78

Cropper, A., & Tourret, S. (2018). Derivation reduction of metarules in meta-interpretive learning. In F.
Riguzzi, E. Bellodi, & R. Zese (Eds.), Inductive Logic Programming (pp. 1–21). Cham: Springer.

Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2016). Meta-interpretive learning of data
transformation programs. In K. Inoue, H. Ohwada, & A. Yamamoto (Eds.), Inductive Logic Pro-
gramming (pp. 46–59). Cham: Springer.

Dumancic, S., Guns, T., Meert, W., Blockeel, H. (2019). Learning relational representations with auto-
encoding logic programs. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, International Joint Conferences on Artificial Intelligence Organiza-
tion, pp. 6081–6087, https://doi.org/10.24963/ijcai.2019/842

Emde, W. (1987). Non-cumulative learning in metaxa.3. In Proceedings of IJCAI-87, Morgan Kaufmann,
pp. 208–210.

Emde, W., Habel, C.U., rainer Rollinger, C., Berlin, T.U., Kit, P., Fr, S. (1983). The discovery of the equator
or concept driven learning. In Proceedings of the 8th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, pp. 455–458.

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial
Intelligence Research, 61, 1–64. https://doi.org/10.1613/jair.5714.

Flener, P. (1997). Inductive logic program synthesis with dialogs. In S. Muggleton (Ed.), Inductive Logic
Programming (pp. 175–198). Berlin Heidelberg: Springer.

Flener, P., & Deville, Y. (1993). Logic program synthesis from incomplete specifications. Journal of
Symbolic Computation, 15(5), 775–805.

Flener, P., & Yilmaz, S. (1999). Inductive synthesis of recursive logic programs: achievements and pro-
spects. The Journal of Logic Programming, 41(2), 141–195. https://doi.org/10.1016/S0743-
1066(99)00028-X.

Hamfelt, A., Nilsson, J.F. (1994). Inductive metalogic programming. In: Wrobel S (ed) Proceedings of
ILP’94, GMD-Studien Nr. 237, Sankt Augustin, Germany, pp. 85–96

Idestam-Almquist, P. (1996). Efficient induction of recursive definitions by structural analysis of saturations.
In L. DeRaedt (Ed.), Advances in Inductive Logic Programming (pp. 192–205). Amsterdam: IOS Press.

Kaminski, T., Eiter, T., & Inoue, K. (2018). Exploiting answer set programming with external sources for
meta-interpretive learning. TPLP, 18, 571–588.

Kietz, J. U., & Wrobel, S. (1992). Controlling the complexity of learning in logic through syntactic and task-
oriented models. In S. Muggleton (Ed.), Inductive logic programming (pp. 335–359). Academic Press.

Lapointe, S., Ling, C., Matwin, S. (1993). Constructive inductive logic programming. In Muggleton S (ed)
Proceedings of ILP’93, J. Stefan Institute Ljubljana, Slovenia, pp. 255–264.

123

Machine Learning (2021) 110:755–778 777

https://doi.org/10.1016/0020-0190(87)90114-1
https://doi.org/10.4230/LIPIcs.ICLP.2010.54
https://doi.org/10.1007/978-3-642-31951-8_12
https://doi.org/10.1007/978-3-642-31951-8_12
http://www.doc.ic.ac.uk/%7eshm/Papers/metafunc.pdf
https://doi.org/10.24963/ijcai.2019/842
https://doi.org/10.1613/jair.5714
https://doi.org/10.1016/S0743-1066(99)00028-X
https://doi.org/10.1016/S0743-1066(99)00028-X

Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs. In E. Fermé & J. Leite
(Eds.), Logics in Artificial Intelligence (pp. 311–325). Cham: Springer.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J., Muggleton, S., Dwight, M. (2014). Bias reformulation for
one-shot function induction. In Proceedings of the 23rd European Conference on Artificial Intelli-
gence, pp. 525–530, https://doi.org/10.3233/978-1-61499-419-0-525

Marcinkowski, J., Pacholski, L. (1992). Undecidability of the horn-clause implication problem. In Pro-
ceedings of the 33rd Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, USA, SFCS ’92, pp. 354–362, https://doi.org/10.1109/SFCS.1992.267755.

Morel, R., Cropper, A., Luke, O.C.H.(2019). Typed meta-interpretive learning of logic programs. In Pro-
ceedings of the European Conference on Logics in Artificial Intelligence (JELIA), to appear.

Morik, K. (1993). Balanced Cooperative Modeling, Springer US, Boston, MA, pp 109–127. https://doi.org/
10.1007/978-1-4615-3202-6_6.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318. https://doi.
org/10.1007/BF03037089.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13(3), 245–286. https://
doi.org/10.1007/BF03037227.

Muggleton, S., & Lin, D. (2015). Meta-Interpretive Learning of Higher-Order Dyadic Datalog : Predicate
Invention Revisited. Machine Learning, 100(1), 49–73.

Muggleton, S., Dai, W. Z., Sammut, C., Tamaddoni-Nezhad, A., Wen, J., & Zhou, Z. H. (2018). Meta-
interpretive learning from noisy images. Machine Learning, 107(7), 1097–1118. https://doi.org/10.
1007/s10994-018-5710-8.

Muggleton, S. H., Santos, J. C. A., & Tamaddoni-Nezhad, A. (2008). Toplog: Ilp using a logic program
declarative bias. In M. Garcia de la Banda & E. Pontelli (Eds.), Logic Programming (pp. 687–692).
Berlin Heidelberg: Springer.

Muggleton, S. H., Lin, D., & Tamaddoni-Nezhad, A. (2012). Mc-toplog: Complete multi-clause learning
guided by a top theory. In S. H. Muggleton, A. Tamaddoni-Nezhad, & F. A. Lisi (Eds.), Inductive
Logic Programming (pp. 238–254). Berlin Heidelberg: Springer.

Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive learning:
Application to grammatical inference. Machine Learning, 94(1), 25–49. https://doi.org/10.1007/
s10994-013-5358-3.

Nienhuys-Cheng, S. H., & de Wolf, R. (1997). Foundations of Inductive Logic programming. Berlin:
Springer.

Patsantzis, S., Muggleton, S.H. (2019). Louise system. https://github.com/stassa/louise, https://github.com/
stassa/louise

Plotkin, G. D. (1971). A further note on inductive generalization. In B. Meltzer & D. Michie (Eds.),Machine
intelligence (Vol. 6, pp. 101–124). Edinburgh University Press.

Plotkin, G. (1972). Automatic Methods of Inductive Inference. Ph.D thesis, The University of Edinburgh.
Plotkin, G. D. (1970). A note on inductive generalization. In B. Meltzer & D. Michie (Eds.), Machine

intelligence (Vol. 5, pp. 153–163). Edinburgh University Press.
Scott, R(Director, Khouri C(Writer)., Sarandon, S., Davis, G., Keitel, H(Starring). (1991). Thelma & Louise.

Metro-Goldwyn-Mayer.
Stahl, I. (1993). Predicate invention in ilp – an overview. In P. B. Brazdil (Ed.), Machine Learning: ECML-

93 (pp. 311–322). Berlin Heidelberg: Springer.
Valiant, L. G. (1984). A theory of the learnable. Communication ACM, 27(11), 1134–1142. https://doi.org/

10.1145/1968.1972.
Wirth, R., & O’Rorke, P. (1992). Constraints for predicate invention. Inductive Logic Programming APIC,

38, 299–318.
Wizards of the Coast LLC (2018) Magic: The gathering comprehensive rules. https://media.wizards.com/

2018/downloads/MagicCompRules%2020180810.txt, https://media.wizards.com/2018/downloads/
MagicCompRules%2020180810.txt

Wrobel, S. (1988). Design goals for sloppy modeling systems. International Journal of Man-Machine
Studies, 29(4), 461–477. https://doi.org/10.1016/S0020-7373(88)80006-3.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

778 Machine Learning (2021) 110:755–778

https://doi.org/10.3233/978-1-61499-419-0-525
https://doi.org/10.1109/SFCS.1992.267755
https://doi.org/10.1007/978-1-4615-3202-6_6
https://doi.org/10.1007/978-1-4615-3202-6_6
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/BF03037227
https://doi.org/10.1007/s10994-018-5710-8
https://doi.org/10.1007/s10994-018-5710-8
https://doi.org/10.1007/s10994-013-5358-3
https://doi.org/10.1007/s10994-013-5358-3
https://github.com/stassa/louise
https://github.com/stassa/louise
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://media.wizards.com/2018/downloads/MagicCompRules%2020180810.txt
https://media.wizards.com/2018/downloads/MagicCompRules%2020180810.txt
https://doi.org/10.1016/S0020-7373(88)80006-3

	Top program construction and reduction for polynomial time Meta-Interpretive learning
	Abstract
	Introduction
	Related work
	Framework
	Background
	Logical notation
	Meta-Interpretive learning

	Top program construction
	Preliminaries
	Inductive soundness and completeness of Algorithm 1
	Learning in the limit
	Finite example sets

	Time complexity of Algorithm 1

	Implementation
	Louise’s learning procedure
	Plotkin’s program reduction

	Experiments
	Experiment setup
	A note on metarule selection
	Experiment 1: Grid world
	Grid world---results

	Experiment 2: Coloured graph
	Coloured graph - results

	Experiment 3: M:tG Fragment
	M:tG Fragment---results

	Discussion

	Conclusions and future work
	Conclusions
	Future work

	Acknowledgements
	References

