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Abstract
We consider multi-objective multi-armed bandit with (i) lexicographically ordered and 
(ii) satisficing objectives. In the first problem, the goal is to select arms that are lexico-
graphic optimal as much as possible without knowing the arm reward distributions before-
hand. We capture this goal by defining a multi-dimensional form of regret that measures 
the loss due to not selecting lexicographic optimal arms, and then, propose an algorithm 
that achieves Õ(T2∕3) gap-free regret and prove a regret lower bound of �(T2∕3) . We also 
consider two additional settings where the learner has prior information on the expected 
arm rewards. In the first setting, the learner only knows for each objective the lexicographic 
optimal expected reward. In the second setting, it only knows for each objective a near-lex-
icographic optimal expected reward. For both settings, we prove that the learner achieves 
expected regret uniformly bounded in time. Then, we show that the algorithm we propose 
for the second setting of lexicographically ordered objectives with prior information also 
attains bounded regret for satisficing objectives. Finally, we experimentally evaluate the 
proposed algorithms in a variety of multi-objective learning problems.

Keywords  Multi-armed bandit · Multi-objective learning · Lexicographic optimality · 
Satisficing
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1  Introduction

A vast number of decision-making and learning tasks involve multi-dimensional perfor-
mance metrics (objectives). Examples include recommending items in a recommender sys-
tem to optimize accuracy, diversity and novelty (Zhou et al., 2010; Konstan et al., 2006), 
learning lexicographic optimal routing flows in wireless networks (Shah-Mansouri et al., 
2009), and adjusting the dose of radiation therapy for cancer patients while prioritizing 
target coverage over proximity of the therapy to the organs at risk (Jee et al., 2007). In most 
of these problems, the learner aims to choose arms that yield high rewards in all of the 
objectives; however, it prefers arms that yield high rewards in the low-priority objectives 
only if they do not compromise the rewards in the high-priority objectives. For instance, in 
intensity modulated radiation treatment (IMRT) for cancer patients (Jee et al., 2007), the 
primary objective is to deliver sufficiently high doses of radiation to target volumes. A sec-
ondary objective is to minimize dose to normal tissues without underdosing to the target 
volumes.

There also exists a wide range of tasks where the learner does not prioritize objec-
tives but it rather aims to satisfice a target value for each objective. Especially in engi-
neering, design goals are often not formulated as optimization problems but rather for-
mulated through specifications that the final design needs to satisfy. For instance, Cully 
et al., (2015) uses a multi-armed bandit (MAB) framework to develop control policies for 
robots that seek to prevent damage to the parts of the robot. Instead of minimizing the dam-
age, the authors successfully use a satisficing objective to keep the damage below a critical 
threshold, which speeds up the learning process.

Motivated by these, in this paper, we propose two new MAB problems: multiobjective 
MAB with (i) lexicographically ordered objectives (Lex-MAB) and (ii) satisficing objec-
tives (Sat-MAB).

In the Lex-MAB, the learner’s priority over the objectives is formally captured by lexi-
cographic ordering. Essentially, given D objectives indexed by the set D ∶= [D] , objective 
i has a higher priority than objective j if i < j.1 This priority induces a preference over the 
finite set of arms denoted by A . Formally, given two arms a and a′ with the correspond-
ing real-valued expected reward vectors �a ∶= (�1

a
,… ,�D

a
) and �a� ∶= (�1

a�
,… ,�D

a�
) , we 

say that arm a lexicographically dominates arm a′ in the first i ≤ D objectives (written as 
a ≻lex,i a

′ ) if 𝜇j
a > 𝜇

j

a′
 , where j ∶= min{k ≤ i ∶ �

k
a
≠ �

k
a�
}.2 Here, the latter expression is 

succinctly expressed as �a ≻lex,i �a′ . Based on this preference, the set of lexicographic opti-
mal arms are defined as the ones that are not lexicographically dominated by any other arm 
in all D objectives, which is given as A∗ ∶= {a ∈ A ∶ �a� ⊁lex,D �a,∀a

� ∈ A}.
In the Lex-MAB, at each round t, the learner selects an arm a(t) = a from A , and then, 

receives a D-dimensional random reward vector r(t) ∶= (r1(t),… , rD(t)) that is drawn from 
a fixed distribution with the expectation vector �a . The goal of the learner is to perform as 
well as an oracle which perfectly knows the set of lexicographic optimal arms and selects 
a lexicographic optimal arm in every round. We capture the ordering of the objectives by 
introducing a multi-dimensional regret measure called the lexicographic regret. As this 
regret notion is fundamentally different from the scalar regret notion used in the classical 

1  For a possitive integer n ∈ ℤ+ , [n] ∶= {1,… , n}.
2  If there is no such j, then �k

a
= �

k

a�
 for all k ∈ [i] , which implies that �

a
 does not lexicographically domi-

nate �
a′
 in the first i objectives.
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stochastic MAB (Lai & Robbins, 1985), minimizing it requires exploiting the multi-dimen-
sional nature of the rewards and ordering of the objectives both in algorithm design and 
technical analysis.

This is a challenging task because simple techniques such as turning the problem into 
a MAB with scalar rewards by using scalarization methods from multi-objective optimiza-
tion (Ehrgott, 2005) will not work since the solution of the scalarized problem may not 
produce lexicographic optimal arms. The problem is further complicated due to the fact 
that without any prior knowledge on the expected arm rewards, it is impossible to iden-
tify lexicographic optimal arms with high probability. This can be observed by consider-
ing a problem instance with arms a and a′ , and D = 2 , such that a and a′ have the same 
expected reward in objective 1, and a is the only lexicographic optimal arm. Although, 
in this problem, the learner can identify with high probability which arm is better in the 
second objective, it can never be sure about the lexicographic optimality of that arm. We 
call this problem the identifiability problem.3 Despite the identifiability problem, we show 
that it is possible to achieve Õ(T2∕3) gap-free regret by learning to select near-lexicographic 
optimal arms. We also prove that our method is near optimal by showing a regret lower 
bound of �(T2∕3).

The challenges described above motivates us to consider the cases where the learner has 
prior knowledge on the expected rewards in addition to the much more challenging prior-
free case. Specifically, we consider two types of prior knowledge, which generalize the 
prior knowledge introduced in Bubeck et al. (2013) and Vakili and Zhao (2013) to multi-
dimensional rewards. In the first case, we assume that the expected rewards of a lexico-
graphic optimal arm are known. In the second case, we assume that near-lexicographic 
optimal expected rewards are known. Then, we build learning algorithms that utilize the 
prior information to achieve uniformly-bounded-in-time lexicographic regret for both 
cases.

Importantly, for the first case, we show that the regret in each objective due to selecting 
a suboptimal arm a is inversely proportional to the maximum of the gaps of arm a over all 
objectives. This shows that having prior information over multiple objectives speeds up 
elimination of suboptimal arms. This is analogous to the combinatorial MAB (Gai et al., 
2012) in the sense that observations from one objective can help ruling out suboptimal 
arms in other objectives. We also prove that a similar gain appers in the second case, albeit 
we cannot rule out an arm performing much better than a lexicographic optimal arm in one 
of the objectives as suboptimal.

As our second contribution, we define the Sat-MAB as the generalization of the satis-
faction-in-mean-reward problem introduced in Reverdy et al. (2017) to the multi-objective 
setting, and show that the algorithm that we propose for the second case of the Lex-MAB 
with prior information also optimally solves the Sat-MAB by achieving uniformly-
bounded-in-time regret. This improves on satisfaction-in-mean-reward UCL algorithm 
given in Reverdy et al. (2017), which is only shown to achieve logarithmic-in-time regret 
for the single-objective case. Finally, we numerically evaluate the performance of our algo-
rihtms on several multi-objective learning problems.

Rest of the paper is organized as follows. Related work is given in Sect. 2. The Lex-
MAB, the lexicographic regret, types of prior information and the Sat-MAB are defined 
in Sect. 3. Algorithms and regret bounds for the Lex-MAB and the Sat-MAB are given in 

3  It also exists in the best arm identification problem with a fixed confidence (see Chapter 33 in Lattimore 
& Szepesvári, 2019).
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Sect. 4. Experimental results are given in Sect. 5 followed by the concluding remarks in 
Sect. 6.

2 � Related work

Multi-objective MAB Numerous works have investigated regret minimization in multi-
objective variants of the MAB problem. For instance, Drugan and Nowe (2013) defines 
for each suboptimal arm its distance to the Pareto front as the Pareto suboptimality gap and 
the regret as the sum of the Pareto suboptimality gaps of the arms chosen by the learner. 
It proposes a learning algorithm that achieves O(logT) gap-dependent Pareto regret. Tur-
gay et  al. (2018) considers the multi-objective contextual MAB problem with similarity 
information, and extends the contextual zooming algorithm in Slivkins (2014) to minimize 
the Pareto regret while making fair selections among the estimated Pareto optimal arms. 
The proposed algorithm is shown to achieve Õ(T (1+dp)∕(2+dp)) Pareto regret where dp is the 
Pareto zooming dimension. In addition, Tekin and Turgay (2018) considers a biobjective 
contextual MAB problem with lexicographically ordered objectives. Unlike that work, we 
study the general case with D lexicographically ordered objectives and also consider the 
effect of prior information on learning.

Satisficing and thresholding MAB Locatelli et al. (2016) proposes the tresholding MAB, 
where the goal is to, after a set number of rounds, determine the arms with means that are 
higher or lower than a given threshold up to a given precision. Similarly, Reverdy et  al. 
(2017) proposes MAB with satisficing objectives, where the goal is to minimize cumula-
tive regret with respect to a given threshold. There, arms with means that have a “satisfy-
ing” probability of being higher than the threshold do not incur any regret. In particular, 
Reverdy et  al. (2017) proposes an algorithm that achieves logarithmic-in-time regret for 
the satisfaction-in-mean-reward problem. The Sat-MAB proposed in our work generalizes 
this problem to the multi-objective case by introducing different satisficing thresholds for 
each objective. Moreover, we also propose an algorithm that achieves regret uniformly-
bounded-in-time, which improves upon the one in Reverdy et al. (2017).

MAB with prior information Lai and Robbins (1985) shows that in the classical stochas-
tic MAB problem, for any uniformly good policy, the regret grows at least logarithmically 
over time. As opposed to this, Lai and Robbins (1984) proves for the two-armed stochas-
tic bandit that when the learner has prior information on the maximum expected reward 
�
∗ and the minimum nonzero suboptimality gap � , there exist policies that can achieve 

uniformly bounded regret. This idea is further investigated in Bubeck et al. (2013), which 
shows that bounded regret of order 1∕� is achieved for the case with finitely many arms 
when the learner knows �∗ and a positive lower bound on � . Garivier et al. (2018) studies 
the case where only �∗ is known and proposes an algorithm with bounded regret of order 
log(1∕�)(1∕�) , and also proves a lower bound of order 1∕� . This paper also provides a 
generic tool to prove both gap-dependent and gap-independent lower bounds on the regret. 
Bubeck and Liu (2013) considers Thompson sampling and shows that its regret is uni-
formly bounded when �∗ and a positive lower bound on � are known. On the other hand, 
Vakili and Zhao (2013) considers a weaker prior information model where the learner 
knows a near-optimal expected reward � , which can be computed using �∗ and a positive 
lower bound on � . The proposed algorithm obtains 

∑
a �a∕�

3 regret, where 𝛿 = 𝜇
∗ − 𝜂 < 𝛥 

and �a is the suboptimality gap of arm a. Mersereau et al. (2009) and Lattimore and Munos 
(2014) consider as prior information the knowledge of parameterized expected reward 
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functions for each arm. In these works, the only unknown is the true parameter, which can 
be estimated by using reward observations from all of the arms.

Different from the works mentioned above, in this paper, we consider a multi-objec-
tive MAB problem with lexicographically ordered objectives. We design algorithms that 
exploit the prior information in all objectives simultaneously to rule out arms that are not 
lexicographic optimal. Our regret bounds match the ones in Garivier et  al. (2018) and 
improve the ones in Vakili and Zhao (2013) for the case with a single objective.

3 � Problem formulation

In this section, we formally define the Lex-MAB and the Sat-MAB.

3.1 � The Lex‑MAB

System model We consider rounds indexed by t ∈ {1, 2,…} . In each round t, the learner 
first selects an arm a(t) from the finite arm set A ∶= [A] , and then, observes a random 
reward for each objective i ∈ D ∶= [D] , denoted by ri(t) , which is equal to �i

a(t)
+ �

i(t) , 
where �i

a
 denotes the expected reward of arm a in objective i and � i(t) denotes the zero 

mean noise. The learner does not know the expected reward vector �a ∶= (�1
a
,… ,�D

a
) 

for any a ∈ A beforehand, and given a(t) = a , the noise vector {�1(t),… , �D(t)} is 
sampled from a fixed (unknown) multivariate distribution �a , independent of the 
other rounds. Moreover, its marginal distribution is 1-sub-Gaussian, i.e., ∀a ∈ A and 
∀� ∈ ℝ,𝔼[e��

i(t)|a(t) = a] ≤ exp(�2∕2).4 The assumption on the noise distribution is very 
general as it covers the Gaussian distribution with zero mean and unit variance, and any 
bounded zero mean distribution defined over an interval of length 2.

Lexicographic optimality For two D-dimensional real-valued vectors � ∶= (�1,… ,�D) 
and �′ ∶= (��1,… ,��D) , and i ∈ [D] , we say that � lexicographically dominates �′ in the 
first i objectives, denoted by � ≻lex,i �

′ , if 𝜇j
> 𝜇

′j , where j ∶= min{k ≤ i ∶ �
k ≠ �

�k} . 
Based on this, we say that arm a lexicographically dominates arm a′ in the first i objectives 
if �a ≻lex,i �a′ . The complement of this is denoted by �a ⊁lex,i �a′.

Let Ai
∗
∶= {a ∈ A ∶ �a� ⊁lex,i �a,∀a

� ∈ A} denote the set of lexicographic opti-
mal arms in the first i objectives and define A∗ ∶= A

D
∗
 . Clearly, we have Ai+1

∗
⊆ A

i
∗
 for 

i ∈ [D − 1] . We use ∗ to denote an arm that is lexicographic optimal in all objectives, 
and �i

∗
 to denote the expected reward of this arm in objective i. Moreover, we define the 

gap of arm a in objective i as �i
a
∶= �

i
∗
− �

i
a
 and the absolute gap of arm a in objective 

i as ∇i
a
∶= |�i

∗
− �

i
a
| . For i ∈ {2,… ,D} , we let Si

∗
∶= A

i−1
∗

−A
i
∗
 denote the set of arms 

that are lexicographic optimal in the first i − 1 objectives but not lexicographic optimal 
in the first i objectives and define S1

∗
∶= A −A

1
∗
 . Note that a ∈ S

i
∗
 implies that 𝛥i

a
> 0 . 

The set of suboptimal arms in objective i is given as Si ∶= {a ∶ 𝛥
i
a
> 0} . We also define 

the maximum gap in objective i as �i
max

∶= maxa∈A �
i
a
 and the maximum absolute gap as 

∇max
a

∶= maxj∈D ∇
j
a . Finally, let �i

min
∶= mina∈Si

∗
�
i
a
 denote the minimum gap among arms 

in Si
∗
.5

4  Noise can be dependent over the objectives.
5  If Si

∗
= � , then �i

min
= ∞.
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Why lexicographic optimality is worth studying First, it is a very well-known concept in 
multi-criteria decision making (Ehrgott, 2005) and utility theory (Fishburn, 1974). Appli-
cations such as intensity modulated radiation therapy for cancer patients (Jee et al., 2007) 
and routing with multiple sinks (Shah-Mansouri et  al., 2009) involve lexicographically 
ordered preferences. In an online setting, it implies that objectives have different priorities 
for the decision-maker and the (new) user that the decision-maker serves in each round. For 
instance, consider choosing treatments for patients sequentially arriving over time from the 
set of treatments a, b and c with expected rewards [1, 0], [1, 1] and [0, 1]. Assume that the 
first objective is related to effectiveness and the second objective is related to side-effects. 
It is not acceptable that any patient receives treatment a instead of b even when there exists 
a mechanism for the learner that will guarantee it to achieve a cumulative expected reward 
that lexicographically dominates the cumulative expected reward of what we propose. If 
one just tries to maximize the first objective, then it may never learn to select lexicographic 
optimal arms. Moreover, our results in this paper also show that learning might be faster 
(even in the first objective) when we use rewards from the other objectives.6

Types of prior knowledge:

Case 1  No prior knowledge on the expected rewards.

Case 2  Lexicographic optimal expected rewards are known, i.e., the learner knows �i
∗
 for 

all i ∈ D . For this case, we assume �i
∗
= 0 , ∀i ∈ D without any loss of generality.

Case 3  Near-lexicographic optimal expected rewards are known, i.e., the learner knows �i 
such that 𝜇i

∗
− 𝛥

i
min

< 𝜂i < 𝜇
i
∗
 for all i ∈ D . For this case, we define �i ∶= �

i
∗
− �i,∀i ∈ D 

and assume �i = 0,∀i ∈ D without any loss of generality.

Remark 1  In Case 2, if �i
∗
 s are not equal to 0, we can subtract them from the rewards to 

obtain normalized rewards r̃i(t) ∶= ri(t) − 𝜇
i
∗
 . Under the normalized rewards, we will have 

𝜇̃
i
∗
= 0,∀i ∈ D and the gaps that we have defined will not be affected. Similarly, in Case 3, 

we can subtract �i s from the rewards to obtain r̃i(t) ∶= ri(t) − 𝜂i.

Regret definitions The (pseudo) regret of the learner is measured with respect to an ora-
cle, which knows the expected rewards of the arms and chooses a lexicographic optimal 
arm in each round. We define two notions of regret: priority-based and priority-free regrets 
in objective i are given as

and

Regi
pb
(T) ∶=

T∑
t=1

�
i
a(t)

�{a(t) ∈ S
i
∗
}

Regi
pf
(T) ∶=

T∑
t=1

�
i
a(t)

6  This can be inferred from Theorems 3–6 and the comparison with the single-objective versions given in 
Table 3.
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respectively. The lexicographic priority-based and priority-free regrets are defined as the 
tuples Regpb(T) ∶= (Reg1

pb
(T),… , RegD

pb
(T)) and Regpf (T) ∶= (Reg1

pf
(T),… , RegD

pf
(T)) 

respectively. Subscripts will be removed from the notation when the considered regret 
notion is clear from the context.

For Regpb(T) , when a(t) ∈ S
i
∗
 , regret is incurred only in objective i. No regret 

is incurred for j < i since �j

a(t)
= 0 . In addition, no regret is incurred for j > i when 

a(t) ∈ S
i
∗
 . This definition of regret is consistent with the priority that the learner assigns 

to each objective. Since lexicographic ordering implies that even a small improvement 
in the expected reward in objective i is more important than any improvement in the 
expected rewards of objectives j > i , the learner does not care about the loss it incurs 
in higher indexed objectives when a(t) ∈ S

i
∗
 . For Regpf (T) , an arm a for which 𝜇i

a
> 𝜇

i
∗
 

can incur negative regret in objective i, but then, it is guaranteed that positive regret is 
incurred in some other objective j < i.

We say that the regret is O(max{f1(T),… , fD(T)}) when max{0, Regi(T)} ∈ O(fi(T)) 
for i ∈ D . Under both notions of regret, the (cumulative) regret of any arm selection 
strategy cannot lexicographically dominate the cumulative regret of always selecting a 
lexicographic optimal arm, which is essentially the zero vector. Therefore, the time-
averaged expected rewards of any algorithm that achieves sublinear Regpb(T) or Regpf (T) 
will converge (as T → ∞ ) to the lexicographic optimal expected rewards. In addition, 
under Regpf (T) the lexicographic ordering between the cumulative expected rewards 
and the regrets of any pair of sequences of arms (a(1),… , a(T)) and (a�(1),… , a�(T)) 
will be the same.

3.2 � The Sat‑MAB

In this section, we extend the satisfaction-in-mean-reward problem introduced in 
Reverdy et al. (2017) to the multi-objective setting. We keep the same system model but 
introduce the concept of satisficing optimality and a new notion of regret that captures 
this concept.

Satisficing optimality In the satisficing setting, the learner is given a target threshold �i 
for each objective i ∈ D . We say that an arm a is satisficing “optimal” or simply satisfic-
ing in objective i if and only if its mean reward in objective i is equal to or larger than the 
corresponding target threshold. Let Ai

s
∶= {a ∈ A ∶ �

i
a
≥ �i} be the set of satisficing arms 

in objective i and Si
s
∶= A −A

i
s
 be the set of non-satisficing arms in objective i. The satis-

ficing goal is to play arms that are satisficing in all objectives. We assume such arms exist 
and call them satisficing “optimal” arms. Then, we use ∗ to denote an arbitrary satisficing 
“optimal” arm and call it the “optimal” satisficing arm. Note that �i ≤ �

i
∗
 for all i ∈ D and 

define �i ∶= �
i
∗
− �i for all i ∈ D.

Regret definition The satisficing regret in objective i is given as 
Regi

s
(T) ∶=

∑T

t=1
(�i

a(t)
− �i)�{a(t) ∈ S

i
s
} and the satisficing regret is defined as the tuple 

Regs(T) ∶= (Reg1
s
(T),… , RegD

s
(T)) . Note that an arm a incurs regret in objective i only 

when it is not satisficing in that objective and the amount of regret incurred is equal to the 
gap between its mean reward in objective i and the corresponding target threshold, i.e., 
�
i
a
− �i = �i − �

i
a
.

Remark 2  When D = 1 , the Sat-MAB reduces to the exact same problem introduced in 
Reverdy et al. (2017) as Problems 1 and 2 (satisfaction-in-mean-reward problem).
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4 � Learning algorithms and regret bounds

In this section, we propose several learning algorithms for the Lex-MAB and the Sat-MAB 
and analyse their regrets.

4.1 � Algorithms and regret bounds for the Lex‑MAB

A learning algorithm for Case 1 We propose Prior Free Lexicographic Exploration and 
eXploitation (PF-LEX) given in Algorithm  1, which learns to select near lexicographic 
optimal arms without any prior information on the mean arm rewards. PF-LEX takes as 
input 𝜖 > 0 , which is proportional to the suboptimality that the learner aims to tolerate in 
all objectives (this will be adjusted based on the time horizon T). For each arm a, PF-LEX 
keeps a counter Na(t) that counts how many times arm a was selected prior to the current 
round and the sample mean estimate 𝜇̂i

a
 of the rewards from objective i of arm a observed 

prior to the current round for all i ∈ D . The values of these variables at the beginning of 
round t are denoted by Na(t) and 𝜇̂i

a
(t) respectively. 

Arm selection of PF-LEX in round t depends on the confidence intervals in the first 
D − 1 objectives. The upper confidence bound (UCB) and the lower confidence bound 
(LCB) of arm a in objective i are given as ui

a
(t) ∶= 𝜇̂

i
a
(t) + ca(t) and li

a
(t) ∶= 𝜇̂

i
a
(t) − ca(t) 

respectively. Here,

represents the uncertainty in arm a’s reward and � is called the confidence term, which is 
also given as input to PF-LEX. As expected, the uncertainty decreases as arm a gets 
selected. It is easy to see that �i

a
∈ [li

a
(t), ui

a
(t)] with high probability for all objectives and 

all rounds. In each round, PF-LEX estimates the set of near-lexicographic optimal arms. 
For this, similar to Joseph et al. (2016), we say that arms a and a′ are linked in objective i if 
[li
a
(t), ui

a
(t)] ∩ [li

a�
(t), ui

a�
(t)] ≠ � . When a and a′ are in the same component of the transitive 

closure of the linked relation in objective i, we say that they are chained in objective i and 
write aCi,t a

′ . Starting from Â
0

∗
(t) = A , PF-LEX recursively computes the estimate Â

i

∗
(t) 

of A
i
∗
 for i ∈ [D − 1] . After it computes Â

i−1

∗
(t) , it identifies the optimistic 

ca(t) ∶=

����1 + Na(t)

N2
a
(t)

�
1 + 2 log

�
AD

√
1 + Na(t)

�

��
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near-lexicographic optimal arm in objective i as âi
∗
(t) = argmax

a∈Â
i−1

∗
(t)
ui
a
(t) . Then, it sets 

Â
i

∗
(t) = {a ∈ Â

i−1

∗
(t) ∶ aCi,t â

i
∗
(t)}.

Suppose we always select âD
∗
(t) , which happens to be in Si

∗
 for some round t. For such 

rounds, we show later in Lemma  3 that the regret incurred is bounded by the length 
of the chain formed by Â

i

∗
(t) . In order to guarantee regret that is proportional to � , we 

want the length of the chains not to be more than a constant factor of � . As it is not 
always possible to shrink the chains by always selecting âD

∗
(t) , to achieve our goal, we 

require all arms in Â
1

∗
(t) to have narrow confidence intervals. Thus, PF-LEX selects 

a(t) = a ∈ Â
1

∗
(t) if there is an arm a with high uncertainty, i.e., ca(t) > 𝜖∕2 . On the other 

hand, if ca(t) ≤ �∕2 for all a ∈ Â
1

∗
(t) , then PF-LEX simply selects a(t) = âD

∗
(t) . Algo-

rithm 1 shows a more efficient implementation of PF-LEX that does not compute Â
j

∗
(t) 

for j > 1 when a(t) is selected from Â
1

∗
(t) . Finally, after PF-LEX selects arm a(t), it 

observes the random reward vector r(t) = (r1(t),… , rD(t)) of arm a(t), and then, updates 
the sample mean estimates of the rewards in objectives i ∈ D and the counter of a(t). 
The following theorem shows that PF-LEX achieves Õ(T2∕3) regret.

Theorem 1  When PF-LEX is run with � ∈ (0, 1) and 𝜖 > 0, with probability at least 1 − �, 
for all i ∈ D and for all T ≥ 1 , we have

where BT ,� ∶=

�
1 + 2 log(AD

√
T∕�). Given a particular time horizon T,   by setting 

� = T−1∕3, with probability at least 1 − �, we have

Moreover, taking � = 1∕T  , �[Regi
pb
(T)] = Õ(T2∕3).

Remark 3  Unlike the cases with prior information that follows, an analogue of the regret 
bound in Theorem 1 will not hold for the priority-free regret when Si

∗
 is replaced by Si . 

Any two arms that are both lexicographic optimal in the first i − 1 objectives are linked 
in these objectives with high probability. If one happens to be the selected arm, we are 
confident that they are both in Â

i−1

∗
 . When the selected arm is in Si

∗
 , we use this fact and 

compare it to a lexicographic optimal arm to conclude that the gap of the selected arm in 
objective i is smaller than the regret that we aim to tolerate. However, we fail to make any 
deductions about the higher-indexed objectives.

Proof of Theorem 1  First, we state a concentration inequality that will be used in the proof.

Lemma 1  (Lemma 6 in Abbasi-Yadkori et  al., 2011) Consider an arm a for which the 
rewards of objective i are generated by a process {Ri

a
(t)}T

t=1
 with �i

a
= �[Ri

a
(t)], where the 

noise Ri
a
(t) − �

i
a
 is conditionally 1-sub-Gaussian. Let Na(T) denote the number of times 

a is selected by the beginning of round T. Let 𝜇̂a(T) =
∑T−1

t=1
�{a(t) = a}Ri

a
(t)∕Na(T) for 

Na(T) > 0 and 𝜇̂a(T) = 0 for Na(T) = 0. Then, for any 0 < 𝛿 < AD with probability at least 
1 − �∕(AD) we have

Regi
pb
(T) ≤ 4

√
2BT ,�

�
�Si

∗
�T +

�
3 +

16

�2
log

2
√
eAD

��

�
�Si

∗
��i

max
+ �(A − 1)T

Regi
pb
(T)

≤ 4
√
2BT ,�

�
�Si

∗
�T + (A − 1)T2∕3 +

�
3 + 16T2∕3 log

2
√
eADT1∕3

�

�
�Si

∗
��i

max
.
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Let UCi
a
∶= ∪T

t=1
{�i

a
∉ [li

a
(t), ui

a
(t)]} , UCi ∶= ∪a∈AUC

i
a
 and UC ∶= ∪i∈DUC

i . The fol-
lowing lemma bounds the probability of UC.

Lemma 2 ℙ(UC) ≤ �.

Proof  This follows from Lemma 1. We observe that 
{𝜇i

a
∈ [li

a
(t), ui

a
(t)]} = {|𝜇i

a
− 𝜇̂

i
a
(t)| ≤ ca(t)} . Thus, Lemma 1 shows that ¬UCi

a
 holds with 

probability at least 1 − �∕(AD) , and hence, UCi
a
 holds with probability at most �∕(AD) . 

Applying the union bound, we get ℙ(UC) ≤ � . 	� ◻

Let T ∶= {1 ≤ t ≤ T ∶ ∀a ∈ Â
1

∗
(t) ∶ ca(t) ≤ 𝜖∕2} denote the set of rounds in which PF-

LEX selects the arm âD
∗
(t) and ¬T ∶= {1,… , T} − T  . In the following lemma, the gap of 

the arm selected in round t ∈ T  in objective i is bounded as a function of � and the length 
of the confidence interval of the selected arm on event ¬UC if the selected arm is in Si

∗
.

Lemma 3  When PF-LEX is run, the following holds on event ¬UC if a(t) ∈ S
i
∗
 : 

�
i
∗
− �

i
a(t)

≤ ui
a(t)

(t) − li
a(t)

(t) + �(A − 1) for t ∈ T.

Proof  Consider any lexicographic optimal arm ∗ . We have

Here (1) holds since �i
∗
≤ ui

∗
(t) and �i

a(t)
≥ li

a(t)
(t) on event ¬UC . Equation (1) holds by the 

definition of âi
∗
(t) and the fact that ∗∈ Â

i−1

∗
(t) , which is proven by induction. For this, con-

sider any objective j ∈ {1,… , i − 1} . We first observe that ∗∈ Â
0

∗
(t) and 

a(t) = âD
∗
(t) ∈ Â

D−1

∗
(t) ⊆ Â

j

∗
(t) . Next, we show that ∗∈ Â

j−1

∗
(t) ⟹ ∗∈ Â

j

∗
(t) to conclude 

that ∗∈ Â
i−1

∗
(t) . Since a(t) ∈ S

i
∗
 , �j

a(t)
= �

j
∗ , which implies that a(t) and ∗ are linked in 

objective j. Since a(t) ∈ Â
j

∗
(t) , a(t) is chained to âj∗(t) in objective j, which implies that ∗ is 

chained to âj∗(t) in objective j as well. Finally, if i = D , (1) holds trivially as 
a(t) = âi

∗
(t) = âD

∗
(t) . Otherwise, since a(t) = âD

∗
(t) ∈ Â

D−1

∗
(t) ⊆ Â

i

∗
(t) , a(t) is chained to 

âi
∗
(t) , which implies that |ui

âi
∗
(t)
(t) − ui

a(t)
(t)| ≤ 2(|Âi

∗
(t)| − 1)max

a∈Â
i

∗
(t)
ca(t) ≤ 𝜖(A − 1) . 	

� ◻

We also need to bound the regret in objective i for rounds up to round T for which 
t ∉ T  . Let ¬Ta ∶= {t ∈ ¬T ∶ a(t) = a} . Obviously, PF-LEX does not incur any regret in 
objective i in rounds t ∈ ¬Ta for a ∈ A − S

i
∗
 , and incurs regret �i

a
 in objective i in rounds 

t ∈ ¬Ta for a ∈ S
i
∗
.

Lemma 4  When PF-LEX is run, we have

��𝜇̂a(T) − 𝜇a
�� ≤

����1 + Na(T)

N2
a
(T)

�
1 + 2 log

�
AD

√
1 + Na(T)

𝛿

��
, ∀T ∈ ℕ.

(1)

𝜇
i
∗
− 𝜇

i
a(t)

≤ ui
∗
(t) − li

a(t)
(t)

≤ ui
âi
∗
(t)
(t) − li

a(t)
(t)

≤ ui
a(t)

(t) − li
a(t)

(t) + 𝜖(A − 1).
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for all objectives i ∈ D.

Proof  The proof follows from bounding the cardinality of ¬Ta for a ∈ S
i
∗
 . Note that t ∈ ¬Ta 

happens only when ca(t) > 𝜖∕2 . Similar to the proof of Theorem 7 in Abbasi-Yadkori et al., 
(2011), this implies that

Then, from Lemma 8 in Antos et al. (2010), we obtain Na(t) ≤ 3 +
16

�2
log

2
√
eAD

��
 . 	�  ◻

In the remaining part, we bound Regi
pb
(T) under the event ¬UC and �[Regi

pb
(T)] by 

using the results of the lemmas above. For the latter, we observe that:

For each i ∈ D , the bound for Regi
pb
(T) is obtained by using the result in Lemmas 3 and 4. 

By Lemma 4, we know that

Let Na ∶= {t ∈ T ∶ a(t) = a} . By Lemma 3, on event ¬UC (which happens with probabil-
ity at least 1 − � ), we have

The bound for Regi
pb
(T) is obtained by summing the results of (3) and (4). Finally, the 

bounds on the expected regret simply follows from using (4) and setting � = 1∕T .
Regret lower bound for Case 1 The following theorem shows that the total priority-

based regret of any algorithm is at least on the order of �(T2∕3) . Such a lower bound has 
two major implications: (i) the regret achieved by PF-LEX is optimal up to some logarith-
mic terms, (ii) the Lex-MAB is inherently a “harder” problem than conventional MAB 
problems, where achieving a gap-free regret of O(T1∕2) is usually possible.

�
t∈¬T

�{a(t) ∈ S
i
∗
}�i

a(t)
≤

�
a∈S∗

i

�
3 +

16

�2
log

2
√
eAD

��

�
�
i
a

N2
a
(t) − 1

Na(t) + 1
≤

N2
a
(t)

Na(t) + 1
≤

4

�2

�
1 + 2 log

AD
√
1 + Na(t)

�

�
.

(2)
𝔼[Regi

pb
(T)] = 𝔼[Regi

pb
(T)|UC]ℙ(UC) + 𝔼[Regi

pb
(T)|¬UC]ℙ(¬UC)

≤ T�i
max

ℙ(UC) + 𝔼[Regi
pb
(T)|¬UC].

(3)
�
t∈¬T

�{a(t) ∈ S
∗
i
}�i

a(t)
≤ 3�Si

∗
��i

max
+

16�Si
∗
��i

max

�2
log

2
√
eAD

��
.

(4)

�
t∈T

�{a(t) ∈ S
∗
i
}�i

a(t)
≤

�
a∈Si

∗

�
t∈Na

(ui
a
(t) − li

a
(t)) + �(A − 1)T

≤ 2
√
2
�
a∈Si

∗

�
BT ,�

�
t∈Na

�
1

Na(t)

�
+ �(A − 1)T

≤ 2
√
2BT ,�

�
a∈Si

∗

√
Na(T) + �(A − 1)T

≤ 4
√
2BT ,�

�
�Si

∗
�T + �(A − 1)T .



1244	 Machine Learning (2021) 110:1233–1266

1 3

Theorem 2  Define Reg
�
(T) ∶=

∑D

i=1
Regi

pb
(T) as the total regret. For any algorithm and 

for any 𝜖 > 0, there exists some instance of the Lex-MAB such that

Taking � = T−1∕3, for any algorithm, there exists some instance of the Lex-MAB such that 
�[Reg

�
(T)] ≥ �(T2∕3).

Proof of Theorem 2  For any given algorithm, consider two instances � and � of the Lex-
MAB with A = 2 and D = 2 . An instance includes both the probabilistic structure of the 
given learning algorithm and an environment consisting of arms. Arms in instance � 
has expected reward vectors �(�)

1
= (1, 0) and �(�)

2
= (1, 1) while arms in instance � has 

expected reward vectors �(�)

1
= (1 + �, 0) and �(�)

2
= (1, 1) . We assume rewards are distrib-

uted independently for each objective and normally with unit variance in both instances.
Then, the expected total regret of an algorithm in instances � and � can be written as

respectively. If �
�
[N1(T)] ≥ 1∕�2 , then the regret in (5) is simply lower bounded as 

�
�
[Reg

�
(T)] = �

�
[N1(T)] ≥ 1∕�2.

If �
�
[N1(T)] ≤ 1∕�2 instead, then we first apply inequality (6) in Garivier et al. (2018), 

which trivially extends to multivariate distributions, to obtain

where KL(v, v�) represents the Kullback–Leibler divergence between distributions v and v′ , 
kl(p, q) ∶= p ln(p∕q) + (1 − p) ln((1 − p)∕(1 − q)) , and the last line follows from Pinsker’s 
inequality. Solving for �

�
[N1(T)]∕T  , we obtain

Then, the regret in (6) can be lower bounded as

�[Reg
�
(T)] ≥ min

{
1

�2
,
�T

2
−

1

�

}
.

(5)�
�
[Reg

�
(T)] = �

�
[N1(T)],

(6)
�
�
[Reg

�
(T)] = �

�
[N2(T)]�

= �(T − �
�
[N1(T)])

�
�
[N1(T)] ⋅

�
2

2
= �

�
[N1(T)]KL(N(�

(�)

1
, I),N(�

(�)

1
, I))

≥ kl

(
�
�
[N1(T)]

T
,
�
�
[N1(T)]

T

)

≥ 2

(
�
�
[N1(T)]

T
−

�
�
[N1(T)]

T

)2

�
�
[N1(T)]

T
≤

�
�
[N1(T)]

T
+

�

2

√
�
�
[N1(T)]

≤
1

�2T
+

1

2

⟹ �
�
[N1(T)] ≤

1

�2
+

T

2
.
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In all cases, we have either lower bounded the regret in instance � or instance � . Combin-
ing those lower bounds, there is at least one instance where the expected total regret is 
lower bounded as

	�  ◻

A learning algorithm for Case 2 We propose Optimal Mean based Lexicographic 
Exploration and eXploitation (OM-LEX) given in Algorithm 2 for the prior information 
described in Case 2. In essence, OM-LEX generalizes the arm selection rule proposed 
in Algorithm 1 in Garivier et  al. (2018) to multiple objectives. Similar to PF-LEX, it 
keeps, for each arm a, the counter Na(t) and the sample mean reward 𝜇̂i

a
(t) , ∀i ∈ D . 

OM-LEX starts by selecting each arm exactly once. In the remaining rounds, it 
checks whether there exists an arm whose sample mean reward in objective i is within 
a shrinking neighborhood of the lexicographic optimal arm’s expected reward for all 
objectives i ∈ D . For this, it computes the set of estimated lexicographic optimal arms 
in round t as

If Â∗(t) ≠ � , then OM-LEX exploits by selecting one of the arms in Â∗(t) uniformly at ran-
dom as it expects only the lexicographic optimal arms to satisfy this condition in the long 
run. If no such arm exists, then OM-LEX explores by playing all arms in a round-robin 
fashion. The following theorem shows that the expected priority-based regret of OM-LEX 
is uniformly bounded in time.

Theorem 3  When OM-LEX is run, ∀i ∈ D and ∀T ≥ 1, we have

�
�
[Reg

�
(T)] = �(T − �

�
[N1(T)])

≥ �

(
T −

1

�2
−

T

2

)

=
�T

2
−

1

�
.

�[Reg
�
(T)] ≥ min

{
1

�2
,
�T

2
−

1

�

}
.

Â∗(t) ∶=

⎧⎪⎨⎪⎩
a ∈ A ∶ ∀i ∈ D, �𝜇̂i

a
(t)� <

�
4 logNa(t)

Na(t)

⎫⎪⎬⎪⎭
.
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When D = 1 , this result is identical to the regret bound in Theorem 9 in Garivier et  al. 
(2018) except for some constants. In the multi-objective case, we see that the regret induced 
by an arm in one objective depends on the maximum of the absolute gaps of the same arm 
over all objectives. As long as the arm has a large absolute gap in at least one objective, it is 
easy to identify it as a suboptimal arm.

Proof of Theorem 3  We use the following fact to prove Theorem 3 (and Theorem 5 later 
on).

Fact 1  (Results from the proof of Theorem 9 in Garivier et al., 2018) Given 𝛥 > 0, for all 
arms a ∈ A, for all objectives i ∈ D and for all rounds t ∈ {1, 2,… , T}, we have

For an arm a that is not lexicographic optimal, let †(a) ∶= argmax j∈D∇
j
a so that 

∇†(a)
a

= ∇max
a

 . When a can be inferred from the context, †(a) is denoted by † only. For all 
objectives i ∈ D , we decompose �[Regi(T)] as

�[Regi
pb
(T)] ≤

∑
a∈Si

∗

((
�
2

3
D + 1

)
�
i
a
+

36�i
a

(∇max
a

)2
log

17

∇max
a

)
.

∞�
w=1

ℙ

⎛
⎜⎜⎝
𝜇̂
i
a
(t) − 𝜇

i
a
> 𝛥 −

�
4 logNa(t)

Na(t)

���� Na(t) = w

⎞
⎟⎟⎠

=

∞�
w=1

ℙ

⎛⎜⎜⎝
𝜇̂
i
a
(t) − 𝜇

i
a
<

�
4 logNa(t)

Na(t)
− 𝛥

���� Na(t) = w

⎞⎟⎟⎠
≤

36

𝛥2
log

17

𝛥
.

(7)

�[Regi(T)] = �

�
T�
t=1

�{a(t) ∈ S
i
∗
}�i

a(t)

�

= �

⎡⎢⎢⎣
�
a∈Si

∗

T�
t=1

�{a(t) = a}�i
a

⎤⎥⎥⎦

= �

⎡⎢⎢⎣
�
a∈Si

∗

T�
t=1

�{t ≤ A, a(t) = a}�i
a

⎤⎥⎥⎦

(8)+ �

⎡⎢⎢⎢⎣

�
a∈Si

∗

T�
t=1

�

⎧⎪⎨⎪⎩
t > A, �𝜇̂†

a
(t)� <

�
4 logNa(t)

Na(t)
, a(t) = a

⎫⎪⎬⎪⎭
𝛥
i
a

⎤⎥⎥⎥⎦
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Bounding (7) is trivial, since each arm is played exactly once for rounds t ≤ A . We have

In order to bound (8), we define �a(w) as the wth round for which a(t) = a , and wa(T) as 
the number of rounds for which a(t) = a by round T. By definition, Na(�a(w + 1)) = w , 
�a(1) ≤ A and wa(T) ≤ T  hold for all arms a. Thus, we have

When �†
a
= ∇†

a
 , we have

(9)+ �

⎡
⎢⎢⎢⎣

�
a∈Si

∗

T�
t=1

�

⎧
⎪⎨⎪⎩
t > A, �𝜇̂†

a
(t)� ≥

�
4 logNa(t)

Na(t)
, a(t) = a

⎫
⎪⎬⎪⎭
𝛥
i
a

⎤
⎥⎥⎥⎦
.

�

⎡⎢⎢⎣
�
a∈Si

∗

T�
t=1

�{t ≤ A, a(t) = a}�i
a

⎤
⎥⎥⎦
= �

⎡
⎢⎢⎣
�
a∈Si

∗

T�
t=1

�{t = a}�i
a

⎤
⎥⎥⎦

=
�
a∈Si

∗

�

�
T�
t=1

�{t = a}

�
�
i
a

=
�
a∈Si

∗

�
i
a
.

(10)

𝔼

⎡
⎢⎢⎢⎣

�
a∈Si

∗

T�
t=1

𝕀

⎧
⎪⎨⎪⎩
t > A, �𝜇̂†

a
(t)� <

�
4 logNa(t)

Na(t)
, a(t) = a

⎫
⎪⎬⎪⎭
𝛥
i
a

⎤
⎥⎥⎥⎦

=
�
a∈Si

∗

𝔼

⎡⎢⎢⎢⎣

wa(T)−1�
w=1

𝜏a(w+1)�
t=𝜏a(w)+1

𝕀

⎧⎪⎨⎪⎩
�𝜇̂†

a
(t)� <

�
4 logNa(t)

Na(t)
, a(t) = a

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦
𝛥
i
a

=
�
a∈Si

∗

𝔼

�
wa(T)−1�
w=1

𝕀

�
�𝜇̂†

a
(𝜏a(w + 1))� <

�
4 logw

w

��
𝛥
i
a

≤
�
a∈Si

∗

∞�
w=1

ℙ

�
�𝜇̂†

a
(𝜏a(w + 1))� <

�
4 logw

w

�
𝛥
i
a
.

(11)

∞∑
w=1

ℙ

(
|𝜇̂†

a
(𝜏a(w + 1))| <

√
4 logw

w

)

≤

∞∑
w=1

ℙ

(
𝜇̂
†
a
(𝜏a(w + 1)) <

√
4 logw

w

)

≤

∞∑
w=1

ℙ

(
𝜇̂
†
a
(𝜏a(w + 1)) − 𝜇

†
a
<

√
4 logw

w
− ∇†

a

)

≤
36

(∇†
a)

2
log

17

∇†
a

,
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where (11) is due to Fact 1.
Similarly, when �†

a
= −∇†

a
 , we have

where (12) is again due to Fact 1.
Combining (11) and (12), we obtain

In order to bound (9), we observe that t > A ∧ �𝜇̂†
a
(t)� ≥ √

4 logNa(t)∕Na(t) ∧ a(t) = a can 
only occur during an exploration stage, where each arm is played successively. Hence, we 
can infer that 

	 (i)	 a(t − a+ ∗) =∗,
	 (ii)	 t − a + 1 > A,
	 (iii)	 Â∗(t − a + 1) = � , which implies that there exists an objective j such that 

		    since arm ∗ is not played after round t − a + 1 until round t − a+ ∗.

Using these observations and defining ta ∶= t − a+ ∗ , we obtain
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where (13) is due to Hoeffding’s inequality for sub-Gaussian random variables (Bubeck 
et al., 2013). 	�  ◻

Priority-free regret bound for Case 2 The following theorem shows that the expected 
priority-free regret of OM-LEX is uniformly bounded in time as well.

Theorem 4  When OM-LEX is run, ∀i ∈ D and ∀T ≥ 1, we have

(13)
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Proof  Note that

where we prove (14) by replacing Si
∗
 with Si in the proof of Theorem 3. 	�  ◻

A learning algorithm for Case 3 We propose Near Optimal Mean based Lexico-
graphic Exploration and eXploitation (NOM-LEX). NOM-LEX has almost the same 
structure with OM-LEX. Its pseudocode is exactly the same as Algorithm 2 except two 
differences: Firstly, its input prior knowledge (given in line 1 of Algorithm 2) is �i = 0 , 
∀i ∈ D . Secondly, NOM-LEX computes the set of estimated lexicographic optimal arms 
in round t (given in line 6 of Algorithm 2) as

The next theorem bounds the expected priority-based regret of NOM-LEX.

Theorem 5  When NOM-LEX is run, ∀i ∈ D and ∀T ≥ 1, we have

From Theorem  5, we see that the regret due to a suboptimal arm a in objective i 
depends on the maximum squared difference between the suboptimality gaps of that 
arm and near-lexicographic optimal expected rewards over all objectives. This also 
shows that the prior knowledge in other objectives may help the learner attain smaller 
regret in objective i. However, since the lexicographic optimal expected rewards are not 
known, unlike Case 2, we cannot rule out a suboptimal arm in objective i by observing 
that it is much better than a lexicographic optimal arm in another objective.

Proof of Theorem  5  For an arm a that is not lexicographic optimal, let 
†(a) ∶= argmax j∈D�

j
a − �j . When a can be inferred from the context, †(a) is denoted by † 

only. For all objectives i ∈ D , we decompose �[Regi(T)] as
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Bounding (15) is trivial, since each arm is played exactly once for rounds t ≤ A . We have

In order to bound (16), we use �a(w) and wa(T) defined in the proof of Theorem 3. We have

(15)
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where (18) is due to Fact 1.
In order to bound (17), we observe that t > A ∧ 𝜇̂

†
a
(t) ≤ −

√
4 logNa(t)∕Na(t) ∧ a(t) = a 

can only occur during an exploration stage, where each arm is played successively. Hence 
we can infer that 

	 (i)	 a(t − a+ ∗) =∗,
	 (ii)	 t − a + 1 > A,
	 (iii)	 Â∗(t − a + 1) = � , which implies that there exists an objective j such that 

		    since arm ∗ is not played after round t − a + 1 until round t − a+ ∗.

Using these observations and defining ta ∶= t − a+ ∗ , we obtain

(18)
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where (19) holds since �j
∗ = �j ≥ 0 and (20) is due to Hoeffding’s inequality for sub-Gauss-

ian random variables (Bubeck et al., 2013). 	�  ◻

Priority-free regret bound for Case 3 The following theorem shows that the expected 
priority-free regret of NOM-LEX is uniformly bounded in time as well.

Theorem  6  Redefine �i
min

∶= mina∈Si �
i
a
, ∀i ∈ D. When NOM-LEX is run, ∀i ∈ D and 

∀T ≥ 1, we have
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Proof  We redefine �i
min

 as stated in the theorem. Then,

where we prove (22) by replacing Si
∗
 with Si in the proof of Theorem 5. 	�  ◻

Note that redefining �i
min

 as mina∈Si �
i
a
 in Case 3 implies that the learner has 

stronger prior knowledge on the near-lexicographic optimal expected rewards, since 
mina∈Si �

i
a
≤ mina∈Si

∗
�
i
a
.

4.2 � Algorithms and regret bounds for the Sat‑MAB

Assuming �i = 0 for all i ∈ D without any loss of generality,7 the algorithm proposed for 
Case 3, which is NOM-LEX, can also be used to solve the Sat-MAB. Since the goal now 
is to minimize the satisficing regret rather than the lexicographic regret, we no longer need 
�i to lie between the lexicographic optimal and the second highest lexicographic optimal 
expected rewards in objective i. The following theorem bounds the expected satisficing 
regret for NOM-LEX.

Theorem 7  When NOM-LEX is run for the satisficing goal, ∀i ∈ D and ∀T ≥ 1, we have

Proof  Replacing lexicographic optimality with satisficing optimality, Si
∗
 with Si

s
 , and every 

instance of the exact phrase �i
a
 (and �i

a(t)
 ) with �i

a
− �i (and �i

a(t)
− �i ), the proof of Theo-

rem 5 holds for Theorem 7 as well. 	�  ◻
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7  See Remark 1 for a detailed discussion of why the generality is not lost.
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Corollary 1  When NOM-LEX is run for the single-objective satisfaction-in-mean-reward 
problem ( D = 1 ), ∀T ≥ 1, we have8 

Remark 4  Theorem  7 and Corollary 1 show that bounded regret is possible for the sat-
isfaction-in-mean-reward problem. This result is directly in conflict with Corollary 2 of 
Reverdy et  al. (2017), which claims a logarithmic lower bound on the single-objective 
case, and suggests that satisfaction-in-mean-reward UCL algorithm given in Section VI-A 
of Reverdy et al. (2017) is not optimal since it fails to achieve bounded regret.

5 � Experiments

5.1 � Experiments for the Lex‑MAB

In this section, we demonstrate our results for the Lex-MAB in three different settings with 
A = 3 and D = 2 and two additional settings with D = 3 . All rewards are assumed to come 
from independent Bernoulli distributions in all objectives.

For the first three settings with A = 3 and D = 2 , the expected reward vectors are sum-
marized in Table 1. In all of these settings, the only lexicographic optimal arm is the first 
arm and �1

min
= �

2
min

= 0.10 . Note that we only focus on the priority-based regret for these 
settings. In Setting 1, apart from the lexicographic optimal arm, there is another arm that 
is also optimal in objective 1, which requires the learner to consider rewards in objective 2. 
However, the third arm makes this tricky. It is not only suboptimal in objective 1 but also 
has a very high reward in objective 2. Setting 2 is specifically designed to be challenging 
for Cases 2 and 3. Since arms that are not lexicographic optimal are suboptimal in exactly 
one objective, eliminating arms based on information from the other objective is not pos-
sible. Setting 3 contrasts with Setting 1. Unlike Setting 1, in which the expected reward 
of arm 3 in objective is much higher than the lexicographic optimal expected reward, in 
Setting 3, it is much lower. However, the gap of arm 3 in objective 2 in Setting 3 is still the 
same as the absolute gap of arm 3 in Setting 1.

For all cases, we set T = 105 and average the regret of the learners over 100 individual 
runs. We consider OM-LEX, NOM-LEX, and PF-LEX with prior knowledge and param-
eters that are summarized in Table 2.9 For PF-LEX, we do not consider the choices for 

�[Regs(T)] ≤
∑
a∈Ss

((
�
2

6
D + 1

)
(�a − �) +

36

�a − �
log

17

�a − �

)
.

Table 1   Expected reward vectors 
for the first three settings

Setting �
1

�
2

�
3

Setting 1 (0.50, 0.50) (0.50, 0.40) (0.40, 0.90)
Setting 2 (0.50, 0.50) (0.50, 0.40) (0.40, 0.50)
Setting 3 (0.50, 0.50) (0.50, 0.40) (0.40, 0.10)

8  For simplicity, the objective index 1 is omitted.
9  Implementations of OM-LEX, NOM-LEX, and PF-LEX that are used during the experiments can be 
found at https://​github.​com/​Bilke​nt-​CYBORG/​Lex-​MAB.

https://github.com/Bilkent-CYBORG/Lex-MAB
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� and � given in Theorem 1 because they require a large number of rounds for the initial 
exploration stage of the algorithm. Instead, we consider different exponents of T as both � 
and � , except for a single result which shows the regret of PF-LEX for � = � = T−1∕3 (PF-
LEX 3) for T = 5 × 108.

Table 3 shows the regrets incurred and the percentage of rounds where a lexicographic 
optimal arm has been played by OM-LEX 1, NOM-LEX 1, 2, 3, and PF-LEX 1, 2 in Set-
tings 1, 2 and 3 at T = 105 . There, we also report the performance of the variants of OM-
LEX and NOM-LEX that only learn from the first objective and ignore the second objec-
tive, i.e., they act as if D = 1 . Note that Settings 1, 2, and 3 are equivalent for objective 1.

By looking at the regrets in objective 1 of OM-LEX 1, NOM-LEX 1, and their single-
objective variants, we observe how information from objective 2 helps learning in objec-
tive  1. OM-LEX takes advantage of large absolute gaps independent from whether the 
actual mean reward is higher or lower than the mean reward of arm 1. As a result, in Set-
tings 1 and 3, it achieves lower regret in objective 1 than its single-objective variant does. 
NOM-LEX is capable of doing this only when the gap is positive, a large absolute gap is 
not sufficient. As a result, only in Setting 3, it outperforms its single-objective variant. In 
Setting 2, where information from objective 2 is not as useful as it is in Settings 1 and 3 to 
rule out the suboptimal arm in objective 1, OM-LEX 1 performs worse than the other set-
tings in objective 1.

By looking at the regrets of NOM-LEX  1, 2, and 3, we observe how different prior 
information affects the performance of NOM-LEX. Consistent with the proven regret 
bounds, knowing near optimal expected rewards that are closer to the lexicographic opti-
mal ones decreases the regret in all objectives. When the near optimal expected rewards are 
extremely close to the lexicographic optimal ones, the performance of NOM-LEX is very 
similar to that of OM-LEX.

By looking at the percentage of rounds where a lexicographic optimal arms have been 
played, we see that the single-objective variants do not play lexicographic optimal arms as 
often as their multiobjective counterparts although they achive lower regret in objective 1 
in some settings compared to the multiobjective variants.

Figure 1 shows the regrets of OM-LEX 1, NOM-LEX 1, PF-LEX 1 in Setting 1. We 
observe that the regret of OM-LEX in objective 1 is significantly smaller than the regret 
of NOM-LEX. We believe this is the case because OM-LEX is able to take advantage of 
the large absolute gap of arm 3 to eliminate it early on, whereas NOM-LEX cannot. The 
behavior of PF-LEX is explained as follows. Until around round 30,000, it explores all 
three arms uniformly since their estimated rewards in objective 1 are still chained to each 
other. At round 30,000, the gap between the arms is deemed small enough with respect 

Table 2   Prior knowledge and 
parameters of algorithms for the 
first three settings

Algorithm Prior knowledge and 
parameters

OM-LEX (OM) 1 �
1
∗
= �

2
∗
= 0.50

NOM-LEX (NM) 1 �1 = �2 = 0.45

NOM-LEX (NM) 2 �1 = �2 = 0.40 + 10−6

NOM-LEX (NM) 3 �1 = �2 = 0.50 − 10−6

PF-LEX (PF) 1 � = � = T−1∕5

PF-LEX (PF) 2 � = � = T−1∕10

PF-LEX (PF) 3 � = � = T−1∕3
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to the time horizon of the problem. In the remaining rounds, it plays only the optimis-
tic near-lexicographic optimal arm in objective  2 ( ̂a2

∗
(t) ). For this case, � matches with 

the minimum suboptimality gap. Thus, although PF-LEX always chooses â2
∗
(t) , because 

Â
1

∗
(t) = A

1
∗
 , it learns to play optimally. As a remark, we note that PF-LEX could incur high 

regret in objective 1 (see PF-LEX 2 in Table 3) if the minimum suboptimality gap were 
smaller than �.

Next, for Setting 1, we consider PF-LEX 3 that has parameters � = � = T−1∕3 as given 
in Table 2 (that match with the optimal choice for � given in Theorem 1), run simula-
tions for T = 5 × 108 , and report the average regret of the learner over 5 runs (Fig. 2). 
This result illustrates the identifiability problem introduced earlier that makes learn-
ing lexicographic optimal arms particularly challenging. We see that PF-LEX rules out 

Fig. 1   Regrets of OM-LEX 1, NOM-LEX 1, and PF-LEX 1 in Setting 1

Fig. 2   Regret of PF-LEX 3 in Setting 1
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arm 3 as a potential lexicographic optimal arm and stops incurring regret in objective 1 
very early on. However, since it is not possible to be confident in that both arm 1 and 
arm 2 have equal expected rewards in objective 1, the algorithm still keeps exploring 
them uniformly until around round 2 × 108 . During this exploration stage, it incurs lin-
ear regret in objective 2. Once both arms are deemed to be optimal in objective 1, PF-
LEX starts exploiting the optimistic near-lexicographic optimal arm in objective 2, after 
which the increase of the regret in objective 2 drops drastically.

For the two additional settings with D = 3 , we consider Settings 4 and 5. In Setting 4, 
there are 43 arms with expected reward vectors in {0.90, 0.50, 0.40, 0.10}3 such that each 
arm has a unique expected reward vector, where we eliminated arms that lexicographi-
cally dominate (0.50,  0.50,  0.50) so that it is the only lexicographic optimal arm and 
�
1
min

= �
2
min

= �
3
min

= 0.10 . Setting 4 features a large variety of arms with combinations 
of expected rewards that are much higher than, equal to, slightly lower than, and much 
lower than the lexicographic optimal expected rewards in all objectives. In Setting  5, 
there are 19 arms, where we eliminated arms in S2

∗
 from Setting 4 so that S2

∗
= � and 

�
2
min

= ∞ while �1
min

= �
3
min

= 0.10 . Table 4 shows OMG-LEX and NOM-LEX with dif-
ferent prior knowledge and parameters than the ones considered so far.

We run simulations with T = 105 and average the regret of the learners over 100 indi-
vidual runs. Different from the previous experiments, we provide results for the prior-
ity-free regret as well.

Table 4   Prior knowledge and 
parameters of the algorithms for 
the two additional settings

Algorithm Prior knowledge and parameters

OM-LEX 2 �
1
∗
= �

2
∗
= �

3
∗
= 0.50

NOM-LEX 4 �1 = �2 = �3 = 0.45

NOM-LEX 5 �1 = �3 = 0.45 , �2 = −106

Table 5   Priority-based and priority-free regrets of OM-LEX 2 and NOM-LEX 4–5 in Settings 4–5

Note that the prior information of NOM-LEX 5 is not valid for Setting 4

Setting 4 Setting 5

Algorithms Obj. 1 Obj. 2 Obj. 3 Obj. 1 Obj. 2 Obj. 3

OM-LEX 2
pr.-based 2000 ± 100 821 ± 75 367 ± 59 1010 ± 82 373 ± 72
pr.-free 1990 ± 120 1440 ± 110 1290 ± 110 1040 ± 81 −350 ± 17 −350 ± 17
NOM-LEX 4
pr.-based 6730 ± 2000 2200 ± 810 649 ± 330 7200 ± 2100 1130 ± 440
pr.-free 7000 ± 1500 −4560 ± 3100 −8250 ± 3200 7450 ± 1700 −14,500 ± 3200 −6190 ±1600
NOM-LEX 5
pr.-based 6570 ± 2700 1060 ± 530
pr.-free 6660 ± 2400 −12,700 ± 5300 −6090 ±2700
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Table  5 shows the priority-based and priority-free regrets of OM-LEX  2, NOM-
LEX 4 and 5 in Settings 4 and 5 at T = 105 . Since NOM-LEX considers arms with very 
high expected rewards compared to the near optimal expected reward as potential opti-
mal arms, it tends to incur a lot more negative regret in priority-free settings as opposed 
to OM-LEX, which only looks for arms with expected rewards that are very close to the 
lexicographic optimal expected rewards.

In Setting  5, note that any 𝛿2 > 0 would guarantee a bounded regret for NOM-LEX 
(since �2

min
= ∞ ). Moreover, �2 appears in none of our regret bounds in Theorems 5 and 6 

for Setting 5. However, our numerical experiments show that it still affects the regret. This 
is because knowing a larger �2 better captures the information �2

min
= ∞ and results in hav-

ing smaller regret in objective 1.

5.2 � Experiments for the Sat‑MAB

In this section, we demonstrate our results for the Sat-MAB in two new settings: Setting 6 
and Setting  7. Setting  6 has four arms and a single objective. The arms have Gaussian 
rewards with unit variance and expected rewards �1 = 1 , �2 = 2 , �3 = 3 , and �4 = 4 . The 
target threshold is set to be 2.5, meaning arms 3 and 4 are satisficing while the other arms 
are not. Note that Setting 6 is identical to the setting considered in Reverdy et al. (2017) for 
the satisficing-in-mean-rewards problem (Problem 2 in Reverdy et al., 2017). Setting 7 has 
64 arms and three objectives. The arms again have Gaussian rewards with unit variance 

Table 6   Prior knowledge and 
parameters of the algorithms for 
the Sat-MAB

Algorithm Prior knowledge and parameters

NOM-LEX 6 �1 = 2.5

NOM-LEX 7 �1 = �2 = �3 = 2.5

Satisficing-In-Mean-
Rewards UCL

�0 = 0 , �0 = lim
�
2
0
→∞ �

2
0
I ( �0 = 0 ), K = 1

Fig. 3   Regrets of NOM-LEX 6 and Satisficing-In-Mean-Rewards UCL in Setting 6
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and unique expected reward vectors in {1, 2, 3, 4}3 . The target threshold for all objectives is 
set to be 2.5, meaning there are exactly 8 satisficing arms.

For all cases, we average the regret of learners over 100 individual runs. We consider 
NOM-LEX with appropriate parameters that are summarized in Table  6. For Setting  6, 
we also consider Satisficing-In-Mean-Rewards UCL, which is the algorithm proposed in 
Reverdy et al. (2017). We use the same parameters for UCL as Reverdy et al. (2017), which 
are also summarized in Table 6.

Figure 3 shows the regret of NOM-LEX 6 and Satisficing-In-Mean-Rewards UCL after 
T = 105 rounds. Consistent with the proven regret bounds, NOM-LEX 6 achieves bounded 
regret while the regret of Satisficing-In-Mean-Rewards UCL grows logarithmically. Fig-
ure 4 shows the regret of NOM-LEX 7 after T = 2500 rounds. NOM-LEX is not only a 
better algorithm than Satisficing-In-Mean-Rewards UCL in single-objective settings but 
also capable of learning in multiobjective settings.

6 � Conclusion

We proposed two new multi-objective MAB problems: the Lex-MAB and the Sat-MAB. 
For the Lex-MAB, we showed that without prior information an almost optimal Õ(T2∕3) 
gap-free regret can be achieved and with prior information the regret is uniformly bounded 
in time. We also proved that uniformly bounded regret can be achieved for the Sat-MAB as 
well. The case where there is prior information only for a subset of the objectives is worth 
investigating in the future.

Fig. 4   Regret of NOM-LEX 7 in Setting 7
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Appendix: Tables of Notation

General notation is listed in Table 7. Notations specific to each case covered in Section 4 
are listed in Tables 8, 9 and 10 respectively.
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