
Vol.:(0123456789)

Machine Learning (2021) 110:881–905
https://doi.org/10.1007/s10994-021-05965-0

1 3

QuicK‑means: accelerating inference for K‑means by learning
fast transforms

Luc Giffon1 · Valentin Emiya1 · Hachem Kadri1 · Liva Ralaivola2

Received: 20 July 2020 / Revised: 21 November 2020 / Accepted: 18 February 2021 /
Published online: 14 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
K-means—and the celebrated Lloyd’s algorithm—is more than the clustering method it
was originally designed to be. It has indeed proven pivotal to help increase the speed of
many machine learning, data analysis techniques such as indexing, nearest-neighbor search
and prediction, data compression and, lately, inference with kernel machines. Here, we
introduce an efficient extension of K-means, dubbed QuicK-means, that rests on the
idea of expressing the matrix of the K cluster centroids as a product of sparse matrices, a
feat made possible by recent results devoted to find approximations of matrices as a prod-
uct of sparse factors. Using such a decomposition squashes the complexity of the matrix-
vector product between the factorized K × D centroid matrix � and any vector from O(KD)
to O(A logB + B) , with A = min (K,D) and B = max (K,D) , where D is the dimension of
the data. This drastic computational saving has a direct impact in the assignment process
of a point to a cluster. We propose to learn such a factorization during the Lloyd’s training
procedure. We show that resorting to a factorization step at each iteration does not impair
the convergence of the optimization scheme, and demonstrate the benefits of our approach
experimentally.

Keywords k-means · Clustering · Fast transforms · Machine learning

Editor: Eyke Hüllermeier.

 * Luc Giffon
 luc.giffon@lis-lab.fr

 Valentin Emiya
 valentin.emiya@lis-lab.fr

 Hachem Kadri
 hachem.kadri@lis-lab.fr

 Liva Ralaivola
 l.ralaivola@criteo.com

1 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
2 Criteo AI Lab, Criteo, France

http://orcid.org/0000-0001-6645-5233
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05965-0&domain=pdf

882 Machine Learning (2021) 110:881–905

1 3

1 Introduction

Training versus inference in K-means K-means is one of the most popular clustering
algorithms (Hartigan and Wong 1979; Jain 2010) and is widely used in many applications,
such as indexing, data compression, nearest-neighbor search, and local network commu-
nity detection (Muja and Lowe 2014; Van Laarhoven and Marchiori 2016). When com-
bined with the Nyström approximation, K-means also proves pivotal to increase the speed
and the accuracy of learning with kernel machines (Si et al. 2016) or RBF networks (Que
and Belkin 2016). In all these applications, the K D-dimensional centroids �1,… , �K
returned by K-means are stacked on top of each other to form a matrix � ∈ ℝ

K×D which
is employed as a linear operator, that we call the centroid operator. From now on, we will
use the term training or learning to refer to the execution of the clustering algorithm, i.e.,
the process that extracts centroids from training data (typically via the Lloyd algorithm);
and we will use inference to refer to the task of assigning a (test) point to the learned cen-
troids, relying on the application of the centroid operator to a given data point.

Complexity of K-means On the one hand, the training phase of K-means has a
O(NKD) complexity per iteration when the number of data points to cluster is N . On the
other hand, the inference phase requires the application of the centroid operator � to some
vector, which entails a O(KD) complexity for every input vector. With the ever increasing
amount of data, it is critical to have at hand cost-effective alternatives to the computation-
ally expensive conventional K-means.

Cost-effective K-means Some techniques have already been proposed to alleviate the
computational burden of Lloyd’s algorithm. A popular approach is to embed the input
observations in a lower dimensional space where one gets a cheap clustering which is then
plugged back in the higher dimensional space to obtain an approximation of the K-means
centroids (Boutsidis et al. 2014; Shen et al. 2017; Liu et al. 2017). Another idea is to use
the triangle inequality in order to remove redundant distance measures while preserving the
exact solution of K-means (Hamerly 2010; Elkan 2003). Also, a sketch of the input data-
set can be used as input in the so-called compressive K-means procedure (Keriven et al.
2017), which scales to very large databases. However, these techniques focus on accel-
erating the training phase of K-means and not the inference phase, so that the resulting
centroid operator is generally a dense matrix with the same dimensions as the K-means
centroid operator. The associated inference procedure shows the same O(KD) complexity
per input vector. Being able to reduce the cost of the inference phase of K-means has
received relatively less attention compared to the problem of containing the cost of the
training phase, whereas it is of prominent interest not only from a sheer algorithmic point
of view but also for real-world applications where the number of query observations may
be unbounded. To our knowledge, Sculley (2010) proposed the only candidate method that
tackles the problem of efficiency at inference time using sparsity. Their method consists
in featuring each iteration of K-means with an �1 projection step of the centroids, thus
producing a sparse centroid operator which can be used for fast inference. Here, we follow
this same line of research by proposing an extension to K-means that learns the centroid
operator as a fast transform.

Learning fast transforms Fast transforms have recently received increased attention in
machine learning, as they can be employed with a computational cost several orders of mag-
nitude lower than the usual matrix-vector product. For instance, well-known Haar and Had-
amard transforms have been used to speed up random features calculation (Le et al. 2013) and
improve landmark-based approximations (Si et al. 2016). The question to learn data-dependent

883Machine Learning (2021) 110:881–905

1 3

fast transforms has been addressed in several recent works (Dao et al. 2019; Le Magoarou and
Gribonval 2016; Ailon et al. 2020; Vahid et al. 2020) with the key idea to rely on the sparse
factorization structure of fast linear transforms to reduce the computational burden. In (Ailon
et al. 2020; Vahid et al. 2020), the recursive butterfly structure of the aforementioned fixed
transforms (Li et al. 2015) is used to design deep architectures with low-complexity convo-
lutional layers (Vahid et al. 2020) and fast dense layers for encoder-decoder networks (Ailon
et al. 2020)—there, the sparse supports is fixed by the butterfly model, and only the values
(not the locations) of the non-zero coefficients are learned at training time. The algorithm pro-
posed in Dao et al. (2019) learns a factorization based on variants of the butterfly structure, as
combinations of a small number of allowed permutation matrices, which makes it possible to
adapt the sparse supports to the data within a limited number of combinations. Le Magoarou
and Gribonval (2016) approached the problem differently and did not restrict their model to
the butterfly structure. Instead, they proposed a procedure to approximate any matrix as a
product of matrices with adaptive sparse patterns. This procedure is key to our contribution.

Contributions Getting inspiration from Le Magoarou and Gribonval (2016), we investigate
computationally-efficient variants of K-means by learning fast transforms from the data.
After introducing the background elements in Sect. 2, we make the following contributions:

• we introduce QK-means, an extension of K-means that learns the centroid matrix
in form of a fast transform which entails a reduction of the inference complexity from
O(AB) to O(A logB + B) , where A = min (K,D) and B = max (K,D) (Sect. 3.1);

• we show that each update step of our algorithm reduces the overall objective, which
establishes the convergence of QK-means (Sect. 3.2);

• we perform an empirical evaluation of QK-means performance on different datasets in
the contexts of clustering, nearest neighbor search and kernel Nyström approximation
(Sect. 4); here we show the improvements of QK-means in time and space complexity
for the inference and provide detailed results on the quality of the obtained centroids in
terms of clustering loss and of other relevant classification-based metrics.

2 Preliminaries

We briefly review the basics of K-means and give background on learning fast trans-
forms. To assist the reading, the notations used in the paper are listed in Table 1.

2.1 K-means: Lloyd’s algorithm and inference

The K-means problem aims to partition a set � = {�1,… , �N} of N vectors �n ∈ ℝ
D into

a predefined number K of clusters by minimizing the distance from each vector �n to the
centroid of its cluster—the optimal centroid �k of cluster k being the mean vector of the
points assigned to this cluster. The optimization problem of K-means is

where � = {�1,… , �K} is the set of centroids and � ∈ [[K]]N is the vector that assigns �n to
cluster k if tn = k.

Lloyd’s algorithm (a.k.a. K-means algorithm) The most popular procedure to approxi-
mately solve the K-means problem is Lloyd’s algorithm, often simply referred to as

(1)argmin
�,�

�

k∈[[K]]

�

n∶tn=k

‖�n − �k‖2,

884 Machine Learning (2021) 110:881–905

1 3

K-means—as in here. It alternates between i) an assignment step that decides the current
cluster to which each point �n belongs and ii) a re-estimation step which adjusts the cluster
centroids. After an initialization of the set �(0) of K cluster centroids, the algorithm pro-
ceeds as follows: at iteration � , the assignments are updated as ∀n ∈ [[N]]:

and the cluster centroids are updated as

where n(�)
k

 is the number of points in cluster k at time � and �̂k(�) is the mean vector of the
elements of cluster k according to assignment �.

Complexity of K-means The process of assigning an observation to a cluster is a par-
ticular instance of the inference phase of K-means. It involves the application of the cen-
troid matrix to a vector hence its complexity is O(DK) as in Eq. (2). During training itera-
tions of Lloyd’s algorithm, the bottleneck of the total time complexity stems from the the
assignment step: at each iteration, it requires this procedure to be repeated over the whole

(2)

t(�)
n

← argmin k∈[[K]]
‖‖‖�n − �

(�−1)

k

‖‖‖
2

2

= argmin k∈[[K]]
‖‖‖�

(�−1)

k

‖‖‖
2

2
− 2

⟨
�
(�−1)

k
, �n

⟩

= argmin k∈[[K]]
‖‖‖�

(�−1)

k

‖‖‖
2

2
− 2

[
�

(�−1)
�n

]
k
,

(3)�
(𝜏)

k
← �̂k(�

(𝜏)) ∶=
1

n
(𝜏)

k

∑

n∶t
(𝜏)
n =k

�n, ∀k ∈ [[K]],

Table 1 Notation used in this
paper

Symbol Meaning

[[M]] set of integers from 1 to M
‖ ⋅ ‖ L2-norm
‖ ⋅ ‖F Frobenius norm
‖ ⋅ ‖0 L0-norm
‖ ⋅ ‖2 spectral norm
�

�
diagonal matrix with vector � on the diagonal

[�]k kth element of vector �
[�]i, j element at the ith row and jth column of matrix �
D data dimension
K number of clusters
Q number of sparse factors
�1,… , �N data points
� ∈ ℝ

N×D data matrix
� cluster assignment vector
�1,… ,�K K-means centroids
� ∈ ℝ

K×D K-means centroid matrix
�0,… , �K QK-means centroids
� ∈ ℝ

K×D QK-means centroid matrix
�0,… ,�Q sparse matrices
E1,… , EQ sparsity constraint sets
�E indicator functions for set E

885Machine Learning (2021) 110:881–905

1 3

dataset for a total cost of O(NDK) while that of the centroids update (3) is O(ND) . Simi-
larly at inference time, assigning N′ observations to the learned clusters has a complexity
in O(N�DK).

Hence, reducing the complexity of the assignment step is a major challenge for training
and inference. At training time, it may be addressed by existing methods as explained in
Sect. 1. However, those methods do not reduce the complexity of the inference phase. Our
main contribution rests on the idea that (2) may be computed more efficiently if the matrix
� of centroids is approximated by a fast-transform matrix, which is learned thanks to a
dedicated procedure that we discuss in the next section.

2.2 Learning fast‑transform structures

Linear operators structured as products of sparse matrices The popularity of some linear
operators from ℝM to ℝM (with M < ∞) like the discrete Fourier or Hadamard transforms
comes from both the mathematical meaning associated with their use (e.g. signal decom-
position for the discrete Fourier transform) and their ability to compute the mapping of
some input � ∈ ℝ

M with efficiency, typically in O(M logM) in lieu of O
(
M2

)
 operations.

An interesting feature of the related fast algorithms is that the matrix � ∈ ℝ
M×M of such

linear operators can be written as the product � = Πq∈[[Q]]�q of Q = O(logM) sparse matri-
ces �q with ‖‖‖�q

‖‖‖0 = O(M) non-zero coefficients per factor (Le Magoarou and Gribonval
2016; Morgenstern 1975): for any vector � ∈ ℝ

M , �� can thus be computed as O(logM)
products �1

(
�2

(
⋯

(
�Q�

)))
 between a sparse matrix and a vector, the cost of each product

being O(M) , amounting to a O(M logM) time complexity.
Approximating any matrix by learning a fast transform. When the linear operator � is

an arbitrary matrix, one may approximate it with such a sparse-product structure by learn-
ing the factors

{
�q

}
q∈[[Q]]

 in order to benefit from a fast algorithm. Algorithmic strategies
have been proposed by Le Magoarou and Gribonval (2016) to learn such a factorization.
Based on the proximal alternating linearized minimization (PALM) algorithm (Bolte et al.
2014), the PALM for Multi-layer Sparse Approximation (palm4MSA) algo-
rithm (Le Magoarou and Gribonval 2016) aims at approximating a matrix � ∈ ℝ

K×D as a
product of sparse matrices by solving

where for each q ∈ [[Q]] , �Eq (�q) = 0 if �q ∈ Eq and �Eq (�q) = +∞ otherwise. Eq is a con-
straint set that typically imposes a sparsity structure on its elements, as well as a scaling
constraint. Although this problem is non-convex and the computation of a global optimum
cannot be ascertained, the palm4MSA algorithm converges to a limiting value (more
details on palm4MSA can be found in Appendix).

3 QuicK-means

We now introduce our main contribution, QuicK-means, shortened in the sequel as QK-
means. We depict the algorithm, we show its convergence property and we provide an
analysis of its computational complexity.

(4)min
{�q}q∈[[Q]]

‖‖‖‖‖‖
� −

∏

q∈[[Q]]

�q

‖‖‖‖‖‖

2

F

+
∑

q∈[[Q]]

�Eq
(�q),

886 Machine Learning (2021) 110:881–905

1 3

3.1 QK-means: encoding centroids as products of sparse matrices

QK-means is a variant of K-means in which the matrix of centroids � is approximated
as a product

∏
q∈[[Q]] �q of sparse matrices �q . Doing so will allow us to cope with the

computational bulk imposed by the product �� that shows up in the inference phase of
K-means.

Building upon the K-means optimization problem (1) and fast-operator approximation
problem (4) the QK-means optimization problem writes:

where

This is a constrained version of K-means (1) in which centroids �k are constrained to
form a matrix � with a fast-operator structure. The indicator functions �Eq impose the spar-
sity of matrices �q . Details on modeling choices such as the dimension of the inner factors
or the projection procedure for sparsity are given in Sect. 4.1.

Problem (5) can be solved using Algorithm 1, which proceeds in a similar way as
Lloyd’s algorithm by alternating an assignment step at line 1 and an update of the centroids
at lines 2–6. The assignment step can be computed efficiently thanks to the structure of � .
In practice, the update of the centroids relies on the palm4MSA algorithm to learn a fast-
operator � that approximates the true centroid matrix � weighted by the number of exam-
ples nk assigned to each cluster k.

The keen reader might suggest a simpler strategy that consists in applying the
palm4MSA procedure directly on the centroid operator learned by the standard K-means
algorithm; this would also produce a centroid operator expressed as a fast-transform.
However by doing so, one would only find an approximation of the K-means solution
expressed as a product of sparse matrices and not necessarily solve the problem of Eq. (5).
In Sect. 3.2, we provide theoretical guarantees showing that the QK-means procedure
converges to a limit of the objective function in Eq. (5). This theoretical result is illustrated
in our experiments in Sect. 4.3 in which we demonstrate that the objective value produced
by QK-means is better than that of palm4MSA applied on top of K-means.

(5)argmin
{�q}

Q

q=1
,�
g
({

�q

}Q

q=1
, �
)
∶=

∑

k∈[[K]]

∑

n∶tn=k

‖‖�n − �k
‖‖
2
+

∑

q∈[[Q]]

�Eq
(�q),

(6)� =
∏

q∈[[Q]]

�q.

887Machine Learning (2021) 110:881–905

1 3

3.2 Convergence of QK-means

Similarly to K-means, QK-means converges locally as stated in the following
proposition.

Proposition 1 The iterates
{
�
(�)
}
q∈[[Q]]

 and �(�) in Algorithm 1 are such that, ∀� ≥ 1

which implies the convergence of the procedure.

Proof We show that each step of the algorithm does not increase the overall objective
function. ◻

Assignment step (Line 1). For a fixed �(�−1) , the optimization problem at Line 1 is sepa-
rable for each example indexed by n ∈ [[N]] and the new indicator vector �(�) is thus defined
as:

This step minimizes the first term in (5) w.r.t. � while the second term is constant so we
have

g

({
�
(�)

q

}Q

q=1
, �(�)

)
≤ g

({
�
(�−1)
q

}Q

q=1
, �(�−1)

)
,

(7)t(�)
n

= argmin k∈[[K]]
‖‖‖�n − �

(�−1)

k

‖‖‖
2

2
.

(8)g

({
�
(�−1)
q

}Q

q=1
, �(�)

)
≤ g

({
�
(�−1)
q

}Q

q=1
, �(�−1)

)
.

888 Machine Learning (2021) 110:881–905

1 3

Centroids update step (Lines 2–6) We now consider a fixed assignment vector �(�) . We first
note that for any cluster k with true centroid �(�)

k
 and any vectors �(�)

k
 , the following holds:

For �(�) fixed, the new sparsely-factorized centroids
{
�
(�)
q

}Q

q=1
 are set as solutions of the

problem argmin
�1,…,�Q

g(�1,… , �Q, �
(�)) which rewrites, thanks to (9) as

where:

• �√
�(�)

 is the diagonal matrix with
√
�(�) on the diagonal and ∀k ∈ [[K]] , the kth element

of �(�) is n(�)
k

∶=
|||
{
n ∶ t(�)

n
= k

}||| , i.e. the number of observation in cluster k at step � .

Hence �√
�(�)

(�(�) − �) is the matrix with
√

n
(�)

k

(
�
(�)

k
− �k

)
 as row k;

• �
(�) ∈ ℝ

K×d refers to the unconstrained centroid matrix obtained from the data matrix
� and the indicator vector �(�) : �k ∶=

1

nk

∑
n∶tn=k

�n (see Line 2);
• c

(�)

k
∶=

∑
n∶t

(�)
n =k

����n − �
(�)

k

��� is constant w.r.t. �1,… , �Q.

We now introduce �(�) ∶= �√
�(�)

�
(�) as the unconstrained centroid matrix re-weighted by

the size of each cluster (see Line 3), so (10) can be simplified in:

where the extra factor �0 is constrained to �√
�(�)

 by setting E0 to a singleton at Line 4.
Starting the minimization process at the previous estimates

{
�
(�−1)
q

}

q∈[[Q]]
 , we get

and plugging (12) back with (8), we finally have, for any �:

(9)

�

n∶t
(�)
n =k

����n − �
(�)

k

���
2

=
�

n∶tn=k

����n − �
(�)

k
+ �

(�)

k
− �

(�)

k

���
2

=
�

n∶t
(�)
n =k

�
����n − �

(�)

k

���
2

+
����

(�)

k
− �

(�)

k

���
2

− 2
�
�n − �

(�)

k
, �

(�)

k
− �

(�)

k

��

=
�

n∶t
(�)
n =k

����n − �
(�)

k

���
2

+ nk
����

(�)

k
− �

(�)

k

���
2

− 2

�
�

n∶t
(�)
n =k

�
�n − �

(�)

k

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

, �
(�)

k
− �

(�)

k

�

=
�

n∶t
(�)
n =k

����n − �
(�)

k

���
2

+
����
√
nk

�
�
(�)

k
− �

(�)

k

�����

2

.

(10)

�
�
(�)

q

�Q

q=1
= argmin

�1,…,�Q

����
√
�(�)

(�(�) − �)
���
2

F
+

�

k∈[[K]]

c
(�)

k
+

�

q∈[[Q]]

�q(�q)

s. t. � =
�

q∈[[Q]]

�q,

(11)
{
�
(�)

q

}Q

q=1
= argmin

�1,…,�Q

‖‖‖‖‖‖
�

(�) −
∏

q∈{[[Q]]∪{0}}

�q

‖‖‖‖‖‖

2

F

+
∑

q∈{[[Q]]∪{0}}

�q(�q),

(12)g(�
(�)

1
,… , �

(�)

Q
, �(�)) ≤ g(�

(�−1)

1
,… , �

(�−1)

Q
, �(�)),

889Machine Learning (2021) 110:881–905

1 3

which is a sufficient condition to assert that Algorithm 1 converges, i.e. the sequence of
objective values is non-increasing and lower bounded, thus convergent. Note however that
the preceding development proves that the objective function value converges to a limiting
value but it doesn’t guarantee that the centroids themselves converge to some fixed posi-
tion. In fact, just like with the K-means algorithm, the centroids might oscillate forever
while the objective value remains unchanged. ◻

3.3 Complexity analysis

To analyze the complexity, we set A ≐ min (K,D) and B ≐ max (K,D) , and assume that
the number of factors satisfies Q = O(logB) . The analysis is proposed under the follow-
ing assumptions: the product between two dense matrices of shapes N1 × N2 and N2 × N3
can be computed in O

(
N1N2N3

)
 operations; the product between a sparse matrix with

O(S) non-zero entries and a dense vector costs O(S) operations; the product between two
sparse matrices of shapes N1 × N2 and N2 × N3 , both having O(S) non-zero values costs
O
(
Smin

(
N1,N3

))
 and the number of non-zero entries in the resulting matrix is O

(
S2
)
.

Complexity of K-means. Recall that the complexity K-means is dominated by its
cluster assignment step, requiring O(NKD) = O(NAB) operations (see Eq. 2).

Complexity of palm4MSA. As QK-means extends K-means with a palm4MSA step,
we start by providing complexity for this algorithm. The procedure consists in an alternate
optimization of each sparse factor. At each iteration, the whole set of Q factors is updated
with a cost in O

(
AB

(
log2 B

))
 , as detailed in Appendix. The bottleneck is the computation

of the gradient, which benefits from fast computations with sparse matrices.
Complexity of QK-means training. The complexity of each iteration of QK-means

is O
(
N(A logB + B) + AB log2 B

)
 . The complexities of the main steps are given in

Algorithm 1.
The assignment step (line 1 and Eq. 2) benefits from the fast computation of ��

in O(N(A logB + B)) while the computation of the norms of the cluster centroids is in
O(AB).

The computation of the centroids of each cluster at line 2 is the same as in K-means
and takes O(ND) operations.

The update of the fast transform, in lines 3 to 6 is a computational overload compared to
K-means. Its time complexity depends on the chosen procedure to solve the minimization
problem (11); but in the case where the palm4MSA procedure is employed, itis dominated
by the update of the sparse factors at line 5, in O

(
AB log2 B

)
 . Note that, if A and B have the

same order of magnitude, the overall cost of QK-means is dominated by the cost of the
assignment step as soon as the number of examples N is greater than B log2 B . One can see
that the computational bottleneck of K-means is here reduced. Asymptotically, the QK-
means training phase is computationally more efficient than K-means. In practice, this
gain may only be observed when N , K and D are very large. We thus focus on the inference
phase in the experiments.

Complexity of QK-means inference. Inference for QK-means consists in applying
the resulting fast operator to a single observation. This is done by multiplying the test
point with the resulting sparse factorization which costs O(A logB + B) instead of O(KD)
obtained during K-means inference. Note that this time complexity is directly linked to
the space complexity of QK-means operator which is also of O(A logB + B).

g
(
�
(�)

1
,… , �

(�)

Q
, �(�)

)
≤ g

(
�
(�−1)

1
,… , �

(�−1)

Q
, �(�)

)
≤ g

(
�
(�−1)

1
,… , �

(�−1)

Q
, �(�−1)

)
,

890 Machine Learning (2021) 110:881–905

1 3

4 Experiments and applications

We perform a series of experiments to demonstrate the efficiency of our approach. We
assess the benefits of our method from two perspectives. First, we evaluate the gain during
inference in term of space—the number of non-zero values in our factorization−and com-
putational cost—the number of floating point operations (flop)—induced by the use of the
sparse factorization of the centroid matrix. Second, we validate the quality of the obtained
centroids with respect to the K-means clustering loss (1) and other relevant classifica-
tion-based metrics when some class information is available. Altogether, these experiments
show that QK-means generates a centroid operator that achieves a better quality/complex-
ity ratio for inference than K-means and the available baseline.

The rest of this experimental section is organized as follows. Section 4.1 provides
implementation details of our method; in Sect. 4.2, we study the influence of the hyperpa-
rameters involved by our method on the objective function (Eq. 1); the quality of the esti-
mated centroids is illustrated in Sect. 4.3 and 4.4, we demonstrate the savings in terms of
space and computational complexity associated with the use QK-means centroids during
inference compared to that of K-means and the �1-based sparse version of (Sculley 2010).
Finally, Sects. 4.5 and 4.6 show that QK-means learns a centroid matrix that, when used
in inference for the purpose of nearest-neighbor search and efficient Nyström approxima-
tion, does not imply degraded performances with respect to K-means.

4.1 Experimental setting

Competing methods We compare our method to two methods: the vanilla version of
K-means and to the �1-based sparse method proposed by Sculley (2010). The vanilla ver-
sion actually encompasses the core K-means algorithm and its accelerated variants pro-
posed by Hamerly (2010), Elkan (2003) that make clever use of the triangle inequality dur-
ing the training phase but which, ultimately, provide exactly the same centroids and clusters
as the base K-means—in the sequel, we may use the notation K-means to denote the
vanilla K-means and the variants just mentioned. The method of Sculley (2010) differs
from the reference algorithm as it projects the current centroids on a �-radius �1-ball at
each iteration, an operation that reduces the number of non-zero coefficients in the cen-
troid operator; as for our method, the resulting time and space inference cost of the learned
model is lowered. In the experiment section, the K-means algorithm with �1 projection
is referred to as k-means �1 Proj. To our knowledge, there is no other method in the
literature that is concerned with accelerating the inference time of K-means using spar-
sity. For the sake of completeness, we might mention other training acceleration strategies,
in addition to those of Hamerly (2010), Elkan (2003), Boutsidis et al. (2014), Shen et al.
(2017), Liu et al. (2017) proposed approaches that project the input data points in (low-
dimensional) spaces where the training of K-means is faster, however, when retrieving
the centroid in the initial space, there is nothing done by those approaches that would result
in a speed up of the inference process. This is the reason why those methods, given the
perspective that we take regarding inference acceleration, are not considered as competing
methods; this explains why we do not provide any result tied to those approaches.

Implementation details The code has been written in Python, including the
palm4MSA algorithm. Fast operators � based on sparse matrices �q are implemented
with csr_matrix objects from the scipy.linalg package. While more efficient

891Machine Learning (2021) 110:881–905

1 3

implementations may be beneficial for larger deployment, our implementation1 is sufficient
as a proof of concept for assessing the performance of the proposed approach as illustrated
by the count of flops in Sect. 4.4.

Datasets. Our experiments are conducted on seven reference datasets to show the qual-
ity of the obtained centroids and the relative reduction in flop count offered by our method
QK-means when the number of clusters and the dimensionality of the data grows. See
Table 2 for details on the datasets. No particular pre-processing was performed for any of
the methods.

Algorithm settings Let A ≐ min (K,D) and B ≐ max (K,D) . QK-means is used with
Q ≐ log2 (B) sparse factors �q and all factors are with shape A × A except the leftmost one,
�1 with shape K × A , and the rightmost one, �Q with shape A × D . The sparsity constraint
of each factor �q is set in Eq and is governed by a global parameter denoted as sparsity
level, which indicates the desired number of non-zero coefficients in each row and in each
column of �q ; the impact of this parameter is discussed in Sect. 4.2. Since the projection
onto this set of structured-sparsity constraints may be computationally expensive, this pro-
jection is relaxed in the implementation of palm4MSA and only guarantees that the num-
ber of non-zero coefficients in each row and each column is at least the sparsity level, as
in Le Magoarou and Gribonval (2016). The actual number of non-zero coefficients in the
sparse factors is measured at the end of the optimization process and reported in the results.
Additional details about palm4MSA are given in Appendix or can be found in palm4MSA
original paper (Le Magoarou and Gribonval 2016). The stopping criterion of K-means
and QK-means consists in a maximum number of iterations set to 50, which was a suf-
ficient number to reach convergence of the objective criterion in all datasets. The stopping
criterion for palm4MSA consists of a tolerance set to 10−6 on the relative variation of the
objective function and a maximum number of iterations; the influence of this maximum
number of iterations on the objective loss is studied in Sect. 4.2. Each experiment have
been replicated 5 times using different seed values for random generators. Competing tech-
niques share the same seed values so that they are initialized with the same centroids. We
evaluate two initialization strategies: the uniform sampling and the K-means++ meth-
ods (Arthur and Vassilvitskii 2006). As discussed in Sect. 4.2, our method also benefits
from this latter initialization technique used for faster convergence and better clustering

Table 2 Main features of the datasets

Discrete, unordered attributes for dataset Kddcup99 have been encoded as one-hot attributes. For the
Caltech and Coil dataset, the images have been resized to 32 × 32 images

Dataset Data dim. D # classes Train size N Test size N′

MNIST (LeCun et al. 2010) 784 10 60,000 10,000
Fashion-MNIST (Xiao et al. 2017) 784 10 60,000 10,000
Caltech256 (Griffin et al. 2007) 2352 256 19,952 9828
Breast-cancer (Dua and Graff 2017) 30 2 469 100
Coverage Type (Dua and Graff 2017) 54 7 576,012 5000
Coil20 (Nene et al. 1996) 1024 10 964 476
Kddcup99 (Dua and Graff 2017) 116 23 4,893,431 5000

1 Available online at https:// github. com/ lucgi ffon/ qkmea ns.

https://github.com/lucgiffon/qkmeans

892 Machine Learning (2021) 110:881–905

1 3

accuracy. The sparse factors used for the initialization of the QK-means algorithm were
obtained by using once Hierarchical-palm4MSA on the initialized centroid matrix. Hier-
archical-palm4MSA is an heuristic for palm4MSA proposed by Le Magoarou and Gribo-
nval (2016). This heuristic is more expensive than palm4MSA but has been shown empir-
ically to provide better approximation results. It is used in place of palm4MSA for the
initialization but not inside QK-means because it hasn’t shown much improvement of the
performance while being time consuming. For the very first initialization of palm4MSA
inside Hierarchical-palm4MSA, we use the same initialization as the one proposed
by Le Magoarou and Gribonval (2016), that is: all factors are initialized to identity, except
for the first one, which is fully initialized to zero.

The K-means �1 Proj. variant of Sculley (2010) uses two hyperparameters: � as the
radius of the �1 ball and � as a tolerance parameter. We here set � = 0.01 , as in the original
paper. For a fair comparison, the value of � has been adjusted for each dataset so that the
obtained compression rate is the same as that of the QK-means method with a sparsity
level of 3. In Table 4, the � values for each dataset are 2550 for MNIST, 1485 for Fash-
ion-MNIST, 600 for Breast-cancer, 972 for Coverage type, 5.6 for Coil20, 4.9
for Kddcup99 and 868 for Caltech. In Figs. 3 and 4, concerning the Coverage Type
dataset, the � values for each cluster numbers are 4730 for 8 clusters, 3528 for 16 clusters,
2353 for 32 clusters, 1918 for 64 clusters, 1112 for 128 clusters and 968 for 256 clusters.

4.2 Influence of hyper‑parameters

In this section, we analyze the influence of the initialization procedure for the centroids in
the QK-means algorithm, the number of iterations in the palm4MSA algorithm and the
sparsity level in sparse factors.

Centroids initialization Just like for the K-means algorithm, the QK-means solution
is only guaranteed to converge to a local stationary point of the objective function. It means
that the QK-means algorithm is also sensible to a good initialization. In practice, we show
in the left-most column of Fig. 1 that the Kmeans++ initialization (Arthur and Vassilvit-
skii 2006) provides the same benefit for the optimization in the QK-means algorithm as in
the K-means algorithm, that is: a quicker convergence and lower objective function value.
We hence use the kmeans++ initialization scheme for the rest of the experiments.
palm4MSA number of iterations The palm4MSA algorithm is an iterative algorithm

which comes with convergence guarantees, provided that it is given enough iterations to
reach the limiting value. To this end, one can choose a threshold value for the relative
objective function difference between two successive iterations, as well as a maximum
number of iterations to stop the optimization when it gets too long. In the middle column of
Fig. 1, we show the influence of the maximum number of iterations in palm4MSA. We see
that beyond a given number of iterations, one doesn’t get much improvement in the objec-
tive function value and convergence rate. Note also that, sometimes, the objective function
of QK-means may undergo isolated << bumps >> which we explain by the non-monoto-
nous nature of the palm4MSA objective, possibly resulting in a worse result when the ini-
tialization is already close to the stationary point. This behavior was most often observed
when the sparsity level and/or the number of iterations in palm4MSA were small. This is a
minor phenomenon that is smoothed out when averaging results over replicates and we use
300 iterations for palm4MSA in the rest of the experiments, which empirically showed to
generally prevent these << bumps >>.

893Machine Learning (2021) 110:881–905

1 3

Sparsity level We call sparsity level the approximate number of non-zero values in
each row and each column of the sparse matrices constituting the final centroid operator.
We will later show that the choice of a lower sparsity level produces a higher compres-
sion rate for the centroids operator (Fig. 3) but this happens at the expense of a higher
value of the objective criterion and a slower convergence rate. Indeed, the right column
in Fig. 1 shows that on the three considered datasets, the lower the sparsity budget, the
higher the final value of the objective function.

Fig. 1 Average and standard deviation (shaded area) of the loss value with respect to the iteration index in
various settings of QK-means. Only three datasets are considered here but the same general patterns can
be observed on all the datasets. When it is not the varying parameter, the initialization is Kmeans++, we
use 300 palm4MSA iterations and the sparsity level is 5

894 Machine Learning (2021) 110:881–905

1 3

4.3 Clustering quality

An important question is the ability of the fast-structure model to fit arbitrary data. In order
to assess the clustering quality of QK-means, we start by comparing the clustering objec-
tive criterion obtained with QK-means compared to (i) K-means and its accelerated
exact variants, i.e. K-means , (ii) K-means �1 Proj. and (iii) palm4MSA applied subse-
quently to the centroid matrix obtained by K-means (named K-means + palm4MSA).
In Table 3, we first show that in all the considered datasets, the objective value (1) attained
by QK-means is always lower than the ones achieved by K-means + palm4MSA
and K-means �1 Proj. Note that, for a fair comparison, we used the Hierarchical ver-
sion of palm4MSA in K-means + palm4MSA, just like in the initialization pro-
cedure of QK-means. This experiment illustrates the claim made in Sect. 3.1 that
K-means + palm4MSA is a mere approximation of the K-means solution as a product
of sparse factors whereas QK-means actually minimizes the objective of Eq. (5) through-
out the learning process. It also shows that the QK-means solution is closer by several
orders of magnitude to the reference loss of K-means, in comparison to K-means �1
Proj.

Adjusted Mutual Information (Vinh et al. 2010) is a mutual information-based metric
that can measure the difference between two clusterings, and it may be used to evaluate
the soundness of a clustering when labels for the input data are available (and used as clus-
ter indicators). The last three lines of Table 4 reports the AMI value between the actual
labels of the datasets and the clusters given by the K-means, QK-means and K-means

Table 3 Objective loss achieved by K-means ∗ , K-means �
1
 Proj., QK-means and palm4MSA applied

on top of K-means

K-means ∗ refers to the standard Lloyd algorithm and its accelerated variants that preserve the same result
(see text). Results with palm4MSA were obtained with a sparsity level of 5. Best results are bold, second
best are underlined

Dataset K-means ∗ K-means �
1
 Proj. QK-means K-means + palm4MSA

Caltech256 32 1.818e11 3.874e11 1.875e11 1.953e11
Breast Cancer 5.579e5 7.620e7 5.645e5 5.861e5
Mnist 1.161e11 1.749e11 1.198e11 1.209e11
Coil20 32 1.332e4 6.001e4 1.661e4 1.804e4
Kddcup99 6.107e3 3.503e5 1.367e4 3.552e4
Coverage Type 4.663e10 1.182e12 4.734e10 5.068e10
Fashion Mnist 8.454e10 2.456e11 8.946e10 9.224e10

Fig. 2 Visual representation of the K-means (left) and QK-means (right) centroid for the MNIST dataset
for K = 30 clusters. The images were obtained with a sparsity level of 5

895Machine Learning (2021) 110:881–905

1 3

Ta
bl

e
4

 R
es

ul
ts

 o
f n

um
er

ic
al

 e
xp

er
im

en
ts

 c
on

ce
rn

in
g

th
e

in
fe

re
nc

e
ph

as
e

of
 th

e
cl

us
te

rin
g:

 f
lo

p
an

d
pa

ra
m

et
er

 c
ou

nt
; a

ve
ra

ge
 N

ys
trö

m
 tr

an
sf

or
m

at
io

n
er

ro
r f

or
 a

 s
am

pl
e

se
t

of
 s

iz
e

50
00

; 1
-n

ea
re

st
ne

ig
hb

or
 a

nd
 S

V
M

 c
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 o

n
to

p
of

 N
ys

trö
m

 tr
an

sf
or

m
at

io
n

on
 th

e
te

st
se

t.
“U

n.
 F

-N
ys

”
an

d
“K

. F
-n

ys
”

st
an

d
fo

r t
he

 F
as

t-N
ys

trö
m

al

go
rit

hm
 (S

i e
t a

l.
20

16
) w

ith
 u

ni
fo

rm
 a

nd
 K
-
m
e
a
n
s

 ∗ sa
m

pl
in

g
sc

he
m

es
 re

sp
ec

tiv
el

y

A
lg

or
ith

m
M
N
I
S
T

D

=
78

4
K

=
64

F
.
-
M
N
I
S
T

D

=
78

4
K

=
64

B
.
-
c
a
n
c
e
r

D

=
30

K
=

64

C
o
v
t
y
p
e

D

=
54

K
=

25
6

C
o
i
l
2
0

D

=
10

24
K

=
64

K
d
d
c
u
p
9
9

D

=
11

6
K

=
25

6

C
a
l
t
e
c
h

D

=
23

52
K

=
25

6

fl

o
ps

K
-
m
e
a
n
s

 ∗
10

0
35

2
10

0
35

2
3

84
0

27
 6

48
13

1
07

2
59

 3
92

1
57

2
86

4
K
-
m
e
a
n
s

 �
1 P

ro
j.

9
55

4
9

17
5

1
83

2
5

25
6

11
 2

30
8

17
6

48
 1

81
Q
K
-
m
e
a
n
s

9
58

1
9

18
1

1
80

9
5

25
4

11
 1

70
8

11
7

48
 1

74

no
n-

ze
ro

va
lu

es
K
-
m
e
a
n
s

 ∗
50

 1
76

50
 1

76
1

92
0

13
 8

24
65

 5
36

29
 6

96
78

6
43

2
K
-
m
e
a
n
s

 �
1 P

ro
j.

4
77

7
4

58
7

91
6

2
62

8
5

61
5

4
08

8
24

 0
90

Q
K
-
m
e
a
n
s

4
79

0
4

59
0

90
4

2
62

7
5

58
5

4
05

8
24

 0
87

C
om

pr
es

si
on

ra
te

�
−
�
�
�
�
�
∗

�
�
−
�
�
�
�
�

×
1
0
.5

×
1
0
.9

×
2
.1

×
5
.3

×
1
1
.7

×
7
.3

×
3
2
.7

�
−
�
�
�
�
�
∗

�
−
�
�
�
�
�
�
1
P
ro
j.

×
1
0
.5

×
1
0
.9

×
2
.1

×
5
.3

×
1
1
.7

×
7
.3

×
3
2
.7

1-
N

N
A

cc
ur

ac
y

K
-
m
e
a
n
s

 ∗
0.

95
07

0
.8
3
5
3

0.
91

6
0
.9
6
6
9

0
.9
7
9
4

0
.9
9
9
2

�
.�
�
�
�

K
-
m
e
a
n
s

 �
1 P

ro
j.

0.
95

06
0.

83
07

0
.9
1
6

0.
95

26
0.

95
71

0
.9
9
9
2

0
.1
0
1
4

Q
K
-
m
e
a
n
s

0
.9
5
1
4

0
.8
3
5
3

0.
91

4
�
.�
�
�
�

0.
97

82
�
.�
�
�
�

0.
10

07
B

al
l-t

re
e

�
.�
�
�
�

�
.�
�
�
�

�
.�
�
�
�

N
/A

�
.�
�
�
�

N
/A

N
/A

N
ys

trö
m

ap
pr

ox
im

at
io

n
er

ro
r

K
-
m
e
a
n
s

 ∗
�
.�
�
�
�

�
.�
�
�
�

0
.0
0
0
1

0
.0
0
0
1

�
.�
�
�
�

�
.�
�
�
�

�
.�
�
�
�

K
-
m
e
a
n
s

 �
1 P

ro
j.

0.
05

65
0.

11
22

0.
03

85
0.

03
62

0.
13

83
0.

07
26

0.
10

00
Q
K
-
m
e
a
n
s

0
.0
4
2
7

0
.0
2
9
9

�
e−

5
�
e−

5
0
.0
3
4
3

0
.0
0
0
8

0.
02

59
U

ni
fo

rm
0.

06
73

0.
04

43
0.

00
5

0
.0
0
0
2

0.
05

41
0.

00
51

0
.0
1
9
4

U
n.

 F
-N

ys
.

0.
17

02
0.

29
19

0.
04

49
0.

05
82

0.
25

01
0.

15
09

0.
21

91
K

. F
-N

ys
.

0.
15

76
0.

26
23

0.
05

98
0.

03
81

0.
23

71
0.

12
75

0.
23

82

896 Machine Learning (2021) 110:881–905

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

A
lg

or
ith

m
M
N
I
S
T

D

=
78

4
K

=
64

F
.
-
M
N
I
S
T

D

=
78

4
K

=
64

B
.
-
c
a
n
c
e
r

D

=
30

K
=

64

C
o
v
t
y
p
e

D

=
54

K
=

25
6

C
o
i
l
2
0

D

=
10

24
K

=
64

K
d
d
c
u
p
9
9

D

=
11

6
K

=
25

6

C
a
l
t
e
c
h

D

=
23

52
K

=
25

6

N
ys

trö
m

+ SV
M

A
cc

ur
ac

y

K
-
m
e
a
n
s

 ∗
�
.�
�
�
�

�
.�
�
�
�

0
.9
1
4

0
.6
8
3
0

0
.9
7
0
2

�
.�
�
�
�

�
.�
�
�
�

K
-
m
e
a
n
s

 �
1 P

ro
j.

0.
89

84
0.

81
04

0
.9
1
4

0.
66

7
0.

96
22

0
.9
9
8
7

0.
13

32

Q
K
-
m
e
a
n
s

0
.9
2
0
0

0.
81

19
0
.9
1
4

�
.�
�
�
�

�
.�
�
�
�

0.
99

82
0.

15
88

U
ni

fo
rm

0.
90

5
0
.8
1
4
2

�
.�
�
�
�

0.
68

18
0.

95
46

0.
99

72
0
.1
5
7
5

U
n.

 F
-N

ys
.

0.
79

37
0.

73
41

0.
93

2
0.

59
36

0.
73

99
0.

99
44

0.
09

54

K
. F

-N
ys

.
0.

73
37

0.
68

72
0.

93
0.

60
61

0.
67

56
0.

99
48

0.
07

51
A

M
I

K
-
m
e
a
n
s

 ∗
�
.�
�
�
�

�
.�
�
�
�

�
.�
�
�
�

�
.�
�
�
�

0
.7
0
9
3

0.
58

00
�
.�
�
�
�

K
-
m
e
a
n
s

 �
1 P

ro
j.

0.
44

96
0.

41
51

0.
16

01
0.

05
48

0.
67

85
0
.5
9
3
1

0.
07

29
Q
K
-
m
e
a
n
s

0
.5
3
3
7

0
.4
7
6
9

0
.1
7
7
2

0
.1
0
1
0

�
.�
�
�
�

�
.�
�
�
�

0
.0
8
4
1

Th
e
Q
K
-
m
e
a
n
s

 re
su

lts
 a

re
 o

bt
ai

ne
d

us
in

g
sp

ar
se

 fa
ct

or
s

w
ith

 a
 s

pa
rs

ity
 le

ve
l o

f 3
. B

es
t r

es
ul

ts
 a

re
 in

 b
ol

d
sh

ap
e

w
hi

le
 s

ec
on

d
be

st
re

su
lts

 a
re

 u
nd

er
lin

ed
 (w

he
n

ne
ce

ss
ar

y)
.

“B
ru

te
”

an
d

“K
D

-tr
ee

”
ve

rs
io

n
of

 1
-N

N
 a

re
 o

m
itt

ed
 si

nc
e

th
ey

 a
lw

ay
s p

er
fo

rm
 w

or
se

 th
an

 “
B

al
l-t

re
e”

. O
nl

y
re

su
lts

 w
ith

 th
e

la
rg

es
t K

 v
al

ue
 a

re
 d

is
pl

ay
ed

. S
om

e
re

su
lts

 in
 th

e
“1

-N
N

 A
cc

ur
ac

y”
 c

at
eg

or
y

ar
e

N
ot

 A
va

ila
bl

e
(N

/A
) w

he
n

th
e

co
rr

es
po

nd
in

g
te

st
ne

ce
ss

ite
d

m
or

e
th

an
 1

0
tim

es
 th

e
du

ra
tio

n
of

 th
e

sa
m

e
te

st
w

ith
 K
-
m
e
a
n
s

 ∗
 . A

M
I s

ta
nd

s
fo

r “
A

dj
us

te
d

M
ut

ua
l I

nf
or

m
at

io
n”

; i
t i

s c
om

pu
te

d
be

tw
ee

n
th

e
cl

us
te

rin
g

pa
rti

tio
n

an
d

th
e

re
al

 la
be

ls
 in

 th
e

da
ta

897Machine Learning (2021) 110:881–905

1 3

Fig. 3 Coverage Type: Number of flops with respect to the number of clusters and the sparsity level, e.g.
the minimum number of non-zero values in each row and each column. Note that this figure would be
exactly the same for the count of non-zero values as its link to the number of flops is linear

Fig. 4 Coverage Type: Nyström results for kernel matrix reconstruction error (Fig. 4a) and for SVM accu-
racy with input transformed by the Nyström approximation (Figs. 4b, 5)

898 Machine Learning (2021) 110:881–905

1 3

�1 Proj. algorithms. This metric (the higher, the better) shows that the clusters given by
QK-means attain AMI values close to those of K-means and significantly better than
those of K-means �1 Proj.

The approximation quality of the centroids can also be assessed visually, in a more sub-
jective and interpretable way, in Fig. 2, where the obtained centroids on the MNIST dataset
are displayed as images. Although some degradations may be observed in some images,
one can note that each image obtained with QK-means clearly represents a single visual
item without noticeable interference with other items.

4.4 Compression performance

We here discuss the space and computational gain entailed by the use of QK-means cen-
troid operator for inference in comparison to K-means and K-means �1 Proj.

Since running times are highly dependent on the implementation and the specifics of
the computer used, we show in Table 4 the number of flops required for the QK-means,
K-means and K-means �1 Proj. centroid operators to be applied to some vector along
with the corresponding number of non-zero values in these operators.

We also show the compression rate between K-means and QK-means as well as the
compression rate betwen K-means and K-means �1 Proj.. One can note that the com-
pression rate is the same for the number of flops and the number of non-zero values as the
number of flops is twice the number of non-zero values. Also, we remark here that the �
value for K-means �1 Proj. has been properly adjusted to get the same compression rate
than with QK-means. These results give a clear illustration for the complexity advantage
of the QK-means method: the greater the scale (K and/or D), the greater the compres-
sion rate, as with Caltech256 dataset where the compression rate reaches ×32.7 . It can
be noticed that, for QK-means, the count of non-zero values and flops may vary for two
datasets with the same D and K such as with MNIST and Fashion-MNIST. This behav-
ior is caused by our projection procedure which does not guarantee a fixed number of non-
zero values in each projected factor (see Appendix).

Figure 3 shows how the number of clusters have a relatively-low impact on the number
of flops induced by the factorized operator compared to that of the standard dense matrix
generated by K-means. As expected, we also see that increasing the sparsity level also
increases the number of flops. This figure shows results on the Coverage Type dataset
but the same compression patterns can be observed for all datasets.

4.5 Nearest‑neighbor search

We show that the QK-means centroid operator is comparable to the K-means operator
and better than the K-means �1 Proj. one when used to speed up the nearest-neighbor
search.

The nearest-neighbor (1-NN) search is a fundamental task that suffers from computational
limitations when the dataset is large and fast strategies have been proposed, e.g., using KD-
trees or ball trees. One may also use a clustering strategy to perform an approximate nearest-
neighbor search: the query is first compared to K centroids computed beforehand by clus-
tering the whole dataset, and the nearest neighbor search is then performed among a lower
number of data points, within the related cluster. We compare the results of approximate
1-NN using K-means, K-means �1 Proj. and QK-means to several scikit-learn
implementations (Pedregosa et al. 2011) of the nearest-neighbor search: brute-force search,

899Machine Learning (2021) 110:881–905

1 3

KD-tree, Ball-tree. In our experiments, Ball-tree implementation always perform equal or
better than brute-force search and KD-tree implementations and is faster. The results for the
brute-force search, KD-tree and Ball-tree are not available for some dataset (N/A) because
they lasted more than 10 times the K-means search version in the same setting. We note
that this happens on the largest datasets, hence emphasizing the usefulness of using the cen-
troid operator to fasten searches in such datasets. We see that the prediction performance for
classification isn’t impaired much when using the QK-means sparse factorization instead
of the K-means centroid matrix for partitioning. When available, we also see that using the
QK-means-partitionned 1-NN, algorithm doesn’t impair much the performance compared
to the vanilla 1-NN algorithms. Finally, this batch of experiments shows that our method
outperforms the K-means �1 Proj. approach in terms of the classification accuracy of 1-NN.

4.6 Nyström approximation

The centroids given by K-means are good landmark points for an accurate and efficient
Nyström approximation (Si et al. 2016). In this section, we show how we can take advan-
tage of the fast-operator obtained as output of our QK-means algorithm in order to lighten
the computation in the Nyström approximation. We start by giving background knowledge
on the Nyström approximation then we present some recent work aiming at accelerating it
using well known fast-transform methods. We finally stem on this work to present a novel
approach based on our QK-means algorithm.

4.6.1 Background on the Nyström approximation

Standard kernel machines are often impossible to use in large-scale applications because of
their high computational cost associated with the kernel matrix � which has O(N2) storage
and O(N2D) computational complexity: ∀i, j ∈ [[N]], [�]i,j = k(�i, �j) . A well-known strat-
egy to overcome this problem is to use the Nyström method which computes a low-rank
approximation of the kernel matrix on the basis of some pre-selected landmark points (Wil-
liams and Seeger 2001).

Given K ≪ N landmark points {�i}Ki=1 , the Nyström method gives the following approx-
imation of the full kernel matrix:

with � ∈ ℝ
K×K containing all the kernel values between landmarks:

∀i, j ∈ [[K]] [�]i,j = k(�i, �j) ; �
† being the pseudo-inverse of � and � ∈ ℝ

N×K
containing the kernel values between landmark points and all data points:
∀i ∈ [[N]],∀j ∈ [[K]] [�]i,j = k(�i, �j).

4.6.2 Efficient Nyström approximation

A substantial amount of research has been conducted toward landmark point selection
methods for improved approximation accuracy (Kumar et al. 2012; Musco and Musco
2017), but much less has been done to improve computation speed. Si et al. (2016) pro-
posed an algorithm to learn the matrix of landmark points with some structure constraint,
so that its utilisation is fast, taking advantage of fast-transforms. This results in an efficient
Nyström approximation that is faster to use both in the training and testing phases of some
ulterior machine learning application.

(13)� ≈ �̃ = ��
†
�

T ,

900 Machine Learning (2021) 110:881–905

1 3

Remarking that the main computational cost of the Nyström approximation comes
from the evaluation of the kernel function between the train/test samples and the landmark
points, Si et al. (2016) aim at accelerating this step. In particular, they focus on a family
of kernel functions that has the form k(�i, �j) = f (�i)f (�j)g(�

T
i
�j) , where f ∶ ℝ

D
→ ℝ and

g ∶ ℝ → ℝ . Given a set of K landmark points � ∈ ℝ
K×D and a sample � , the computational

time for computing the kernel between � and each row of � (necessary for the Nyström
approximation) is bottlenecked by the computation of the product �� . They hence propose
to write the � matrix as the concatenation of structured S = K∕D product of matrices such
that

where the � is a D × D matrix associated with a fast transform such as the Haar or Had-
amard matrix, and the �

�i
 are some D × D diagonal matrices with �i on the diagonal to be

either chosen with a standard landmark selection method or learned using an algorithm
they provide.

Depending on the chosen matrix � , it is possible to improve the time complexity for the
computation of �� from O(KD) to O(K logD) (Fast Hadamard transform) or O(K) (Fast
Haar Transform).

4.6.3 QK-means in Nyström approximation

We propose to use the QK-means algorithm in order to learn directly the � matrix in
the Nyström approximation so that the matrix-vector multiplication �� is cheap to
compute, but the structure of � is not constrained by some pre-defined transform
matrix, which may results in better performance in practice. We use the RBF kernel
(k(�, �) = exp(−�||� − �||2)) because it is the most popular kernel function and Si et al.
(2016) show that this kernel function is appropriate for the efficient Nyström technique.

As shown in Sect. 4.6.4, our algorithm provides reasonably good Nyström approxima-
tion results compared to that of the standard K-means landmark points selection tech-
nique. Note that using the fast QK-means operator in place of the � matrix defined in
Équation (14) brings the same complexity of O(K logD) for computing the matrix-vector
product ��.

4.6.4 Results

The results achieved in the Nyström approximation setting are summarized in Table 4. We
see that our fast-operator keeps the relevant information for the Nyström approximation
so that we obtain similar accuracy scores as with the standard K-means landmark points
and better accuracy than with the K-means �1 Proj. method. For this evaluation, we con-
sider the approximation error of the Nyström approximation based on different sampling
schemes (QK-means, K-means, Uniform) w.r.t. the real kernel matrix. This relative error
is computed from the Froebenius norm of the difference between the matrices as:

One can emphasize that the Uniform sampling scheme is known to give a worse Nyström
approximation than with the K-means scheme and this behaviour is still observable with

(14)� =
[
�

�1
�

T ,⋯ ,�
�S
�

T
]T
,

(15)error =
||� − �̃||F
||�||F

.

901Machine Learning (2021) 110:881–905

1 3

the QK-means. We also use the Nyström approximation based on QK-means as input
for a linear SVM, which achieves as good performance as the one based on the K-means
approach. Using this criterion, again, the K-means �1 Proj. approach shows worse
performances.

Finally, results in Table 4 and Fig. 4 show that for a fixed number of landmark points,
our technique significantly outperform the Fast-Nyström technique (Si et al. 2016) in
term of approximation error and prediction accuracy. For this technique we used the Had-
amard transform for � in Eq. (14) and the S seeds were taken from Uniform sampling
or K-means sampling, respectively called <<Un. F-Nys>> and << K. F-Nys>> . These
results illustrate our claim that it is beneficial in practice to learn a fast transform that fits
the data instead of using a fixed fast transform algorithm with strong structural bias such as
the Hadamard transform.

Figure 4 also shows that the sparsity level seems to have a rather limited impact on the
Nyström approximation quality and performance accuracy whereas a growth in the number
of cluster entails better results, as usual.

5 Conclusion

In this paper, we have proposed a variant of the K-means algorithm, named QK-means,
designed to achieve a similar goal: clustering data points around K learned centroids. Our
approach is based on the approximation of the matrix of centroids by an operator struc-
tured as a product of a small number of sparse matrices, resulting in a low time and space
complexity when applied to data vectors. We have shown the convergence properties of the
proposed algorithm and provided its complexity analysis.

An implementation prototype has been run in several core machine learning use cases
including clustering, nearest-neighbor search and Nyström approximation. The experimen-
tal results illustrate the computational gain in high dimension at inference time as well as
the good approximation qualities of the proposed model. The complexity analysis suggests
that our QK-means procedure could also have computation benefits for the training phase
when the number of observation N to be clustered is bigger than our considered datasets.

Beyond these modeling, algorithmic and experimental contributions to low-complexity
high-dimensional machine learning, we have identified important questions that are still to
be addressed: the expressiveness of the fast-structure model is still to be theoretically stud-
ied even though our experiments seems to show that arbitrary matrices may be well fitted
by such models. We believe that learning fast-structure linear operators during the training
procedure may be generalized to many core machine learning methods in order to speed
them up and make them scale to larger dimensions.

Appendix: palm4MSA algorithm

The palm4MSA algorithm Le Magoarou and Gribonval (2016) is given in Algorithm 2
together with the time complexity of each line, using A = min(K,D) and B = max(K,D) .
Even more general constraints can be used, the constraint sets Eq are typically defined as
the intersection of the set of unit Frobenius-norm matrices and of a set of sparse matrices.
The unit Frobenius norm is used together with the � factor to avoid a scaling indeterminacy.
Note that to simplify the model presentation, factor � is used internally in palm4MSA and

902 Machine Learning (2021) 110:881–905

1 3

is integrated in factor �1 at the end of the algorithm (Line 14) so that �1 does not satisfy the
unit Frobenius norm in E1 at the end of the algorithm. The sparse constraints we used, as
in Le Magoarou and Gribonval (2016), consist of trying to have a given number of non-
zero coefficients in each row and in each column. This number of non-zero coefficients is
called sparsity level in this paper. In practice, the projection function at Line 9 keeps the
largest non-zero coefficients in each row and in each column, which only guarantees the
actual number of non-zero coefficients is at least equal to the sparsity level.

Fig. 5 Decomposition of hadamard matrix by sparse factors. Bottom line show the initialization of the fac-
tors while middle line shows their final form at the end of the algorithm. Figure inspired from Le Magoarou
and Gribonval (2016)

903Machine Learning (2021) 110:881–905

1 3

The complexity analysis is proposed under the following assumptions, which
are satisfied in the mentioned applications and experiments: the number of factors is
Q = O(logB) ; all but one sparse factors are of shape A × A and have O(A) non-zero
entries while one of them is of shape A × B or B × A with O(B) non-zero entries. In such
conditions, the complexity of each line is:

Lines 1-2 Computing these normalization steps is linear in the number of non-zeros
coefficients in �1.
Lines 5-6 Fast operators � and � are defined for subsequent use without computing
explicitly the product.
Line 7 The spectral norm of � and � is obtained via a power method by iteratively
applying each operator, benefiting from the fast transform.
Line 8 The cost of the gradient step is dominated by the product of sparse matrices.
Line 9 The projection onto a sparse-constraint set takes O

(
A2 logA

)
 for all the A × A

matrices and O(AB logB) for the rectangular matrix at the leftmost or the rightmost
position.
Line 11 The reconstructed matrix �̂ is computed using O(logB) products between
A × A sparse matrices, in O

(
A2

)
 operations each, and one product with a sparse

matrix in O(AB).
Line 12 The numerator and denominator can be computed using a Hadamard product
between the matrices followed by a sum over all the entries.
Line 14 Computing renormalization step is linear in the number of non-zeros coef-
ficients in �1.

Hence, the overal time complexity of palm4MSA is in O
(
AB log2 B

)
 , due to Lines 8

and 9 repeated for each of the logB factors.

904 Machine Learning (2021) 110:881–905

1 3

Projection function for palm4MSA

The function used for projecting the factors onto the set of possible solutions (Line 9 of
Algorithm 2) is the same as the one used in Le Magoarou and Gribonval (2016) source
code. This projection function relaxes the strong constraint of having exactly

to become the weaker

with �j[i] the ith Line of �j and �j ∈ ℝ
A×A. In simple words, it ensures that each line and

each column has at least ⌈�j∕A⌉ non-zero values. This is easy to see as (i) each line of A
must have ⌈�j∕A⌉ non-zero values then the matrix has at least �j values and (ii) it can’t have
more than 2�j even considering the line and columns of the matrix to not share the same
non-zero values. We see in practice that there is actual collision between non-zero values
of lines and columns. The procedure is summarized in Algorithm 3 where the function
get_max_by_line(�, c) returns � with only its c biggest values in each line and other values
zeroed and ¬mask(�) returns the negative of the mask of � e.g. the matrix � with �i,j = 1
where �i,j = 0 and �i,j = 0 otherwise.

Acknowledgements This work was funded in part by the French national research agency (Grant No.
ANR16-CE23-0006 ”Deep in France”).

References

Ailon, N., Leibovich, O., & Nair, V. (2020). Sparse linear networks with a fixed butterfly structure: Theory
and practice. arXiv preprint arXiv:200708864.

Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding. Technical reports,
Stanford.

Bolte, J., Sabach, S., & Teboulle, M. (2014). Proximal alternating linearized minimization or nonconvex and
nonsmooth problems. Mathematical Programming, 146(1–2), 459–494.

Boutsidis, C., Zouzias, A., Mahoney, M. W., & Drineas, P. (2014). Randomized dimensionality reduction
for k-means clustering. IEEE Transactions on Information Theory, 61(2), 1045–1062.

Dao, T., Gu, A., Eichhorn, M., Rudra, A., & Re, C. (2019). Learning fast algorithms for linear transforms
using butterfly factorizations. In International conference on machine learning (pp. 1517–1527).

Dua, D., & Graff, C. (2017). UCI machine learning repository. http:// archi ve. ics. uci. edu/ ml.

(16)∀j ∈ Q, ||�j||0 ≤ �j

(17)
∀j ∈ Q, �j ≤ ���j��0 ≤ 2�j

∀i, ���j[i]��0 = ⌈�j∕A⌉ and ���T
j
[i]��0 = ⌈�j∕N⌉,

http://archive.ics.uci.edu/ml

905Machine Learning (2021) 110:881–905

1 3

Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Proceedings of the 20th interna-
tional conference on machine learning (ICML-03) (pp. 147–153)

Griffin, G., Holub, A., & Perona, P. (2007). The caltech-256. Caltech technical report (p. 1).
Hamerly, G. (2010). Making k-means even faster. In Proceedings of the SIAM international conference on

data mining (pp. 130–140). SIAM
Hartigan, J. A., & Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the

Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108.
Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.
Keriven, N., Tremblay, N., Traonmilin, Y., & Gribonval, R. (2017). Compressive k-means. In International

conference on acoustics speech and signal processing (ICASSP) (pp. 6369–6373). IEEE.
Kumar, S., Mohri, M., & Talwalkar, A. (2012). Sampling methods for the nyström method. Journal of

Machine Learning Research, 13, 981–1006.
Le, Q., Sarlós, T., & Smola, A. (2013). Fastfood-approximating kernel expansions in loglinear time. In

International conference on machine learning
Le Magoarou, L., & Gribonval, R. (2016). Flexible multilayer sparse approximations of matrices and appli-

cations. IEEE Journal of Selected Topics in Signal Processing, 10(4), 688–700.
LeCun, Y., Cortes, C., & Burges, C. (2010). Mnist handwritten digit database. http://yannlecuncom/exdb/

mnist7:23.
Li, Y., Yang, H., Martin, E. R., Ho, K. L., & Ying, L. (2015). Butterfly factorization. Multiscale Modeling &

Simulation, 13(2), 714–732.
Liu, W., Shen, X., & Tsang, I. (2017). Sparse embedded k-means clustering. In Advances in neural informa-

tion processing systems (pp. 3319–3327)
Morgenstern, J. (1975). The linear complexity of computation. Journal of the ACM, 22(2), 184–194.
Muja, M., & Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 36(11), 2227–2240.
Musco, C., & Musco, C. (2017) Recursive sampling for the nyström method. In Advances in neural infor-

mation processing systems(pp. 3833–3845).
Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia object image library (coil-20). Technical reports.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:

Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
Que, Q., & Belkin, M. (2016). Back to the future: Radial basis function networks revisited. In Artificial

intelligence and statistics (pp. 1375–1383).
Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th international conference on

World wide web (pp. 1177–1178). ACM
Shen, X., Liu, W., Tsang, I., Shen, F., & Sun, Q. S. (2017). Compressed k-means for large-scale clustering.

In Thirty-first AAAI conference on artificial intelligence
Si, S., Hsieh, C. J., & Dhillon, I. (2016). Computationally efficient nyström approximation using fast trans-

forms. In International conference on machine learning (pp. 2655–2663)
Vahid, K. A., Prabhu, A., Farhadi, A., & Rastegari, M. (2020). Butterfly transform: an efficient FFT based

neural architecture design. In Proceedings of the IEEE/CVF conference on computer vision and pat-
tern recognition

Van Laarhoven, T., & Marchiori, E. (2016). Local network community detection with continuous optimiza-
tion of conductance and weighted kernel k-means. The Journal of Machine Learning Research, 17(1),
5148–5175.

Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings comparison: Vari-
ants, properties, normalization and correction for chance. The Journal of Machine Learning Research,
11, 2837–2854.

Williams, C. K., & Seeger, M. (2001). Using the nyström method to speed up kernel machines. In Advances
in neural information processing systems (pp. 682–688).

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: A novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:170807747.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	QuicK-means: accelerating inference for K-means by learning fast transforms
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 K-means: Lloyd’s algorithm and inference
	2.2 Learning fast-transform structures

	3 QuicK-means
	3.1 QK-means: encoding centroids as products of sparse matrices
	3.2 Convergence of QK-means
	3.3 Complexity analysis

	4 Experiments and applications
	4.1 Experimental setting
	4.2 Influence of hyper-parameters
	4.3 Clustering quality
	4.4 Compression performance
	4.5 Nearest-neighbor search
	4.6 Nyström approximation
	4.6.1 Background on the Nyström approximation
	4.6.2 Efficient Nyström approximation
	4.6.3 QK-means in Nyström approximation
	4.6.4 Results

	5 Conclusion
	References

