
Vol.:(0123456789)

Machine Learning (2021) 110:2603–2640
https://doi.org/10.1007/s10994-021-05969-w

1 3

Partially observable environment estimation with uplift
inference for reinforcement learning based recommendation

Wenjie Shang1 · Qingyang Li1 · Zhiwei Qin1 · Yang Yu2 · Yiping Meng1 · Jieping Ye1

Received: 15 May 2020 / Revised: 6 February 2021 / Accepted: 4 March 2021 /
Published online: 14 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Reinforcement learning (RL) aims at searching the best policy model for decision making,
and has been shown powerful for sequential recommendations. The training of the policy
by RL, however, is placed in an environment. In many real-world applications, the policy
training in the real environment can cause an unbearable cost due to the exploration. Envi-
ronment estimation from the past data is thus an appealing way to release the power of RL
in these applications. The estimation of the environment is, basically, to extract the causal
effect model from the data. However, real-world applications are often too complex to offer
fully observable environment information. Therefore, quite possibly there are unobserved
variables lying behind the data, which can obstruct an effective estimation of the environ-
ment. In this paper, by treating the hidden variables as a hidden policy, we propose a par-
tially-observed multi-agent environment estimation (POMEE) approach to learn the par-
tially-observed environment. To make a better extraction of the causal relationship between
actions and rewards, we design a deep uplift inference network (DUIN) model to learn the
causal effects of different actions. By implementing the environment model in the DUIN
structure, we propose a POMEE with uplift inference (POMEE-UI) approach to generate a
partially-observed environment with a causal reward mechanism. We analyze the effect of
our method in both artificial and real-world environments. We first use an artificial recom-
mender environment, abstracted from a real-world application, to verify the effectiveness
of POMEE-UI. We then test POMEE-UI in the real application of Didi Chuxing. Experi-
ment results show that POMEE-UI can effectively estimate the hidden variables, leading to
a more reliable virtual environment. The online A/B testing results show that POMEE can
derive a well-performing recommender policy in the real-world application.

Keywords Reinforcement learning · Environment estimation · Hidden state · Uplift
modeling · Recommender system

Editors: Yuxi Li, Alborz Geramifard, Lihong Li, Csaba Szepesvari, Tao Wang.

 * Wenjie Shang
 shangwenjie@didiglobal.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9331-4062
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05969-w&domain=pdf

2604 Machine Learning (2021) 110:2603–2640

1 3

1 Introduction

In sequential recommendation problems (Ye et al. 2018, 2019), where the system needs to
recommend multiple items to the user while responding to the user’s feedback, there are
multiple decisions to be made in sequence. For example, in our application of program
recommendation to taxi drivers on the large-scale ride-hailing platform, the system recom-
mends a personalized driving program to each driver, and a program consists of multiple
steps, where each step is recommended according to how the previous steps were followed.
Therefore, recommending the program steps is a sequential decision problem, and it can be
naturally tackled by reinforcement learning (RL) (Sutton and Barto 2018).

As a powerful tool for learning decision-making policies, RL learns from interactions
with the environment via trial-and-errors (Sutton and Barto 2018). In digital worlds where
interactions with the environment are feasible and cheap, it has made remarkable achieve-
ments, (e.g., Mnih et al. 2015; Silver et al. 2016; Brown and Sandholm 2017; OpenAI et al.
2019). When it comes to real-world applications, physical environments in the real world
are no longer as convenient as digital environments. It is not practical to interact with the
real-world environment directly for training the policy, because of the high interaction cost,
the potential unbearable risk and the huge amount of interactions required by the current
RL techniques. A recent study (Shi et al. 2018) disclosed a viable option to conduct RL on
real-world tasks, which is by estimating a virtual environment from the past data. Once a
virtual environment is built, the RL process could be more efficient by interacting with it,
and the physical cost in real-world environments could be avoided as well.

The environment estimation can be done by treating the environment as a policy that
makes responses to the interactions, and employing the imitation learning methods (Schaal
1999; Argall et al. 2009) to learn the environment policy from the past data, which has
drawn a lot of attention recently (Chen et al. 2019). Comparing with using supervised
learning, i.e., behavior clone, to learn the environment policy, a more promising solution
in Shi et al. (2018) is to formulate the environment policy learning as an interactive pro-
cess between the environment and the system in it. The advantage of such a setting is that
it could make a better generalization to evaluate a new system policy, especially when the
environment policy changes over time and the distribution of new collected data shifts as
well (Zhao et al. 2020). Take the example of the commodity recommendation system: the
user and the platform could be viewed as two agents interacting with each other, where the
user agent views the platform as the environment and the platform agent views the user as
the environment. By this multi-agent view, Shi et al. (2018) proposed a multi-agent adver-
sarial imitation learning (MAIL) method, extending the generative adversarial imitation
learning (GAIL) framework (Ho and Ermon 2016), to learn the two policies simultane-
ously by beating the discriminator which aims to find the difference between the generated
and the real interaction data.

However, the MAIL method (Shi et al. 2018) is under the assumption that the whole
world only consists of two agents. From the perspective of the real users, they can receive
much more information from the real-world that is not recorded in the data. Therefore, it is
still quite challenging to build a realistic environment in real-world applications, since the
real-world scenario is too complex to offer a fully observable environment, which means
that there may exist unobservable variables that can implicitly affect the interaction. As
shown in Fig. 1, in the classical setting, the next state in an MDP depends on the previous
state and the executed action. While in most of real-world scenarios, the next state could be
additionally influenced by some hidden variables, which result in the state being partially

2605Machine Learning (2021) 110:2603–2640

1 3

observable. If we follow the assumption of a fully observable world, the estimation would
be misled by the appeared fake associations in the data, which are commonly caused by the
hidden variables. Thus, it is essential to take such hidden variables into consideration.

Hidden state problems arise in many real-world decision tasks. The state of the environ-
ment is only incompletely known to the learning agent. Partially observable MDPs (POM-
DPs) (Singh et al. 1994) are an appropriate model for hidden state problems. Most previous
approaches to such problems have combined computationally expensive state estimation
techniques with learning control (Kaelbling et al. 1998; Pineau et al. 2003; Cassandra et al.
2005). In control theory, it is widely accepted that learning a model of the environment
is useful for policy control in such cases, which is called system identification. There has
been some work on learning discrete-state models for the partially observable environment
(Sallans 1999). While in many real-world applications, the state of the environment is com-
monly high dimensional and continuous. Little work has been done in this promising area.
In this study, we try to use reinforcement learning to learn the continuous-state environ-
ment model for the partially observable tasks.

To involve hidden variables into the environment estimation, we propose a partially-
observed multi-agent environment estimation method, named POMEE. First, we formulate
two representative polices, the agent policy �a and the environment policy �e . Then, in
order to simulate the effect of hidden variables, we add a hidden agent �h into the interac-
tion. According to the influence relationship, the hidden agent �h interacts with the other
two agents. Based on the formulation, we learn policies of these three agents only using
the interaction data between �a and �e . Since hidden variables are unobservable, we pro-
pose two techniques to learn the policy of it: the partially-observed environment model and
the compatible discriminator under the framework of GAIL (Ho and Ermon 2016). As the
training converges, the partially-observed environment is successfully generated.

Based on the built virtual environment, RL algorithms can be used to optimize the
agent policy. Policy optimization mainly includes two steps: policy evaluation and policy
control. In the policy evaluation, the performance of the policy is evaluated according to
the reward function in the simulator. When the hidden variables exist, the response of the
environment could be additionally influenced by them. So the causal relationship between
actions and responses must be depicted accurately in the simulator. Moreover, since the
real-world application prefers online A/B testing to evaluate the improvement effect of the
policy (Agarwal et al. 2016), it is more desirable to build a causal reward function in the

(a) (b)

Fig. 1 Illustration of the graph structure and the collected data (a) in the classical environment that assumes
fully observable, and (b) in the more realistic environment with unobserved variables

2606 Machine Learning (2021) 110:2603–2640

1 3

simulation environment. Generally, causal modeling aims at modeling the uplift, which is
the incremental impact of an action or a treatment on an individual unit.

Recently, there are a lot of studies to learn the uplift model by tree-based methods (Han-
sotia and Rukstales 2002; Radcliffe and Surry 2011; Rzepakowski and Jaroszewicz 2012;
Athey and Imbens 2015; Wager and Athey 2018), which demonstrate stable performance
on many tasks. In this paper, to learn an uplift model compatible with the simulation envi-
ronment, we propose a deep uplift inference network model, named DUIN, to infer the
uplift of each action. By analogy with the experimental setting of online AB testing, the
DUIN model has two output branches: the control branch and the treatment branch. The
control branch is trained to predict the potential outcome of the control action. The treat-
ment branch is trained to infer the uplift behind the observed outcome. When the model
converges, the output of the treatment branch converges to the true value of the uplift.

By implementing the environment policy in the DUIN structure, we propose a POMEE
with uplift inference approach, named POMEE-UI, to build a partially-observed environ-
ment with a causal reward mechanism. First, we use the randomized trial data to train
the environment policy following the DUIN optimization. Then, the parameters of the
treatment branch in environment policy are set to be fixed during the training process of
POMEE. In this way, the learned environment policy can generate simulation data similar
to the real data, and meanwhile offer the uplift value of each action as a causal reward.

To verify the effectiveness of POMEE-UI, we first use an artificial environment
abstracted from the real-world application to conduct toy experiments. Then, we apply
POMEE-UI to a large-scale recommender system for ride-hailing driver programs in Didi
Chuxing. The results of toy experiments show that the environment learned by POMEE-UI
can not only have a reliable causality, but also restore the real policy functions well. In the
real-world application, POMEE-UI achieves a promising performance on both simulation
evaluation and offline policy optimization. Finally, based on the virtual environment built
by POMEE, a recommender policy is optimized and deployed online for A/B testing. The
results of online experiment further demonstrate the effectiveness of applying our method
to real-world applications. The contribution of this work is summarized as follows:

(1) We propose a novel environment estimation method POMEE to tackle the real-world
situation where the state of the environment is partially observable.

(2) By treating the hidden variables as a hidden policy, we formulate the hidden effect into
a multi-agent interactive environment. We define the partially-observed environment
model and the compatible discriminator to learn policies effectively.

(3) We propose a novel deep uplift inference network DUIN model to learn the uplift
effectively. Due to the flexibility in various settings, it makes deep neural networks a
step further in uplift modeling.

(4) By implementing the environment policy in the DUIN structure, we propose the
POMEE-UI approach to build a partially-observed environment with uplift inference.
A general, feasible and reliable pipeline solution is built to enable RL to release the
powerful sequential decision-making ability in real-world applications.

(5) We deploy the proposed framework to the program recommender system on a large-
scale riding-hailing platform, and achieve significant improvements in the test phase.

The rest of this paper is organized as follows: we introduce the background in Sect. 2 and
the proposed method POMEE in Sect. 3. The DUIN model and the POMEE-UI approach
are proposed in Sect. 4. We describe the application of POMEE-UI to the driver program

2607Machine Learning (2021) 110:2603–2640

1 3

recommendation system in Sect. 5. Experiment results are reported in Sect. 6. Finally, we
conclude the paper in Sect. 7.

2 Background

2.1 Reinforcement learning

The problem to be tackled by Reinforcement Learning (RL) can usually be represented by
a Markov decision process (MDP) quintuple (S,A,T ,R, �) , where S is the state space and
A is the action space and T ∶ S × A ↦ S is the state transition model and R ∶ S × A ↦ ℝ
is the reward function and � is the discount factor of cumulative reward. Reinforcement
learning aims to optimize policy � ∶ S ↦ A to maximize the expected �-discounted cumu-
lative reward ��

[
�T

t=0
� trt

]
 by enabling agents to learn from interactions with the environ-

ment. The agent observes state s from the environment, selects action a given by � to exe-
cute in the environment and then observes the next state, obtains the reward r at the same
time until the terminal state is reached. Consequently, the goal of RL is to find the optimal
policy

of which the expected cumulative reward is the largest.
Partially observable Markov decision process The POMDP framework is general

enough to model a variety of real-world sequential decision-making problems. The general
framework of Markov decision processes with incomplete information was described by
Astrom (1965) in the case of a discrete state space, and it was further studied in the opera-
tions research community where the acronym POMDP was coined. It was later adapted for
problems in artificial intelligence and automated planning by Kaelbling et al. (1998). A
discrete-time POMDP can formally described as a 7-tuple (S,A,T ,R,Ω,O, �) , where S is
a set of states and A is a set of actions and T is a set of conditional transition probabilities
T(s�|s, a) for the state transition s → s′ and R ∶ S × A ↦ ℝ is the reward function and Ω is
a set of observations and O is a set of conditional observation probabilities O(o|s�, a) and
� ∈ [0, 1] is the discount factor.

At each time period, the environment is in some state s ∈ S . The agent chooses an
action a ∈ A , which causes the environment transition to state s� ∈ S with probability
T(s�|s, a) . At the same time, the agent receives an observation o ∈ Ω which depends on
the new state of the environment with probability O(o|s�, a) . Finally, the agent receives a
reward r = R(s, a) . Then the process repeats. The goal is for the agent to choose actions at
each time step that maximizes its expected future discounted reward, which is the same as
the goal of MDP defined in Eq. (1).

Imitation learning Learning a policy directly from expert demonstrations has been
proven very useful in practice, and has made a significant improvement of performance in
a wide range of applications (Ross et al. 2011). There are two traditional imitation learning
approaches: behavioral cloning, which trains a policy by supervised learning over state-
action pairs of expert trajectories (Pomerleau 1991), and inverse reinforcement learning
(Russell 1998), which learns a cost function that prioritizes the expert trajectories over oth-
ers. Generally, common imitation learning approaches can be unified as the follow for-
mulation: training a policy � to minimize the loss function l(s,�(s)) , under the discounted

(1)𝜋⋆ = argmax
𝜋

�𝜋

[
𝛴T

t=0
𝛾 trt

]
,

2608 Machine Learning (2021) 110:2603–2640

1 3

state distribution of the expert policy: P�e
(s) = (1 − �)�T

t=0
� tp(st) . The object of imitation

learning is represented as

2.2 Environment estimation

Reinforcement learning relies on an environment. However, when it comes to real-world
applications, it is not practical to interact with the real-world environment directly to opti-
mize the policy because of the low sampling efficiency and the high-risk uncertainty, such
as online recommendation in E-commerce and medical diagnosis. A viable option is to
build a virtual environment (Shi et al. 2018) for offline policy training. As a result, the
training process could be more efficient by interacting with the virtual environment, and
the interaction cost could be avoided as well.

Generative adversarial nets Generative adversarial networks (GANs) (Goodfellow et al.
2014) and its variants are rapidly emerging unsupervised machine learning techniques.
GANs involve training a generator G and discriminator D in a two-player zero-sum game:

where pz is some noise distribution. In this game, the generator learns to produce sam-
ples (denoted as x) from a desired data distribution (denoted as pE). The discriminator
is trained to classify the real samples and the generated samples by supervised learning,
while the generator G aims to minimize the classification accuracy of D by generating sam-
ples like real ones. In practice, the discriminator and the generator are both implemented
by neural networks, and updated alternately in a competitive way. The training process
of GANs can be seen as searching for a Nash equilibrium in a high-dimensional param-
eter space, so it has very strong ability of data representation. Recent studies (Menick and
Kalchbrenner 2018) have shown that GANs are capable of generating faithful real-world
images, demonstrating their applicability in modeling complex distributions.

Generative adversarial imitation learning GAIL (Ho and Ermon 2016) has become a
popular imitation learning method recently. It allows the policy to interact with the envi-
ronment but no reward signals. It was proposed to avoid the shortcoming of traditional imi-
tation learning, such as the instability of behavioral cloning and the complexity of inverse
reinforcement learning. It adopts the GAN framework to learn a policy (i.e., the generator
G) with the guidance of a reward function (i.e., the discriminator D) given expert demon-
strations as real samples. GAIL formulates a similar objective function like GANs, except
that here pE stands for the expert’s joint distribution over state-action pairs:

where H(�) ≜ ��

[
− log�(a|s)] is the entropy of policy �.

GAIL allows the agent to execute the policy in the environment and update it with pol-
icy gradient methods (Schulman et al. 2015). The policy is optimized to maximize the sim-
ilarity between the policy-generated trajectories and the expert trajectories measured by D.
Similar to the Eq. (2), the policy � is updated to minimize the loss function

(2)� = argmin
�

�s∼P�e
[l(s,�(s))].

(3)argmin
G

argmax
D∈(0,1)

�x∼pE

[
logD(x)

]
+ �z∼pz

[
log(1 − D(G(z)))

]
,

(4)argmin
�

argmax
D∈(0,1)

��

[
logD(s, a)

]
+ ��E

[
log(1 − D(s, a))

]
− �H(�),

2609Machine Learning (2021) 110:2603–2640

1 3

where Q(s, a) = ��i

[
log(D(s, a))|s0 = s, a0 = a

]
 is the state-action value function. The

discriminator is trained to predict the conditional distribution: D(s, a) = p(y|s, a) where
y ∈ {�E,�} . In other words, D(s, a) is the likelihood ratio that the pair (s, a) comes from �
rather than from �E . GAIL is proven to achieve similar theoretical and empirical results as
IRL (Finn et al. 2016) while it is more efficient.

Recently, the multi-agent extension of GAIL (Shi et al. 2018) has been proven effec-
tive to build a virtual environment. A subset of this work in this paper has been published
before (Shang et al. 2019). The previous publication proposed an environment recon-
struction method to virtualize a real-world recommendation environment with a response
model. In this paper, a causal uplift model is additionally designed to learn a more reli-
able environment model for better policy optimization. Additionally, we have revamped the
exposition of our environment generation method from the POMDP perspective.

2.3 Causal inference and uplift modeling

Uplift modeling refers to the set of techniques used to model the incremental impact of
an action or a treatment on a customer outcome. For example, a manager at an e-business
company could be interested in estimating the effect of sending an advertising e-mail to
different customers on their probability to click the links to promotional ads. With that
information at hand, the manager is able to target potential customers efficiently.

Uplift modeling is both a causal inference and a machine learning problem (Gutierrez
and Gérardy 2017). It is a causal inference problem because one needs to estimate the dif-
ference between two outcomes that are mutually exclusive for an individual (either a user
receives a promotional e-mail or does not receive it). To overcome this counter-factual
nature, uplift modeling crucially relies on randomized experiments. Uplift modeling is also
a machine learning problem as one needs to train different models and select the one that
yields the most reliable uplift prediction according to some performance metrics. More
prerequisite knowledge can be seen in “Appendix A.1 and A.2”.

The most popular methods for uplift modeling in the literature remain the tree-based
ones (see Hansotia and Rukstales 2002; Radcliffe and Surry 2011; Rzepakowski and Jaro-
szewicz 2012; Athey and Imbens 2015; Wager and Athey 2018). However, little work
(Johansson et al. 2016) has been done to release the strong representation ability of deep
neural network for uplift modeling. In this paper, we make a further step to use the deep
neural network for uplift modeling, which is also compatible with the training process of
environment estimation.

3 Partially‑observed multi‑agent environment Estimation

To estimate the environments where hidden states exist, we propose a novel partially-
observed multi-agent environment estimation (POMEE) method.

3.1 Formulation

In this study, by treating the hidden variables as a hidden policy, we formulate the partially-
observed environment estimation as follows:

(5)l(s,�(s)) = ��

[
logD(s, a)

]
− �H(�) ≅ ��i

[
log�(a|s)Q(s, a)] − �H(�).

2610 Machine Learning (2021) 110:2603–2640

1 3

Partially-observed multi-agent environment.

– Observable agent A : known as the policy agent, denoted as �a with observation oA as
input and action aA as output.

– Observable agent E: known as the environment, denoted as �e with observation oE as
input and action aE as output.

– Unobservable agent H: known as hidden variables, denoted as �h with observation oH
as input and action aH as output. It plays a role of hidden effect in the sequential inter-
actions between the policy agent A and the environment agent E.

Simulation of interaction.

– Start of the simulation trajectory: Given oA (sampled from the initial states in the his-
torical data) as the observation of agent A, it takes an action aA = �a(oA).

– Hidden effect for the action: the observation oH of agent H is formatted as the concat-
enation oH =< oA, aA > , and the action aH = �h(oH) has the same format as aA.

– Hidden effect for the environment response: the observation oE of agent E is format-
ted as the concatenation oE =< oA, aA, aH > , and its action is aE = �e(oE) which can be
used to move forward to the new state for next step.

Goal We assume that the true policies 𝜋⋆
e

 and 𝜋⋆
h

 behind the observed trajectories are fixed
in the time of a trajectory. The objective is to use only observable interactions, that is, tra-
jectories �real = {(oA, aA, aE)} , to imitate the policies �a and �e , together with recovering
the hidden effect of H by inferring the hidden policy �h.

3.2 Objective function

The objective function of multi-agent imitation learning is defined analogy to Eq. (2):

where aA, aE depend on three policies. By adopting the GAIL framework, according to Eq.
(5), we can get the imitation loss for environment estimation as

We observe that �a is independent with �h and �e given oA and aA , then using conditional
independence rule, D(oA, aA, aE) under GAIL framework can be decomposed as

where Da(oA, aA) denotes the imitation item of policy �a , and Dhe(oA, aA, aE) denotes the
imitation item of policies �h and �e . Combining Eqs. (7) and (8), we can decompose the
loss function as

(6)(�a,�e,�h) = argmin
(�a ,�e ,�h)

�oA∼P�real

[
L(oA, aA, aE)

]
,

(7)L(oA,�a,�h,�e) = ��a ,�h ,�e

[
logD(oA, aA, aE)

]
− ���∈{�a ,�h ,�e}

H(�).

(8)

D(oA, aA, aE) = p(�a,�h,�e|oA, aA, aE)
= p(�a|oA, aA, aE) p(�h,�e|oA, aA, aE)
= p(�a|oA, aA) p(�h,�e|oA, aA, aE)
= Da(oA, aA) Dhe(oA, aA, aE).

2611Machine Learning (2021) 110:2603–2640

1 3

which indicates that the optimization can be decomposed as optimizing policy �a and joint
policy �he = �e◦�h individually by minimizing the loss functions

where Q(oA, aA) = ��i

[
log(D(oA, aA))|o0 = oA, a0 = aA

]
 is the state-action value function of

�a , and

where Q(oA, aA, aE) = ��i

[
log(D((oA, aA), aE))|o0 = oA, aA0 = aA, aB0 = aE

]
 is the state-

action value function of �he.
Based on this result, we propose the partially-observed environment model and the com-

patible discriminator to achieve the goal of imitating polices of agents A and E together
with the hidden agent H, thus obtaining the POMEE approach.

3.3 Partially‑observed environment model

In this study, the interaction between the agent A (known as the policy agent) and the agent
E (known as the environment) could be observed, while the policy and data of the agent H
(known as hidden variables) are unobservable.

Based on the decomposition result of objective function, we combine the hidden policy
�h with the observable policy �e as a joint policy, named �he = �e◦�h . Under the GAIL
framework, together with the policy �a , the generator is formalized as an interactive envi-
ronment of two policies as shown in the top of Fig. 2. The joint policy can actually be
expressed as

in which the input (oA, aA) and the output aE are both observable in the historical data.
Therefore, we can use imitation learning methods to train these two policies by imitating
the observed interactions.

The policies in generator are updated alternatingly in each training step: first, the joint
policy �he is updated with the imitation reward rhe given by the discriminator. Second, the
policy �a is updated with the corresponding reward ra given by the discriminator as well.
Though there is no explicit updating step for the hidden policy �h , it has been inferred
potentially by these two steps. Intuitively, the generated hidden policy �h is just like a by-
product along with the process of optimizing policies �a and �he towards the truth, and con-
sequently it can recover the real hidden effect to some extent. To make the training process
more stable, we employ TRPO (Schulman et al. 2015) to update the two policies.

(9)

L(oA,�a,�h,�e) = ��a ,�h ,�e

[
logDa(oA, aA)Dhe(oA, aA, aE)

]
− ���∈{�a ,�h ,�e}

H(�)

= ��a

[
logDa(oA, aA)

]
− �H(�a)

+ ��h ,�e

[
logDhe(oA, aA, aE)

]
− ���∈{�h ,�e}

H(�)

= l(oA,�a(oA)) + l((oA, aA), �e◦�h((oA, aA)))

(10)
l(oA,�a(oA)) = ��a

[
logDa(oA, aA)

]
− �H(�a)

≅ ��i

[
log�a(aA|oA)Q(oA, aA)

]
− �H(�a),

(11)

l((oA, aA),�he((oA, aA))) = ��h ,�e

[
logDhe((oA, aA), aE)

]
− ���∈{�h ,�e}

H(�)

≅ ��i

[
log�he(aE|oA, aA)Q(oA, aA, aE)

]
− ���∈{�h ,�e}

H(�),

(12)�he(oA, aA) = �e(oA, aA,�h(oA, aA))

2612 Machine Learning (2021) 110:2603–2640

1 3

3.4 Compatible discriminator

In most of generative adversarial learning frameworks, there is only one task to model and
learn in the generator. In this study, it is essential to simulate and learn different reward func-
tions for the two policies �a and �he consisted in the generator, respectively.

We design the discriminator compatible with two classification tasks. As Fig. 2 illustrates,
one task is designed to classify the real and generated state-action pairs of �a while the other
one is to classify the state-action pair of �he . Correspondingly, the discriminator has two kinds
of input: the state-action pair (oA, aA, aE) of policy �he and the zero-padded state-action pair
(oA, aA, �) of policy �a . This setting indicates that the discriminator splits not only the policy
�he ’s state-action space, but also the policy �a ’s state-action space. The loss function of each
task is defined as

for �he , and

for policy �a.
The output of the discriminator is the probability that the pair data comes from the real

data distribution. The discriminator is trained with supervised learning by labeling the real
state-action pair as 1 and the generated fake state-action pair as 0. Then it is used as a reward
giver for the policies while simulating interactions. The reward function for policy �he can be
written as:

(13)E�sim

[
log(D�(oA, aA, aE))

]
+ E�real

[
log(1 − D�(oA, aA, aE))

]

(14)E�sim

[
log(D�(oA, aA, �))

]
+ E�real

[
log(1 − D�(oA, aA, �))

]

(15)rhe = − log(1 − D(oA, aA, aE)),

Fig. 2 The generator and the discriminator in POMEE. The multi-agent interactive environment plays a role
of generator, and can generate simulation interaction data. The discriminator is designed to be compatible
for classify the state-action pairs of both the policy �a and the joint policy �he

2613Machine Learning (2021) 110:2603–2640

1 3

and the reward function for policy �a is

3.5 Simulation

We simulate interactions in the generator module. The simulated trajectory is generated
as follows: First, we randomly sample one trajectory from the observed data and set its
first observation as the initial observation oA

0
 . Then we can use the two policies �a,�he to

generate a whole trajectory triggered from oA
0
 . Given the observation oA

t
 as the input of �a ,

the action aA
t
 can be obtained. In consequence, the action aE

t
 can be obtained from the joint

policy �he with the concatenation < oA
t
, aA

t
> as input. Then we can get the imitation reward

rhe
t

 by Eq. (15) and ra
t
 by Eq. (16) which are used for updating policies in the adversarial

training step. Finally, we can get the next observation oA
t+1

 based on oA
t
 and aE

t
 by the prede-

fined transition dynamics. This step is repeated until a terminal state, and a fake trajectory
is generated.

3.6 POMEE algorithm

Based on the partially-observed environment model and the compatible discriminator, we
propose the POMEE method to achieve the goal of estimating environment with hidden
variables from the observed data.

Algorithm 1 shows the details of POMEE. The whole algorithm adopts the generative
adversarial training framework. In each iteration, firstly the generator simulates interactions

(16)ra = − log(1 − D(oA, aA, �)).

2614 Machine Learning (2021) 110:2603–2640

1 3

using policies �a and �he to collect the trajectory set �sim corresponding to Line 5 to Line
15. Then the policies �a and �he are updated in turn using TRPO with generated trajec-
tories �sim in Line 16. After K generator steps, the compatible discriminator is trained by
two steps as shown in Line 18. Specifically, the predefined transition dynamics in Line 11
depends on specific tasks. In this way, the algorithm can effectively imitate the policies of
observed interactions and recover the hidden variables beyond observations.

4 Partially‑observed environment estimation with uplift inference

In reinforcement learning, the environment model mainly consists of two parts: the state
transition dynamics and the reward function. The POMEE approach introduced in the
previous section achieves the modeling of transition dynamics. In this section, we will
introduce a novel uplift model to build the reward function in the simulation environment.
It is important to concern the causality between rewards and actions when hidden vari-
ables exist in the environment. Only when the causality of different actions is accurately
depicted, can the policy optimization based on the simulator make sense. An illustration of
the importance of uplift modeling can be seen in “Appendix A.3”.

To learn a causal reward function in the virtual environment, we propose a novel deep
uplift inference network model DUIN that applies to the training process of POMEE. In
addition, the DUIN model can be used flexibly to binary treatment settings and multi-treat-
ment settings, as well as the classification tasks and regression tasks.

4.1 DUIN model structure

The uplift modeling is generally based on a randomized trial experiments. Given the data
of control and treatment groups, deriving a variant Eq. (17) from the Eq. (24) in “Appendix
A.1”, we propose the DUIN model trained on the randomized experiment data to infer the
uplift. Figure 3 illustrates the detailed structure of this model. The inputs of this network
are the observation X fed into the input layer and the treatment indicator t fed into the inter-
mediate layer. The output is the predicted potential outcome under X and t. We use super-
vised learning method to train this model. We have the following relationship regarding the
uplift inference.

The whole network consists of two modules: the representation module and the infer-
ence module. The representation module is trained to learn high-level features that can
effectively represent the potential outcome space. Based on the high-level features, the
inference module is trained to predict the outcome. The inference module splits into two
branches: the control branch and the treatment branch. The output of the control branch is
the outcome if not treated, corresponding to the �

[
Yi(0)|Xi

]
 in Eq. (17). The output of the

treatment branch is the uplift estimation for treatment t, corresponding to �t(Xi) . The two
branches are merged by adding the outputs of each branch like Eq. (17), and the output just
becomes the outcome of treatment t, corresponding to the �[Yi(t)|Xi] in Eq. (17).

(17)�
[
Yi(t)|Xi

]
= �

[
Yi(0)|Xi

]
+ �t(Xi).

2615Machine Learning (2021) 110:2603–2640

1 3

4.2 DUIN optimization method

We use the supervised alternating optimization approach to train the DUIN model. We
train the control branch together with the representation module on the control group data.
Similarly, we train the treatment branch together with representation module on the treat-
ment group data. The objective function can be formulated as

where y is the ground truth outcome, ŷ0 is the predicted outcome under the observation x
with no treatment, un is the uplift vector under n different treatments and et is a mask row
vector with the tth bit set as 1. Specifically, et is a zero vector when the treatment is control
(not treated). The loss function L can be either regression loss, e.g., MSE and RMSE, or
the classification loss, e.g., the logarithmic loss.

The whole training process of DUIN is shown in Algorithm 2. In each iteration, we
update K steps for the parameters �,�0 of the control branch, then update the same K steps
for the parameters �,�1 of the treatment branch. Experiment results show that the smaller
K can make a better generalization and faster convergence under an ideal condition. As
the model converges, the representation module and the treatment branch can be used as
an uplift inference module. Intuitively, the uplift inference in DUIN is to fit the residual
between the controlled outcome and the treated outcome.

(18)l(x, t, y, 𝜃,𝜔0,𝜔1) = L
(
y, ŷ0(x, 𝜃,𝜔0) + et ∗ un(x, 𝜃,𝜔1)

)
,

Fig. 3 The model structure of Deep Uplift Inference Network (DUIN) under the multi-treatment setting,
and it will be the binary setting when n = 1 . The observation X and the treatment t are fed as input and the
the potential outcome Y is the output. The uplift outputs through an intermediate layer

2616 Machine Learning (2021) 110:2603–2640

1 3

4.3 POMEE with uplift inference

By implementing the environment policy �e in the DUIN structure, we propose a POMEE
with uplift inference approach POMEE-UI as shown in Algorithm 3. Based on the POMEE
framework, it can achieve the simulation of transition dynamics in a partially-observed
environment. At the same time, due to the DUIN structure of the environment policy, a
reward function with causality is also constructed. The integrated environment model can
be more reliable for policy evaluation.

The computation graph of the environment policy is shown in Fig. 4. By analogy with
the DUIN structure, the environment policy �e also contains the representation module and
the inference module. In the inference module, the output of the treatment branch uE is
the uplift value of action aA under observation oA . The output of the control branch aE0 is
the potential outcome of the environment under none treatments. The final output of the
environment policy aE is calculated by aE0 plus uE , which can be used to simulate the state
transition process. The treatment branch acts as a reward function in the environment, of
which the output uE can be used as a reward for policy evaluation. In addition, considering
the interaction relationship of the partially-observed environment, the output of the hidden
policy aH is fed into the control branch by splicing with the output of the representation
module. Due to the unobservability of the hidden policy, the placeholder for aH is fed with
a zero vector during the training process of DUIN.

Fig. 4 The computation graph of the environment policy �e implemented in the DUIN structure. The treat-
ment action aA is fed into the treatment branch and the hidden action aH is fed into the control branch. The
output aE and uE are the response action and the estimated uplift value, respectively

2617Machine Learning (2021) 110:2603–2640

1 3

Algorithm 3 describes the training process of POMEE-UI. First, a DUIN-style environ-
ment policy model �e is trained on the randomized trial dataset Drand . Second, the repre-
sentation module and the treatment branch of �e remain fixed as an uplift model, and the
parameters �,�1 are set to be untrainable in the following step. Finally, the training process
of POMEE is carried out on the observed dataset Dreal . In other words, only the parameter
�0 of the control branch in �e is updated in the POMEE training. In addition, since the hid-
den action aH is not observable, it is initialized as a zero vector during the DUIN training
of �e in the first step in Line 1.

5 Application in driver program recommendation

5.1 Driver program recommendation

We have witnessed a rapid development of on-demand ride-hailing services in recent
years. In this economic pattern, the platform often need to recommend programs to drivers,
aimed to help them finish more orders. Specifically, the platform would select the appropri-
ate program to recommend the drivers to participate every day, and then adjust the program
content according to the drivers’ feedback behavior. This is a typical sequential recommen-
dation task and can be naturally tackled by reinforcement learning (Qin et al. 2020). How-
ever, since the behavior of drivers is not only influenced by the recommended programs,
but also influenced by some other unobservable factors, such as the response to special
events and so on, that is, hidden variables exist in this application scenario. In order to opti-
mize the recommender policy, it is essential to take into account the potential influence of
hidden factors when recommending programs.

However, traditional reinforcement learning approaches are applied in these problems
without exploring the impact of hidden variables, which would consequently degrade the
learning performance. Thus, a more adaptive approach such as POMEE-UI proposed in
this paper is desirable to tackle these problems.

In this paper, we propose a general pipeline for applying reinforcement learning to
optimize a policy in a real-world application based on historical data. First and fore-
most, we build a virtual environment, namely simulator, to precisely recover the transi-
tion dynamics and reward mechanism of the real-world environment by using historical
data. We then apply RL algorithms to optimize the system policy by interacting with
the virtual environment. Such simulator-based RL method can be very efficient without
any interaction cost with the real-world environment. A more detailed illustration of the
pipeline work can be seen in Fig. 15 in “Appendix A.4”.

2618 Machine Learning (2021) 110:2603–2640

1 3

5.2 POMEE‑UI based driver program recommendation

As for the driver program recommendation, we apply POMEE-UI to build a virtual
environment with hidden variables by using historical data. As shown in Fig. 5, there
are three agents in the environment, representing driver policy �d , platform policy �p
and hidden policy �h . We can see that the driver policy and the platform policy have the
nature of “mutual environment” from the perspective of MDP. From the platform’s point
of view, its observation is the driver’s response, and its action is the recommendation
program to the driver. Correspondingly, from the driver’s point of view, its observation
is the platform’s recommendation program, and its action is the driver’s response to the
platform. The hidden variables are modeled as a hidden policy according to POMEE, so
as to make a dynamic effect at each time step.

Data preparation Based on the real-world scenario, we integrated the historical data
and then construct historical trajectories Dhist =

{
�1,… , �i,… , �n

}
 representing tra-

jectories of n drivers. Each trajectory �i =
{
oP
0
, aP

0
, aD

0
, oP

1
,… , oP

t
, aP

t
, aD

t
, oP

t+1
,… , oP

T

}

represents the T steps of observable interactions between the driver di and the plat-
form system. For the DUIN training, we collected some randomized trial data as
Drand =

{(
oP, aP, aD

)}
 from the recommender system.

Definition of policies According to the interaction among agents in this application,
the observation and action of each agent policy are defined as follows:

– platform policy �p : The observation oP
t
 consists of the driver’s static characteristics

(using real data) and the simulated response behavior aD
t−1

 . The action aP
t
 is the program

information recommended for the driver, represented as a 2-tuple of (T, M) integers,
where T indicates the target and M is the amount of bonus for achieving the target.

– hidden policy �h : The observation oH
t

 consists of oP
t
 and aP

t
 . The action aH

t
 is the same

format as aP
t
.

– driver policy �d : The observation oD
t
 consists of oP

t
 , aP

t
 and aH

t
 . The action aD

t
 is the

simulated driver’s behavior at the current step, which indicates the completion degree
of the recommended program aP

t
.

Fig. 5 The POMEE-UI framework applied in the driver program recommendation. While real-world data
only collects the interactions between the drivers and the Didi Chuxing platform, the virtual environment
contains three policies simulating the drivers, the platform, and the hidden variables

2619Machine Learning (2021) 110:2603–2640

1 3

Analogy from the POMEE-UI method, we implement the driver policy �d in the DUIN
structure, and further combine the policies �h, �d into a joint policy. We then apply
POMEE-UI to train �d and �h . Afterwards, the partially-observed environment of driver
program recommendation is reconstructed.

5.3 RL in the virtual environment

Once the virtual environment is built, we can perform RL efficiently to optimize the policy
�p by interacting with the environment. The challenge with simulated training is that even
the best available simulators do not perfectly capture reality, which is often called the “real-
ity gap”. Models trained purely on static data fail to generalize to the real world, as there is
a discrepancy between simulated and real environments in terms of some physical proper-
ties. A number of related works have sought to address the reality gap in robotics, such as
domain adaptation (Tzeng et al. 2016) and randomization of simulated environments (Sad-
eghi and Levine 2016), but they are not verified in real-world environments.

In this work, we design these mechanics to try to close the gap in this application. With
the uplift model embedded in the virtual environment, we can design the recommendation
reward with uplift values, which have a good causal relationship with the recommended
program. In addition, due to the simulated hidden variables in the environment, the rein-
forcement learning approach could learn a more robust policy with improved performance
in the real world.

6 Experiments

In this section, we conduct two groups of experiments to verify the effectiveness of the
proposed POMEE-UI method. The first is a group of toy experiments in which a rule-based
environment is designed, the second is a real-world application of driver program recom-
mendation in Didi Chuxing.

6.1 Toy experiments

We firstly expect to design an artificial environment to verify the effectiveness of the
proposed method POMEE-UI. However, it is rather difficult to design such an artificial
environment that can verify both the hidden effects and the uplift learning performance.
Considering that the uplift model produced by the DUIN training remains fixed during
subsequent POMEE training in POMEE-UI, we firstly design a randomized trial experi-
ment to evaluate the learning performance of uplift model independently. We then vali-
date the policy simulation effects of POMEE-UI in a well-defined artificial environment.

6.1.1 DUIN on synthetic data

We design separately an artificial randomized trial dataset to verify the effectiveness
of the DUIN model. All function rules and parameter values are designed to mimic the
real-world environment. Three rule-based functions are defined: the artificial control

2620 Machine Learning (2021) 110:2603–2640

1 3

outcome function f C , the artificial uplift function f U , and the artificial treatment out-
come function f T = f C + f U like Eq. (17). We conduct DUIN and two other meta-algo-
rithms (Künzel et al. 2019) of uplift modeling as a comparison:

– S-Learner the treatment is included as a feature similar to the observation features to
estimate a combined outcome function. It is a “single” response estimator.

– T-Learner the control response estimator and the treatment response estimator are
learned separately, “T” being short for “two”.

– DUIN the uplift modeling method proposed in this paper.

Rule-based artificial randomized trial data The observation is simplified as a two-
dimensional vector, and the treatment is binary of 0 or 1. We first sample individual
units from the observation space randomly, and then randomly target each unit as 0 for
control and 1 for treatment. Based on the observation and treatment action, we generate
the simulation data by the following rule-based outcome functions.

Denote the observation as (x1, x2) , and constrain x1, x2 between −1 and 1. Fig-
ure 6 illustrates the three function spaces. The treated function f T is represented as
f T = f C + f U . The controlled function f C is defined as a a hemispherical surface with
radius 1 above the XOY plane. It can be formulated as

The uplift function, named f U , is defined as a weighted sum of two conjugate two-dimen-
sional Gaussian functions. The formulation is

where

f C = max

(
0,

√
1 − x2

1
− x2

2

)
.

f U =
3

4

⎛⎜⎜⎜⎝

exp
�
−

1

2

�
� − ��

�T
�−1

�
� − ��

��

2�
√���

⎞⎟⎟⎟⎠
−

1

2

⎛⎜⎜⎜⎝

exp
�
−

1

2

�
� − ��

�T
�−1

�
� − ��

��

2�
√���

⎞⎟⎟⎟⎠
,

�1 =

(
1

3
1

3

)
, �2 =

(
−

1

3

−
1

3

)
, � =

(
1

16
0

0
1

16

)
.

Fig. 6 Illustration of the uplift toy experiment settings.The f C function is the control outcome function. The
uplift function f U is defined to mimic the uplift under different conditions as shown in Fig. 14 in “Appen-
dix A.3”. The treated function f T is defined by adding the uplift function f U to the control function f C

2621Machine Learning (2021) 110:2603–2640

1 3

Results. Uplift evaluation differs drastically from the traditional machine learning model
evaluation, because of the invisibility of the ground truth. Here, we use Qini curve/coef-
ficient (Radcliffe 2007) and QTO (Athey and Imbens 2015) to evaluate uplift models under
binary treatment settings. Qini-Coefficient is an indicator to measure the ranking perfor-
mance of the causal effect estimated by a model. The larger Qini-Coefficient, the better
performance. QTO is a measure similar to MSE in supervised learning by exploiting the
transformation of the potential outcome. The smaller QTO , the better performance. The
detailed introduction to the two uplift evaluation metrics can be seen in “Appendix A.4”.

The Qini curves of three models are shown in Fig. 7, which demonstrate the quality of
uplift ranking inferred by the causal models. Although the rule-based setting is simple,
the DUIN model has a significant out-performance than the other models on both metrics.
The area under the uplift curve of the DUIN model is significantly larger than those of
S-Learner and T-Learner methods, and this curve almost coincides with the Optimal one.

The performance of quantitative metrics are shown in Table 1. The Qini-Coefficient is
the area between the Qini curve and the random curve. QTO is a measure similar to MSE in
supervised learning. It is consistent with the uplift curves that the DUIN model has a larger
Qini-Score and a smaller QTO than the other models. Furthermore, the gap between the
DUIN model and the GROUND-TRUTH is very small, which potentially shows a strong
causality of the DUIN model.

The uplift function space learned by the three models are shown in Fig. 8. The uplift
function space, inferred by DUIN, is precisely close to the real defined one as shown in
Fig. 6, while the ones learned by S-Learner and T-Learner approaches are deviated severely
and they are not smooth which means a higher variance. As a result, we further demon-
strate the ability of the DUIN model to infer the uplift function precisely and smoothly.

Fig. 7 Qini curves of three mod-
els evaluated on testing dataset:
S-Learner, T-Learner and DUIN.
Besides, the ground truth, as the
Optimal model, and the random
baseline are also plotted in this
figure

Table 1 Comparison of Qini-
Coefficient and Qos,TO on three
models

The bold in tables indicates that the current method has the best per-
formance of all the comparison methods on the current metric
The GROUND-TRUTH row represents the best performance that one
model might achieve

Methods Qini-Coefficient QTO

S-Learner 1.6342 2.1553
T-Learner 1.6919 2.0548
DUIN 1.7342 2.0155
GROUND-TRUTH 1.7363 2.0126

2622 Machine Learning (2021) 110:2603–2640

1 3

6.1.2 Artificial environment for POMEE‑UI

We hand-craft an artificial environment with deterministic rules, consisting of the artifi-
cial platform policy �p , the artificial driver policy �d , and the artificial hidden policy �h .
In the same way, all function rules and parameter values are designed to mimic the real-
world environment. We use POMEE and POMEE-UI to learn the policies and compare
them with the real ones. Additionally, we conduct MAIL and MAIL-UI methods, without
modeling hidden variables, as a comparison.

Description of the artificial environment Similar to the interaction in the driver pro-
gram recommendation, we define a triple-agent environment to simulate a partially
observable Markov decision process (POMDP). The semantic drawing of this toy exper-
iment is shown in Fig. 9. In POMDP, the key variant v (denotes the driver’s response)
is affected by three policies at each time step. The policy �d has an intrinsic evolution
trend on the variant v in the period of 7 time steps, as defined in Eq. (22). The policy �p
has a positive effect on the variant v if the value of v is under the green line, otherwise
no effect. Oppositely, the policy �h has a negative effect on the variant v if the value of
v is above the blue line, otherwise no effect. The green and blue lines can be seen as the
thresholds of �p and �h to make effect on the evolution trend of v. Here we set the policy
�h as a role of hidden variables in this environment, of which the effect on the interac-
tion would not be observed.

POMDP definition. All the hyperparameters in the following rule-based functions are
selected randomly from an appropriate range of values.

Fig. 8 Uplift function spaces learned by three different methods: S-Learner, T-Learner and DUIN-Model

Fig. 9 Schematic drawing of interaction in the toy environment: t represents the time step and v is a variant
affected by all three policies. TP and TH are the thresholds for policies taking effect, and V(t) describes the
intrinsic evolution trend of the artificial driver policy �d

2623Machine Learning (2021) 110:2603–2640

1 3

The observation o is a tuple (tw, r, v), in which tw ∈ {1, 2,… , 7} is the time step in one
period, r is a static factor used to make a difference on the effect of each agent and v is the
key variant in the interaction process. The initial value v0 is sampled from a uniform distri-
bution U(9 + wave, 9 − wave),wave = 1.2 , where wave denotes the sampling range of v0 .
We add the static factor r = 1 − 0.5 ×

v0−9

wave
 into the state to make the episodes generated by

this setting more diverse.
The action is defined as the output of the deterministic policy. The thresholds of green

line TP and blue line TH are 10 and 8 correspondingly. Then we define the deterministic
policy rule of each agent as follows:

where

The transition dynamics is simply defined as: vt+1 = vt + at
d
 and r is a constant once ini-

tialized. tw is a timestamp indicator cycling in the sequence [1, 2,… , 7] . In this experiment,
we set the length of trajectory T to 8.

By running the defined rules in the toy environment, we collect many episodes as train-
ing data Dreal =

{(
o0
p
, a0

p
, a0

d
, o1

p
,… , oT

p

)}
 . By randomly sampling from the observation

space and the platform action space, we generate a randomized trial dataset
Drand =

{(
op, ap, ad

)}
 . Based on these two datasets, we can perform the comparative algo-

rithms to verify the effectiveness of POMEE-UI.
Implementation details We conduct four training methods on this artificial environ-

ment: POMEE, POMEE-UI, MAIL and MAIL-UI. The main difference between the first
two methods and the second two methods is that there is no hidden policy in the MAIL
and MAIL-UI settings. The main changes of MAIL-UI and POMEE-UI methods with
respect to MAIL and POMEE methods are that the environment policy is implemented in
the DUIN structure and the training process follows Algorithm 3. We aim to compare the
similarity between the generated policies and the defined rules.

In detail, each policy or module is embodied by a neural network with 2 hidden layers
and combined sequentially into a joint policy network illustrated in Fig. 2. There are 64
neurons in each hidden layer activated by tanh functions. To control the same complexity
of the policy model, the joint policy networks in these four methods have the same number
of hidden layers. The discriminator network adopts the same structure as each policy net-
work. Different from GANs training, we perform K = 3 generator steps per discriminator
step, and sample N = 200 trajectories per generator step. The detail of the training process
is described in the previous sections.

(19)ap = �p(tw, r, v) = max
(
0,min

(
1, r × (TP − v) ×

tw

7

))
,

(20)ah = �h(tw, r, v, ap) = max

(
−1,min

(
0, r ×

(
TH − v −

ap

2

)
×
tw

7

))
,

(21)ad = �d(tw, r, v, ap, ah) = �V(tw) + ap + ah.

(22)�V(tw) =

⎧⎪⎨⎪⎩

1 if tw = 5;

−1 else if tw = 7;

0 otherwise.

2624 Machine Learning (2021) 110:2603–2640

1 3

Results The generated policy functions trained by these four methods are shown in
Fig. 10. First of all, from the perspective of the two observable policies, the policy func-
tion maps of �p and �d produced by POMEE-type methods are both more similar to the real
function spaces than those by MAIL-type methods, as shown in Fig. 10a, b. MAIL-type
methods produce sharp distortion shape locally when r is large. We believe that this is
because the hidden variables have a greater impact on the interaction as r increases, and a
large unobservable bias has reached a point where it cannot be neglected.

Additionally, compared with the basic methods MAIL and POMEE, the MAIL-UI and
POMEE-UI methods can restore the policy function spaces more realistically. In particu-
lar, MAIL-UI can significantly alleviate the distortion in the policy function space learned
by MAIL, which probably implies that the environment policy model implemented by a
causal DUIN model can alleviate the hidden bias to some extent in the learning process.

Then we further compare the similarity between the hidden policies generated by
POMEE-type methods and the true policy �h . In Fig. 10c, it can be seen that the gener-
ated hidden policies can describe threshold effects well and match the real function map
roughly, although it is difficult under the setting of fully unobservable variables. Similar to
the results of �p and �d , the hidden policy learned by POMEE-UI is closer to the real pol-
icy �h than that learned by POMEE. Our results show the potential of using observational
data to infer the hidden effect model.

v

789
10

11
tw

2
4

6

0.0
0.2
0.4
0.6
0.8
1.0

real πp

v

789
10

11
tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp

v

789
10

11
tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

v

78
9

10
11

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE πp

v

789
10

11
tw

2
4

6

0.0
0.2
0.4
0.6
0.8
1.0

(a)

(b)

(c)

 Artificial platform policy: the ground-truth, the learned by MAIL, the learned by MAIL-UI, the learned by POMEE and the learned by POMEE-UI.

MAIL-UI πp POMEE-UI πp

apap

 POMEE POMEE-UI.

9v
7 8

10 11
ap

0.00
0.25

0.50
0.75

−1
−2
1.00

ad
0
1
2

real πd

9v
7 8

10 11
ap

0.00
0.25

0.50
0.75

−1
−2
1.00

ad
0
1
2

MAIL πd

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

ad
0

1

πd

9v
7 8

10 11
ap

0.00
0.25

0.50
0.75

−1
−2
1.00

ad
0
1
2

POMEE πd

9v
7 8

10 11
0.00

0.25

ad
0

1

POMEE-UI πd

ap

−1
−2
1.00

−1
−2
1.00

0.50
0.75

driver POMEE POMEE-UI.
v

7891011
ap

0.25
0.50

0.75
1.00

ah

0.0

POMEE-UI πh

v
7891011

ap

0.2
0.4
0.6
0.8
1.0
0.00

0.25
0.50

0.75
1.00

ah

0.0

real πh

v
7891011

ap

− 0.2
− 0.4
− 0.6
− 0.8
− 1.0

0.00
0.25

0.50
0.75

1.00

ah

0.0

POMEE πh

− 0.2
− 0.4
− 0.6
− 0.8
− 1.0

0.00

Fig. 10 Visualization and comparison of policy functions, with r = 1.3 . More visualizations with various of
r values are presented in “Appendix A.4”

2625Machine Learning (2021) 110:2603–2640

1 3

6.2 Experiments on real world applications

Similar to the toy experiments in the previous subsection, the experiment on real-world
application data is also divided into two steps: First, we evaluate the learning performance
of the DUIN model on the randomized trial data collected from the real application system.
Then, we apply POMEE-UI and several comparative methods to the real-world applica-
tion data, and evaluate the performances of simulation and policy optimization. Finally, we
deploy a recommender policy online, which is optimized in the POMEE-based environ-
ment, and results of online A/B test are reported at the end.

6.2.1 DUIN on real‑world data

We apply DUIN to the real-world randomized trial dataset that is collected from the real-
world recommender system. The dataset has 1.16 million recommendation record samples.
Although the huge dataset can release the power of deep models, it involves a lot of noise
data and a large randomness lies behind the observed outcome. It is still very challenging
to infer the uplift effect from such real-world data.

We perform the Causal Forest method (Wager and Athey 2018), a popular algorithm for
uplift modeling in observational studies, on this real-world dataset as a comparison. The
Qini-Coefficient and QTO are used to evaluate the performance of two models.

Implementation details In the training of the DUIN model, we find that the frequency
of alternate optimization, that is, the number of learning steps in one alternate round K in
Algorithm 2, can affect the model performance to some extent. The model trained under
K = 5 can have a better performance and stability than that under K = 1 . We believe that
the lower frequency of alternate optimization, that is, the larger value of K, can help the
model eliminate the influence of noise and randomness.

Results The Qini curves of Causal Forest model and DUIN model are shown in Fig. 11.
It can be seen that the Causal Forest model trained on the real-world dataset can only have
a very small performance improvement compared with the random model. The DUIN
model has a better performance overall despite poor performance in the middle part.

The values of Qini-Coefficient and QTO metrics are listed in Table 2. The Qini-Coef-
ficient of the DUIN model is larger than that of the Causal Forest model, which shows a

Fig. 11 Qini curves of two models evaluated on testing dataset: the Causal Forest model and the DUIN
model. The Qini curve of the random model is also plotted as baseline to be compared

2626 Machine Learning (2021) 110:2603–2640

1 3

better ability to rank uplift. The QTO of the DUIN model is smaller than that of the Causal
Forest model, which means a lower estimation error of the uplift value. These results can
further demonstrate the ability of the DUIN model to infer the uplift effect.

6.2.2 Real‑world experiment for POMEE‑UI

In this part, we apply POMEE-UI to a real-world application of driver program recom-
mendation as introduced in Sect. 5.1. We first use historical data to build different virtual
environments by six comparative methods. We then evaluate these environments from vari-
ous statistical measures. Finally, we train different recommender policies in these environ-
ments by the same training method, and evaluate these policies in offline and online envi-
ronments. Specifically, we include six methods in our comparison:

– SUP Supervised learning of the driver policy with historical state-action pairs, i.e.,
behavioural cloning;

– GAIL GAIL to learn the driver policy, given the historical record of program recom-
mendation as a static environment;

– MAIL Multi-agent adversarial imitation learning, without modeling the hidden vari-
ables.

– MAIL-UI MAIL-type method, in which the environment policy is implemented in the
DUIN structure. The main difference between it and POMEE-UI is that it does not
model the hidden variables, just like MAIL compared to POMEE;

– POMEE The proposed method described in Algorithm 1;
– POMEE-UI The proposed method described in Algorithm 3.

We evaluate the models by different statistical metrics.
Log-likelihood of real data on models We evaluate the learned policy distribution of

six different models by the mean log-likelihood (MLL) of real state-action pairs on both
training set and testing set. As shown in Table 3, the models trained by POMEE-type meth-
ods achieve the highest mean log-likelihood on both data sets. Since the evaluation is on
the view of each state-action pair, the behavioural cloning method SUP achieves a better
performance than MAIL-type methods. Meanwhile, the POMEE-type methods make a sig-
nificant improvement compared with the MAIL-type methods, which indicates the positive
influence of our hidden variables setting.

Correlation of key factors trend Another important measurement of generalization
performance is the trend of drivers’ response. We use the trend lines of two indicators to
compare different simulators: number of Finished Orders (FOs) and Total Driver Incomes
(TDIs). The same as above, we apply the simulator to a subsequent testing data and sim-
ulate the trends of FOs and TDIs. Then we calculate the Pearson correlation coefficient

Table 2 Comparison of Qini-Coefficients and QTO on real-world data by two uplift models: the Causal For-
est model and the DUIN model

The bold in tables indicates that the current method has the best performance of all the comparison methods
on the current metric

Methods Qini-Coefficient ���

Causal Forest 0.0137 2.4089
DUIN 0.0809 2.3754

2627Machine Learning (2021) 110:2603–2640

1 3

(PCC) between the simulated trend line and the real one. As shown in Table 4, the simu-
lated trend lines of two indicators by POMEE and MAIL achieve high correlations to the
real ones, with Pearson correlation coefficient of 0.8 approximately. While the methods
SUP and GAIL, trained directly with static data, get lower performance in this evaluation.
Though the PCC by the MAIL-UI and POMEE-UI methods is not the highest, these two
methods still have a decent performance on this metric.

Distribution of driver response To further compare the generalization performance of
models, we apply the built simulators to subsequent program recommendation records. We
simulate the drivers’ responses by using real program records on testing data, then compare
the simulated distribution of drivers’ responses with the real distribution. Here we use FOs
as an indicator. Figure 12 shows the error of FOs distributions simulated in six simulators.
The simulation distributions by SUP and GAIL are biased apparently when FOs are low.
The reason is that these two methods use static real data directly for building simulators,
which could limit the generalization performance of simulators, and the lower FOs mean
the higher uncertainty, especially zero. The FOs distribution by POMEE is closer to the
real one than that by MAIL, where the hidden variables setting makes difference explicitly.
The same applies to POMEE-UI and MAIL-UI. In addition, it can be seen that the FOs
distributions by MAIL-UI and POMEE-UI are respectively more realistic than those by
MAIL and POMEE, which also shows the effect of the DUIN structure.

Policy evaluation results in offline environments In this part, we evaluate the effect of
different simulators for policy optimization. First, we use the policy gradient method TRPO
(Schulman et al. 2015) to optimize a recommender policy in each simulator. Then, by using

Table 3 Comparison of mean
log-likelihood by six different
methods on the real-world test set

The bold in tables indicates that the current method has the best per-
formance of all the comparison methods on the current metric

Methods MLL on training set MLL on
testing
set

SUP 17.09 18.00
GAIL 18.43 17.85
MAIL 15.27 14.52
MAIL-UI 16.22 15.48
POMEE 21.74 21.21
POMEE-UI 21.54 21.32

Table 4 Comparison of Pearson
correlation coefficients on FOs
and TDIs trend lines by six
different methods

The bold in tables indicates that the current method has the best per-
formance of all the comparison methods on the current metric

Methods PCC on FOs PCC on TDIs

SUP −0.0213 0.0010
GAIL 0.4987 0.4252
MAIL 0.8129 0.7861
MAIL-UI 0.8023 0.7952
POMEE 0.7945 0.8596
POMEE-UI 0.8018 0.8342

2628 Machine Learning (2021) 110:2603–2640

1 3

testing data, we build four virtual environments for policy evaluation by four methods,
named EvalEnv-MAIL, EvalEnv-MAIL-UI, EvalEnv-POMEE and EvalEnv-POMEE-UI
respectively. Given these four environments, we execute the optimized policies under a
constrained budget, and compare the improvement of mean FOs. It would be expected that
the simulator built by SUP or GAIL method would produce a policy that performs badly in
the real environment because it is trained on static data.

As shown in Fig. 13, the policy �POMEE−UI optimized in the simulator built by POMEE-
UI achieves best performance in all environments, while the policies �SUP and �GAIL per-
form bad in these environments. The promotion by �POMEE compared to �MAIL can fur-
ther verify that training in a virtual environment with hidden variables can bring better
performance to traditional reinforcement learning. Compared with MAIL and POMEE,
the improvements by MAIL-UI and POMEE-UI demonstrate that an uplift model, used
as a reward function in a simulator, could improve the performance of policy optimiza-
tion than a response model. Additionally, the performance of policies �SUP, �GAIL shows a

0 6 12 18 24 30
FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
or

of
R
at
io
)

Error of FOs distribution by SUP

ER = Rreal −Rsim

0 6 12 18 24 30
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
or

of
R
at
io
)

Error of FOs distribution by GAIL

ER = Rreal −Rsim

0 6 12 18 24 30
−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
or

of
R
at
io
)

Error of FOs distribution by MAIL

ER = Rreal −Rsim

0 6 12 18 24 30
FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
or

of
R
at
io
)

Error of FOs distribution by MAIL-UI

ER = Rreal −Rsim

0 6 12 18 24 30
FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25
E
R

(E
rr
or

of
R
at
io
)

FOs

Error of FOs distribution by POMEE

ER = Rreal −Rsim

0 6 12 18 24 30
FOs

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

E
R

(E
rr
or

of
R
at
io
)

FOs

Error of FOs distribution by POMEE-UI

ER = Rreal −Rsim

Fig. 12 Error of FOs distribution generated by six different methods on testing data. Y-axis is the error of
FOs distribution between the simulation and the real. The original FOs distribution is presented in “Appen-
dix C”

EvalEnv-MAIL EvalEnv-MAIL-UI EvalEnv-POMEE EvalEnv-POMEE-UI
10

15

20

25

m
ea
n
F
O
s

Data default
Simulated default
πSUP

πGAIL

πMAIL

πMAIL−UI

πPOMEE

πPOMEE−UI

Fig. 13 Comparison of performance of different policies trained from different simulators in four evaluation
environments: EvalEnv-MAIL, EvalEnv-MAIL-UI, EvalEnv-POMEE and EvalEnv-POMEE-UI. Y-axis is
the mean FOs by executing different policies. The Data default is the mean FOs in the real testing data. The
Simulated default is the mean FOs of the original simulation in each evaluation environment

2629Machine Learning (2021) 110:2603–2640

1 3

significant degradation in EvalEnv-POMEE and EvalEnv-POMEE-UI, while not shown up
in EvalEnv-MAIL and EvalEnv-MAIL-UI, which also indicates that the environment built
with modeling hidden variables can recover the real environment more precisely.

Policy evaluation results in online A/B tests We further conduct online A/B tests to eval-
uate the effect of the policy �POMEE . The online tests are conducted in three cities of dif-
ferent scales. The drivers in each city are divided randomly into two groups of equal size,
namely the control group and the treatment group. The programs for the drivers in the con-
trol group are recommended by an existing recommendation policy, which can be viewed
as a baseline policy. The drivers in the treatment group are recommended by �POMEE . The
results of online A/B tests are shown in Table 5. The policy �POMEE , optimized in the simu-
lator built by the proposed method POMEE in this study, achieves significant improve-
ments on FOs and TDIs in all three cities, and the overall improvements are 11.74% and
8.71%, respectively.

7 Conclusion

This paper explores how to estimate a partially observable environment with uplift infer-
ence from the past data. We first propose the POMEE method following the generative
adversarial training framework. We design the partially-observed environment model as
an important part of the generator and make the discriminator compatible with two dif-
ferent classification tasks so as to guide the imitation of each policy precisely. To build a
causal reward function in the virtual environment, we then propose a novel DUIN model to
learn the uplift effect of each action. By implementing the environment policy in the DUIN
structure, we propose the POMEE-UI approach to estimate the partially observable envi-
ronment with an uplift inference module. Further, we apply POMEE-UI to build a virtual
environment of driver program recommendation system on a large-scale ride-hailing plat-
form, which is a highly dynamic and partially observable environment. Experiment results
verify that the policies generated by POMEE-UI can be very similar to the real ones and
have better generalization performance in various aspects. Furthermore, the simulator built
by POMEE-type methods can produce a better policy with common RL training methods.
It is worth noting that the proposed method POMEE-UI can be used not only in this task,
but also in many other real-world partially observable environments.

Appendix A: Prerequisite knowledge

A.1 Causal inference

We consider a framework with N individuals indexed by i. Denoting Yi(1) the person i’s
outcome when he receives the active treatment and Yi(0) the person i’s outcome when he
receives the control treatment, the causal effect, �i , of the active treatment versus the con-
trol treatment is given by:

(23)�i = Yi(1) − Yi(0).

2630 Machine Learning (2021) 110:2603–2640

1 3

This causal effect is also named Individualized Treatment Effect (ITE). Researchers typi-
cally pay more attention to estimate the conditional Average Treatment Effect (cATE), that
is, the expected causal effect of the active treatment for a subgroup in the population:

where Xi is a representation vector of random variables (features). Of course, we will never
observe both Yi(1) and Yi(0) . Letting Wi ∈ {0, 1} be a binary variable taking on value 1 if
person i receives the active treatment, and 0 if person i receives the control treatment, the
person i’s observed outcome is actually:

A popular but unfortunately wrong belief is that one can always estimate the cATE from
the observational data by simply computing the empirical counterpart of

This won’t identify the cATE unless the assumption holds true that Wi is independent
of Y(1) and Y(0) conditional on Xi . This assumption is the so-called Unconfoundedness
Assumption or the Conditional Independence Assumption (CIA) commonly used in the
social science and medical literature. This assumption holds true when treatment assign-
ment is strictly random conditional on Xi:

In causal inference, there is also an important concept, the propensity score
p(Xi) = P(Wi = 1|Xi) , which represents the probability of treatment given Xi (Rosenbaum
and Rubin 1983), which is a key to one direction of uplift modeling.

A.2 Uplift modeling

Uplift modeling amounts to estimating a cATE. Although companies can easily conduct
randomized experiments so as to ensure that the CIA holds, the fact that we never observe
the true �(Xi) makes it seemingly impossible to use standard supervised learning algo-
rithms to estimate it. The uplift literature has proposed three main approaches to estimate
�(Xi) despite the absence of the ground truth.

(1) Two-Model approach. It consists of modeling �[Yi(1)|Xi] and �[Yi(0)|Xi] , one using
the treatment group data and the other using the control group data, exclusively. This
approach has been applied in several uplift works (Radcliffe 2007; Nassif et al. 2013)
and is often used as a baseline model. The advantage of the Two-Model approach
resides in its simplicity. Because inference is done separately in two models, state-of-
the-art machine learning algorithms such as Random Forest (RF) (Breiman 2001) or
XGBoost (Chen and Guestrin 2016) can be used on both the regression or the (multi-)
classification settings. Although this approach has been shown well-performing (Zanie-
wicz and Jaroszewicz 2013; Athey and Imbens 2015), it may miss the “weaker” uplift
signal, which is illustrated in simulation study (Radcliffe and Surry 2011).

(24)cATE ∶ �(Xi) = �[Yi(1)|Xi] − �[Yi(0)|Xi],

(25)Yobs
i

= WiYi(1) + (1 −Wi)Yi(0).

(26)�[Yobs
i

|Xi = x,Wi = 1] − �[Yobs
i

|Xi = x,Wi = 0].

(27)CIA ∶ {Yi(1),Yi(0)} ⟂⟂ Wi |Xi.

2631Machine Learning (2021) 110:2603–2640

1 3

(2) Class Transformation method. It was introduced by Jaskowski and Jaroszewicz (2012)
in the case of binary outcome variable Yobs

i
= {0, 1} . This method needs to create a new

target variable:

 Under the assumption that control and treated groups are balanced across all prof-
its of individual, that is, p(Xi = x) = 0.5 for all x, Jaskowski and Jaroszewicz (2012)
proved that:

 Uplift modeling then becomes to model P(Zi = 1|Xi) , (i.e., �[Zi = 1|Xi]). The Class
Transformation method is popular because it tends to show better performance than
the Two-Model approach while still remaining simple. However, the two assumptions
(binary outcome variable and balanced dataset between control and treatments) might
seem to be restrictive. A generalization to unbalanced treatment assignment and to
regression setups can be borrowed from Athey and Imbens (2015).

(3) Modeling uplift Directly. This approach generally modifies existing machine learning
algorithms to directly infer a treatment effect. Lo (2002) proposed a strategy based on
logistic regression, Su et al. (2012) and Guelman et al. (2014) focused on k-nearest
neighbors while Zaniewicz and Jaroszewicz (2013) proposed a modification of the
SVM model. Finally, Wager and Athey (2018); Guelman et al. (2015) provided a
generalization to ensemble methods. Formally, in the case of a balanced randomized
experiment, where the propensity score p(Xi = x) = 0.5 for all x, the estimator of the
average treatment effect 𝜏 is given by:

 which corresponds to the difference in the sample average outcome between treated
and untreated observations.

A.3 Uplift for target selection

The uplift under different observations can be split into four classes as shown in Fig. 14
by Michel et al. (2019). Each class is explained in detail as follows:

– A Sure-thing is the observation that would respond positively either treated or con-
trolled, treating these observations might be a waste of resource.

– A Sleeping is the observation that would react negatively if treated but not if con-
trolled. An example would someone that forgot a website subscription he was not
using and just received an e-mail about it. Treating these observations would be a
departure from the goal.

– A lost cause is the observation that would respond negatively no matter what hap-
pens. Treating these observations might also be a waste of resources.

– A persuadable is the observation that react positively to a treatment but would react
negatively if controlled. These observations are the ones we should spend resources
on.

(28)Zi = Yobs
i

Wi + (1 − Yobs
i

)(1 −Wi).

(29)�(Xi) = 2P(Zi = 1|Xi) − 1.

(30)𝜏 =
𝛴iY

obs
i

Wi

𝛴iWi

−
𝛴iY

obs
i

(1 −Wi)

𝛴i(1 −Wi)
,

2632 Machine Learning (2021) 110:2603–2640

1 3

A.4 Uplift evaluation metrics

The Qini curve is introduced in Radcliffe (2007) as a parametric curve with the following
equation:

where YT (respectively YC) and NT (respectively NC) are the sum of the treated (respec-
tively control) individual outcomes and the number of treated (respectively control) indi-
vidual units, and the t subscript indicates that the quantity is calculated for the first t units,
sorted by the inferred uplift value, and g(t) is the cumulative incremental gains of the first
t units.

The calculation of Qini curve depends on gain charts, which are built by sorting the
main population from the best to the worst lift performance and partitioning in segments.
The Y-axis represents the cumulative incremental gains, that is g(t) and the X-axis is the
proportion of the population targeted, represented as t. There is an uplift curve and a ran-
dom curve based on the calculation of every segment. The Qini-Coefficient is the differ-
ence between the area under the Qini curve and the random curve. The larger Qini-Coeffi-
cient, the better performance of the uplift model.

The Athey measure QTO proposed by Athey and Imbens (2015) is a measure similar
to MSE in supervised learning, by exploiting the cATE-generating transformation. It is
based on the fact that the expectation of cATE-generating transformed outcome Y⋆

i
 is

g(t) = YT
t
−

YC
t
NT
t

NC
t

.

Sure things
uplift=0

Unnecessary treat

Positive feedback

Lost causes
uplift=0

Unnecessary treat

Persuadables
uplift>0

target of treatment

Sleepings
uplift<0

Negative impact

Negative feedback

Positive feedback

Negative feedback

treated

control

Fig. 14 The illustration of uplift value under different observation types. The vertical direction represents
the potential outcome when treatment is applied, and the horizontal direction represents the potential out-
come when controlled

Table 5 Results of online A/B
tests on the platform of Didi
Chuxing

Improvements of FOs and TDIs by policy �POMEE in the treatment
group comparing to the control group

Cities �FOs(%) �TDIs(%)

City A +10.73 +6.16
City B +10.16 +9.38
City C +18.47 +17.84
Overall +11.74 +8.71

2633Machine Learning (2021) 110:2603–2640

1 3

equal to the true uplift if the assumption of unconfoundedness holds. The cATE-gener-
ating transformation of the outcome is defined as

where e(x) = Pr(Wi = 1|Xi = x) is the conditional treatment probability, or the propensity
score. In the case with complete randomization the propensity score is constant e(x) = p for
all x, and the transformation simplifies to

where p = �[e(Xi)] = �[Wi] = pr(Wi = 1) is the common probability of assignment to
the treatment. If there is a variation in the treatment effect, the estimation of �[Y⋆

i
|Xi = x]

based on the values of the pairs (Y⋆
i
,Xi) will be biased. Then the out-of-sample goodness-

of-fit measure Qos,TO was proposed as

The smaller QTO , the better performance.

Appendix B: Illustration of the pipeline work

The approach proposed in this paper is a pipeline work demonstrated in Fig. 15, and can
be summarized as following steps Fig. 16:

Y⋆
i
= Yobs

i
⋅

Wi − e(Xi)

e(Xi) ⋅ (1 − e(Xi))
,

Y⋆
i
= Yobs

i
⋅

Wi − p

p ⋅ (1 − p)
,

QTO(Y⋆
i
, ̂𝜏(Xi)) =

1

N

N

𝛴
i=1

(
Y⋆
i
− 𝜏(Xi)

)2
.

Fig. 15 Illustration of the pipeline work presented in this paper. There are mainly five steps for applying
reinforcement learning methods to real-world applications on historical data, which are sorted by blue
labels (Color figure online)

2634 Machine Learning (2021) 110:2603–2640

1 3

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp [r = 0 .9]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp [r = 1 .1]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

real πp [r = 1 .3]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp [r = 0 .9]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp [r = 1 .1]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL πp [r = 1 .3]

v
7891011tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL-UI πp [r = 0.9]

v
7891011tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL-UI πp [r = 1.1]

v
7891011tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

MAIL-UI πp [r = 1.3]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE πp [r = 0 .9]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE πp [r = 1 .1]

v
7891011

tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE πp [r = 1 .3]

v
7891011tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE-UI πp [r = 0.9]

v
7891011tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE-UI πp [r = 1.1]

v
7891011tw

2
4

6

ap

0.0
0.2
0.4
0.6
0.8
1.0

POMEE-UI πp [r = 1.3]

Fig. 16 Visualization of the artificial platform policy function �p with respect to v and tw on different val-
ues of r. The first row is the ground-truth rule function. The second to the fourth rows are the platform
policy functions generated by MAIL, MAIL-UI, POMEE and POMEE-UI respectively

2635Machine Learning (2021) 110:2603–2640

1 3

(1) Performing POMEE-UI to generate a virtual environment: learn an environment model
by POMEE using the real interactions, in which the environment model is implemented
in the DUIN structure to make a causal reward mechanism.

(2) Conducting RL in the virtual environment: optimize the recommender policy by inter-
acting with the virtual environment to maximize the cumulative reward.

(3) Offline evaluation: evaluate the simulation effect of the generated virtual environment
model from several aspects of statistics to measure the gap from simulation to reality.
The offline policy evaluation is conducted in the virtual environment built on the data
of new phase.

(4) Online evaluation: online A/B testing to evaluate the policy performance in the real-
world environment. The optimized policy is applied to the treatment group, and the
control group is deployed with the existing policy as a comparison to evaluate the
improvement effect of the optimized policy.

(5) Online deployment: a policy that has been validated by all of the above steps would be
deployed online. Then, new interaction data collected in the real environment can be
used to fine-tune the virtual environment model, thus forming a policy optimization
closed-loop.

Appendix C: More experiment results

In this section, we show more results for experiments in Sect. 6.1.2 and 6.2.2 (Figs. 17,
18, 19). The function space learned by MAIL and POMEE under various r value are listed
here. The original FOs distributions generated by different methods are shown in the final.

2636 Machine Learning (2021) 110:2603–2640

1 3

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd [r = 0 .9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd [r = 1 .1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

real πd [r = 1 .3]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd [r = 0 .9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd [r = 1 .1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

MAIL πd [r = 1 .3]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−1
0
1

MAIL-UI πd [r = 0.9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−1

0

1

MAIL-UI πd [r = 1.1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−1

0

1

MAIL-UI πd [r = 1.3]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

POMEE πd [r = 0 .9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

POMEE πd [r = 1 .1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−2
−1
0
1
2

POMEE πd [r = 1 .3]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−1
0
1

POMEE-UI πd [r = 0.9]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−1
0
1

POMEE-UI πd [r = 1.1]

v7 8 9 10 11
ap

0.00
0.25

0.50
0.75

1.00

ad

−1

0

1

POMEE-UI πd [r = 1.3]

Fig. 17 Visualization of the artificial platform policy function �d with respect to v and ap on different val-
ues of r. The first row is the ground-truth rule function. The second to the fourth rows are the driver policy
functions generated by MAIL, MAIL-UI, POMEE and POMEE-UI respectively

2637Machine Learning (2021) 110:2603–2640

1 3

v
7891011

ap

0.00
0.25
0.50
0.75
1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh [r = 0 .9]

v
7891011

ap

0.00
0.25
0.50
0.75
1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh [r = 1 .1]

v
7891011

ap

0.00
0.25
0.50
0.75
1.00

ah

−1.0
−0.8
−0.6
−0.4
−0.2
0.0

real πh [r = 1 .3]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

POMEE πh [r = 0 .9]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

POMEE πh [r = 1 .1]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

ah

− 1.0
− 0.8
− 0.6
− 0.4
− 0.2
0.0

POMEE πh [r = 1 .3]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

−1.0
−0.8
−0.6

ah− 0.4
−0.2
0.0

POMEE-UI πh [r = 0.9]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

−1.0
−0.8
−0.6

ah− 0.4
−0.2
0.0

POMEE-UI πh [r = 1.1]

v
7891011

ap

0.00
0.25

0.50
0.75

1.00

−1.0
−0.8
−0.6

ah− 0.4
−0.2
0.0

POMEE-UI πh [r = 1.3]

Fig. 18 Visualization of the artificial hidden policy function �h with respect to v and ap on different values
of r. The first row is the ground-truth rule function. The second row is the hidden policy function generated
by POMEE and the third row corresponds to POMEE-UI

2638 Machine Learning (2021) 110:2603–2640

1 3

Acknowledgements We would like to thank Prof. Yuan Jiang for her support to this work. We would also
like to thank the anonymous reviewers for their very constructive comments. This work is supported by the
National Key R&D Program of China (2018AAA0101100), NSFC (61876077), and Collaborative Innova-
tion Center of Novel Software Technology and Industrialization.

References

Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford, J., Lee, S., et al. (2016). Making contextual deci-
sions with low technical debt. CoRR (abs/1606.03966).

Argall, B., Chernova, S., Veloso, M. M., & Browning, B. (2009). A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57(5), 469–483.

Astrom, K. J. (1965). Optimal control of Markov processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1), 174–205.

Athey, S., & Imbens, G. W. (2015). Machine learning methods for estimating heterogeneous causal effects.
Stat, 1050(5), 1–26.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Brown, N., & Sandholm, T., (2017). Safe and nested subgame solving for imperfect-information games. In

Advances in neural information processing systems 30: annual conference on neural information pro-
cessing systems 2017, pp. 689–699.

Cassandra, A., Nodine, M., Bondale, S., Ford, S., & Wells, D. (2005). Using pomdp-based state estimation
to enhance agent system survivability. In IEEE 2nd symposium on multi-agent security and survivabil-
ity, pp. 11–20.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 785–794.

Chen, X., Li, S., Li, H., Jiang, S., Qi, Y., & Song, L. (2019). Generative adversarial user model for rein-
forcement learning based recommendation system. In Proceedings of the 36th international conference
on machine learning, ICML, Vol. 97, pp. 1052–1061.

Finn, C., Christiano, P. F., Abbeel, P., & Levine, S. (2016). A connection between generative adversarial
networks, inverse reinforcement learning, and energy-based models. CoRR abs/1611.03852.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Genera-
tive adversarial nets. Advances in Neural Information Processing Systems, 27, 2672–2680.

0 6 12 18 24 30
FOs

0.0

0.1

0.2

0.3

R
at
io

FOs distribution by SUP

real
simulation

0 6 12 18 24 30
0.0

0.1

0.2

0.3

R
at
io

FOs distribution by GAIL

real
simulation

0 6 12 18 24 30
0.0

0.1

0.2

0.3

R
at
io

FOs distribution by MAIL

real
simulation

0 6 12 18 24 30
FOs

0.0

0.1

0.2

0.3

R
at
io

FOs distribution by MAIL-UI

real
simulation

0 6 12 18 24 30
FOs

0.0

0.1

0.2

0.3

R
at
io

FOs

FOs distribution by POMEE

real
simulation

0 6 12 18 24 30
FOs

0.0

0.1

0.2

0.3

R
at
io

FOs

FOs distribution by POMEE-UI

real
simulation

Fig. 19 The original FOs distribution generated by six different methods on testing data. Y-axis is the ratio
of FOs distribution

2639Machine Learning (2021) 110:2603–2640

1 3

Guelman, L., Guillén, M., & Pérez Marín, A. M. (2014). Optimal personalized treatment rules for mar-
keting interventions: A review of methods, a new proposal, and an insurance case study. UB Risk-
center Working Paper Series.

Guelman, L., Guillén, M., & Pérez-Marín, A. M. (2015). Uplift random forests. Cybernetics and Sys-
tems, 46(3–4), 230–248.

Gutierrez, P., & Gérardy, J. Y. (2017). Causal inference and uplift modelling: A review of the literature.
In International conference on predictive applications and APIs, pp. 1–13.

Hansotia, B., & Rukstales, B. (2002). Incremental value modeling. Journal of Interactive Marketing,
16(3), 35.

Ho, J., & Ermon, S. (2016). Generative adversarial imitation learning. Advances in Neural Information
Processing Systems, 29, 4565–4573.

Jaskowski, M., & Jaroszewicz, S. (2012). Uplift modeling for clinical trial data. In ICML Workshop on
clinical data analysis.

Johansson, F. D., Shalit, U., & Sontag, D. A. (2016). Learning representations for counterfactual infer-
ence. In Proceedings of the 33nd international conference on machine learning, ICML, Vol. 48, pp.
3020–3029.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1–2), 99–134.

Künzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. (2019). Metalearners for estimating heterogene-
ous treatment effects using machine learning. Proceedings of the National Academy of Sciences,
116(10), 4156–4165.

Lo, V. S. Y. (2002). The true lift model—a novel data mining approach to response modeling in database
marketing. ACM SIGKDD Explorations Newsletter, 4(2), 78–86.

Menick, J., & Kalchbrenner, N. (2018). Generating high fidelity images with subscale pixel networks
and multidimensional upscaling. CoRR abs/1812.01608.

Michel, R., Schnakenburg, I., & Martens, T. (2019). Targeting uplift: An introduction to net scores.
Springer

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-
level control through deep reinforcement learning. Nature, 518, 529–533.

Nassif, H., Kuusisto, F., Burnside, E. S., & Shavlik, J. W. (2013). Uplift modeling with ROC: An SRL
case study. In Late breaking papers of the 23rd international conference on inductive logic pro-
gramming, CEUR workshop proceedings, Vol. 1187, pp. 40–45.

OpenAI, B. C., Brockman, G., Chan, B., Cheung, V., Dȩbiak, P., Dennison, C., et al. (2019). Dota 2 with
large scale deep reinforcement learning. CoRR, 1912, 06680.

Pineau, J., Gordon, G. J., & Thrun, S. (2003). Point-based value iteration: An anytime algorithm for
pomdps. In Proceedings of the eighteenth international joint conference on artificial intelligence,
pp. 1025–1032.

Pomerleau, D. (1991). Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, 3(1), 88–97.

Qin, Z. T., Tang, X., Jiao, Y., Zhang, F., Xu, Z., Zhu, H., & Ye, J. (2020). Ride-hailing order dispatching
at didi via reinforcement learning. INFORMS Journal on Applied Analytics, 50(5), 272–286.

Radcliffe, N. J. (2007). Using control groups to target on predicted lift: Building and assessing uplift
models. Direct Marketing Analytics Journal, 1, 1421.

Radcliffe, N. J., & Surry, P. D. (2011). Real-world uplift modelling with significance-based uplift trees.
White Paper TR-2011-1, Stochastic Solutions pp. 1–33.

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational stud-
ies for causal effects. Biometrika, 70(1), 41–55.

Ross, S., Gordon, G. J., & Bagnell, D. (2011). A reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the fourteenth international conference on artificial intel-
ligence and statistics, pp. 627–635.

Russell, S. J. (1998). Learning agents for uncertain environments (extended abstract). In Proceedings of the
eleventh annual conference on computational learning theory, pp. 101–103.

Rzepakowski, P., & Jaroszewicz, S. (2012). Decision trees for uplift modeling with single and multiple
treatments. Knowledge and Information Systems, 32(2), 303–327.

Sadeghi, F., & Levine, S. (2016). CAD2RL: Real single-image flight without a single real image. CoRR
abs/1611.04201.

Sallans, B. (1999). Learning factored representations for partially observable Markov decision processes.
Neural Information Processing Systems, 12, 1050–1056.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, 3(6),
233–242.

2640 Machine Learning (2021) 110:2603–2640

1 3

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., & Moritz, P. (2015). Trust region policy optimization. In
Proceedings of the 32nd international conference on machine learning, pp. 1889–1897.

Shang, W., Yu, Y., Li, Q., Qin, Z., Meng. Y., & Ye, J. (2019). Environment reconstruction with hidden con-
founders for reinforcement learning based recommendation. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 566–576.

Shi, J., Yu, Y., Da, Q., Chen, S., & Zeng, A (2018) Virtual-taobao: Virtualizing real-world online retail
environment for reinforcement learning. CoRR abs/1805.10000.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

Singh, S. P., Jaakkola, T. S., & Jordan, M. I. (1994). Learning without state-estimation in partially observa-
ble markovian decision processes. In Proceedings of the eleventh international conference on machine
learning, pp. 284–292.

Su, X., Kang, J., Fan, J., Levine, R. A., & Yan, X. (2012). Facilitating score and causal inference trees for
large observational studies. Journal of Machine Learning Research, 13(Oct):2955–2994.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.). MIT Press.
Tzeng, E., Devin, C., Hoffman, J., Finn, C., Abbeel, P., Levine, S., et al. (2016). Adapting deep visuomotor

representations with weak pairwise constraints. Algorithmic foundations of robotics XII, Proceedings
of the twelfth workshop on the algorithmic foundations of robotics, WAFR, Vol. 13, pp. 688–703.

Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random
forests. Journal of the American Statistical Association, 113(523), 1228–1242.

Ye, Z., Zhang, L., Xiao, K., Zhou, W., Ge, Y., & Deng, Y. (2018). Multi-user mobile sequential recommen-
dation: An efficient parallel computing paradigm. In Proceedings of the 24th ACM SIGKDD interna-
tional conference on knowledge discovery & data mining, pp. 2624–2633.

Ye, Z., Xiao, K., Ge, Y., & Deng, Y. (2019). Applying simulated annealing and parallel computing to the
mobile sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 31(2),
243–256.

Zaniewicz, L., & Jaroszewicz, S. (2013). Support vector machines for uplift modeling. In 13th IEEE inter-
national conference on data mining workshops, ICDM workshops, pp. 131–138.

Zhao, P., Cai, L. W., & Zhou, Z. H. (2020). Handling concept drift via model reuse. Machine Learning,
109(3), 533–568.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Wenjie Shang1 · Qingyang Li1 · Zhiwei Qin1 · Yang Yu2 · Yiping Meng1 · Jieping Ye1

 Qingyang Li
 qingyangli@didiglobal.com

 Zhiwei Qin
 qinzhiwei@didiglobal.com

 Yang Yu
 yuy@nju.edu.cn

 Yiping Meng
 mengyipingkitty@didiglobal.com

 Jieping Ye
 yejieping@didiglobal.com

1 AI Labs, Didi Chuxing, Beijing, China
2 National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023,

China

http://orcid.org/0000-0002-9331-4062

	Partially observable environment estimation with uplift inference for reinforcement learning based recommendation
	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement learning
	2.2 Environment estimation
	2.3 Causal inference and uplift modeling

	3 Partially-observed multi-agent environment Estimation
	3.1 Formulation
	3.2 Objective function
	3.3 Partially-observed environment model
	3.4 Compatible discriminator
	3.5 Simulation
	3.6 POMEE algorithm

	4 Partially-observed environment estimation with uplift inference
	4.1 DUIN model structure
	4.2 DUIN optimization method
	4.3 POMEE with uplift inference

	5 Application in driver program recommendation
	5.1 Driver program recommendation
	5.2 POMEE-UI based driver program recommendation
	5.3 RL in the virtual environment

	6 Experiments
	6.1 Toy experiments
	6.1.1 DUIN on synthetic data
	6.1.2 Artificial environment for POMEE-UI

	6.2 Experiments on real world applications
	6.2.1 DUIN on real-world data
	6.2.2 Real-world experiment for POMEE-UI

	7 Conclusion
	Acknowledgements
	References

