
Vol.:(0123456789)

Machine Learning (2021) 110:2685–2727
https://doi.org/10.1007/s10994-021-05995-8

1 3

IntelligentPooling: practical Thompson sampling
for mHealth

Sabina Tomkins1  · Peng Liao2 · Predrag Klasnja3 · Susan Murphy2

Received: 16 May 2020 / Revised: 10 December 2020 / Accepted: 11 May 2021 /
Published online: 21 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
In mobile health (mHealth) smart devices deliver behavioral treatments repeatedly over
time to a user with the goal of helping the user adopt and maintain healthy behaviors. Rein-
forcement learning appears ideal for learning how to optimally make these sequential treat-
ment decisions. However, significant challenges must be overcome before reinforcement
learning can be effectively deployed in a mobile healthcare setting. In this work we are
concerned with the following challenges: (1) individuals who are in the same context can
exhibit differential response to treatments (2) only a limited amount of data is available for
learning on any one individual, and (3) non-stationary responses to treatment. To address
these challenges we generalize Thompson-Sampling bandit algorithms to develop Intel-
ligentPooling. IntelligentPooling learns personalized treatment policies thus addressing
challenge one. To address the second challenge, IntelligentPooling updates each user’s
degree of personalization while making use of available data on other users to speed up
learning. Lastly, IntelligentPooling allows responsivity to vary as a function of a user’s
time since beginning treatment, thus addressing challenge three.

Keywords  Thompson sampling · Mobile health · Clinical trial · Physical activity · Non-
stationary environment · Mixed effects · Bayesian reward model

Editors: Yuxi Li, Alborz Geramifard, Lihong Li , Csaba Szepesvari, Tao Wang.

 *	 Sabina Tomkins
	 stomkins@stanford.edu

	 Peng Liao
	 pengliao@g.harvard.edu

	 Predrag Klasnja
	 klasnja@umich.edu

	 Susan Murphy
	 samurphy@fas.harvard.edu

1	 Stanford University, Stanford, United States of America
2	 Harvard University, Cambridge, United States of America
3	 University of Michigan, Ann Arbor, United States of America

http://orcid.org/0000-0002-2632-8173
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05995-8&domain=pdf

2686	 Machine Learning (2021) 110:2685–2727

1 3

1  Introduction

Mobile health (mHealth) applications deliver treatments in users’ everyday lives to support
healthy behaviors. These mHealth applications offer an opportunity to impact health across
a diverse range of domains from substance use (Rabbi et al. 2017), to disease self-man-
agement (Hamine et al. 2015) to physical inactivity (Consolvo et al. 2008). For example,
to help users increase their physical activity, an mHealth application might send walking
suggestions at the times and in the contexts (e.g. current location or recent physical activ-
ity) when a user is likely to be able to pursue the suggestions. A goal of mHealth applica-
tions is to provide treatments in contexts in which users need support while avoiding over-
treatment. Over-treatment can lead to user disengagement (Nahum-Shani et al. 2017), for
example users might ignore treatments or even delete the application. Consequently, the
goal is to be able to learn an optimal policy for when and how to intervene for each user
and context without over-treating.

Contextual bandit algorithms appear ideal for this task. Contextual bandit algorithms
have been successful in a range of application settings from news recommendations (Li
et al. 2010) to education (Qi et al. 2018). However, as we discuss below, many challenges
remain to adapt contextual bandit algorithms for mHealth settings. Thompson sampling
offers an attractive framework for addressing these challenges. In their seminal work
(Agrawal and Goyal 2013), Agrawal and Goyal show that Thompson sampling for contex-
tual bandits, which works well in practice, can also achieve strong theoretical guarantees.
In our work, we propose Thompson sampling contextual bandit algorithm which introduces
a mixed effects structure for the weights on the feature vector, an algorithm we call Intel-
ligentPooling. We demonstrate empirically that IntelligentPooling has many advantages.
We also derive a high-probability regret bound for our approach which achieves similar
regret to (Agrawal and Goyal 2013). Unlike (Agrawal and Goyal 2013), our regret bound
depends on the variance components introduced by the mixed effects structure which is at
the center of our approach.

1.1 � Challenges

There are significant challenges to learning optimal policies in mHealth. This work primar-
ily addresses the challenge of learning personalized user policies from limited data. Con-
textual bandit algorithms can be viewed as algorithms that use the user’s context to adapt
treatment. While this approach can have advantages compared to ignoring the user’s con-
text, it fails to address that users can respond differentially to treatments even when they
appear to be in the same context. This occurs since sensors on smart devices are unlikely
to record all aspects of a user’s context that affect their health behaviors. For example, the
context may not include social constraints on the user (e.g., care-giving responsibilities),
which may influence the user’s ability to be active. Thus, algorithms that can learn from
the differential responsiveness to treatment are desirable. This motivates the need for an
algorithm that not only incorporates contextual information, but that can also learn person-
alized policies. A natural first approach would be to use the algorithm separately for each
user, but the algorithm is likely to learn very slowly if data on a user is sparse and/or noisy.
However, typically in mHealth studies multiple users are using the application at any given
time. Thus an algorithm that pools data over users intelligently so as to speed up learning
of personalized policies is desirable.

2687Machine Learning (2021) 110:2685–2727	

1 3

An additional challenge is non-stationary responses to treatment (e.g. non-stationary
reward function). For example, in the beginning of a study, a user might be excited to
receive a treatment, however after a few weeks this excitement can wane. This motivates
the need for algorithms that can learn time-varying treatment policies.

1.2 � Contributions

We develop IntelligentPooling, a type of Thompson sampling contextual bandit algo-
rithm specifically designed to overcome the above challenges. Our main contributions are:

•	 IntelligentPooling: A Thompson sampling contextual bandit algorithm for rapid per-
sonalization in limited data settings. This algorithm employs classical random effects
in the reward function (Raudenbush and Bryk 2002; Laird and Ware 1982) and empiri-
cal (Bayes Morris 1983; Casella 1985) to adaptively adjust the degree to which poli-
cies are personalized to each user. We present an analysis of this adaptivity in Sect. 3.5
showing that IntelligentPooling can learn to personalize to a user as a function of the
observed variance in the treatment effect both between and within users.

•	 A high probability regret bound for IntelligentPooling.
•	 An empirical evaluation of IntelligentPooling in a simulation environment con-

structed from mHealth data. IntelligentPooling not only achieves 26% lower regret
than state-of-the-art approaches, it also is better able to adapt to the degree of heteroge-
neity present in a population than this approach.

•	 Feasibility of IntelligentPooling from a pilot study in a live clinical trial. We demon-
strate that IntelligentPooling can be executed in a real-time online environment and
show preliminary evidence of this method’s effectiveness.

•	 We show how to modify IntelligentPooling to learn in non-stationary environments.

Next, in Sect. 2 we discuss relevant related work. In Sect. 3 we present IntelligentPooling
and provide a high-probability regret bound for this algorithm. We then describe how we
use historical data to construct a simulation environment and evaluate our approach against
state-of-the-art in Sect. 4. Next, in Sect. 5 we introduce the feasibility study and provide
preliminary evidence into the benefits of this approach. We then discuss how to extend this
work to include time-varying effects in Sect. 6. Finally, we discuss the limitations with our
approach in Sect. 7 before concluding.

2 � Related work

To put the proposed work in a broader healthcare perspective, an overview of similar work
in mHealth is provided by Sect. 2.1. Next, we discuss the extent to which reinforcement
learning/bandit algorithms have been deployed in mHealth settings (Sect. 2.1). Intelli-
gentPooling has similarities with several modeling approaches, here we discuss the most
relevant: multi-task learning, meta-learning, Gaussian processes for Thompson Sampling
contextual bandits, and time-delayed bandits. These topics are discussed in Sects. 2.2–2.4.

2688	 Machine Learning (2021) 110:2685–2727

1 3

2.1 � Connections to Bandit algorithms in mHealth

Bandit algorithms in mHealth have typically used one of two approaches. The first
approach is person specific, that is, an algorithm is deployed separately on each user, such
as in Rabbi et al. 2015; Jaimes et al. 2016; Forman et al. 2018 and Liao et al. 2020. This
approach makes sense when users are highly heterogeneous, that is, their optimal policies
differ greatly one from another. However, this approach can present challenges for pol-
icy learning when data is scarce and/or noisy, as in our motivating example of encourag-
ing activity in an mHealth study where only a few decision time-points occur each day
(see (Xia 2018) for an empirical evaluation of the shortcomings of Thompson sampling
for personalized contextual bandits in mHealth settings). The second approach completely
pools users’ data, that is one algorithm is used on all users so as to learn a common treat-
ment policy both in bandit algorithms (Paredes et al. 2014; Yom-Tov et al. 2017), and in
full reinforcement learning algorithms (Clarke et al. 2017; Zhou et al. 2018). This second
approach can potentially learn quickly but may result in poor performance if there is large
heterogeneity between users. We compare to these two approaches empirically as they
not only represent state-of-the-art in practice, they also represent two intuitive theoretical
extremes.

In IntelligentPooling we strike a balance between these two extremes, adjusting the
degree of pooling to the degree that users are similarly responsive. When users are hetero-
geneous, IntelligentPooling achieves lower regret than the second approach while learn-
ing more quickly than the first approach. When users are homogeneous our method per-
forms as well as the second approach.

2.2 � Connections to multi‑task learning and meta‑learning

Following original work on non-pooled linear contextual bandits (Agrawal and Goyal
2013), researchers have proposed pooling data in a variety of ways. For example, Desh-
mukh et al. (2017) proposed pooling data from different arms of a single bandit problem.
Li and Kar 2015 used context-sensitive clustering to produce aggregate reward estimates
for the bandit algorithm. More relevant to this work is multi-task Gaussian Process (GP),
e.g., Lawrence and Platt 2004; Bonilla et al. 2008; Wang and Khardon 2012, however these
have been proposed in the prediction as opposed to the reinforcement learning setting. The
Gang of Bandits approach (Cesa-Bianchi et al. 2013), which is a generalization from the
original LinUCB algorithm for a single task (Li et al. 2010), has been shown to be success-
ful when there is prior knowledge on the similarities between users. For example, a known
social network graph might provide a mechanism for pooling. It was later extended to the
Horde of Bandits in (Vaswani et al. 2017) which used Thompson Sampling, allowing the
algorithm to deal with a large number of tasks.

Each of the multi-task approaches introduces some concept of similarity between users.
The extent to which a given user’s data contributes to another user’s policy is some func-
tion of this similarity measure. This is fundamentally different from the approach taken in
IntelligentPooling. Rather than determining the extent to which any two users are similar,
IntelligentPooling determines the extent to which a given user’s reward function param-
eters differ from parameters in a population (average over all users) reward function. This
approach has the advantage of requiring fewer hyper-parameters, as we do not need to learn
a similarity function between users. Instead of a pairwise similarity function it is as if we

2689Machine Learning (2021) 110:2685–2727	

1 3

are learning a similarity between each user and the population average. In the limited data
setting, we expect this simpler model to be advantageous.

In meta-learning, one exploits shared structure across tasks to improve performance
on new tasks. IntelligentPooling thus shares similarities with meta-learning for rein-
forcement learning (Nagabandi et al. 2018; Finn et al. 2019; Finn et al. 2018; Zintgraf
et al. 2019; Gupta et al. 2018; Sæmundsson et al. 2018). At a high level, one can view
our method as a form of meta-learning where the population-level parameters are learned
from all available data and each user’s parameters represent deviations from the shared
parameters. However, while meta-learning might require a large collection of source tasks,
we demonstrate the efficacy of our approach on data on the small scale found in clinical
mHealth studies.

2.3 � Connections to Gaussian process models for Thompson sampling contextual
bandits

IntelligentPooling is based on Bayesian mixed effects model of the reward, which is simi-
lar to using a Gaussian Process (GP) model with a simple form of the kernel. GP mod-
els have been used for multi-armed bandits (Chowdhury and Gopalan 2017; Brochu et al.
2010; Srinivas et al. 2009; Desautels et al. 2014; Wang et al. 2016; Djolonga et al. 2013;
Bogunovic et al. 2016) , and for contextual bandits (Li et al. 2010; Krause and Ong 2011).
However the above approaches do not structure the way in which the pooling of data across
users occurs. IntelligentPooling uses a mixed effects GP model to pool across users in
structured manner. Although mixed effects GP models have been previously used for off-
line data analysis (Shi et al. 2012; Luo et al. 2018), to the best of our knowledge they have
not been previously used in the online decision making setting considered in this work.

2.4 � Connection to non‑stationary linear bandits

There is a growing literature investigating how to adapt linear bandit algorithms to chang-
ing environments. A common approach is for the learning algorithm to differentially
weight data across time. Differential weighting is used by both Russac et al. 2019 (using
a LinUCB algorithm) and Kim and Tewari 2019 (using perturbation-based algorithms).
Cheung et al. 2018 to estimate the parameters in the reward function and (Zhao et al.
2020) restart the algorithm at regular intervals discarding the prior data. Similarly (Bogu-
novic et al. 2016), using GP-based UCB algorithms, accommodate non-stationarity by both
restarting and using an autoregressive model for the rewards function. Kim and Tewari
2020 analyze the non-stationary setting with randomized exploration. Wu et al. introduce
a model which detects abrupt time changes cite (https://​dl.​acm.​org/​doi/​pdf/​10.​1145/​32099​
78.​32100​51).

IntelligentPooling allows for non-stationary reward functions by the use of time-var-
ying random effects. The correlation between the time-varying random effects induces a
weighted estimator whereby more weight is put on the recently collected samples, similar
to the discounted estimators in Russac et al. 2019 and Kim and Tewari 2019. In contrast
to existing approaches, IntelligentPooling considers both individual and time-specific
variation.

https://dl.acm.org/doi/pdf/10.1145/3209978.3210051
https://dl.acm.org/doi/pdf/10.1145/3209978.3210051

2690	 Machine Learning (2021) 110:2685–2727

1 3

3 � Intelligent Pooling

IntelligentPooling is a generalization of a Thompson sampling contextual bandit for
learning personalized treatment policies. We first outline the components of Intelligent-
Pooling and then introduce the problem definition in Sect. 3.2. As our approach offers a
natural alternative to two commonly used approaches, we begin by describing these sim-
pler methods in Sect. 3.3. We introduce our method in Sect. 3.4.

3.1 � Overview

The central component of IntelligentPooling is a Bayesian model for the reward func-
tion. In particular, IntelligentPooling uses a Gaussian mixed effects linear model for the
reward function. Mixed effects models are widely used across the health and behavioral
sciences to model the variation in the linear model parameters across users (Raudenbush
and Bryk 2002; Laird and Ware 1982) and within a user across time. Use of these models
enhances the ability of domain scientists to inform and critique the model used in Intel-
ligentPooling. The properties and pitfalls of these models are well understood; see (Qian
et al. 2019) for an application of a mixed effects model in mHealth. IntelligentPooling
uses Bayesian inference for the mixed effects model. As discussed in Sect. 2.3, a Bayesian
mixed effects linear model is a GP model with a simple kernel. This facilitates increasing
the flexibility of the model for the reward function, given sufficient data.

Furthermore, IntelligentPooling uses Thompson sampling (Thompson 1933), also
known as posterior sampling (Russo and Van Roy 2014), to select actions. At each decision
point, the parameters in the model for the reward function are sampled from their posterior
distribution, thus inducing exploration over the action space (Russo et al. 2018). These
sampled parameters are then used to form an estimated reward function and the action with
the highest estimated reward is selected.

The hyper-parameters (e.g., the variance of the random effects) control the extent of
pooling across users and across decision times. The right amount of pooling depends on
the heterogeneity among users and the non-stationarity, which is often difficult to pre-spec-
ify. Unlike other bandit algorithms in which the hyper-parameters are set at the beginning
(Deshmukh et al. 2017; Cesa-Bianchi et al. 2013; Vaswani et al. 2017), IntelligentPool-
ing includes a procedure for updating the hyper-parameters online. In particular, empirical
(Bayes Carlin and Louis 2010) is used to update the hyper-parameters in the online setting,
as more data becomes available.

3.2 � Problem formulation

Consider an mHealth study which will recruit a total of N users.1 Let i ∈ [N] = {1,… ,N}
be a user index. For each user, we use k ∈ {1, 2,…} to index decision times, i.e., times
at which a treatment could be provided. Denote by Si,k the states/contexts at the kth deci-
sion time of user i. For simplicity, we focus on the case where the action is binary, i.e.,
Ai,k ∈ {0, 1} . The algorithm can be easily generalized to cases with more than two actions.
After the action Ai,k is chosen, the reward Ri,k is observed. Throughout the remainder of the

1  More generally, one can consider the setting where users become known to an algorithm over time. For
example, users may open or delete accounts on an online shopping platform.

2691Machine Learning (2021) 110:2685–2727	

1 3

paper, S, A and R are random variables and we use lower-case (s, a and r) to refer to a reali-
zation of these random variables.

Below we consider a simpler setting where the parameters in the reward are assumed
time-stationary. We discuss how to generalize the algorithm to the non-stationary setting
in Sect. 6. The goal is to learn personalized treatment policies for each of the N users. We
treat this as N contextual bandit problems as the reward function may differ between users.
In mHealth settings this might occur due to the inability of sensors to record users’ entire
contexts. Section 3.3 reviews two approaches for using Thompson Sampling (Agrawal
and Goyal 2012) and Sect. 3.4 presents IntelligentPooling, our approach for learning the
treatment policy for any specific user.

3.3 � Two Thompson sampling instantiations

First, consider learning the treatment policy separately per person. We refer to this
approach as Person-Specific. At each decision time k, we would like to select a treat-
ment Ai,k ∈ {0, 1} based on the context Si,k . We model the reward Ri,k by a Bayesian linear
regression model: for user i and time k

where �(s, a) is a pre-specified mapping from a context s and treatment a (e.g., those
described in Sect. 4.2), wi is a vector of weights which we will learn, and �i,k ∼ �(0, �2

�
) is

the error term. The weight vectors {wi} are assumed independent across users and to follow
a common prior distribution wi ∼ �(�w,�w) . See Fig. 1 for a graphical representation of
this approach.

Now at the kth decision time with the context Si,k = s , Person-Specific selects the treat-
ment Ai,k = 1 with probability

where w̃i,k follows the posterior distribution of the parameters wi in the model (1) given the
user’s history up to the current decision time k. We emphasize that in this formulation the
posterior distribution of wi is formed based each user’s own data.

The opposite approach is to learn a common bandit model for all users. In this
approach, the reward model is a single Bayesian regression model with no individual-level
parameters:

(1)Ri,k = 𝜙(Si,k,Ai,k)
⊤wi + 𝜖i,k,

(2)𝜋i,k = Pr{𝜙(s, 1)⊤w̃i,k > 𝜙(s, 0)⊤w̃i,k}

R1,1 R1,2 R1,3 ...R1,T

ε1,1 ε1,2 ε1,3
...

ε1,T

w1

R2,1 R2,2 R2,3

ε2,1 ε2,2 ε2,3
...

...R2,T

ε2,T

w2

Fig. 1   Consider a setting with two users, here we show the relationship between select random variables
in our model: Ri,k the reward for user i at decision time k, �2

�i,k
 the noise for user i at time k and wi the latent

weight vector for user i. In Person-Specific we see that each user’s parameters are independent. Only the
prior parameter values are shared, all else is updated independently

2692	 Machine Learning (2021) 110:2685–2727

1 3

where the common parameters, w , follows the prior distribution w ∼ �(�w,�w) . See Fig. 2
for the graphical representation of this approach. We then use the posterior distribution
of the weight vector w to sample treatments for each user. Here the posterior is calcu-
lated based on the available data from all users observed up to and including time k. This
approach, which we refer to as Complete, may suffer from high bias when there is signifi-
cant heterogeneity among users.

3.4 � Intelligent pooling across bandit problems

IntelligentPooling is an alternative to the two approaches mentioned above. Specifically,
in IntelligentPooling data is pooled across users in an adaptive way, i.e., when there is
strong homogeneity observed in the current data, the algorithm will pool more from others
than when there is strong heterogeneity.

3.4.1 � Model specification

We model the reward associated with taking action Ai,k for user i at decision time k by
the linear model (1). Unlike Person-Specific where the person-specific weight vectors
{wi, i ∈ [N]} are assumed to be independent to each other, IntelligentPooling imposes
structure on the wi’s, in particular, a random-effects structure (Raudenbush and Bryk 2002;
Laird and Ware 1982):

where wpop is a population-level parameter and ui is a random effect that represents the
person-specific deviation from wpop for user i. The extent to which the posterior means for
wpop and ui are based on user i’s data relative to the population depends on the variances
of the random effects (for a stylized example of this see Sect. 3.5). In Sect. 6 we show how
we can modify this structure to include time-specific parameters, or a time-specific random
effect. A graphical representation for IntelligentPooling is shown in Fig. 3.

We assume the prior on wpop is Gaussian with prior mean �w and variance �w . ui is also
assumed to be Gaussian with mean � and covariance �u . Furthermore, we assume

(3)Ri,k = 𝜙(Si,k,Ai,k)
⊤w + 𝜖i,k.

(4)wi = wpop + ui,

R1,1 R1,2 R1,3 ...R1,T

ε1,1 ε1,2 ε1,3
...

ε1,T wpop

R2,1 R2,2 R2,3

...

...R2,T

ε2,1 ε2,2 ε2,3
...

ε2,T

Fig. 2   Consider a setting with two users, here we show the relationship between select random variables in
our model: Ri,k the reward for user i at decision time k, �k the noise at time k and wpop the latent weight vec-
tor. In Complete we see that each user’s parameters are the same. With each parameter update the weight
vector for every user is also updated

2693Machine Learning (2021) 110:2685–2727	

1 3

for i ≠ j and . The prior parameters �w,�w as well as the variance of the
random effect �u , and the residual variance �2

�
 are hyper-parameters. In (4), there is a the

random effect, ui on each element of wi . In practice, one can use domain knowledge to
specify which of the parameters should include random effects; this will be the case in the
feasibility study described in Sect. 6. Conditioned on the latent variables (wpop, ui) , as well
as the current context and action, the expected reward is

3.4.2 � Model connections to Gaussian processes

Under the Gaussian assumption on the distribution of the reward and prior, the Bayesian
linear model of the reward (1) together with the random effect model (4) can be viewed as
an example of Gaussian Process with a special kernel (see Eq. 5). We use this connection
to derive the posterior distribution and facilitate the hyper-parameter selection. An addi-
tional advantage of viewing the Bayesian mixed effects model as a Gaussian Process model
is that we can now flexibly redesign our reward model simply by introducing new kernel
functions. Here, we assume linear model with a person-specific random effects. In Sect. 6
we discuss a generalization to time-specific random effects. Additionally, one could adopt
non-linear kernels and incorporate more complex structures on the reward function.

3.4.3 � Posterior distribution of the weights on the feature vector

In the setting where both the prior and the linear model for the reward follow a Gauss-
ian distribution, the posterior distribution of wi follows a Gaussian distribution and there
are analytic expressions for these updates, as shown in (Williams and Rasmussen 2006).
Below we provide the explicit formula of the posterior distribution based on the connection
to a Gaussian Process regression. Suppose at the time of updating the posterior distribu-
tion, the available data collected from all current users is D , where D consists of n tuples of
state, action, reward and user index x = (s, a, r, i) . The mixed effects model (Eqs. 1 and 4)
induces a kernel function K. For any two tuples in D , e.g., xl = (sl, al, rl, il), l = 1, 2

Note that the above kernel depends on �w and �u (one of the hyper-parameters that will be
updated using empirical Bayes approach; see below). The kernel matrix � is of size n × n

E[Ri,k|wpop, ui, Si,k = s,Ai,k = a] = �(s, a)T (wpop + ui).

(5)K(x1, x2) = 𝜙(s1, a1)
⊤(𝛴w + 1{i1=i2}𝛴u)𝜙(s2, a2).

R1,1 R1,2 R1,3 ...R1,T

ε1,1 ε1,2 ε1,3
...

ε1,T

u1 wpop

R2,1 R2,2 R2,3

ε2,1 ε2,2 ε2,3
...

...R2,T

ε2,T

u2

Fig. 3   Consider a setting with two users, here we show the relationship between select random variables
in our model: Ri,k the reward for user i at decision time k, �i,k the noise for user i at time k, wpop the latent
weight vector and ui the random effect for user i. In IntelligentPooling we see that some parameters ( wpop )
are shared across the population which others ( ui ) are user specific

2694	 Machine Learning (2021) 110:2685–2727

1 3

and each element is the kernel value between two tuples in D . The posterior mean and vari-
ance of wi given the currently available data D can be calculated by

where R̃n is the vector of the rewards centered by the prior means, i.e., each element cor-
responds to a tuple (s, a, r, j) in D given by r − 𝜙(s, a)⊤𝜇w , and Mi is a matrix of size n by
p (recall p is the length of wi ), with each row corresponding to a tuple (s, a, r, j) in D given
by 𝜙(s, a)⊤(𝛴w + 1{j=i}𝛴u).

3.4.4 � Treatment selection

To select a treatment for user i at the kth decision time, we use the posterior distribution of
wi formed at the most recent update time T. That is, for the context Si,k of user i at the kth
decision time, IntelligentPooling selects the treatment Ai,k = 1 with the probability calcu-
lated in the same formula as in (2) but with a different posterior distribution as discussed
above.

3.4.5 � Setting hyper‑parameter values

Recall that the algorithm requires the hyper-parameters �w,�w , �u , and �2
�
 . The prior mean

�w and variance �w of the population parameter wpop can be set according to previous data
or domain knowledge (see Sect. 5 for a discussion on how the prior distribution is set in
the feasibility study). As we mention in Sect. 3.1, the variance components in the mixed
effects model impact how the users pool the data from others (see Sect. 3.5 for a discus-
sion) and might be difficult to pre-specify. IntelligentPooling uses, at the update times,
the empirical (Bayes Carlin and Louis 2010) approach to choose/update � = (�u, �

2
�
) based

on the currently available data. To be more specific, suppose at the time of updating the
hyper-parameters, the available data is D . We choose � to maximize l(�|D) , the marginal
log-likelihood of the observed reward, marginalized over the population parameters wpop
and the random effects ui . The marginal log-likelihood l(�|D) can be expressed as

where �(�) is the kernel matrix as a function of parameters � = (�u, �
2
�
) . The above opti-

mization can be efficiently solved using existing Gaussian Process regression packages; see
Sect. 4.2 for more details.

(6)
ŵi = 𝜇w +M⊤

i
(� + 𝜎2

𝜖
In)

−1R̃n

𝛴i = 𝛴w + 𝛴u −M⊤
i
(� + 𝜎2

𝜖
In)

−1Mi

(7)l(𝜆|D) = −
1

2

{
R̃⊤
n
[�(𝜆) + 𝜎2

𝜖
In]

−1R̃n + log det[�(𝜆) + 𝜎2
𝜖
In] + n log(2𝜋)

}

2695Machine Learning (2021) 110:2685–2727	

1 3

3.5 � Intuition for the use of random effects

IntelligentPooling uses random effects to adaptively pool users’ data based on the degree
to which users exhibit heterogeneous rewards. That is, the person-specific random effect
should outweigh the population term if users are highly heterogeneous. If users are highly
homogeneous, the person-specific random effect should be outweighed by the population
term. The amount of pooling is controlled by the hyper-parameters, e.g., the variance com-
ponents of the random effects.

To gain intuition, we consider a simple setting where the feature vector � in the reward
model (Eq. 1) is one-dimensional (i.e., p = 1 ) and there are only two users (i.e., i = 1, 2 ).
Denote the prior distributions of population parameter wpop by �(0, �2

w
) and the random

effect ui by �(0, �2
u
) . Below we investigate how the hyper-parameter (e.g., �2

u
 in this simple

case) impacts the posterior distribution.
Let ki be the number of decision time of user i at an updating time. In this simple set-

ting, the posterior mean of ŵ1 can be calculated explicitly:

where for i = 1, 2 , Ci =
∑ki

k=1
�(Ai,k, Si,k)

2 , Yi =
∑ki

k=1
�(Ai,k, Si,k)Ri,k , � = �2

w
∕(�2

w
+ �2

u
) and

� = �2
�
∕�2

w
 . Similarly, the posterior mean of w2 is given by

When �2
u
→ 0 (i.e., the variance of random effect goes to 0), we have � → 1 and both pos-

terior means ( ̂w1, ŵ2 ) approach the posterior mean under Complete (Eqn 3) using prior
�(0, �2

w
)

ŵ1 =
[𝛿𝛾 + (1 − 𝛾2)C2]Y1 + 𝛿𝛾2Y2

(1 − 𝛾2)C1C2 + 𝛿𝛾(C1 + C2) + (𝛿𝛾)2

ŵ2 =
[𝛿𝛾 + (1 − 𝛾2)C1]Y2 + 𝛿𝛾2Y1

(1 − 𝛾2)C1C2 + 𝛿𝛾(C1 + C2) + (𝛿𝛾)2

2696	 Machine Learning (2021) 110:2685–2727

1 3

Alternatively, when �2
u
→ ∞ , we have � → 0 and the posterior means ( ̂w1, ŵ2 ) each

approach their respective posterior means under Person-Specific (Eqn 1) using a non-
informative prior

Figure 4 illustrates that when � goes from 0 to 1, the posterior mean ŵi smoothly transitions
from the population estimates to the person-specific estimates.

3.6 � Regret

We prove a regret bound for a modification of IntelligentPooling similar to that in
Agrawal and Goyal 2012; Vaswani et al. 2017 in a simplified setting. Further details are
provided in Appendix 1. Let d be the length of the weight vector wi in the Bayesian mixed
effects model of the reward in Eq. 1. Recall that �w is the prior covariance of the weight
vector wpop , �u is the covariance of the random effect ui and �2

�
 is the variance of the error

term. Let Ki be the number of decision times for user i up to a given calendar time and
T =

∑N

i=1
Ki be the total number of decision times encountered by all N users in the study

up to the calendar time. We define the regret of the algorithm after T decision times by
R(T) =

∑N

i=1

∑Ki

k=1
maxa �(Si,k, a)

Twi − �(Si,k,Ai,k)
Twi.

Theorem 1  With probability 1 − � , where � ∈ (0, 1) the total regret of the modified Thomp-
son Sampling with IntelligentPooling after T total number of decision times is:

Remark  Observe that, up to logarithmic terms, this regret bound is Õ(dN
√
T) . Recall that

(Vaswani et al. 2017) introduces a similar regret bound for a Thompson Sampling algo-
rithm which utilizes user-similarity information. The bound from (Vaswani et al. 2017),

ŵ1, ŵ2 →
Y1 + Y2

C1 + C2 + 𝛿
.

ŵ1 →
Y1

C1

, ŵ2 →
Y2

C2

.

R(T) = Õ

�
dN

√
T

�

log
� (Tr(𝛴w) + Tr(𝛴u) + Tr(𝛴−1

u
))

d
+

T

𝜎2
𝜖
dN

�
log

1

𝛿

�

Fig. 4   The posterior mean
of wi , ŵ1 . As the variance of
random effect �2

u
 decreases, �

increases and the posterior mean
approaches the population-
informed estimation (Complete)
and departs from the person-
specific estimation (Person-
Specific).

2697Machine Learning (2021) 110:2685–2727	

1 3

Õ(dN
√
T∕𝜆) , additionally depends on a hyper-parameter � that is not included in our

model. In (Vaswani et al. 2017), � controls the strength of prior user-similarity informa-
tion. Instead of introducing a hyper-parameter our model follows a mixed effects Bayesian
structure which allows user similarities (as expressed in the extent to which users’ data is
pooled) to be updated with new data. Thus, in certain regimes of hyper-parameter � , Intel-
ligentPooling will incur much smaller regret, as demonstrated empirically in Sect. 4.3.

4 � Experiments

This work was conducted to prepare for deployment of IntelligentPooling in a live trial.
Thus, to evaluate IntelligentPooling we construct a simulation environment from a pre-
cursor trial, HeartStepsV1 (Klasnja et al. 2015). This simulation allows us to evaluate the
proposed algorithm under various settings that may arise in implementation. For example,
heterogeneity in the observed rewards may be due to unknown subgroups across which
users’ reward functions differ. Alternatively, this heterogeneity may vary across users in a
more continuous manner. We consider both scenarios in simulated trials. In Sects. 4.1-4.3
we evaluate the performance of IntelligentPooling against baselines and a state-of-the-art
algorithm. In Sect. 5 we assess feasibility of IntelligentPooling in a pilot deployment in a
clinical trial.

4.1 � Simulation environment

HeartStepsV1 was a 6-week micro-randomized trial of an Android-based physical activity
intervention with 41 sedentary adults. The intervention consisted of two push interven-
tions: planning and contextually-tailored activity suggestions. Activity suggestions acted
as action cues and were designed to provide users with actionable options for engaging
in short bouts of activity in their current situation. The content of the suggestions was tai-
lored based on the users’ location, weather, time of day, and day of the week. For each
individual, on each day of the study, the HeartSteps system randomized whether or not to
send an activity suggestion five times a day. The intended outcome of the suggestions—the
proximal outcome used to evaluate their efficacy—was the step count in the 30 minutes fol-
lowing suggestion randomization.

HeartStepsV1 data was used to construct all features within the environment, and to
guide choices such as how often to update the feature values. Recall that Si,k and Ri,k denote
the context features and reward of user i at the kth decision time. The reward is the log step
counts in the thirty minutes immediately following a decision time. In HeartStepsV1 three
treatment actions were considered: Ai,k = 1 corresponded to a smartphone notification con-
taining an activity suggestion designed to take 3 minutes to perform, Ai,k = 0 corresponded
to a smartphone notification containing an anti-sedentary message designed to take approx-
imately 30 seconds to perform and Ai,k = −1 corresponded to not sending a message. How-
ever, in the simulation only the actions 1, 0 are considered.

Figure 5 describes the simulation while Table 1 describes context features and rewards.
Each context feature in Table 1 was constructed from HeartStepsV1 data. For example,
we found that in HeartStepsV1 data splitting participants’ prior 30 minute step count into
the two categories of high or low best explained the reward. Additional details about this
process are included in Appendix 4.

2698	 Machine Learning (2021) 110:2685–2727

1 3

The temperature and location are updated throughout a simulated day according to
probabilistic transition functions constructed from HeartStepsV1. The step counts for a
simulated user are generated from participants in HeartStepsV1 as follows. We construct
a one-hot feature vector containing the group-ID of a participant, the time of day, the day
of the week, the temperature, the preceding activity level, and the location. Then for each
possible realization of the one-hot encoding we calculate the empirical mean and empiri-
cal standard deviation of all step counts observed in HeartStepsV1. The corresponding
empirical mean and empirical standard deviation from HeartStepsV1 form �Si,k

 �Si,k respec-
tively. At each 30 minute window, if a treatment is not delivered step counts are generated
according to

Fig. 5   Contextual features for a simulated User are composed of both general environmental features (such
as time of day) and individual features (such as location). At decision times a simulated user receives a
message determined by the current treatment policy. Periodically this policy is updated according to a
learning algorithm which outputs a new posterior distribution for each User 

Table 1   The value used in encoding each feature is shown in parentheses

For example cold (0) indicates that cold is coded as a 0 wherever this feature is used. A user’s state is
described as S

i,k = {1, time of day, day of the week, preceding activity level, location}

Name Value User Specific

Time of day Morning 9:00 and 15:00 (0)
Afternoon 15:00 and 21:00 (1)

No

Day of the week Weekday (0) or Weekend (1) No
Temperature Cold (0) or Hot (1) No
Preceding activity level Low (0) or High (1) Yes
Location Other (0) or Home/work (1) Yes
Intercept 1 Yes
Reward
Step count Continuous on log scale Yes

2699Machine Learning (2021) 110:2685–2727	

1 3

Heterogeneity This model, which we denote Heterogeneity, allows us to compare the
performance of the approaches under different levels of population heterogeneity. The step
count after a decision time is a modification of Eq. 8 to reflect the interaction between
context and treatment on the reward and heterogeneity in treatment effect. Let � be a vector
of coefficients of Si,k which weigh the relative contributions of the entries of Si,k that inter-
act with treatment on the reward. The magnitude of the entries of � are set using Heart-
StepsV1. Step counts ( Ri,k ) are generated as

The inclusion of Zi will allow us to evaluate the relative performance of each approach
under different levels of population heterogeneity. Let � l

i
 be the entry in �i correspond-

ing to the location term for the ith user. We consider three scenarios (shown in Table 6)
to generate Zi , the person-specific effect, and � l

i
 the location-dependent effect. The per-

formance of each algorithm under each scenario will be analyzed in Sect. 4.3. In the
smooth scenario, � is equal to the standard deviation of the observed treatment effects
[f (Si,k)

⊤𝛽 ∶ Si,k ∈ HEARTSTEPSV1] . The settings for all Zi and � l
i
 terms are discussed in

Sect. D.
In the bi-modal scenario each simulated user is assigned a base-activity level: low-activ-

ity users (group 1) or high-activity users (group 2). When a simulated user joins the trial
they are placed into either group one or two with equal probability. Whether or not it is
optimal to send a treatment (an activity suggestion) for user i at their kth decision time
depends both on their context, and on the values of z1, � l1 and z2, � l2 . The values of z1, � l1
and z2, � l2 are set so that for all users in group 1, it is optimal to send a treatment under
75% of the contexts they will experience. Yet for all users in group 2, it is only optimal to
send a treatment under 25% of the contexts they will experience. Group membership is not
known to any of the algorithms Table 2. The settings for all values in Table 6 are included
in Sect. D.

4.2 � Model for the reward function in IntelligentPooling

In Sect. 3 we introduced the feature vector �(Si,k,Ai,k) ∈ ℝ
p . This vector is used in the

model for the reward and transforms a user’s contextual state variables Si,k and the action
Ai,k as follows:

where Si,k = {1, time of day, day of the week, preceding activity level, location} . Recall that
the bandit algorithms produce �i,k which is the probability that Ai,k = 1 . The inclusion of

(8)Ri,k = �(�Si,k
, �2

Si,k
).

(9)Ri,k = �(�Si,k
, �2

Si,k
) + Ai,k(S

T
i,k
�i + Zi).

(10)�(Si,k,Ai,k)
T =

(
ST
i,k
,�i,kS

T
i,k
, (Ai,k − �i,k)Si,k

)
,

Table 2   Settings for Z in three cases of homogeneous, bimodal and smoothly varying populations

Homogeneous Bi-modal Smooth

Zi = 0 � l
i
=0

Z
i
, � l

i
=

{
z1, �

l

1
if i ∈ group one

z2, �
l

2
if i ∈ group two

Z
i
∼ N(0, �2) � l

i
∼ N(0, �2

l
)

2700	 Machine Learning (2021) 110:2685–2727

1 3

the term (Ai,k − �i,k)Si,k is motivated by Liao et al. 2016; Boruvka et al. 2018; Greenewald
et al. 2017, who demonstrated that action-centering can protect against mis-specification
in the baseline effect (e.g., the expected reward under the action 0). In HEARTSTEPSV1
we observed that users varied in their overall responsivity and that a user’s location was
related to their responsivity. In the simulation, we assume the person-specific random
effect on four parameters in the reward model (i.e., the coefficients of terms in S involving
the intercept and location).

Finally, we constrain the randomization probability to be within [0.1, 0.8] to ensure con-
tinual learning. The update time for the hyper-parameters is set to be every 7 days. All
approaches are implemented in Python and we implement GP regression with the software
package (GPytorch Gardner et al. 2018).

4.3 � Simulation results

In this section, we compare the use of mixed effects model for the reward function
in INTELLIGENTPOOLING to two standard methods used in mHealth, COMPLETE and
PERSON − SPECIFIC from Sect. 3.3. Recall that IntelligentPooling includes person-spe-
cific random effects, as described in Eq. 14. In PERSON − SPECIFIC , all users are assumed
to be different and there is no pooling of data and in COMPLETE , we treat all users the same
and learn one set of parameters across the entire population.

Additionally, to assess IntelligentPooling’s ability to pool across users we compare
our approach to Gang of Bandits (Cesa-Bianchi et al. 2013), which we refer to as Gan-
gOB. As this model requires a relational graph between users, we construct a graph using
the generative model (9) and Table 6 connecting users according to each of the three set-
tings: homogeneous, bi-modal and smooth. For example, with knowledge of the generative
model users can be connected to other users as a function of their Zi terms. As we will not
have true access to the underlying generative model in a real-life setting we distort the true
graph to reflect this incomplete knowledge. That is we add ties to dissimilar users at 50% of
the strength of the ties between similar users.

From the generative model (9), the optimal action for user i at the kth decision time is
a∗
i,k

= 1{ST
i,k
�∗
i
+Zi≥0}

 . The regret is

where �∗
i
 is the optimal � for the ith user.

In these simulations each trial has 32 users. Each user remains in the trial for 10 weeks
and the entire length of the trial is 15 weeks, where the last cohort joins in week six. The
number of users who join each week is a function of the recruitment rate observed in
HEARTSTEPSV1 . In all settings we run 50 simulated trials.

First, Fig. 6 provides the regret averaged across all users across 50 simulated trials
where the reward distribution follows (9) for each of the Table 6 categories. The horizontal
axis in Fig. 6 is the average regret over all users in their nth week in the trial, e.g. in their
first week, their second week, etc. In the bi-modal setting there are two groups, where all
users in group one have a positive response to treatment when experiencing their typical
context, while the users in group two have a negative response to treatment under their typ-
ical context. An optimal policy would learn to not typically send treatments to users in the
first group, and to typically send them to users in the second. To evaluate each algorithm’s

(11)regreti,k = |ST
i,k
�∗
i
+ Zi|1{a∗

i,k
≠Ai,k}

2701Machine Learning (2021) 110:2685–2727	

1 3

ability to learn this distinction we show the percentage of time each group received a mes-
sage in Table 3.

The relative performance of the approaches depends on the heterogeneity of the popula-
tion. When the population is very homogenous Complete excels, while its performance suf-
fers as heterogeneity increases. Person-Specific is able to personalize; as shown by Table 3,
it can differentiate between individuals. However, it learns slowly and can only approach
the performance of Complete in the smooth setting of Table 6 where users differ the most
in their response to treatment. Both IntelligentPooling and GangOB are more adaptive
than either Complete or Person-Specific. GangOB consistently outperforms Person-Spe-
cific and achieves lower regret than Complete in some settings. In the homeogenous setting
we see that GangOB can utilize social information more effectively than Person-Specific
does while in the smooth setting it can adapt to individual differences more effectively
than Complete. Yet, IntelligentPooling demonstrates stronger and swifter adaptability
than does GangOB, consistently achieving lower regret at quicker rates. Finally, the algo-
rithms differ in their suitability for real-world applications, especially when data is limited.

Fig. 6   Heterogeneity generative model Regret averaged across all users for each week in the trial, i.e. aver-
age regret of all users in their first week of the trial

Table 3   The fraction of time that messages were sent to users in each group

Recall at each decision time either an activity suggestion or anti-sedentary message is sent. For group one
it is typically optimal to send an activity suggestion, while for group two it is typically optimal to send an
anti-sedentary message. Here, IntelligentPooling is best able to learn this dynamic

Group one optimal policy = send activ-
ity suggestion

Group two optimal policy =
send anti-sedentary message

Complete 0.49 0.46
Person-specific 0.65 0.49
GangOB 0.57 0.35
Intelligent-Pooling 0.59 0.36

2702	 Machine Learning (2021) 110:2685–2727

1 3

GangOB requires reliable values for hyper-parameters and can depend on fixed knowledge
about relationships between users. IntelligentPooling can learn how to pool between indi-
viduals over time and without prior knowledge.

5 � IntelligentPooling feasibility study

The simulated experiments provide insights into the potential of this approach for a live
deployment. As we see reasonable performance in the simulated setting, we now discuss an
initial pilot deployment of IntelligentPooling in a real-life physical activity clinical trial.

5.1 � Feasibility study design

The feasibility study of IntelligentPooling involves 10 participants added to a larger
90-day clinical trial of HeartSteps v2, an mHealth physical activity intervention. The pur-
pose of the larger clinical trial is to optimize the intervention for individuals with Stage
1 hypertension. Study participants with Stage 1 hypertension were recruited from Kaiser
Permanente Washington in Seattle, Washington. The study was approved by the institu-
tional review board of the Kaiser Permanente Washington Health Research Institute (under
number 1257484-14).

HeartSteps v2 is a cross-platform mHealth application that incorporates several inter-
vention components, including weekly activity goals, feedback on goal progress, planning,
motivational messages, prompts to interrupt sedentary behavior, and—most relevant to
this paper—actionable, contextually-tailored suggestions for individuals to perform a short
physical activity (suggesting, roughly, a 3 to 5 minute walk). In this study physical activity
is tracked with a commercial wristband tracker, the Fitbit Versa smart watch.

In this version of the intervention, activity suggestions are randomized five times per
day for each participant on each day of the 90-day trial. These decision times are specified
by each user at the start of the study, and they roughly correspond to the participant’s typi-
cal morning commute, lunch time, mid-afternoon, evening commute, and after dinner peri-
ods. The treatment options for activity suggestions are binary: at a decision time, the sys-
tem can either send or not send a notification with an activity suggestion. When provided,
the content of the suggestion is tailored to current sensor data (location, weather, time of
day, and day of the week). Examples of these suggestions are provided in Klasnja et al.
2018. At a decision time, activity suggestions are randomized only if the system considers
that the user is available for the intervention—i.e., that it is appropriate to intervene at that
time (see Fig. 8 for criteria used to determine if it is appropriate to send an activity sug-
gestion at a decision time). Subject to these availability criteria, IntelligentPooling deter-
mines whether to send a suggestion at each decision time. The posterior distribution was
updated once per day, prior to the beginning of each day. Figure 7 provides a schematic of
the feasibility study.

The feasibility study included the second set of 10 participants in the trial of Heart-
Steps v2, following the initial 10 enrolled participants. IntelligentPooling (Algorithm 1)
is deployed for each of the second set of 10 participants. At each decision time for these
10 participants, IntelligentPooling uses all data up to that decision time (i.e. from the
initial ten participants as well as from the subsequent ten participants). Thus the feasibility
study allows us to assess performance of IntelligentPooling after the beginning of a study
instead of the performance at the beginning of the study (when there is little data) or the

2703Machine Learning (2021) 110:2685–2727	

1 3

performance at the end of the study (when there is a large amount of data and the algorithm
can be expected to perform well).

In the feasibility study, the features used in the reward model were selected to be predic-
tive of the baseline reward and/or the treatment effect, based on the data analysis of Heart-
StepsV1; see Sect. 6.2 in (Liao et al. 2020) for details. All features used in the reward
model are shown in Table 4. The feature engagement represents the extent to which a user
engages with the mHealth application measured as a function of how many screen views
are made within the application within a day. The feature dosage represents the extent to
which a user has received treatments (activity suggestions). This feature increases and
decreases depending on the number of activity suggestions recently received. The fea-
ture location refers to whether a user is at home or work (encoded as a 1) or somewhere
else (encoded as a 0). The temperature feature value is set according to the temperature
at a user’s current location (based off of phone GPS). The variation feature value is set
according to the variation in step count in the hour around that decision point over the prior
seven-day period. As before we construct a feature vector � , however here we only use
select terms to estimate the treatment effect. Here,

(12)�(Si,k,Ai,k)
T =

(
ST
i,k
,�i,kS

�T
i,k
, (Ai,k − �i,k)S

�
i,k

)
,

Fig. 7   Setup of FeasibilityStudy. Users can receive treatments up to five times a day during the 90 days.
Users enter the trial asynchronously

A user is available to receive an activity suggestion under the following conditions:

– She is not currently active and has not had a large amount of activity in the last two
hours.

– She has not recently received a notification with a HeartSteps intervention.
– Her phone has an internet connection and can communicate with the HeartSteps server.
– Her smart watch has been able to communicate with the HeartSteps server in the last

ten minutes to provide the current location and step count data.

Fig. 8   Availability criteria

2704	 Machine Learning (2021) 110:2685–2727

1 3

where S
i,k = {1, temperature, yesterday’s step count, preceding activity level, step variation,

step variation, engagement, dosage, location} and S
�
i,k

= {1, step variation, engagement, dosage, location}
is a subset of Si,k.

We provide a full description of these features in Sect. E. The prior distribution was also
constructed based on HeartStepsV1; see Sect. 6.3 in (Liao et al. 2020) for more details.
As this feasibility study only includes a small number of users, a simple model with only
two person-specific random effects, each on the intercept term in S and S′ (Eq. 12) was
deployed.

Here we discuss how much data we have to personalize the policy to each user. Recall
the 10 users only receive interventions when they meet the availability criteria outlined in
Fig. 8, thus we find that in practice we have a limited number of decision points to learn
a personalized policy from. In the case of perfect availability, we would have at most 450
decision points per person. However due to the criteria in Fig. 8, the algorithm is used with
only approximately 23% of each user’s decision points. Pooling users’ data allows us to
learn more rapidly. On the day that the first pooled user joined the feasibility study there
were 107 data points from the first set of 10 users.

The 10 users received an average number of .20 ( ±0.015 ) messages a day. The aver-
age log step count in the 30-minute window after a suggestion was sent was 4.47, while
it was 3.65 in the 30-minute windows after suggestions were not sent. Figure 9 shows the
entire history of treatment selection probabilities for all of the users who received treat-
ment according to IntelligentPooling. We see that the treatment probabilities tended to be
low, though they covered the whole range of possible values.

We would like to assess the ability of IntelligentPooling to personalize and learn
quickly. To do so we perform an analysis of the learning algorithms of IntelligentPooling,
Complete and Person-Specific on batch data containing tuples of (S, A, R). Note that the
actions in this batch data were selected by IntelligentPooling, however, here we are not
interested in the action selection components of each algorithm but instead on their ability
to learn the posterior distribution of the weights on the feature vector.

Personalization By comparing how the decisions to treat under IntelligentPooling
differ from those under Complete, we gather preliminary evidence concerning whether

Table 4   State feature descriptions for FeasibilityStudy 

State Features

Name Value User specific Included in
treatment
effect

Temperature Continuous Yes No
Yesterday’s step count Continuous Yes No
Prior 30-minute step count Continuous Yes No
Step variation level Discrete Yes Yes
Engagement with mobile application Discrete Yes Yes
Dosage Continuous Yes Yes
Location Discrete Yes Yes
Intercept 1 Yes Yes
Reward
Step count Continuous on log scale Yes NA

2705Machine Learning (2021) 110:2685–2727	

1 3

IntelligentPooling personalizes to users. Figure 10 shows the posterior mean of the coeffi-
cient of the Ai,k term in the estimation of the treatment effect, for all users in the feasibility
study on the 90th day after the last user joined the study. We show this term not only for
IntelligentPooling but also for Complete and Person-Specific. We see that for some users
this coefficient is below zero while for others it is above. While the terms under Intelli-
gentPooling differ from Complete they do not vary as much as those learned by Person-
Specific. Yet, crucially, the variance is much lower for these terms.

Figure 11 displays the posterior mean of the coefficient of the Ai,k term in the estimation
of the treatment effect. This coefficient represents the overall effect of treatment on one of
the users, User A. During the prior 7 days User A had not experienced much variation in
activity at this time and the user’s engagement is low. Note that the treatment appears to
have a positive effect on a different user, User B, in this context whereas on User A there is
little evidence of a positive effect. If Complete had been used to determine treatment, User
A might have been over-treated.

Speed of policy learning We consider the speed at which IntelligentPooling diverges
from the prior, relative to the speed of divergence for Person-Specific. Figure 12 provides
the Euclidean distance between the learned posterior and prior parameter vectors (averaged
across the data from the 10 users at each time). From Fig. 12 we see that Person-Specific

Fig. 9   We see that Intelligent-
Pooling covers the full range of
treatment selection probabilities.
The tendency seems to be to send
with a lower rather than higher
probability

Fig. 10   Posterior mean and
standard deviation of the coeffi-
cient of Ai,k in Eq. 12 for all users
in the feasibility study

2706	 Machine Learning (2021) 110:2685–2727

1 3

hardly varies over time in contrast to IntelligentPooling and Complete, which suggests
that Person-Specific learns more slowly.

In conclusion IntelligentPooling was found to be feasible in this study. In particular
the algorithm was operationally stable within the computational environment of the study,
produced decision probabilities in a timely manner, and did not adversely impact the func-
tioning of the overall mHealth intervention application. Overall, IntelligentPooling pro-
duced treatment selection probabilities which covered the full range of available probabili-
ties, though treatments tended to be sent with a low probability.

6 � Non‑stationary environments

An additional challenge in mHealth settings is that users’ response to treatment can vary
over time. To address this challenge we show that our underlying model can be extended to
include time-varying random effects. This allows each policy to be aware of how a user’s
response to treatment might vary over time. We propose a new simulation to evaluate this
approach and show that IntelligentPooling achieves state-of-the-art regret, adjusting to
non-stationarity even as user populations vary from heterogenous to homogenous.

Fig. 11   Posterior mean of the
coefficient of Ai,k in Eq. 12 for
users A and B in the feasibility
study

Fig. 12   Mean squared distance
of the posterior mean from prior
mean of the coefficients of Ai,k

2707Machine Learning (2021) 110:2685–2727	

1 3

6.1 � Time‑varying random effect

In addition to user-specific random effects we extend our model to include time-specific
random effects. Consider the Bayesian mixed effects model with person-specific and time-
varying effects: for user i at the kth decision time,

In addition, we impose the following additive structure on the parameters wi,k:

where wpop is the population-level parameter, ui represents the person-specific deviation
from wpop for user i and vk is the time-varying random effects allowing wi,k to vary with
time in the study.

The prior terms for this model are as introduced in Sect. 3.4. Additionally, vk has mean
� and covariance Dv . The covariance between two relative decision times in the trial is
Cov(vk, vk�) = �(k, k�)Dv , where �(k, k�) = exp(−dist(k, k�)2∕��) for a distance function, dist
and . There is no change to Algorithm 1 except that now the algorithm
would select the action based on the posterior distribution of wi,k , which depends on both
the user and time in the study.

6.2 � Experiments

We now modify our original simulation environment so that users’ responses will vary
over time. To do so we introduce the generative model Disengagement. This genera-
tive model captures the phenomenon of disengagement. That is as users are increasingly
exposed to treatment over time they can become less responsive. This model adds a fur-
ther term to (9), Ai,kX

T
w
�w where Xw is defined as follows. Let wi,k be the highest num-

ber of weeks user i has completed at time k; Xw encodes a user’s current week in a trial,
Xw = [1{wi,k=0}

,… ,1{wi,k=11}
] . We set �w such that the longer a user has been in treatment,

the less they respond to a treatment message. When a simulated user is at a decision time
the user will receive a treatment message according to whichever RL policy is being run
through the simulation.

In order to evaluate the effectiveness of our time-varying model we compare to Time-
Varying Gaussian Process Thompson Sampling (TV-GP) (Bogunovic et al. 2016). This
approach incorporates temporal information for non-stationary environments and was
shown to be competitive to stationary models. To compare this method to Intelligent-
Pooling we use a linear kernel for the spatial component. We then modify Eq. 6 to com-
pute the posterior distribution by removing the random-effects and modifying the kernel
(Eq. 5) to include the temporal terms introduced in (Bogunovic et al. 2016).

Figure 13 provides the regret averaged across all users across 50 simulated trials where
the reward distribution follows generative model DISENGAGEMENT . As before the hori-
zontal axis in Fig. 13 is the average regret over all users in their nthweek in the trial, e.g.
in their first week, their second week, etc. In Disengagement, the time-specific response to
treatment is set so that a negative response to treatment is introduced in the seventh week
of the trial.

In the Disengagement condition as users become increasingly less responsive to treat-
ment good policies should learn to treat less. Thus, Table 5 provides the average number

(13)Ri,k = 𝜙(Si,k,Ai,k)
⊤wi,k + 𝜖i,k.

(14)wi,k = wpop + ui + vk,

2708	 Machine Learning (2021) 110:2685–2727

1 3

of times a treatment is sent in the last week of the trial for both the first and last cohort. We
expect that a policy which learns not to treat will treat less often in the last week of the last
cohort than in the last week of the first cohort.

7 � Limitations

A significant limitation with this work is that our pilot study involved a small number of
participants. Our results from this work must be considered with caution as preliminary
evidence towards the feasibility of deploying IntelligentPooling, and bandit algorithms in
general, in mHealth settings. Moreover, we cannot claim to provide generalizable evidence
that this algorithm can improve health outcomes; for this larger studies with more partici-
pants must be run. We offer our findings as motivation for such future work.

Our proposed model is designed to overcome the challenges faced when learning per-
sonalized policies in limited data settings. As such, if data was abundant our model would
likely have limited effectiveness compared to more complex models. For example, a more
complex model could allow us to pool between users as a function of their similarity. Our

Fig. 13   Disengagement generative model Regret averaged across all users for each week in the trial, i.e.
average regret of all users in their first week of the trial

Table 5   Average fraction
of times treatment was sent
(action=1), over 50 simulations
(generative model Heterogeneity
with homogenous Zh setting)

Cohort one week 10 Cohort
six week
10

Complete 0.62 0.44
Person-specific 0.76 0.59
HordeOB- 0.50 0.57
TV-GP 0.64 0.31
Intelligent-Pooling 0.30 0.06

2709Machine Learning (2021) 110:2685–2727	

1 3

current model instead determines the extent to which a given user deviates from the popu-
lation and does not consider between-user similarities. A limitation with our current under-
standing of mHealth is that it is unclear what a good similarity measure would be. We
leave the question of designing a data-efficient algorithm for learning such a measure as
future work.

A component of IntelligentPooling is the use of empirical Bayes to update the model
hyper-parameters. Here, we used an approximate procedure. However, with our model it is
possible to produce exact updates in a streaming fashion and we are currently developing
such an approach.

Ideally, we would evaluate IntelligentPooling against all other approaches in a clinical
trial setting. However, here we only demonstrated the feasibility of our approach on a lim-
ited number of users and did not have the resources to similarly test the other approaches.
To overcome this limitation we constructed a realistic simulation environment so that we
could evaluate on different populations without the costly investment of designing multiple
arms of a real-life trial. While the simulated experiments and the feasibility study together
demonstrate the practicality of our approach, in future work one might deploy all potential
approaches in simultaneous live trials.

Finally, IntelligentPooling can incorporate a time-specific random effect to capture
the phenomenon of responsivity changing over the course of a study. There is much to
be improved with this model. For example, the first cohort in a study will not have prior
cohorts to learn from, and the final cohort will have the greatest amount of data to ben-
efit from. Other models might treat different cohorts with greater equality. Furthermore,
this representation does not incorporate alternative temporal information, such as continu-
ally shifting weather patterns, where temperatures might change slowly and gradually alter
one’s desire to exercise outside.

8 � Conclusion

When data on individuals is limited a natural tension exists between personalizing (a
choice which can introduce variance) and pooling (a choice which can introduce bias). In
this work we have introduced a novel algorithm for personalized reinforcement learning,
IntelligentPooling that presents a principled mechanism for balancing this tension. We
demonstrate the practicality of our approach in the setting of mHealth. In simulation we
achieve improvements of 26% over a state-of-the-art-method, while in a live clinical trial
we show that our approach shows promise of personalization on even a limited number of
users. We view adaptive pooling as a first step in addressing the trade-offs between person-
alization and pooling. The question of how to quantify the benefits and risks for individual
users is an open direction for future work.

Appendix 1: Regret bound

In this section we prove a high probability regret bound for a modification of Intelligent-
Pooling in a simplified setting. We modify the Thompson sampling algorithm in Intel-
ligentPooling by multiplying the posterior covariance by a tuning parameter, follow-
ing Agrawal and Goyal (2012). This is mainly due to the technical reasons; see Abeille
and Lazaric (2017) for a discussion. We also simplify the setting in this regret analysis.

2710	 Machine Learning (2021) 110:2685–2727

1 3

Specifically, we assume that the posterior distribution of all users is updated after every
decision time and the hyper-parameters are fixed throughout the study.

Vaswani et al. (2017) also provided a regret bound for the Thompson Sampling Horde of
Bandits algorithm where the data is pooled using a known, prespecified, social graph. Vas-
wani et al. (2017) employ the conceptual framework of Agrawal and Goyal (2012) which
uses the concept of saturated and unsaturated arms to bound the regret. They show that the
regret for playing an arm from the unsaturated set (which includes the optimal arm) can
be bounded by a factor of the standard deviation which decreases over time. Additionaly,
they show that the probability of playing a saturated arm is small, so that an unsaturated
arm will be played at each time with some constant probability. Vaswani et al. (2017) fol-
low this argument, but adapt their proof to include the prior covariance of the social graph
in the bound of the variance. Our proof follows along similar lines with the primary dif-
ference being how the prior covariance of all parameters is formulated. Specifically, the
prior variance in Vaswani et al. (2017) is constructed by the Laplacian matrix of the social
graph, whereas ours is constructed based on the Bayesian mixed effects model (4). As a
result, while in Vaswani et al. (2017) the regret bound is stated in terms of properties of the
social graph, our bound depends on properties of our mixed effects model (i.e., the covari-
ance matrix of the random effects).

Recall that �w is the prior covariance of the weight vector wpop , �u is the covariance of
the random effect ui and �2

�
 is the variance of the error term. We assume that both wpop and

ui have the same dimensions and that �u is invertible. Additionally, for simplicity of pres-
entation we assume that the largest eigenvalue in �w is at most d and the largest eigenvalue
of �u is at most dN.

Recall that Theorem 1 bounds the regret of IntelligentPooling at time T by:

with probability 1 − �.

Proof sketch of Theorem 1  We align the decision times from all users by the calendar time.
Specifically, for a given time t, we retrieve the user index encountered at time t by i(t)
and retrieve this user’s decision time index by k(t). IntelligentPooling selects an action
Ai(t),k(t) ∈ A for time t ∈ [1,… , T] . We denote the selected action at time t by At.

In this setting, we combine each user specific variable into a global shared variable.
Recall that a feature vector �(Ai,k, Si,k) encodes contextual variables for the action and state
of user i at their kth decision time. For simplicity, we denote by At the action Ai(t),k(t) at time
t and denote the vector �(Ai(t),k(t), Si(t),k(t)) at time t by �At ,t

 . Additionally, we let �a,t refer to
�(a, Si(t),k(t)) for any a ∈ A . We introduce a sparse vector �At ,t

∈ ℝ
dN , which contains �At ,t

vector among N d-dimensional vectors, the rest of which are zeros .

In proving the regret we consider the equivalent way of selecting the action. Instead of
randomizing the action by the probability, here to select an action we assume the algorithm
draws a sample w̃t = w̃i(t),k(t) and then selects the action At = Ai(t),k(t) = argmax

a∈A

𝜙T
a,t
w̃t that

maximizes the sampled reward. Analogously to �a,t , we define �̂t and �̃t as the sparse vec-
tors which contain ŵi(t),k(t) and w̃i(t),k(t) respectively as the i(t)-th vector among Nd-dimen-
sional vector, the rest of which are zeros.

We concatenate the person-specific parameters wi into � ∈ ℝ
dN . Let the prior covari-

ance of � be 𝛴0 = �N×N ⊗𝛴w + �N ⊗𝛴u . At time t, all contexts observed thus far, for all

R(T) = Õ

�
dN

√
T

�

log
� (Tr(𝛴w) + Tr(𝛴u) + Tr(𝛴−1

u
))

d
+

T

𝜎2
𝜖
dN

�
log

1

𝛿

�

2711Machine Learning (2021) 110:2685–2727	

1 3

users, can be combined into one matrix �t ∈ ℝ
t×dN where a single row s corresponds to

�as,s
 , the sparse context vector associated with the action As taken for user i(s) at their k(s)-

th decision time. Let, 𝛺t =
1

𝜎2
𝜖

𝛷⊤
t
𝛷t + 𝛴0 . At each decision time t we draw a feature vector

�̃t ∼ N(�̂t, v
2
t
𝛺−1

t
).

Now, within this framework, we rewrite the instantaneous regret as
𝛥t = �⊤

a∗t ,t
�t − �⊤

At ,t
�t . We prove that with high probability both �⊤

a,t
�̂t and �⊤

a,t
�̃t are con-

centrated around their respective means. The standard deviation around the reward at deci-
sion time t for action a is thus sa,t =

√
�⊤
a,t𝛺

−1
t−1

�a,t . We proceed as in Agrawal and Goyal
(2012), Vaswani et al. (2017) by bounding three terms, the event E�t , the event E�t and ∑T

t=1
s2
At ,t

Definition 1  Let �−1
umin

 be the inverse of the smallest eigenvalue of �u , �umax be the largest
eigenvalue of �u , �pmax be the largest eigenvalue of �w and let �max = �umax + �pmax . We
assume that �umax ≤ dN and �pmax ≤ d.

Definition 2  For all a , define 𝜃a,t = �⊤
a,t
�̃t.

Definition 3 
Definition 4  Define E�t and E�t as the events that �⊤

t
�̂t and �At ,t

 are concentrated around
their respective means. Recall that |A| is the total number of actions. Formally, define E�t
as the event that

Define E�t as the event that

Let � =
1

4e
√
�
 . Given that the events E�t and E�t hold with high probability, we follow an

argument similar to Lemma 4 of Agrawal and Goyal (2012) and obtain the following
bound:

To bound the variance of the selected actions,
∑T

t=1
sAt ,t

 , we follow an argument similar to
Vaswani et al. (2017), and include the prior covariance terms of our model. We prove the
following inequality:

lt =

�

dNlog
�
1 +

�max�
−1
umin

�
+

t�−1
umin

dN�

�
+
�

N�pmax + �umax

vt = 2

�

dNlog
�
1 +

�max�
−1
umin

�
+

t�−1
umin

dN�

�

gt = min{
√
4dNln(t),

√
4ln(�A�t)}vt + lT .

∀a ∶ |�⊤
a,t
�̂t − �⊤

a,t
�| ≤ ltsa,t.

∀a ∶ |𝜃At ,t
− �⊤

At ,t
�̂t| ≤ min{4dNlog(t), 4log(|A|t)}vtsa,t.

(15)R(T) ≤
3gT

�

T�

t=1

sAt ,t
+

2gT

�

T�

t=1

1

t2
+ 6gT

√
�A�Tlog(2∕�).

(16)
T�

t=1

sAt ,t
≤
√
dNT

�

C
�
log

� (Tr(�w) + Tr(�u) + Tr(�−1
u
))

d
+

T

�2
�
dN

��
,

2712	 Machine Learning (2021) 110:2685–2727

1 3

where C is a constant equal to �−1
umin

log(1+
�−1
umin

�2�

)

 . By combining Eqs. 15 and 16 we obtain the

bound given in Theorem 1. 	� ◻

Appendix 2: Supporting Lemmas

Definition 5  Recall that at time t we define as Dt as the history of all observed states,
actions, and rewards up to time t. Define filtration Ft−1 as the union of history until
time t − 1 , and the contexts at time t, i.e., Ft−1 = {Dt−1,�a,t, a ∈ A}. By definition,
F1 ⊆ F2⋯ ⊆ Ft−1 . The following quantities are also determined by the history Dt−1 and
the contexts, �a,t and are included in Ft−1.

•	 �̂t,𝛺t−1

•	 sa,t∀a

•	 the identity of the optimal action a∗
t

•	 whether E�
t
 is true or not

•	 the distribution of N(�̂t, v
2
t
𝛺−1

t−1
)

Note that the actual action At which is selected at decision point t is not included in Ft−1.
We now address the lemmas used in the proof which differ from Agrawal and Goyal
(2012), Vaswani et al. (2017).

Lemma 1  For � ∈ (0, 1) :

Proof  The true reward at time t, Rt = �⊤
At ,t

� + 𝜖t. Let, 𝛺t�̂t =
��

𝜎2
𝜖

 . Define �t−1 =
∑t−1

l=1
�l�al ,l

.

The following holds for all a:

Pr(E�t) ≥ 1 −
�

2

�t−1 =

t−1∑

l=1

(Rl − �⊤
al ,l
�)�al ,l

=

t−1∑

l=1

(Rl�al ,l
− �al ,l

�⊤
al ,l
�)

�t−1 = bt−1 −

t−1∑

l=1

(�al,l
�⊤
al ,l
�) = bt−1 − 𝜎2

𝜖
(𝛺t−1�̂t −𝛺t−1� + 𝛴0�)

�̂t − � = 𝛺−1
t−1

(�t−1
𝜎2
𝜖

− 𝛴0�
)
.

��⊤
a,t
�̂t − �⊤

a,t
�� = ��⊤

a,t
(�̂t − �)�

≤ ���a,t𝛺
−1
t−1

��t−1
𝜎2
𝜖

− 𝛴0�
���

≤ ‖�a,t‖𝛺−1
t−1

����
�t−1

𝜎2
𝜖

− 𝛴0�
���𝛺−1

t−1

�
.

2713Machine Learning (2021) 110:2685–2727	

1 3

By the triangle inequality,

We now bound the term ‖�0�‖�−1
t−1

 . Recall that the prior covariance of
�,𝛴0 = �N×N ⊗𝛴w + �N ⊗𝛴u.

For bounding ‖�a,t‖�−1
t−1

 , note that

We can thus write Eq. 17

We now bound ‖‖‖�t−1
‖‖‖�−1

t−1

.

Theorem 2  For any d > 0, t ≥ 1 , with probability at least 1 − �,

For any n × n matrix A, det(A) ≤
(
Tr(A)

n

)n . This implies, log(det(A)) ≤ nlog
(
Tr(A)

n

)
 .

Applying this inequality for both �t and �−1
0

 , we obtain:

(17)��⊤
a,t
�̂t − �⊤

a,t
�� ≤

����
�t−1

𝜎2
𝜖

���𝛺−1
t−1

+ ‖𝛴0�‖𝛺−1
t−1

�

𝜈max(𝛴0) = 𝜈max(�N×N ⊗𝛴w + �N ⊗𝛴u)

= 𝜈max(�N×N) ⋅ 𝜈max(𝛴w) + 𝜈max(�N) ⋅ 𝜈max(𝛴u)

= N𝜈max(𝛴w) + 𝜈max(𝛴u)

= N𝜎pmax + 𝜎umax

‖𝛴0�‖𝛺−1
t−1

≤ ‖𝛴0�‖𝛴−1
0

=

�
�𝛴⊤

0
𝛴−1

0
𝛴0� =

�
�⊤𝛴0�

≤
√
𝜈max(𝛴0)‖�‖2

≤
√
𝜈max(𝛴0)

≤

�
N𝜎pmax + 𝜎umax

‖�a,t‖𝛺−1
t−1

=

�
�⊤
a,t𝛺

−1
t−1

�a,t = sa,t.

(18)��⊤
a,t
�̂t − �⊤

a,t
�� ≤ sa,t

�
1

𝜎𝜖

����t−1
���𝛺−1

t−1

+
√
n𝜎pmax + 𝜎umax

�

‖‖‖�t−1
‖‖‖
2

�−1
t−1

≤ 2�2
�
log

(det�t

1

2 det�0

−1

2

�

)

≤ 2�2
�

(
log(det�t

1

2) + log(det�0

−1

2) − log(�)
)

≤ �2
�

(
log(det�t) + log(det�0

−1) − 2log(�)
)
.

(19)‖‖‖�t−1
‖‖‖�−1

t−1

≤ dN�2
�

(
log

(Tr(�t)

dN

)
+ log

(Tr(�−1
0
)

dN

)
−

2

dN
log(�)

)

2714	 Machine Learning (2021) 110:2685–2727

1 3

Next, we use the fact that

We now return to Eq. 19

	� ◻

Lemma 2  With probability 1 − �

2
,

Proof  Let Zl and Yt be defined as follows:

Hence, Yt is a super-martingale process:

𝛺t = 𝛴0 + 𝛴 t
l=1

�al ,l
�⊤
al ,l

⇒ Tr(𝛺t) ≤ Tr(𝛴0) + t

Tr(𝛴0) = Tr(�N×N ⊗𝛴w + �N ⊗𝛴u)

= Tr(�N×N) ⋅ Tr(𝛴w) + Tr(�N) ⋅ Tr(𝛴u)

= NTr(𝛴w) + NTr(𝛴u) = N(Tr(𝛴w) + Tr(𝛴u))

‖‖‖�t−1
‖‖‖
2

𝛺−1
t−1

≤ dN𝜎2
𝜖

(
log

(Tr(𝛴0) + t

dN

)
+ log

(Tr(𝛴−1
0
)

dN

)
−

2

dN
log(𝛿)

)

≤ dN𝜎2
𝜖

(
log

(Tr(𝛴0)Tr(𝛴
−1
0
) + tTr(𝛴−1

0
)

d2N2

)
− log(𝛿

2

dN)
)

= dN𝜎2
𝜖

(
log

(Tr(𝛴0)Tr(𝛴
−1
0
) + tTr(𝛴−1

0
)

d2N2𝛿

))

≤ dN𝜎2
𝜖

(
log

(d2N2𝜎max𝜎
−1
umin

+ tdN𝜎−1
umin

d2N2𝛿

))

= dN𝜎2
𝜖

(
log

(𝜎max𝜎
−1
umin

𝛿
+

t𝜎−1
umin

dN𝛿

))

‖‖‖�t−1
‖‖‖𝛺−1

t−1

≤ 𝜎𝜖

√

dNlog
(𝜎max𝜎

−1
umin

𝛿
+

t𝜎−1
umin

dN𝛿

)

‖‖‖�t−1
‖‖‖𝛺−1

t−1

≤ 𝜎𝜖

√

dNlog
(
1 +

𝜎max𝜎
−1
umin

𝛿
+

t𝜎−1
umin

dN𝛿

)

|�⊤
a,t
�̂t − �⊤

a,t
�| ≤ sa,t

√

dNlog
(
1 +

𝜎max𝜎
−1
umin

𝛿
+

t𝜎−1
umin

dN𝛿

)
+
√

N𝜎pmax + 𝜎umax

≤ sa,tlt

(20)
T∑

t=1

regret(t) ≤

T∑

t=1

3gt

�
st +

T∑

t=1

2gt

� t2
st +

√√√√
2

T∑

t=1

36g2t

�2
ln(

2

�
)

Zl = regret(l) −
3gl

�
sl −

2gl

� l2
sl

Yl =

t∑

l=1

Zl

2715Machine Learning (2021) 110:2685–2727	

1 3

We now apply Azuma-Hoeffding inequality. We define Y0 = 0 . Note that |Yt − Yt−1| = |Zl|
is bounded by 1 + 3gl − 2gl . Hence, c = 6gt . Setting a =

�
2 ln(

2

�
)
∑T

t=1
c2t in the above

inequality, we obtain that with probability 1 − �

2
 ,

	� ◻

Lemma 3  (Azuma-Hoeffding). If a super-martingale Yt (with t ≥ 0) and its the correspond-
ing filtration Ft−1 , satisfies |Yt − Yt−1| ≤ ct for some constant c for all t = 1,… , T then for
any x ≥ 0:

Lemma 4 
∑T

t=1
sAt ,t

≤
√
dNT

�
C
�
log

�
(Tr(�w)+Tr(�u)+Tr(�

−1
u
))

d
+

T

�2
�
dN

��

For simplicity, we let sAt ,t
= st below.

�[Yt − Yt−1|Ft−1] = �[Zt] = �[regret(t)||Ft−1] −
3gl

�
sl −

2gl

� l2
sl

�[regret(t)|Ft−1] ≤ �[�t|Ft−1] ≤
3gl

�
sl +

2gl

� l2
sl

�[Yt − Yt−1|Ft−1] ≤ 0

(21)Yt ≤

√√√√
2 ln(

2

�
)

T∑

t=1

36g2t

(22)
T∑

t=1

(
regret(t) −

3gt

�
st −

2gt

� t2
st

)
≤

√√√√
2 ln(

2

�
)

T∑

t=1

36g2t

(23)
T∑

t=1

(
regret(t)

)
≤

T∑

t=1

3gt

�
st +

T∑

t=1

2gt

� t2
st +

√√√√
2 ln(

2

�
)

T∑

t=1

36g2t

(24)Pr(Yt − Y0 ≥ x) ≤ exp
�

−x2

2
∑T

t=1
c2t

�

2716	 Machine Learning (2021) 110:2685–2727

1 3

Using the determinant-trace inequality, we have the following relation:

det|�N×N ⊗𝛴w| + det|�N ⊗𝛴u|) = det|�N×N|ddet|𝛴w|N + det|�N|ddet|𝛴u|N

= det|𝛴u|N

log(det|𝛺t|) ≥ log(det|𝛴0|) +
T∑

t=1

log(1 +
s2
t

𝜎2
𝜖

)

≥ log(det|�N×N ⊗𝛴w| + det|�N ⊗𝛴u|) +
T∑

t=1

log(1 +
s2
t

𝜎2
𝜖

)

= nlog(det|𝛴u|) +
T∑

t=1

log(1 +
s2
t

𝜎2
𝜖

)

Tr(𝛺t) ≤ Tr(𝛴0) +
T

𝜎2
𝜖

= Tr(�N×N ⊗𝛴w) + Tr(�N ⊗𝛴u) +
T

𝜎2
𝜖

= Tr(�N×N)Tr(𝛴w) + Tr(�N)Tr(𝛴u) +
T

𝜎2
𝜖

= NTr(𝛴w) + NTr(𝛴u) +
T

𝜎2
𝜖

2717Machine Learning (2021) 110:2685–2727	

1 3

Let, s2
t
≤ �−1

umin
 . For all y ∈ [0, �−1

umin
] log(1 + y

�2
�

) ≥
1

�−1
umin

log(1 +
�−1
umin

�2
�

)y

(See argument in Vaswani et al. (2017)).

(
1

dN
Tr(�t)

)dN

≥ det|�t|

dNlog(
1

dN
Tr(�t)) ≥ log(det|�t|)

dNlog(
1

dN
Tr(�t)) ≥ log(det|�t|)

dNlog(
1

dN
(Tr(�0) +

T

�2
�

)) ≥ log(det|�t|) ≥ Nlog(det|�u|) +
T∑

t=1

log(1 +
s2
t

�2
�

)

dNlog(
1

dN
(Tr(�0) +

T

�2
�

)) ≥ Nlog(det|�u|) +
T∑

t=1

log(1 +
s2
t

�2
�

)

dNlog(
1

dN
(Tr(�0) +

T

�2
�

)) − Nlog(det|�u|) ≥
T∑

t=1

log(1 +
s2
t

�2
�

)

dNlog(
1

dN
(Tr(�0) +

T

�2
�

)) + Nlog(det|�−1
u
)| ≥

T∑

t=1

log(1 +
s2
t

�2
�

)

dNlog(
1

dN
(Tr(�0) +

T

�2
�

)) + dNlog(
1

d
Tr(�−1

u
)) ≥

T∑

t=1

log(1 +
s2
t

�2
�

)

dN
(
log(

1

dN
(Tr(�0) +

T

�2
�

)) + log(
1

d
Tr(�−1

u
))
)
≥

T∑

t=1

log(1 +
s2
t

�2
�

)

dN
(
log((

Tr(�0)�
2
�
+ T

�2
�
dN

)) + log(
1

d
Tr(�−1

u
))
)
≥

T∑

t=1

log(1 +
s2
t

�2
�

)

dN
(
log(

Tr(�0)�
2
�
+ T + NTr(�−1

u
)�2

�

�2
�
dN

)
)
≥

T∑

t=1

log(1 +
s2
t

�2
�

)

dN
(
log(

(nTr(�w) + NTr(�u))�
2
�
+ T + NTr(�−1

u
)�2

�

�2
�
dN

)
)
≥

T∑

t=1

log(1 +
s2
t

�2
�

)

dN
(
log(

(Tr(�w) + Tr(�u) + Tr(�−1
u
))

d
+

T

�2
�
dN

)
)
≥

T∑

t=1

log(1 +
s2
t

�2
�

)

log(1 +
s2
t

�2
) ≥

1

�−1
umin

log(1 +
�−1
umin

�2
�

)s2
t
)

1

�uminlog(1 +
1

�umin�
2
�

)
log(1 +

s2
t

�2
�

) ≤ s2
t

T∑

t=1

s2
t
≤ C

T∑

t=1

log(1 +
s2
t

�2
�

)

2718	 Machine Learning (2021) 110:2685–2727

1 3

Where, C = �uminlog(1 +
1

�umin�
2
�

)

By Cauchy Schwartz

	� ◻

Appendix 3: Simulation

We include additional information about the simulation environment. We first explain gen-
eral information about the simulation environment. We then provide the procedures for
generating state variables (features) in the simulation. Finally, we discuss how we used
HeartStepsV1 to arrive at the feature representations used in the simulation.

Simulation dynamics Within the simulation states are updated every thirty minutes.
Each thirty minutes is associated with a date-time, thus we can acquire the month from
the current time which is useful in updating the temperature. The decision times are set
roughly two hours apart from 9:00 to 19:00.

Availability In the real-study users are not always available to receive treatment
for a suite of reasons. For example, they may be driving a vehicle or they might have
recently received treatment. Thus, at each decision time we update the context feature
Availablei ∼ Bernoulli(.8) . for the ith user where Availablei is drawn from a Bernoulli. This
condition reduces the distance between the settings in the environment and those in a real-
world study. At each decision time interventions are only sent to users who are available;
i.e. user i cannot receive an intervention when Availablei = 0.

Recruitment We follow the recruitment rate observed in HEARTSTEPSV1 . For
example, if 20% of the total number of participants were recruited in the third week of
HEARTSTEPSV1 we recruit 20% of the total number of participants who will be recruited
in the third week of the simulation. To explore the effect of running the study for varying
lengths we scale the recruitment rates. For example, if the true study ran for 8 weeks, and
we want to run a simulation for three weeks, we proportionally scale the recruitment in
each of the three weeks so that the relative recruitment in each week remains the same.
In these experiments we would like to recruit the entire population within 6 weeks. Thus
about 10% of participants are recruited each week, except for the second week of the study
where about 30% of all participants are recruited. This reflects the recruitment rates seen
in the study, which were more of less consistent throughout besides one increase in the
second week.

T�

t=1

st ≤
√
T

����
T�

t=1

s2t

T�

t=1

st ≤
√
T

����
C

T�

t=1

log(1 +
s2t

�2
�

)

T�

t=1

st ≤
√
T

�

CdN
�
log

� (Tr(�w) + Tr(�u) + Tr(�−1
u
))

d
+

T

�2
�
dN

��

T�

t=1

st ≤
√
dNT

�

C
�
log

� (Tr(�w) + Tr(�u) + Tr(�−1
u
))

d
+

T

�2
�
dN

��

2719Machine Learning (2021) 110:2685–2727	

1 3

We generate states from historical data. Given relevant context we search historical data
for states which match this given context. This subset of matching states can be used to
generate new states. We discuss this in more detail in Sect. C.1. Then, we describe in more
detail how we generate temperature, location and step counts.

Querying history

Algorithm 2 is used to obtain relevant historical data in order to form a probability distribu-
tion over some target feature value. For example, if we would like a probability distribution
over discretized temperature IDs under a given context, we would search over the historical
data for all temperature IDs present under this context. This set of context-specific tem-
perature IDs can then be used to form a distribution to simulate a new ID. This process of
querying historical data is used throughout the simulation and is outlined in Algorithm 2.
For example, it is used in generating new step counts, new locations and new temperatures.

As the simulation environment simulates draws stochastically from a variety of prob-
ability distributions, it is possible it draws a state which was not present in the historical
dataset. In this case there is a process for finding a matching state. Similarly we might have
a state in the historical dataset with insufficient samples to form an informative (not overly-
noisy) distribution. In this case we also find a surrogate state with which to generate future
step counts. The idea of the process is to find the closest state to the current state, such that
this close state has sufficient data to generate a good distribution. Again, given a state, we
want to be able to generate a step count from a distribution with sufficient data to inform its
parameters. The pseudocode for how we do so is shown in Algorithm 3

This algorithm takes as input a target state, s∗ . We also have a dictionary(hasmap)
formed from the historical dataset. The keys to this dictionary are the states which existed
in the dataset. A value is an array of step counts for this state.

2720	 Machine Learning (2021) 110:2685–2727

1 3

This procedure gives the closest state with the most data points to our current state.
To be more explicit about lines 8-11. A state is a vector of some length, for example

[1, 0, 1]. When we consider all subsets of size 2, we are considering the subsets [1, 0],[1, 1],
and [0, 1]. For each of these we can look in the historical data set and find all points where
this state was true. Thus for each subset we’ll get a new list of points, [1, 0] = [c1,… , cN1]
[1, 1] = [c1,… , cN2] , [0, 1] = [c1,… , cN3] . We now look at N1, N2, N3 and choose
the state with the highest value. For example, if the lists were: [1, 0] = [c1,… , c100]
[1, 1] = [c1,… , c2] , [0, 1] = [c1,… , c300] , we would choose s = [0, 1] . Now if we encounter
the state [1, 0, 1] and there is insufficient data to form a distribution from this state, we will
instead form it from the values found under the state [0, 1], [c1,… , c300].

Generating temperature

We mimic a trial where everyone resides in the same general area, such as a city. In this
setting everyone experiences the same global temperature. We describe how to obtain tem-
perature at any point in time in Algorithm 4. The temperature is updated exactly five times
a day.

In the following algorithms t, refers to a timestamp, D refers to a historical dataset, Kt
refers to a set of temperature IDs, and wt−1 refers to the temperature at the previous time
stamp. Here, D = HEARTSTEPSV1 and Kt = {hot, cold} . The contextual features which
influence temperature are time of day, day of the week and the month tod, dow and month
respectively. Furthermore, at all times besides the first moment in the trial, the next tem-
perature depends on the current temperature wt−1.

2721Machine Learning (2021) 110:2685–2727	

1 3

Generating location

In the following algorithms t, refers to a timestamp, gu refers to the group id of user i,D
refers to a historical dataset, Kt refers to a set of location IDs, and lt−1 refers to the location
at the previous time stamp. Here, D = HEARTSTEPSV1 and Kt = {other, home or work}.

As in generating temperature, the contextual features which influence location are time
of day, day of the week and the month tod, dow and month respectively. Generating loca-
tion is different from generating temperature in that each user moves from location to loca-
tion independently. Whereas we model users to share one common temperature, they move
from one location to another independently of other users. Thus we also include group id in
determining the next location for a given user.

1.	 User is at a decision time

(a)	 User is available
(b)	 User is not available

2.	 User is not at a decision time

Generating step‑counts

A new step-count is generated for each User active in the study, every thirty-minutes
according to one of the following scenarios:

2722	 Machine Learning (2021) 110:2685–2727

1 3

Scenarios 1b and 2 are equivalent with respect to how step-counts are generated; a
User’s step count either depends on whether or not they received an intervention (when
they are at a decision time and available) or it does not (because they were either not at a
decision time or not available). Recall, that if a user is available the final step count is gen-
erated according to Eq. 25. This equation requires sufficient statistics from HeartStepsV1.
The procedure for obtaining these statistics is shown explicitly in Algorithm 6.

Here, t, gu,wt, lu,D refer to the current time in the trial, the group id of the ith user, the tem-
perature at time t, the location of the ith user, and a historical dataset, respectively. To find
sufficient statistics of step counts, we also employ the time of day and day of the week, tod
and dow respectively. Finally, yst(t, u) describes the previous step count as high or low.

Settings for Heterogeneity

(25)Ri,k = �(�h(Si,k)
, �2

h(Si,k)
) + Ai,k(f (Si,k)

T�i + Zi).

2723Machine Learning (2021) 110:2685–2727	

1 3

Appendix 4: Feature construction

We provide more details on the processes used for feature construction. As stated in the
paper we rely heavily on the dataset HeartStepsV1 to make all feature construction deci-
sions. The one exception is in the design of the location feature, for which we had domain
knowledge to rely on (more detail below)

Baseline activity

Each user is assigned to one of two groups: a low-activity group or a high-activity group.
These groups are found from the historical data. We perform hierarchical clustering using
the method hcluster in scikit-learn Pedregosa (2011). We used a euclidean distance metric
to cluster the data and found that two groups naturally arose. These groups were consistent
with the population of HeartStepsV1, which consisted of participants who were generally
either office administrators or students.

State features

We now briefly outline the decisions for the remaining features: time of day, day of the
week, and temperature. For each feature we explored various categorical representations.
For each, the question was how many categories to use to represent the data. For each fea-
ture we followed the same procedure.

1.	 We chose a number of categories (k) to threshold the data into
2.	 We partitioned the data into k categories
3.	 We clustered the step counts according to these k categories
4.	 We computed the Calinski-Harabasz score of this clustering
5.	 We chose the final k to be that which provided the highest score

For example, consider the task of representing temperature. Let l be a temperature, x be
a step count and xlb be a thirty-minute step count occurring when the temperature l was
assigned to bucket b. Given a historical dataset, we have a vector � where each entry xi,t
refers to the thirty-minute step count of user i at time t.

•	 Let p be a number of buckets. We create p buckets by finding quantiles of l. For exam-
ple, if p=2, we find the 50th quantile of l. A bucket is defined by a tuple of thresholds
(th1, th2) , such that for a data point d to belong to bucket i, d must be in the range of the
tuple ( th1 ≤ d < th2).

•	 For each temperature, we determine the bucket label which best describes this tempera-
ture. That is the label y of l, is the bucket for which thy

1
≤ s̄l < th

y

2
.

•	 We now create a vector of labels y, of the same length as � . Each yl
i,t

 is the bucket
assigned to li,t . For example, if the temperature for user i at time t falls into the lowest
bucket, 0 would be the label assigned to li,t . This induces a clustering of step-counts
where the label is a temperature bucket.

•	 We determine the Calabrinski-Harabasz score of this clustering.

We test this procedure from p equal to 1, through 4.

2724	 Machine Learning (2021) 110:2685–2727

1 3

For example, consider determining a representation for time of day. We choose a parti-
tion to be morning, afternoon, evening. For each thirty-minute step count, if it occurred in
the morning we assign it to the morning cluster, if it occurred in the afternoon we assign it
to the afternoon cluster, etc. Now we have three clusters of step counts and we can compute
the C score of this clustering. We repeat the process for different partitions of the day.

Time of day To discover the representation for time of day which best explained the
observed step counts, we considered all sequential partitions from length 2-8. We found
that early-day, late-day, and night best explained the data.

Day of the week To discover the representation for day of the week which best
explained the observed step counts, we considered two partitions: every day, or weekday/
weekend. We found weekday/weekend to be a better fit to the data.

Temperature Here we choose different percentiles to partition the data. We consider
between 2 and 5 partitions (percentiles at 50, to 20,40,60,80). Here we found two partitions
to best fit the step counts. We also tried more complicated representations of weather com-
bined with temperature, however for the purpose of this paper we found a simple represen-
tation to best allow us to explore the relevant questions in this problem setting.

Location In representing location we relied on domain knowledge. We found that par-
ticipants tend to be more responsive when they are either at home or work, than in other
places. Thus, we decided to represent location as belonging to one of two categories: home/
work or other.

Appendix 5: Feasibility study

In the clinical trial we describe users’ states with the features described in Table 4. The
two features which differ from the simulation environment are engagement and exposure to
treatment. We clarify these features below (Table 6).

Engagement The engagement variable measures the extent to which a user engages
with the mHealth application deployed in the trial. There are several screens within the
application that a user can view. Across all users we measure the 40th percentile of number
of screens viewed on day d. If user i views more than this percentile, we set their engage-
ment level to 1, otherwise it is 0.

Exposure to treatment This variable captures the extent to which a user is treated, or
the treatment dosage experienced by this user. Let Di denote the exposure to treatment for
user i. Whenever a message is delivered to a user’s phone Di i s updated. That is, if a mes-
sage is delivered between time t and t + 1 , Dt+1 = �Dt + 1 . If a message is not delivered,
Dt+1 = �Dt . Here, we se � according to data from HeartStepsV1 and initialize D to 0.

Acknowledgements  This material is based upon work supported by: NIH/NIAAA R01AA23187 ,NIH/
NIDA P50DA039838,NIH/NIBIB U54EB020404 and NIH/NCI U01CA229437. The views expressed in

Table 6   Settings for Z in three cases of homogeneous, bimodal and smoothly varying populations

Homogeneous Bi-modal Smooth

Zi = 0 � l
i
=0

Z
i
, � l

i
=

{
0.1, 0.l if i ∈ group one

−0.3,−0.l if i ∈ group two

Z
i
∼ N(0, 0.35) � l

i
∼ N(0, 0.1)

2725Machine Learning (2021) 110:2685–2727	

1 3

this article are those of the authors and do not necessarily reflect the official position of the National Insti-
tutes of Health, or any other part of the U.S. Department of Health and Human Services.

Declarations 

Institutional Review Board Approval  The HeartSteps study discussed here was approved by the Kaiser Per-
manente Washington Region Institutional Review Board under IRB number 1257484-14.

References

Abeille, M., Lazaric, A., et al. (2017). Linear thompson sampling revisited. Electronic Journal of Statistics,
11(2), 5165–5197.

Agrawal, S., & Goyal, N. (2012). Analysis of thompson sampling for the multi-armed bandit problem. In:
Conference on Learning Theory, pp 39–1.

Agrawal, S., & Goyal, N. (2013). Thompson sampling for contextual bandits with linear payoffs. In: Inter-
national Conference on Machine Learning, pp 127–135.

Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Bogunovic, I., Scarlett, J., & Cevher, V. (2016). Time-varying Gaussian process bandit optimization. In:
Artificial Intelligence and Statistics, pp 314–323.

Bonilla, E.V., Chai, K.M., & Williams, C. (2008). Multi-task Gaussian process prediction. In: Advances in
neural information processing systems, pp 153–160.

Boruvka, A., Almirall, D., Witkiewitz, K., & Murphy, S. A. (2018). Assessing time-varying causal effect
moderation in mobile health. Journal of the American Statistical Association, 113(523), 1112–1121.

Brochu, E., Hoffman, M.W., & de Freitas, N. (2010). Portfolio allocation for Bayesian optimization. arXiv
preprint arXiv:​10095​419.

Carlin, B.P., & Louis, T.A. (2010). Bayes and empirical Bayes methods for data analysis. Chapman and
Hall/CRC​.

Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39(2),
83–87.

Cesa-Bianchi, N., Gentile, C., & Zappella, G. (2013). A gang of bandits. In: Advances in Neural Informa-
tion Processing Systems, pp 737–745.

Cheung, W.C., Simchi-Levi, D., & Zhu, R. (2018). Learning to optimize under non-stationarity. arXiv pre-
print arXiv:​18100​3024.

Chowdhury, S. R., & Gopalan, A. (2017). On kernelized multi-armed bandits. International Conference on
Machine Learning, 70, 844–853.

Clarke, S., Jaimes, L.G., & Labrador, M.A. (2017). mstress: A mobile recommender system for just-in-time
interventions for stress. In: Consumer Communications & Networking Conference, pp 1–5.

Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca,
A., LeGrand, L., & Libby, R., et al. (2008). Activity sensing in the wild: a field trial of ubifit garden.
In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 1797–1806.

Desautels, T., Krause, A., & Burdick, J. W. (2014). Parallelizing exploration-exploitation tradeoffs in Gauss-
ian process bandit optimization. The Journal of Machine Learning Research, 15(1), 3873–3923.

Deshmukh, A.A., Dogan, U., & Scott, C. (2017). Multi-task learning for contextual bandits. In: Advances in
Neural Information Processing Systems, pp 4848–4856.

Djolonga, J., Krause, A., & Cevher, V. (2013). High-dimensional gaussian process bandits. In: Advances in
Neural Information Processing Systems, pp 1025–1033.

Finn, C., Xu, K., & Levine, S. (2018). Probabilistic model-agnostic meta-learning. In: Advances in Neural
Information Processing Systems, pp 9516–9527.

Finn, C., Rajeswaran, A., Kakade, S., & Levine, S. (2019). Online meta-learning. arXiv preprint arXiv:​
19020​8438.

Forman, E. M., Kerrigan, S. G., Butryn, M. L., Juarascio, A. S., Manasse, S. M., Ontañón, S., et al. (2018).
Can the artificial intelligence technique of reinforcement learning use continuously-monitored digital
data to optimize treatment for weight loss? Journal of behavioral medicine, 42(2), 276–290.

Gardner, J., Pleiss, G., Weinberger, K.Q., Bindel, D., & Wilson, A.G. (2018). Gpytorch: Blackbox matrix-
matrix gaussian process inference with gpu acceleration. In: Advances in Neural Information Process-
ing Systems, pp 7576–7586.

http://arxiv.org/abs/10095419
http://arxiv.org/abs/181003024
http://arxiv.org/abs/190208438
http://arxiv.org/abs/190208438

2726	 Machine Learning (2021) 110:2685–2727

1 3

Greenewald, K., Tewari, A., Murphy, S., & Klasnja, P. (2017). Action centered contextual bandits. In:
Advances in neural information processing systems, pp 5977–5985.

Gupta, A., Mendonca, R., Liu, Y., Abbeel, P., & Levine, S. (2018). Meta-reinforcement learning of struc-
tured exploration strategies. In: Advances in Neural Information Processing Systems, pp 5302–5311.

Hamine, S., Gerth-Guyette, E., Faulx, D., Green, B. B., & Ginsburg, A. S. (2015). Impact of mhealth
chronic disease management on treatment adherence and patient outcomes: a systematic review. Jour-
nal of medical Internet research, 17(2), e52.

Jaimes, L. G., Llofriu, M., & Raij, A. (2016). Preventer, a selection mechanism for just-in-time preventive
interventions. IEEE Transactions on Affective Computing, 7(3), 243–257.

Kim, B., Tewari, A. (2019). Near-optimal oracle-efficient algorithms for stationary and non-stationary sto-
chastic linear bandits. arXiv preprint arXiv:​19120​5695.

Kim, B., & Tewari, A. (2020). Randomized exploration for non-stationary stochastic linear bandits. In: Con-
ference on Uncertainty in Artificial Intelligence, pp 71–80.

Klasnja, P., Hekler, E.B., Shiffman, S., Boruvka, A., Almirall, D., Tewari, A., & Murphy, S.A. (2015).
Microrandomized trials: An experimental design for developing just-in-time adaptive interventions.
Health Psychology 34(S):1220.

Klasnja, P., Smith, S., Seewald, N. J., Lee, A., Hall, K., Luers, B., et al. (2018). Efficacy of contextually tai-
lored suggestions for physical activity: A micro-randomized optimization trial of heartsteps. Annals of
Behavioral Medicine, 53(6), 573–582.

Krause, A., & Ong, C.S. (2011). Contextual gaussian process bandit optimization. In: Advances in Neural
Information Processing Systems, pp 2447–2455.

Laird, N. M., Ware, J. H., et al. (1982). Random-effects models for longitudinal data. Biometrics, 38(4),
963–974.

Lawrence, N.D., & Platt, J.C. (2004). Learning to learn with the informative vector machine. In: Interna-
tional conference on Machine learning, p 65.

Li, L., Chu, W., Langford, J., & Schapire, R.E. (2010). A contextual-bandit approach to personalized news
article recommendation. In: Proceedings of the Conference on World wide web, pp 661–670.

Li, S., & Kar, P. (2015). Context-aware bandits. arXiv preprint arXiv:​15100​3164.
Liao, P., Klasnja, P., Tewari, A., & Murphy, S. A. (2016). Sample size calculations for micro-randomized

trials in mhealth. Statistics in medicine, 35(12), 1944–1971.
Liao, P., Greenewald, K., Klasnja, P., & Murphy, S. (2020). Personalized heartsteps: A reinforcement learn-

ing algorithm for optimizing physical activity. Proceedings of the Conference on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(1), 1–22.

Luo, L., Yao, Y., Gao, F., & Zhao, C. (2018). Mixed-effects Gaussian process modeling approach with
application in injection molding processes. Journal of Process Control, 62, 37–43.

Morris, C. N. (1983). Parametric empirical Bayes inference: theory and applications. Journal of the Ameri-
can statistical Association, 78(381), 47–55.

Nagabandi, A., Finn, C., & Levine, S. (2018). Deep online learning via meta-learning: Continual adaptation
for model-based rl. arXiv preprint arXiv:​18120​7671.

Nahum-Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K., Tewari, A., & Murphy, S. A.
(2017). Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design prin-
ciples for ongoing health behavior support. Annals of Behavioral Medicine, 52(6).

Paredes, P., Gilad-Bachrach, R., Czerwinski, M., Roseway, A., Rowan, K., & Hernandez, J. (2014). Pop-
therapy: Coping with stress through pop-culture. In: Conference on Pervasive Computing Technologies
for Healthcare, pp 109–117.

Qi, Y., Wu, Q., Wang, H., Tang, J., & Sun, M. (2018). Bandit learning with implicit feedback. Advances in
Neural Information Processing Systems, 31, 7276–7286.

Qian, T., Klasnja, P., & Murphy, S.A. (2019). Linear mixed models under endogeneity: modeling sequential
treatment effects with application to a mobile health study. arXiv preprint arXiv:​19021​0861.

Rabbi, M., Aung, M.H., Zhang, M., & Choudhury, T. (2015). Mybehavior: automatic personalized health
feedback from user behaviors and preferences using smartphones. In: Proceedings of the Conference
on Pervasive and Ubiquitous Computing, pp 707–718.

Rabbi, M., Philyaw-Kotov, M., Lee, J., Mansour, A., Dent, L., Wang, X., Cunningham, R., Bonar, E.,
Nahum-Shani, I., & Klasnja, P., et al. (2017). SARA: a mobile app to engage users in health data col-
lection. In: Joint Conference on Pervasive and Ubiquitous Computing and the International Sympo-
sium on Wearable Computers, pp 781–789.

Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis meth-
ods, vol 1.

Russac, Y., Vernade, C., & Cappé, O. (2019). Weighted linear bandits for non-stationary environments. In:
Advances in Neural Information Processing Systems, pp 12017–12026.

http://arxiv.org/abs/191205695
http://arxiv.org/abs/151003164
http://arxiv.org/abs/181207671
http://arxiv.org/abs/190210861

2727Machine Learning (2021) 110:2685–2727	

1 3

Russo, D., & Van Roy, B. (2014). Learning to optimize via posterior sampling. Mathematics of Operations
Research, 39(4), 1221–1243.

Russo, D.J., Roy, B.V., Kazerouni, A., Osband, I., & Wen, Z. (2018). A tutorial on thompson sampling.
Foundations and Trends in Machine Learning 11(1):1–96, https://​doi.​org/​10.​1561/​22000​00070.

Sæmundsson, S., Hofmann, K., & Deisenroth, M.P. (2018). Meta reinforcement learning with latent vari-
able gaussian processes. arXiv preprint arXiv:​18030​7551.

Shi, J., Wang, B., Will, E., & West, R. (2012). Mixed-effects Gaussian process functional regression models
with application to dose-response curve prediction. Statistics in medicine, 31(26), 3165–3177.

Srinivas, N., Krause, A., Kakade, S.M., & Seeger, M. (2009). Gaussian process optimization in the ban-
dit setting: No regret and experimental design. International Conference on Machine Learning p
1015–1022.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3/4), 285–294.

Vaswani, S., Schmidt, M., & Lakshmanan, L. (2017). Horde of bandits using Gaussian Markov random
fields. In: Artificial Intelligence and Statistics, pp 690–699.

Wang, Y., & Khardon, R. (2012). Nonparametric Bayesian mixed-effect model: A sparse Gaussian process
approach. arXiv preprint arXiv:​12116​653.

Wang, Z., Zhou, B., & Jegelka, S. (2016). Optimization as estimation with Gaussian processes in bandit set-
tings. In: Artificial Intelligence and Statistics, pp 1022–1031.

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2). MA: MIT
press Cambridge.

Xia, I. (2018). The price of personalization: An application of contextual bandits to mobile health. Senior
thesis.

Yom-Tov, E., Feraru, G., Kozdoba, M., Mannor, S., Tennenholtz, M., & Hochberg, I. (2017). Encouraging
physical activity in patients with diabetes: intervention using a reinforcement learning system. Journal
of medical Internet research, 19(10), e338.

Zhao, P., Zhang, L., Jiang, Y., & Zhou, Z.H. (2020). A simple approach for non-stationary linear bandits. In:
Proceedings of the Conference on Artificial Intelligence and Statistics, pp 746–755.

Zhou, M., Mintz, Y., Fukuoka, Y., Goldberg, K., Flowers, E., Kaminsky, P., Castillejo, A., & Aswani, A.
(2018). Personalizing mobile fitness apps using reinforcement learning. In: CEUR workshop proceed-
ings, vol 2068.

Zintgraf, L.M., Shiarlis, K., Kurin, V., Hofmann, K., & Whiteson, S. (2019). CAML: Fast context adapta-
tion via meta-learning. In: International Conference on Machine Learning, pp 7693–7702.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1561/2200000070
http://arxiv.org/abs/180307551
http://arxiv.org/abs/12116653

	IntelligentPooling: practical Thompson sampling for mHealth
	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions

	2 Related work
	2.1 Connections to Bandit algorithms in mHealth
	2.2 Connections to multi-task learning and meta-learning
	2.3 Connections to Gaussian process models for Thompson sampling contextual bandits
	2.4 Connection to non-stationary linear bandits

	3 Intelligent Pooling
	3.1 Overview
	3.2 Problem formulation
	3.3 Two Thompson sampling instantiations
	3.4 Intelligent pooling across bandit problems
	3.4.1 Model specification
	3.4.2 Model connections to Gaussian processes
	3.4.3 Posterior distribution of the weights on the feature vector
	3.4.4 Treatment selection
	3.4.5 Setting hyper-parameter values

	3.5 Intuition for the use of random effects
	3.6 Regret

	4 Experiments
	4.1 Simulation environment
	4.2 Model for the reward function in IntelligentPooling
	4.3 Simulation results

	5 IntelligentPooling feasibility study
	5.1 Feasibility study design

	6 Non-stationary environments
	6.1 Time-varying random effect
	6.2 Experiments

	7 Limitations
	8 Conclusion
	Acknowledgements
	References

