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Abstract
This paper proposes a novel architecture, termed multiscale principle of relevant informa-
tion (MPRI), to learn discriminative spectral-spatial features for hyperspectral image clas-
sification. MPRI inherits the merits of the principle of relevant information (PRI) to effec-
tively extract multiscale information embedded in the given data, and also takes advantage 
of the multilayer structure to learn representations in a coarse-to-fine manner. Specifically, 
MPRI performs spectral-spatial pixel characterization (using PRI) and feature dimension-
ality reduction (using regularized linear discriminant analysis) iteratively and successively. 
Extensive experiments on three benchmark data sets demonstrate that MPRI outperforms 
existing state-of-the-art methods (including deep learning based ones) qualitatively and 
quantitatively, especially in the scenario of limited training samples. Code of MPRI is 
available at http://bit.ly/MPRI_HSI.
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1  Introduction

With the rapid development of hyperspectral imaging techniques, current sensors always 
have high spectral and spatial resolution  (He et  al., 2018). For example, the ROSIS 
sensor can cover spectral resolution higher than 10 nm, reaching 1 m per pixel spatial 
resolution (Cao et al., 2018; Zare et al., 2018). The increased spectral and spatial reso-
lution enables us to accurately discriminate diverse materials of interest. As a result, 
hyperspectral images (HSIs) have been widely used in many practical applications, 
such as precision agriculture, environmental management, mining and mineralogy (He 
et al., 2018). Among them, HSI classification, which aims to assign each pixel of HSI 
to a unique class label, has attracted increasing attention in recent years. However, the 
unfortunate combination of high-dimensional spectral features and the limited ground 
truth samples, as well as different atmospheric scattering conditions, make the HSI data 
inherently highly nonlinear and difficult to be categorized (Ghamisi et al., 2017).

Early HSI classification methods straightforwardly apply conventional dimensional-
ity reduction techniques, such as the principal component analysis (PCA) and the lin-
ear discriminant analysis (LDA), on spectral domain to learn discriminative spectral 
features. Although these methods are conceptually simple and easy to implement, they 
neglect the spatial information, a complement to spectral behavior that has been dem-
onstrated effective to augment HSI classification performance (He et al., 2018; Ghamisi 
et  al., 2015). To address this limitation, Chen et  al. 2011) proposed the joint sparse 
representation (JSR) to incorporate spatial neighborhood information of pixels. Soltani-
Farani et al. (2015) designed spatial aware dictionary learning (SADL) by using a struc-
tured dictionary learning model to incorporate both spectral and spatial information. 
Kang et al., suggested using an edge-preserving filter (EPF) to improve the spatial struc-
ture of HSI (Kang et al., 2014) and also introduced PCA to encourage the separability 
of new representations (Kang et al., 2017). A similar idea appears in Pan et al. (2017), 
in which EPF is substituted with a hierarchical guidance filter. Although these methods 
perform well, the discriminative power of their extracted spectral-spatial features is far 
from satisfactory when being tested on challenging land covers.

A recent trend is to use deep neural networks (DNN), such as autoencoders (AE) (Ma 
et al., 2016) and convolutional neural networks (CNN) (Chen et al., 2016), to learn dis-
criminative spectral-spatial features (Zhong et al., 2018). Although deep features always 
demonstrate superior discriminative power than hand-crafted features in different com-
puter vision or image processing tasks, existing DNN based HSI classification meth-
ods either improve the performance marginally or require significantly more labeled 
data  (Yang et  al., 2018). On the other hand, collecting labeled data is always difficult 
and expensive in remote sensing community  (Zare et  al., 2018). Admittedly, transfer 
learning has the potential to alleviate the problem of limited labeled data, it still remains 
an open problem to construct a reliable relevance between the target domain and the 
source domain due to the large variations between HSIs obtained by different sensors 
with unmatched imaging bands and resolutions (Zhu et al., 2017).

Different from previous work, this paper presents a novel architecture, termed 
multiscale principle of relevant information (MPRI), to learn discriminative spectral-
spatial features for HSI classification. MPRI inherits the merits of the principle of 
relevant information (PRI) (Chapter 8, Principe 2010) (Chapter 3, Rao 2008) to effec-
tively extract multiscale information from given data, and also takes advantage of the 
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multilayer structure to learn representations in a coarse-to-fine manner. To summarize, 
the major contributions of this work are threefold.

•	 We demonstrate the capability of PRI, originated from the information theoretic learn-
ing (ITL) (Principe 2010), to characterize 3D pictorial structures in HSI data.

•	 We generalize PRI into a multilayer structure to extract hierarchical representations for 
HSI classification. A multiscale scheme is also incorporated to model both local and 
global structures.

•	 MPRI outperforms state-of-the-art HSI classification methods based on classical 
machine learning models (e.g., PCA-EPF Kang et al., 2017 and HIFI Pan et al., 2017) 
by a large margin. Using significantly fewer labeled data, MPRI also achieves almost 
the same classification accuracy compared to existing deep learning techniques (e.g., 
SAE-LR Chen et al., 2014 and 3D-CNN Li et al., 2017).

The remainder of this paper is organized as follows. Section 2 reviews the basic objec-
tive of PRI and formulates PRI under the ITL framework. The architecture and optimiza-
tion of our proposed MPRI is elaborated in Sect. 3. Section 4 shows experimental results 
on three popular HSI data sets. Finally, Sect. 5 draws the conclusion.

2 � Elements of Renyi’s ̨ ‑entropy and the principle of relevant 
information

Before presenting our method, we start with a brief review of the general idea and the 
objective of PRI, and then formulate this objective under the ITL framework.

2.1 � PRI: the general idea and its objective

Suppose we are given a random variable � with a known probability density function 
(PDF) g, from which we want to learn a reduced statistical representation characterized 
by a random variable � with PDF f. The PRI (Chapter 8, Principe, 2010) (Chapter 3, Rao, 
2008) casts this problem as a trade-off between the entropy H(f) of � and its descriptive 
power about � in terms of their divergence D(f‖g) . Therefore, for a fixed PDF g, the objec-
tive of PRI is given by:

where � is a hyper-parameter controlling the amount of relevant information that � can 
extract from � . Note that, the minimization of entropy can be viewed as a means of find-
ing the statistical regularities in the outcomes of a process, whereas the minimization of 
information theoretic divergence, such as the Kullback-Leibler divergence  (Kullback & 
Leibler, 1951) or the Chernoff divergence  (Chernoff, 1952), ensuring that the regular-
ities are closely related to � . The PRI is similar in spirit to the Information Bottleneck 
(IB) method (Tishby et al., 2000), but the formulation is different because PRI does not 
require an observed relevant (or auxillary) variable and the optimization is done directly 
on the random variable � , which provides a set of solutions that are related to the principal 
curves (Hastie & Stuetzle, 1989) of g, as will be demonstrated below.

(1)minimize
f

H(f ) + �D(f‖g),
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2.2 � Formulation of PRI using Renyi’s entropy functional

In information theory, a natural extension of the well-known Shannon’s entropy is the 
Renyi’s �-entropy (Rényi et al., 1961). For a random variable � with PDF f(x) in a finite set 
X  , the �-entropy of H(�) is defined as:

On the other hand, motivated by the famed Cauchy–Schwarz (CS) inequality:

with equality if and only if f(x) and g(x) are linearly dependent (e.g., f(x) is just a scaled 
version of g(x)), a measure of the “distance” between the PDFs can be defined, which was 
named the CS divergence (Jenssen et al., 2006), with:

the term H2(f ;g) = − log ∫ f (x)g(x)dx is also called the quadratic cross entropy (Principe, 
2010).

Combining Eqs. (2) and (4), the PRI under the 2-order Renyi’s entropy can be formu-
lated as:

the second equation holds because the extra term �H2(g) is a constant with respect to f.
Given � = {�i}

N
i=1

 and � = {�i}
N
i=1

 , both in ℝp , drawn  i.i.d. from g and f, respec-
tively. Using the Parzen-window density estimation (Parzen, 1962) with Gaussian kernel 
G�(⋅) = exp(−

‖⋅‖2
2�2

) , Eq. (5) can be simplified as Rao (2008):

It turns out that the value of � defines various levels of information reduction, rang-
ing from data mean value ( � = 0 ), clustering ( � = 1 ), principal curves (Hastie and Stuet-
zle, 1989) extraction at different dimensions, and vector quantization obtaining back the 
initial data when � → ∞  (Principe, 2010; Rao, 2008). Hence, the PRI achieves similar 
effects to a moment decomposition of the PDF controlled by a single parameter � , using 
a data driven optimization approach. See Fig. 1 for an example. From this figure we can 
see that the self organizing decomposition provides a set of hierarchical features of the 
input data beyond cluster centers, that may yield more robust features. Note that, despite its 

(2)H�(f ) =
1

1 − �
log∫

X

f �(x)dx.

(3)|||� f (x)g(x)dx
|||
2 ≤ � ∣ f (x) ∣2 dx� ∣ g(x) ∣2 dx,

(4)
Dcs(f‖g) = − log

�
∫ fg

�2

+ log

�
∫ f 2

�
+ log

�
∫ g2

�

= 2H2(f ;g) − H2(f ) − H2(g),

(5)
fopt = argmin

f
H2(f ) + �

(
2H2(f ;g) − H2(f ) − H2(g)

)

≡ argmin
f
(1 − �)H2(f ) + 2�H2(f ;g),

(6)

�opt = argmin
�

[
−(1 − �) log

(
1

N2

N∑
i,j=1

G�

(
�i − �j

))

−2� log

(
1

N2

N∑
i,j=1

G�

(
�i − �j

))]
.
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strategic flexibility to find reduced structure of given data, the PRI is mostly unknown to 
practitioners.

3 � Multiscale principle of relevant information (MPRI) for HSI 
classification

In this section, we present MPRI for HSI classification. MPRI stacks multiple spectral-spa-
tial feature learning units, in which each unit consists of multiscale PRI and a regularized 
LDA (Bandos et al., 2009). The architecture of MPRI is shown in Fig. 2.
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Fig. 1   Illustration of the structures revealed by the PRI for a Intersect data set. As the values of � increase 
the solution passes through b a single point, c modes, d and e principal curves at different dimensions, and 
in the extreme case of f � → ∞ we get back the data themselves as the solution

Fig. 2   The architecture of multiscale principle of relevant information (MPRI) for HSI classification. The 
spectral-spatial feature learning unit is marked with red dashed rectangle. The spectral-spatial features are 
extracted by performing PRI (in multiple scales) and LDA iteratively and successively on HSI data cube 
(after normalization). Finally, features from each unit are concatenated and fed into a k-nearest neighbors 
(KNN) classifier to predict pixel labels. This plot only demonstrates a 3-layer MPRI, but the number of lay-
ers can be increased or decreased flexibly
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To the best of our knowledge, apart from performing band selection (e.g., Feng et al., 
2015; Yu et  al., 2019) or measuring spectral variability (e.g., Chang, 2000), informa-
tion theoretic principles have seldom been investigated to learn discriminative spectral-
spatial features for HSI classification. The most similar work to ours is Kamandar and 
Ghassemian (2013), in which the authors use the criterion of minimum redundancy 
maximum relevance (MRMR)  (Peng et  al., 2005) to extract linear features. However, 
owing to the poor approximation to estimate multivariate mutual information, the per-
formance of  Kamandar and Ghassemian (2013) is only slightly better than the basic 
linear discriminant analysis (LDA) (Du, 2007).

3.1 � Spectral‑spatial feature learning unit

Let � ∈ ℝ
m×n×d be the raw 3D HSI data cube, where m and n are the spatial dimen-

sions, d is the number of spectral bands. For a target spectral vector �⋆ ∈ ℝ
d , we 

extract a local cube (denote �̂ ) from � using a sliding window of width n̂ centered 
at �⋆ , i.e., �̂ = {�̂1, �̂2,⋯ , �̂N̂} ∈ ℝ

N̂×d , n̂ × n̂ = N̂ , and �⋆ = �̂⌊n̂∕2⌉+1,⌊n̂∕2⌉+1 , where 
⌊⋅⌉ is the nearest integer function. We obtain the spectral-spatial characterization 
�̂ = {�̂1, �̂2,⋯ , �̂N̂} ∈ ℝ

N̂×d from �̂ using PRI via the following objective:

We finally use the center vector of �̂ , i.e., �̂⌊n̂∕2⌉+1,⌊n̂∕2⌉+1 , as the new representation of 
�⋆ . We scan the whole 3D cube with a sliding window of width n̂ targeted at each pixel 
to get the new spectral-spatial representation. The procedure is depicted in Fig. 3.

(7)minimize𝐘̂

⎡⎢⎢⎣
−(1 − 𝛽) log

⎛⎜⎜⎝
1

N̂2

N̂�
i,j=1

G𝛿

�
𝐲̂i − 𝐲̂j

�⎞⎟⎟⎠
− 2𝛽 log

1

N̂2

N̂�
i,j=1

G𝛿

�
𝐲̂i − 𝐱̂j

�⎞⎟⎟⎠

⎤⎥⎥⎦
.

Fig. 3   For each target spectral vector (e.g., �⋆ or �′
⋆
 ) in the raw hyperspectral image, we obtain a new vector 

representation by performing PRI in its corresponding local data cube (e.g., �̂ or �̂′)
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Equation  (7) is updated iteratively. Specifically, denote V(�̂) = 1

N̂2

∑N̂

i,j=1
G𝛿(�̂i − �̂j) 

and V(�̂;�̂) = 1

N̂2

∑N̂

i,j=1
G𝛿(�̂j − �̂i) , taking the derivative of Eq. (7) with respect to �̂⋆ and 

equating to zero, we have:

Rearrange Eq. (8), we have:

Divide both sides of the Eq. (9) by

and let

we obtain the fixed point update rule for �̂⋆:

where � is the iteration number. We move the sliding window pixel by pixel, and only 
update the representation of the center target pixel, as shown in Fig. 3.

We also introduce two modifications to increase the discriminative power of the new 
representation. First, different values of n̂ (3, 5, 7, 9, 11, 13 in this work) are used to model 
both local and global structures. Second, to reduce the redundancy of raw features con-
structed by concatenating PRI representations in multiple scales, we further perform a reg-
ularized LDA (Bandos et al., 2009).

Note that, the hyper-parameter � and different values of n̂ play different roles in 
MPRI. Specifically, � in PRI balances the trade-off between the regularity of extracted 
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representation and its discriminative power to the given data. Therefore, it should be set 
in a reasonable range to avoid over-smoothing effect of the resulting image and unsatisfac-
tory classification performance. A deeper discussion is shown in Sect. 4.1.1. By contrast, 
n̂ controls the spatial scale of the learned representation. The motivation is that the dis-
criminative information of different categories may not be easily characterized by a sliding 
window of a fixed size (i.e., n̂ × n̂ ). Thus, it would be favorable if one can incorporate dis-
criminative information from different scales, by changing the value of n̂.

3.2 � Stacking multiple units

In order to characterize spectral-spatial structures in a coarse-to-fine manner, we stack mul-
tiple spectral-spatial feature learning units described in Sect. 3.1 to constitute a multilayer 
structure and concatenate representations from each layer to form the final spectral-spa-
tial representation. We finally feed this representation into a standard k-nearest neighbors 
(KNN) for classification.

Different from existing DNNs that are typically trained with error backpropagation or 
the combination of a greedy layer-wise pretraining and a fine-tuning stage, our multilayer 
structure is trained successively from bottom layer to top layer without error backpropaga-
tion. For the ith layer, the input of PRI is the representation learned from the previous layer 
(denoted Ti−1 ). We then learn new representation Ti by iteratively updates Ti−1 with Eq. (12) 
and a dimensionality reduction step with LDA at the end of iteration. As for the multiscale 
PRI, it can be trained in parallel with respect to different sliding window sizes.

The interpretation of DNN as a way of creating successively better representations of 
the data has already been suggested and explored by many (e.g., Achille and Soatto, 2018). 
Most recently, Schwartz-Ziv and Tishby Shwartz-Ziv and Tishby (2017) put forth an inter-
pretation of DNN as creating sufficient representations of the data that are increasingly 
minimal. For our deep architecture, in order to have an intuitive understanding to its inner 
mechanism, we plot the 2D projection (after 1000 t-SNE Maaten and Hinton, 2008 itera-
tions) of features learned from different layers in Fig. 4. Similar to DNN, MPRI creates 
successively more faithful and separable representations in deeper layers. Moreover, the 
deeper features can discriminate the with-in class samples in different geography regions, 
even though we do not manually incorporate geographic information in the training.

4 � Experimental results

We conduct three groups of experiments to demonstrate the effectiveness and superiority 
of the MPRI. Specifically, we first perform a simple test to determine a reliable range for 
the value of � in PRI and the number of layers in MPRI. Then, we implement MPRI and 
several of its degraded variants to analyze and evaluate component-wise contributions to 
performance gain. Finally, we evaluate MPRI against state-of-the-art methods on bench-
mark data sets using both visual and qualitative evaluations.

Three popular data sets, namely the Indian Pines (Baumgardner et al., 2015), the Pavia 
University and the Pavia Center, are selected in this work. We summarize the properties of 
each data set in Table 1. 

1.	 The first image, displayed in Fig. 5a, is called Indian Pines. It was gathered by the 
airborne visible/infrared imaging spectrometer (AVIRIS) sensor over the agricultural 



1235Machine Learning (2023) 112:1227–1252	

1 3

Indian Pines test site in northwestern Indiana, United States. The size of this image is 
145 × 145 pixels with spatial resolution of 20 m. The low spatial resolution leads to the 
presence of highly mixed pixels (Ghamisi et al., 2014). A three-band false color image 
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Fig. 4   2D projection of features learned by MPRI in different layers on Indian Pines data set. Features of 
“Woods” in the 1st layer, the 2nd layer, and the 3rd layer are marked with red rectangle in a–c. Similarly, 
features of “Grass-pasture” are marked with magenta ellipses in d–f. g The locations of “Region 1” and 
“Region 2”. h shows the locations of “Region 3”, “Region 4” and “Region 5”. i shows class legend

Table 1   Details of data sets Data set Indian Pines Pavia University Pavia center

Sensor AVIRIS ROSIS ROSIS-3
Spatial size 145 × 145 610× 340 1096 × 492

♯ bands (used) 200 103 102
♯ classes 16 9 9
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and the ground-truth map are shown in Fig. 5a, b, where there are 16 classes of interest. 
And the name and quantity of each class are reported in Fig. 5c. The number of bands 
has been reduced to 200 by removing 20 bands covering the region of water absorption. 
This scene constitutes a challenging classification problem due to the significant pres-
ence of mixed pixels in all available classes and the unbalanced number of available 
labeled pixels per class (Li et al., 2013).

2.	 The second image is the Pavia University, which was recorded by the reflective optics 
spectrographic imaging system (ROSIS) sensor during a flight campaign over Pavia, 
northern Italy. This scene has 610 × 340 pixels with a spatial resolution of 1.3 m (cover-
ing the wavelength range from 0.4 to 0.9μ m). There are 9 ground-truth classes, includ-
ing trees, asphalt, bitumen, gravel, metal sheet, shadow, bricks, meadow, and soil. In our 
experiments, 12 noisy bands have been removed and finally 103 out of the 115 bands 
were used. The class descriptions and sample distributions for this image are given in 
Fig. 6c. As can be seen, the total number of labeled samples in this image is 43,923. A 
three-band false color image and the ground-truth map are also shown in Fig. 6.

3.	 The third data set is Pavia Center. It was acquired by ROSIS-3 sensor in 2003, with 
a spatial resolution of 1.3m and 102 spectral bands (some bands have been removed 
due to noise). A three-band false color image and the ground-truth map are also shown 
in Fig. 7a, b. The number of ground truth classes is 9 (see Fig. 7) and it consists of 
1096 × 492 pixels. The number of samples of each class ranges from 2108 to 65,278 
(Fig. 7e). There are 5536 training samples and 98,015 testing samples (Fig. 7c, d). Note 
that these training samples are out of the testing samples.

Three metrics are used for quantitative evaluation (Cao et al., 2018): overall accuracy 
(OA), average accuracy (AA) and the kappa coefficient � . OA is computed as the percent-
age of correctly classified test pixels, AA is the mean of the percentage of correctly classi-
fied pixels for each class, and � involves both omission and commission errors and gives a 
good representation of the the overall performance of the classifier.

Fig. 5   a False color composition of the AVIRIS Indian Pines scene. b Reference map containing 16 mutu-
ally exclusive land-cover classes. c The numbers of the labeled samples
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For our method, the values of the kernel width � in PRI were tuned around the multi-
variate Silverman’s rule-of-thumb (Silverman, 1986): ( 4

d+2
)

1

d+4 s
−1

4+d �1 ≤ � ≤ (
4

d+2
)

1

d+4 s
−1

4+d �2 , 
where s is the sample size, d is the variable dimensionality, �1 and �2 are respectively the 
smallest and the largest standard deviation among each dimension of the variable. For 
example, in Indian Pines data set, the estimated range in the 5th layer corresponds to 
[0.05, 0.51], and we set kernel width to 0.4. On the other hand, the PRI in each layer is 
optimized with � = 3 iterations, which has been observed to be sufficient to provide desir-
able performance.

4.1 � Parameter analysis

4.1.1 � Effects of parameter ˇ in PRI

The parameter � in PRI balances the trade-off between the regularity of extracted rep-
resentation and its discriminative power to the given data. We illustrate the values of 
OA, AA, and � for MPRI with respect to different values of � in Fig. 8a. As can be seen, 
these quantitative values are initially stable, but decrease when � ≥ 3 . Moreover, the 

Fig. 6   a False color composition 
of the Pavia University scene. 
b Reference map containing 9 
mutually exclusive land-cover 
classes. c The numbers of the 
labeled samples
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value of AA drops more drastically than that of OA or � . A likely interpretation is that 
when training samples are limited, many classes have only a few labeled samples ( ∼ 1 
for minority classes, such as Oats, Grass-pasture-mowed, and Alfalfa). An unreasonable 
value of � may severely influence the classification accuracy in these classes, hereby 
decreasing AA at first.

Fig. 7   a False color composition of the Pavia Center scene. b Reference map containing 9 mutually exclu-
sive land-cover classes. c Training samples. d Testing samples. e The numbers of the labeled samples
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The corresponding classification maps are shown in Fig.  9. It is obviously that, 
the smaller the � , the more smooth results achieved by MPRI. This is because large 
� encourages a small divergence between the extracted representation and the original 
HSI data. For example, in the scenario of � = 0 , PRI clusters both spectral and spa-
tial structures into a single point (the data mean) that has no discriminative power. By 
contrast, in the scenario of � → ∞ , the extracted representation gets back to the HSI 
data itself (to minimize their divergence) such that PRI will fit all noisy and irregular 
structures.

From the above analysis, extremely large and small values of � are not interesting 
for classification of HSI. Moreover, the results also suggest that � ∈ [2, 4] is able to bal-
ance a good trade-off between preserving relevant spatial information (such as edges in 
classification maps) and filtering out unnecessary one. Unless otherwise specified, the 
PRI mentioned in the following experiments uses three different values of � , i.e., � = 2 , 
� = 3 , and � = 4 . The final representation of PRI is formed by concatenating representa-
tions obtained from each �.

Fig. 8   a Quantitative evalua-
tion with different values of � . 
b Quantitative evaluation with 
different number of layers

0 1 2 3 4 5 6 7
75

80

85

90

β
(%

)

OA
AA
Kappa × 100

(a)

1 2 3 4 5 6 7 8
75

80

85

90

95

The number of layers

(%
)

OA
AA
Kappa × 100

(b)

Fig. 9   Classification maps of MPRI with a � = 0 ; b � = 1 ; c � = 2 ; d � = 3 ; (e) � = 4 ; f � = 5 ; g � = 6 ; 
and h � = 100



1240	 Machine Learning (2023) 112:1227–1252

1 3

4.1.2 � Effects of the number of layers

We then illustrate the values of OA, AA and � for MPRI with respect to different num-
ber of layers in Fig.  8b. The corresponding classification maps are shown in Fig.  10. 
Similar to existing deep architectures, stacking more layers (in a reasonable range) can 
increase performance. If we keep the input data size the same, more layers (beyond a 
certain layer number) will not increase the performance anymore and the classification 
maps become over-smooth. This work uses a 5-layer MPRI because it provides favora-
ble visual and quantitative results.

4.1.3 � Effects of the classifier

MPRI uses the basic KNN for classification and sets k = 1 throughout this work. 
The purpose is to validate the discriminative power of the spectral-spatial features 
extracted by multiple layers of PRI. To further confirm the superiority of our MPRI 
is independent to the used classifier, we also evaluate the performances of MPRI and 
other three feature extraction methods for HSI classification (EPF Kang et  al., 2014, 
SADL Soltani-Farani et al., 2015, PCA-EPF Kang et al., 2017) and use a kernel SVM 
as the baseline classifier. The kernel size � is tuned by cross-validation from the set 
{0.0001, 0.001, 0.01, 0.1, 1, 10, 100} . The best performance is summarized in Table 2. As 
can be seen, KNN and SVM always lead to comparable results. Our MPRI is consist-
ently better than other competitors, regardless of the used classifier.

Fig. 10   Classification maps of MRPI with a 1 layer; b 2 layers; c 3 layers; d 4 layers; e 5 layers; f 6 layers; 
g 7 layers; and h 8 layers
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4.2 � Evaluation on component‑wise contributions

Before systematically evaluating the performance of MPRI, we first compare it with its 
degraded baseline variants to demonstrate the component-wise contributions to the per-
formance gain. The results are summarized in Table 3. As can be seen, models that only 
consider one attribute (i.e., multi-layer, multi-scale and multi- � ) improve the performance 
marginally. Moreover, it is interesting to find that multi-layer and multi-scale play more 
significant roles than multi- � . One possible reason is that the representations learned from 
different � contain redundant information with respect to class labels. However, either the 
combination of multi-layer and multi-� or the combination of multi-scale and multi-� can 
obtain remarkable improvements. Our MPRI performs the best as expected. This result 
indicates that multi-layer, multi-scale and multi- � are essentially important for the prob-
lem of HSI classification.

4.3 � Comparison with state‑of‑the‑art methods

Having illustrated component-wise contributions of MPRI, we compare it with several 
state-of-the-art methods, including EPF (Kang et al., 2014), MPM-LBP (Li et al., 2013), 
SADL (Soltani-Farani et al., 2015), MFL (Li et al., 2015), PCA-EPF (Kang et al., 2017), 
HIFI (Pan et  al., 2017), hybrid spectral convolutional neural network (HybridSN) (Roy 
et  al., 2020), similarity-preserving deep features (SPDF) (Fang et  al., 2019), convolu-
tional neural network with Markov random fields (CNN-MRF) (Cao et  al., 2018), local 
covariance matrix representation (LCMR) (Fang et al., 2018), and random patches network 
(RPNet) (Xu et al., 2018).

Table 2   OAs (%) of different 
methods using KNN and SVM

2% of labeled samples per class were randomly selected for training. 
The best performances are marked in bold

Classifier EPF SADL PCA-EPF MPRI

KNN ( k = 1) 77.02 87.48 90.03 94.00
SVM ( � = 0.1) 78.44 88.19 91.77 93.11

Table 3   Quantitative evaluation 
of our MPRI (the last row) and 
its degraded baseline variants in 
terms of OA, AA, and �

“✓ ” denotes the model contains the corresponding module. The best 
two performances are marked in bold and underlined, respectively

Multi-layer Multi-scale Multi-� OA AA �

76.25 72.74 0.729
✓ 80.86 79.33 0.7814

✓ 81.28 76.25 0.786
✓ 76.61 73.09 0.733

✓ ✓ 83.30 77.89 0.809
✓ ✓ 86.94 85.35 0.851
✓ ✓ 92.80 91.16 0.918

✓ ✓ ✓ 94.00 91.20 0.932
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Tables 4, 5 and 6 summarized quantitative evaluation results of different methods. For 
each method, we report its classification accuracy in each land cover category as well as 
the overall OA, AA and � values across all categories. To avoid biased evaluation, we aver-
age the results from 10 independent runs (except for the Pavia Center data set, in which the 
training and testing samples are fixed). Obviously, MPRI achieves the best or the second 
best performance in most of items. These results suggest that MPRI is able to learn more 
discriminative spectral-spatial features than its counterparts using classical machine learn-
ing models.

The classification maps of different methods in three data sets are demonstrated in 
Figs. 11, 12 and 13, which further corroborate the above quantitative evaluations. The per-
formances of EPF and MPM-LBP are omitted due to their relatively lower quantitative 
evaluations. It is very easy to observe that our proposed MPRI improves the region uni-
formity (see the small region marked with dashed border) and the edge preservation (see 
the small region marked by solid line rectangles) significantly, both criteria are critical for 
evaluating classification maps (Kang et al., 2017). By contrast, other methods either fail to 
preserve local details (such as edges) of different classes (e.g., MFL) or generate noises in 
the uniform regions (e.g., SADL, PCA-EPF and HIFI).

To evaluate the robustness of our method with respect to the number of training sam-
ples, we demonstrate, in Fig.  14, the OA values of different methods in a range of the 
percentage of training samples per class. As can be expected, the more training samples, 
the better classification performance. However, MPRI is consistently superior to its coun-
terparts, especially when the training samples are limited.

4.4 � Computational complexity analysis

We finally investigate the computational complexity of different sliding window filtering 
based HSI classification methods. Note that, PRI can also be interpreted as a special kind 
of filtering, as the center pixel representation is determined by its surrounding pixels with a 
Gaussian weight [see Eq. (12)].

The computational complexity and the averaged running time on each pixel (in s) of dif-
ferent methods are summarized in Table 7. For PCA-EPF, d̃ is the dimension of averaged 
images, Ŝ is the number of different filter parameter settings, T̂  is the number of iterations. 
For HIFI, d is the number of hyperspectral bands, Ĥ is the number of the hierarchies. For 
MPRI, L, S, and B are respectively the numbers of layers, scales and betas. Usually, d̃ is set 
to 16, Ŝ is set to 3, and T̂  is set to 3, which makes PCA-EPF very fast.

According to Eq.  (7), the computational complexity of PRI grows quadratically with 
data size (i.e., N̂ ). Although one can simply apply rank deficient approximation to the 
Gram matrix for efficient computation of PRI, this strategy is preferable only when l ≪ N̂ , 
where l is the square of number of subsamples used to approximate the original Gram 
matrix (Sánchez Giraldo and Príncipe, 2011). In our application, N̂ is less than a few hun-
dreds ( ∼ 169 at most), whereas we always need to set l ≥ 25 to guarantee a non-decreasing 
accuracy. From Table 7, the reduced computational power by Gram matrix approximation 
is marginal. However, as shown in Fig. 15, such an approximation method is prone to cause 
over-smooth effect.

Finally, one should note that, although MPRI takes more time than its sliding window 
filtering based counterparts, it is still much more timesaving than prevalent DNN based 
methods. For example, CNN-MRF takes more than 6,  000s (on a PC equipped with a 
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single 1080 Ti GPU, i7 8700k CPU and 64 GB RAM) to train a CNN model using 2% 
labeled data on Indian pines data set with 10x data augmentation.

5 � Conclusions

This paper proposes multiscale principle of relevant information (MPRI) for hyperspec-
tral image (HSI) classification. MPRI uses PRI—an unsupervised information-theoretic 
learning principle that aims to perform mode decomposition of a random variable X 
with a known (and fixed) probability distribution g by a hyperparameter �—as the basic 
building block. It integrates multiple such blocks into a multiscale (by using sliding 
windows of different sizes) and multilayer (by stacking PRI successively) structure to 
extract spectral-spatial features of HSI data from a coarse-to-fine manner. Different 
from existing deep neural networks, MPRI can be efficiently trained greedy layer-wisely 
without error backpropagation. Empirical evidence indicates � ∈ [2, 4] in PRI is able to 
balance the trade-off between the regularity of extracted representation and its discrimi-
native power to HSI data. Comparative studies on three benchmark data sets demon-
strate that MPRI is able to learn discriminative representations from 3D spatial-spectral 

Fig. 11   Classification maps on Indian Pines data set. a SADL; b MFL; c PCA-EPF; d HIFI; e HybridSN; f 
SPDF; g CNN-MRF; h RPNet; i MPRI
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data, with significantly fewer training samples. Moreover, MPRI enjoys an intuitive geo-
metric interpretation, it also prompts the region uniformity and edge preservation of 
classification maps. In the future, we intend to speed up the optimization of PRI. In this 
line of research, the random fourier feature (Rahimi & Recht, 2008) seems to be a prom-
ising avenue.

Fig. 12   Classification maps on University of Pavia data set. a SADL; b MFL; c PCA-EPF; d HIFI; e 
HybridSN; f SPDF; g CNN-MRF; h RPNet; i MPRI
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Fig. 13   Classification maps on Pavia Center data set. a SADL;b MFL; c PCA-EPF; d HIFI; e HybridSN; f 
SPDF; g CNN-MRF; h RPNet; i MPRI
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Fig. 14   OA values of different 
methods with respect to different 
percentages of training samples 
per class on a Indian Pines; and b 
Pavia University. The results on 
Pavia Center is omitted, because 
the training and testing samples 
are fixed
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HIFI O(dĤ) 1.0 × 10−3

MPRI O(dN̂2𝜏LSB) 3.2 × 10−1

MPRI with Nyström-
KECA

O(dN̂l𝜏LSB) 2.6 × 10−1

Fig. 15   Classification maps of a MPRI and b MPRI with Nyström-KECA. The Gram matrix approximation 
is prone to cause over-smooth effect

https://doi.org/10.4231/R7RX991C


1251Machine Learning (2023) 112:1227–1252	

1 3

Chen, Y., Lin, Z., Zhao, X., Wang, G., & Gu, Y. (2014). Deep learning-based classification of hyper-
spectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
7(6), 2094–2107.

Chen, Y., Nasrabadi, N. M., & Tran, T. D. (2011). Hyperspectral image classification using diction-
ary-based sparse representation. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 
3973–3985.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of 
observations. The Annals of Mathematical Statistics, 23(4), 493–507.

Du, Q. (2007). Modified fisher’s linear discriminant analysis for hyperspectral imagery. IEEE Geosci-
ence and Remote Sensing Letters, 4(4), 503–507.

Fang, L., He, N., Li, S., Plaza, A. J., & Plaza, J. (2018). A new spatial-spectral feature extraction method 
for hyperspectral images using local covariance matrix representation. IEEE Transactions on Geo-
science and Remote Sensing, 56(6), 3534–3546.

Fang, L., Liu, Z., & Song, W. (2019). Deep hashing neural networks for hyperspectral image feature 
extraction. IEEE Geoscience and Remote Sensing Letters, 16(9), 1412–1416.

Feng, J., Jiao, L., Liu, F., Sun, T., & Zhang, X. (2015). Mutual-information-based semi-supervised 
hyperspectral band selection with high discrimination, high information, and low redundancy. IEEE 
Transactions on Geoscience and Remote Sensing, 53(5), 2956–2969.

Ghamisi, P., Benediktsson, J. A., Cavallaro, G., & Plaza, A. (2014). Automatic framework for spectral-spa-
tial classification based on supervised feature extraction and morphological attribute profiles. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2147–2160.

Ghamisi, P., Dalla Mura, M., & Benediktsson, J. A. (2015). A survey on spectral-spatial classification 
techniques based on attribute profiles. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 
2335–2353.

Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., et al. 2017). Advances in hyperspectral image 
and signal processing: A comprehensive overview of the state of the art. IEEE Geoscience and Remote 
Sensing Magazine, 5(4), 37–78.

Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84(406), 
502–516.

He, L., Li, J., Liu, C., & Li, S. (2018). Recent advances on spectral-spatial hyperspectral image classifica-
tion: An overview and new guidelines. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 
1579–1597.

Jenssen, R., Principe, J. C., Erdogmus, D., & Eltoft, T. (2006). The Cauchy-Schwarz divergence and parzen 
windowing: Connections to graph theory and mercer kernels. Journal of The Franklin Institute, 343(6), 
614–629.

Kamandar, M., & Ghassemian, H. (2013). Linear feature extraction for hyperspectral images based on infor-
mation theoretic learning. IEEE Geoscience and Remote Sensing Letters, 10(4), 702–706.

Kang, X., Li, S., & Benediktsson, J. A. (2014). Spectral-spatial hyperspectral image classification with 
edge-preserving filtering. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2666–2677.

Kang, X., Xiang, X., Li, S., & Benediktsson, J. A. (2017). Pca-based edge-preserving features for hyperspec-
tral image classification. IEEE Transactions on Geoscience and Remote Sensing, 55(12), 7140–7151.

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statis-
tics, 22(1), 79–86.

Li, J., Bioucas-Dias, J. M., & Plaza, A. (2013). Spectral-spatial classification of hyperspectral data using 
loopy belief propagation and active learning. IEEE Transactions on Geoscience and Remote Sensing, 
51(2), 844–856.

Li, J., Huang, X., Gamba, P., Bioucas-Dias, J. M., Zhang, L., Benediktsson, J. A., & Plaza, A. (2015). Mul-
tiple feature learning for hyperspectral image classification. IEEE Transactions on Geoscience and 
Remote Sensing, 53(3), 1592–1606.

Li, Y., Zhang, H., & Shen, Q. (2017). Spectral-spatial classification of hyperspectral imagery with 3d convo-
lutional neural network. Remote Sensing, 9(1), 67.

Ma, X., Wang, H., & Geng, J. (2016). Spectral-spatial classification of hyperspectral image based on deep 
auto-encoder. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
9(9), 4073–4085.

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research, 
9, 2579–2605.

Pan, B., Shi, Z., & Xu, X. (2017). Hierarchical guidance filtering-based ensemble classification for hyper-
spectral images. IEEE Transactions on Geoscience and Remote Sensing, 55(7), 4177–4189.

Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical 
Statistics, 33(3), 1065–1076.



1252	 Machine Learning (2023) 112:1227–1252

1 3

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 27(8), 1226–1238.

Principe, J. C. (2010). Information theoretic learning: Renyi’s entropy and kernel perspectives. New York: 
Springer.

Rahimi, A., & Recht, B (2008). Random features for large-scale kernel machines. In: Advances in neural 
information processing systems, pp. 1177–1184

Rao, S. M. (2008). Unsupervised learning: An information theoretic framework. Ph.D. thesis, University of 
Florida

Rényi, A. (1961). On measures of entropy and information. In Proceedings of the fourth Berkeley sympo-
sium on mathematical statistics and probability, volume 1: Contributions to the theory of statistics. 
The Regents of the University of California.

Roy, S. K., Krishna, G., Dubey, S. R., & Chaudhuri, B. B. (2020). Hybridsn: Exploring 3-d-c2-d cnn feature 
hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17(2), 
277–281.

Sánchez Giraldo, L. G., & Príncipe, J. C. (2011). An efficient rank-deficient computation of the principle of 
relevant information. In 2011 IEEE international conference on acoustics, speech and signal process-
ing (ICASSP) (pp. 2176–2179). IEEE.

Shwartz-Ziv, R., & Tishby, N (2017). Opening the black box of deep neural networks via information. arXiv 
preprint arXiv:​1703.​00810

Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall.
Soltani-Farani, A., Rabiee, H. R., & Hosseini, S. A. (2015). Spatial-aware dictionary learning for hyper-

spectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(1), 527–541.
Tishby N., et al (2000). The information bottleneck method. arXiv preprint arXiv:​physi​cs/​00040​57
Xu, Y., Du, B., Zhang, F., & Zhang, L. (2018). Hyperspectral image classification via a random patches net-

work. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 344–357.
Yang, X., Ye, Y., Li, X., Lau, R. Y., Zhang, X., & Huang, X. (2018). Hyperspectral image classification with 

deep learning models. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5408–5423.
Yu, S., Sanchez Giraldo, L. G., Jenssen, R., & Principe, J. C. (2019). Multivariate extension of matrix-based 

Renyi’s �-order entropy functional. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
42(11), 2960–2966.

Zare, A., Jiao, C., & Glenn, T. (2018). Discriminative multiple instance hyperspectral target characteriza-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(10), 2342–2354.

Zhong, Z., Li, J., Luo, Z., & Chapman, M. (2018). Spectral-spatial residual network for hyperspectral image 
classification: A 3-d deep learning framework. IEEE Transactions on Geoscience and Remote Sensing, 
56(2), 847–858.

Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., & Fraundorfer, F. (2017). Deep learning in 
remote sensing: a comprehensive review and list of resources. IEEE Geoscience and Remote Sensing 
Magazine, 5(4), 8–36.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://arxiv.org/abs/1703.00810
http://arxiv.org/abs/physics/0004057

	Multiscale principle of relevant information for hyperspectral image classification
	Abstract
	1 Introduction
	2 Elements of Renyi’s -entropy and the principle of relevant information
	2.1 PRI: the general idea and its objective
	2.2 Formulation of PRI using Renyi’s entropy functional

	3 Multiscale principle of relevant information (MPRI) for HSI classification
	3.1 Spectral-spatial feature learning unit
	3.2 Stacking multiple units

	4 Experimental results
	4.1 Parameter analysis
	4.1.1 Effects of parameter  in PRI
	4.1.2 Effects of the number of layers
	4.1.3 Effects of the classifier

	4.2 Evaluation on component-wise contributions
	4.3 Comparison with state-of-the-art methods
	4.4 Computational complexity analysis

	5 Conclusions
	Acknowledgements 
	References




