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Abstract
We introduce a declarative differentiable programming framework, based on the language 
of Lifted Relational Neural Networks, where small parameterized logic programs are used 
to encode deep relational learning scenarios through the underlying symmetries. When pre-
sented with relational data, such as various forms of graphs, the logic program interpreter 
dynamically unfolds differentiable computation graphs to be used for the program param-
eter optimization by standard means. Following from the declarative, relational logic-based 
encoding, this results into a unified representation of a wide range of neural models in 
the form of compact and elegant learning programs, in contrast to the existing procedural 
approaches operating directly on the computational graph level. We illustrate how this 
idea can be used for a concise encoding of existing advanced neural architectures, with the 
main focus on Graph Neural Networks (GNNs). Importantly, using the framework, we also 
show how the contemporary GNN models can be easily extended towards higher expres-
siveness in various ways. In the experiments, we demonstrate correctness and computation 
efficiency through comparison against specialized GNN frameworks, while shedding some 
light on the learning performance of the existing GNN models.

Keywords Graph neural networks · Lifted relational neural networks · Symmetries · 
Datalog · Differentiable programming · Relational learning · Molecule classification

1 Introduction

This paper concerns the problem of learning neural networks from relational representa-
tions. Although virtually all the standard models have been traditionally limited to data 
in the form of fixed-size tensors, there are also relational data, omnipresent in the inter-
linked structures of the Internet and relational databases, inducing machine learning tasks 
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such as molecule toxicity modeling, social network analysis, knowledge-base completion, 
protein function prediction, and others. While learning from relational representations has 
been traditionally dominated by approaches rooted in relational logic (Muggleton and De 
Raedt 1994) and their probabilistic extensions (Kersting and De Raedt 2001; Richardson 
and Domingos 2006; De Raedt et al. 2007), the neural networks offer highly efficient latent 
representation learning, which is beyond capabilities of the symbolic systems. The neu-
ral models, on the other hand, have traditionally been limited to the fixed tensor repre-
sentations, which cannot explicitly capture the unbounded, dynamic and irregular nature 
of the relational data. Consequently, there has been a continuous research in combining 
relational logic with neural networks to address learning from increasingly complex rela-
tional data (Uwents et al. 2011; Šourek et al. 2015; Kazemi and Poole 2018; Hohenecker 
and Lukasiewicz 2020) by exploiting the symmetries of the underlying domains (Kimmig 
et al. 2015).

Meanwhile, Graph Neural Networks (GNNs)  (Scarselli et  al. 2008) introduced an 
important paradigm shift by moving from fixed neural architectures to dynamically con-
structed computation graphs, directly following the structural bias and symmetries pre-
sented by the differently structured input data. As opposed to the approaches mapping all 
the samples into fixed-size tensors, this enabled to exploit the structural properties of the 
data more efficiently, as they are simply directly encoded into the very structure of the 
model itself, similarly to lifted graphical models (Kimmig et al. 2015). Consequently, these 
models recently achieved remarkable successes in a wide range of tasks (Zhou et al. 2018).

Currently, we are seeing an unprecedented expansion of the GNN model class, with 
hundreds of new GNN modifications being proposed under variety of names. However, 
similarly to some of the previous rapid topic growths in deep learning, this progress is 
so far mostly empirical, lacking a more grounded and unified view. Given the pace of the 
progress, it is then difficult to recognize the commonalities between the proposed models, 
leading to a lot of rediscoveries of the same ideas and architectures under different names.

In this paper, we offer one such unified view on the GNN model class from the perspec-
tive of the previous work on deep relational learning, concerned with combining relational 
logic with neural networks. There, in the same fashion of how graphs form a special case 
of relational logic models,1 the GNNs can be seen as a special case of relational neural net-
works. As demonstrated throughout the paper, this view then offers a unified approach to 
a variety of existing GNN modelling constructs, as well as a very direct way to generalize 
them towards higher expressiveness, which is one of the core subjects of the contemporary 
GNN research.

1.1  Deep relational learning

It has been recently proposed by several authors that incorporating relational logic capa-
bilities into neural networks is crucial to achieve more powerful AI systems (Marcus 2020; 
De Raedt et al. 2020; Lamb et al. 2020). Indeed, we see a rising interest in enriching deep 
learning models with certain facets of symbolic AI, ranging from logical entailment (Evans 
et al. 2018), rule learning (Evans and Grefenstette 2018), and solving combinatorial prob-
lems  (Palm et  al. 2018; Bengio et  al. 2020; Prates et  al. 2019; Cameron et  al. 2020), to 
proposing differentiable versions of the whole Turing machine (Graves et al. 2014, 2016). 

1 Explained in detail later in Sect. 2.2.
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However, similarly to the Turing-completeness of recurrent neural networks, the expres-
siveness of these advanced neural architectures is not easily translatable into actual learn-
ing performance, as their optimization tends to be often prohibitively difficult (Lipton et al. 
2015).

There has also been a long stream of research in neural-symbolic integration  (Bader 
and Hitzler 2005; Garcez et  al. 2019), traditionally focused on emulating logic reason-
ing within static neural networks (Towell and Shavlik 1994; Smolensky 1990; Botta et al. 
1997; Ding and Liya Ding 1995). The efforts eventually evolved from propositional (Tow-
ell and Shavlik 1994; Garcez and Zaverucha 1999) into full first order logic settings, map-
ping logic constructs and semantics into respective tensor spaces and optimization con-
straints (Serafini and d’Avila Garcez 2016; Dong et al. 2019; Marra et al. 2020).

While targeting integration of relational logic and deep learning, one of the core desired 
properties for an integrated system is to keep expressiveness of both the worlds as a special 
case. Although much focus has been traditionally devoted to keep the expressiveness of 
the logic reasoning, considerably less attention was put on the neural models themselves.2 
Consequently, modeling the existing modern advances in deep learning architectures, such 
as the GNNs, is out of scope of these integrated systems.3

1.1.1  Contributions

In contrast to the classic efforts of approximating complex relational logic reasoning within 
standard neural networks, in this paper we show how to use simple relational logic pro-
grams to capture advanced neural architectures -- in a tightly integrated and exact manner. 
Particularly, we use the language of Lifted Relational Neural Networks (LRNNs) (Šourek 
et  al. 2018) and demonstrate that a wide range of neural models, ranging from simple 
MLPs and CNNs to complex contemporary GNNs, can be elegantly captured under the 
unified formalism of the LRNNs, directly exposing the underlying principles and sym-
metries of the models. Importantly, we present the unification not only from the theoreti-
cal perspective of (relational) model expressiveness, but directly from the practical point 
of view, as the relational logic-based encodings of the neural models’ principles are also 
directly runnable.4

The main focus of this paper is then on encoding of the GNN models. We show how 
to elegantly capture the core information propagation principles of GNNs with relational 
logic, extend it into some of the most complex GNN architectures and, importantly, 
beyond. We also directly compare against specialized GNN frameworks of PyTorch Geo-
metric and Deep Graph Library. Additionally, we shed some more light on the generaliza-
tion performance of some advanced state-of-the-art GNN models, as compared to basic 
GNNs, through measurements under a unified protocol over a large collection of datasets.

The paper is structured as follows. Firstly, we introduce the necessary preliminaries of 
logic and deep learning in Sect. 2. In Sect. 3, we introduce the language of LRNNs, which 
we use throughout the paper. Subsequently, we illustrate the LRNNs on a range of example 

2 Indeed, majority of the integrative approaches are limited to basic fully-connected networks (e.g. Towell 
et al. 1990), or they are simply oblivious of the used neural architecture due to loose integration (Tsamoura 
and Michael 2020) (e.g. Manhaeve et al. 2018).
3 See further Sect. 7 for the related work.
4 Code to reproduce experiments from this paper is available at https:// github. com/ Gusti kS/ GNNwL RNNs. 
The LRNN framework itself can then be found at https:// github. com/ Gusti kS/ Neura Logic.

https://github.com/GustikS/GNNwLRNNs
https://github.com/GustikS/NeuraLogic
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models in Sect. 4. Capturing and extending GNNs is then detailed in Sect. 5. In Sect. 6, 
we demonstrate practicality and computation efficiency of the approach. We then discuss 
related works in Sect. 7 and conclude in Sect. 8.

2  Background

In this section we introduce the necessary preliminaries of relational logic (programming) 
and (graph) neural networks, which we seek to integrate towards a more unified view and 
generalization of the latter.

2.1  Logic

Mathematical logic is the core language of the symbolic AI approaches, and while there 
are also other representation formalisms for structured data, knowledge and processes 
(e.g. UML, ERM, SQL, RDF, etc.), specific to different application domains, mathemati-
cal logic still servers as the lingua franca for studying their expressiveness and relation-
ships (Gallaire et al. 1989; Kuhlmann and Gogolla 2012). In this paper, we then target rela-
tional logic, which limits the classic first-order logic representation to contain no function 
symbols other than constants,5 however note that the relational logic formalism already 
covers the widest range of existing learning domains with structured data sources, such as 
the graphs, networks, knowledge-bases, and relational databases (Gallaire et al. 1989).

2.1.1  Syntax

Syntax specifies the structure, or grammar, of the logic language, which is formed from 
formulas. A relational logic theory is a set of such formulas. Formulas are formed from 
a set of constants, a set of variables, a set of n-ary predicates for n ∈ ℕ , and the propo-
sitional connectives ∨ , ∧ and ¬  (Smullyan 1995). Constant symbols represent objects in 
the domain of interest (e.g. hydrogen1 ) and will be written in lower-case. Variables range 
over the objects in the domain and, to prevent confusion, will be written with a capital-
ized first letter (e.g. X ). Predicates represent relations among objects in the domain, or 
their attributes. A term is a constant or a variable. An atom6 is an n-ary predicate sym-
bol, for some n ∈ ℕ , applied to a tuple of n terms (e.g. bond(X, hydrogen1) ). A ground 
atom, also called a proposition, is an atom which only has constants as arguments (e.g. 
bond(oxygen1, hydrogen1) ). A literal � is an atom or negation of an atom. A clause � is a 
universally quantified disjunction of literals.7 A clause with exactly one positive literal is a 
definite clause. A definite clause with no negative literals (i.e. consisting of just one literal) 
is called a fact. A definite clause h ∨ ¬b1 ∨⋯ ∨ ¬bk can also be written as an implica-
tion h ← b1 ∧⋯ ∧ bk . The literal h is then called head and the conjunction b1 ∧⋯ ∧ bk 
is called body. We will often call definite clauses, which are not facts, rules. A set of such 
rules is then commonly called a logic program.

5 This restriction is made for the practical purpose of (neural) model finiteness.
6 Note the clash of terms with a chemical atom, which is also used further in the paper.
7 We do not write the universal quantifiers explicitly in this paper.
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2.1.2  Semantics

Semantics is an assignment of “meaning” to the, syntactically valid, logical sentences, 
which forms foundation for the logical entailment and model computation. The Herbrand 
base of a set of first-order formulas P = {�1,… , �m} is the set of all ground atoms which 
can be constructed using the constants and predicates that appear in this set (while respect-
ing the arity of each predicate). A Herbrand interpretation of P , also called a possible 
world � , is a mapping that assigns a truth value to each element from P ’s Herbrand base. 
This can also be seen simply as a set of ground atoms (those which are true). We say that 
a possible world � satisfies a ground atom a, written 𝜔 ⊧ a , if a ∈ � . The satisfaction 
relation is then generalized from ground atoms to arbitrary ground formulas through the 
standard interpretation of the ∨ , ∧ and ¬ connectives  (Smullyan 1995). A set of ground 
formulas is satisfiable if there exists at least one possible world in which all formulas from 
the set are true; such a possible world is called a Herbrand model. Each set of definite 
clauses has a unique Herbrand model that is minimal w.r.t. the subset relation ⊂ , called its 
least Herbrand model. The least Herbrand model of a finite set of ground definite clauses 
can be constructed in a finite number of steps using the immediate-consequence opera-
tor (Van Emden and Kowalski 1976). This immediate consequence operator is a mapping 
Tp ∶ I → I  from Herbrand interpretations to Herbrand interpretations, defined for a set of 
ground definite clauses P as Tp(𝜔) = {h | (h ← b1 ∧⋯ ∧ bk) ∈ P, {b1,… , bk} ⊆ 𝜔}.

Now consider a set of non-ground definite clauses P . A substitution � is a mapping 
from variables to terms. For a clause � , we write �� for the clause {�� |� ∈ �} , where 
�� is obtained by replacing each occurrence in � of a variable v by the correspond-
ing term �(v) . A grounding substitution is then a substitution in which each variable is 
mapped to a constant. Clearly, if � is a grounding substitution, then for any literal � it 
holds that �� is ground. The grounding of a clause � from P is the set of ground clauses 
G(�) = {��1,… , ��n} where �1,… , �n is the set of all possible substitutions, each mapping 
the variables occurring in � to constants appearing in P . Note that if � is already ground, 
its grounding is a singleton. The grounding of P is given by G(P) =

⋃
�∈P G(�) . The least 

Herbrand model of P is then defined as the least Herbrand model of G(P).
In practice, most of the rules in the grounding G(P) will be irrelevant, as their body 

can never be satisfied. The restricted grounding limits the grounding to those rules which 
are “active”, i.e. whose body is satisfied8 in the least Herbrand model H . It is defined by 
GR(P) = {h𝜃 ← b1𝜃 ∧⋯ ∧ bk𝜃 | (h ← b1 ∧⋯ ∧ bk) ∈ P and {h𝜃, b1𝜃,… , bk𝜃} ⊆ H}.

2.2  Logic programming

Logic programming is a declarative programming paradigm for computation with logic 
programs P = {�1,… , �m} , which are used to encode data and knowledge about a given 
(relational) domain. Syntactically, the rules h ← b1 ∧⋯ ∧ bk in the program P are com-
monly written as 

8 We further use the restricted grounding to avoid unnecessary inflation of the resulting neural models, as 
defined later in Sect. 3.2.
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1 h :- b1 , . . . , bk .

where each comma “, ” stands for conjunction, and “:-” replaces the logical implication, 
which now reads right-to-left. Recall that facts are definite clauses consisting of a single 
atom, i.e. rules with no body. Note that such (ground) facts may be conveniently used to 
represent structured data, such as, but not limited to, various graphs.9

Example 1 For graph structured data, we can simply define a binary predicate edge/2 with 
a set of atoms edge(X, Y) for all adjacent nodes X, Y in the graph, while also retaining the 
orientation of each edge (given by the order of the terms). Additionally, we may also use 
other propositions to assign attributes to the nodes such as red(X) etc.10 An example of 
such encoding of graphs within logic is displayed in Fig. 1-left.

The computation in logic programming is then generally carried out by the means of 
the logical entailment. This paradigm is particularly expressive with relational programs 
P containing (sets of) interconnected non-ground clauses, where the entailment needs to 
be resolved (recursively) by the means of substitution(s) (Sect. 2.1.2), enabling to compose 
general and reusable programming patterns to target structured data problems.

Example 2 Following up on the example with graph structured data (Example 1), we can, 
e.g., define (recursive) patterns in P such as 

1 path (X,Y) :- edge (X,Y) .
2 path (X,Y) :- edge (X,Z ), path (Z,Y ) .

 which then automatically binds to a (possibly) multitude of substructures in the 
graph(s) via different substitutions P� for the variables {X, Y , Z} upon execution of P 
(Fig. 1).

Particularly, to target the assumed relational logic setting, we consider the language 
of Datalog (Unman 1989) -- a restricted function-free subset of Prolog (Bratko 2001). In 
contrast with Prolog, Datalog is a truly declarative language,11 where the order of clauses 
and their literals does not influence execution, and it is also guaranteed to terminate. This 
allows for separation of the programs P from the underlying execution engine (Bancilhon 
et al. 1985), which leads to two different, albeit equivalent, semantics.

2.2.1  Model‑theoretic semantics

Here, the semantics of a Datalog program P is defined by the means of its unique mini-
mal model � . As outlined in Sect. 2.1.2, this minimal model can be constructed in a finite 

11 This is a distinguishing feature from many other procedural differentiable programming frameworks, 
such as PyTorch or TensorFlow, which are effectively propositional in this sense (Sect. 7).

9 We later exploit the fact that relational logic is not limited to graphs while generalizing Graph Neural 
Networks in various ways in Sect. 5.2.
10 See Sect. 3.1.1 for further options stemming from such an encoding.
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number of repeated applications of the immediate consequence operator Tp . The operator 
Tp then expands the current set of true atoms, i.e.  the current Herbrand interpretation I  , 
with their immediate consequences as prescribed by the rules in P . It is initially applied 
to an empty interpretation I = ∅ , iteratively adding the head atoms of each ground rule 
instance �� , the body of which is satisfied by the current interpretation Ii as

1: I1 = Tp(∅)

2: I2 = Tp(Tp(∅))

…

n: In = Tn
p
(∅)

The minimal model In = � of P then corresponds to the least fixed-point n of Tp , where no 
more facts are being added to Ii=n . For instance, following up on the Example 2 (Fig. 1), 
such Ii=2 model will contain an atom path(., .) for all the paths in the graph (with length 1 
and 2).

This simple bottom-up method is called “naive evaluation”, but with some additional 
optimizations it is actually being used in practice. Likewise, we follow this approach, with 
some optimizations, in the proposed framework (Sect. 3).

2.2.2  Proof‑theoretic semantics

Similarly to querying a standard (non-deductive) database with SQL, in logic program-
ming one may also provide a query atom q to drive the evaluation engine towards a logical 
proof of a specific target q. For instance, following up again on the Example 2, we can ask 
a query: 

1 ?− path ( d,a ) .

 While this can be achieved by computing the minimal model � of P in the bottom-up 
fashion (Sect. 2.2.1) and checking whether q ⊆ 𝜔 , if all we need is to find any derivation 
of q from P , that might be inefficient. Consequently, it is common to employ a top-down 
“proving” strategy, which starts at the query atom q, and searches through the rules in P 
for a rule h ← b1,… , bn for which there is some � such that h� = q . This search then con-
tinues recursively for the (possible) body atoms b1�,… , bn� of the rule that now need to 
be derived from P . Ultimately, the atoms to be proved can be found directly as facts in P , 
forming the leaves of the induced recursive proof-tree of q from P , if successful. This pro-
cedure is visualized for the two possible derivations of path(d, a) in Fig. 1 - right.

This top-down, backward rule-chaining approach is then commonly used in Prolog and 
theorem provers.12 We note that in the supervised learning setting, we do evaluate LRNN 
programs w.r.t. a target query atom. However, since the LRNN semantics13 requires evalu-
ation of all possible derivations of each such query, we ultimately found it more efficient to 
employ (an optimized version of) the bottom-up approach from Sect. 2.2.1.

12 Likewise, it was also used in some earlier versions (Aschenbrenner 2013; Šourek et al. 2015) of the pro-
posed LRNN framework, too.
13 Which will be defined in Sect. 3.2.
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2.3  Deep learning

Deep learning is a machine learning approach commonly characterized by the use of multi-
layered neural networks. Similarly to other (supervised) machine learning models, a neural 
network is a mapping X →

W
Y  from the input sample space (attribute-value) representations 

X to the output target labels Y, parameterized by some W . In the multi-layered networks, 
this mapping can be seen as a hierarchical composition of (nonlinear) activation functions 
which, following the pattern of the composition, can be conveniently represented as a com-
putational graph.

A computational graph G = (N, E,F) , composed of nodes N  , edges E and the activa-
tion functions F  , is a general way to represent nested mathematical functions using the 
language of graph theory. The graphs are directed with the information flowing from the 
children nodes to parent nodes, where the children of a node N ∈ N  are naturally defined 
as all those nodes M such that (M,N) ∈ E , and analogically for the parents. The neural 
networks are then commonly conveyed by the means of differentiable, parameterized, data-
flow computation graphs G = (N, E,F,W) , associated also with a set of learnable param-
eters W , commonly called weights. Here, the data flowing through the directed edges e ∈ E 
are being successively transformed by the differentiable activation functions f ∈ F  associ-
ated with the nodes N ∈ N  , commonly referred to as “neurons”. As discussed in the intro-
duction, the data are then commonly restricted to the numeric vectors (or tensors) x . The 
term neural “layer” k is then used to refer to a set of neurons {N | �����G(N) = k} residing 
at the same depth k in G.14 An input layer k = 0 is then commonly used to represent the 
feature values x of the input data samples (xi, yi) themselves. An output layer k = �����(G) 
then corresponds to the target values y . A “deep” neural network is a graph with multiple 
layers in between, i.e. with �����(G) > 3.

By adapting the weights w ∈ W , commonly associated with the edges E → W , the 
model X →

W
Y  can be trained to approximate some target function t ∶ X → Y  , representing 

the original (deterministic) system S. This is done, as usual, via minimization of some 
given cost function (W;Dtrain) → ℝ capturing the discrepancy between the model and t 
over some set of training data samples (xi, t(xi)) ∈ Dtrain . Owing to the differentiability of 

Fig. 1  An example of a graph structure encoded in relational logic (left), with two possible proof trees of 
the query path(d, a) derived from it (right)

14 This notion is somewhat complicated outside the common directed acyclic computation graphs, where 
the recurrent connections are normally ignored for the sake of the notion of model depth.
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the used activation functions f ∈ F  , the parameters w ∈ W of a graph G can be effectively 
adapted by gradient-descent routines, which is a distinguishing feature of all successful 
deep learning architectures.

Dynamic Computation Graphs: In standard neural models, the structure of the com-
putation graph G is static, and only the values xi = (x1

i
,… , xm

i
) forming input to the leave 

nodes {N1,… ,Nm} ⊂ N  are used to encode particularities of individual learning samples 
xi ∈ D . These input nodes are then associated with identity functions f j(xi) = x

j

i
 . In con-

trast, many of the advanced relational neural models we assume in this paper are based on 
dynamic computation graphs, mapping each xi onto a new Gi to exploit particular structural 
properties of each input sample. Consequently, the leave nodes in these dynamic Gi ’s are 
associated with constant functions f j

i
= x

j

i
 , outputting the associated input sample values (if 

any). This enables to train neural models directly from structured data such as trees, graphs 
and databases.

2.3.1  Neural architectures

Due to the increasingly complex nature of the computation graphs G and the operations 
F  utilized in their nodes N  , the field has been recently also referred to as differentiable 
programming.15 The term neural architecture is then often used to refer to common pro-
gramming patterns used in creation of these programs, reflected also in the structure of the 
underlying computation graphs. Each such pattern then reflects some common principle, 
stemming from the features of its typical application. Here, we briefly overview the main 
ideas behind some of the most common and successful neural architectures used in deep 
learning. Each of the outlined architectures is then later described in more detail together 
with its encoding as a differentiable LRNN program in Sect. 4.

Perhaps the most common design pattern is a fully-connected layer  (Schmidhuber 
2015). The main idea behind such a transformation is then in “representation learning” of 
the input data, often referred to as embedding, where one can think of outputs of the indi-
vidual layers as transformed representations of the input, each extracting gradually more 
expressive information w.r.t. the output learning target.

Other very common patterns are the convolutional and pooling layers from Convolu-
tional Neural Networks (CNNs) (LeCun et al. 1998). The main idea behind the convolution 
operation is exploitation of translation symmetries in the domain. This is done via appli-
cation of the same parameterized filter over different sub-regions of the input, inducing 
equivariance w.r.t. the filter transformation. This enables to abstract away common pat-
terns out of different sub-parts of the input representation. The main idea behind the pool-
ing operation is then to further enforce invariance w.r.t. translation in the input.

Another successful pattern often used for problems with underlying sequential dynam-
ics are layers from Recurrent Neural Networks  (Schmidhuber 2015). These are designed 
to capture symmetries in sequential (time series) data. The main idea behind recur-
rent patterns is that the hidden representation can store a form of memory or state of the 
computation.

A generalization from sequential to regularly tree-structured data was then popular-
ized with Recursive Neural Networks  (Socher et  al. 2013b). The important idea behind 

15 Note however that, despite being theoretically Turing-complete (e.g. recurrent neural networks), the 
learning models themselves are rarely as expressive in practice as standard programming languages used for 
their creation.
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recursive networks is that neural learning can be extended towards structured data by gen-
erating a dynamic computation graph for each individual example. The design pattern then 
exploits the convolution (parameter sharing) principle to discover the underlying composi-
tionality of the learning representations in recursive structures.

2.3.2  Graph neural networks

Graph Neural Networks (GNN) (Wu et al. 2020)16 can be seen as a further extension of the 
CNN principles to completely irregular graph structures xi = {Ni, Ei} . For that purpose, 
they dynamically unfold each computational graph Gi from each input structure xi , simi-
larly to the recursive networks. However, a GNN is a multi-layered feed-forward neural 
architecture, where the structure of each layer k exactly follows the structure of the whole 
input graph xi . Every node Nxi

 in each input graph xi can now be associated with a feature 
vector (embedding), forming the input layer representation h in the computation graph Gi 
as h(NGi

)(0) = features(Nxi
).17

For computation of the next layer k + 1 representations of the nodes in Gi , each node 
N calculates its own value h(N) by aggregating A (“pooling”) the values of the nodes 
M ∶ (N,M) ∈ Ei adjacent in the input graph xi (“message passing”), transformed by some 
parametric function CW1

 (“convolution”), which is being reused with the same parameteri-
zation Wk

1
 within each layer k as:

The h̃(k)(N) can be further combined through another CW2
 with the central node’s N repre-

sentation from the previous layer k − 1 to obtain the final updated value h(k)(N) for layer k 
as:

Note that in contrast to recursive networks, a different parameterization is typically used at 
each layer. This general “aggregate and combine” (Xu et al. 2018a) computation scheme 
covers a wide variety of the popular GNN models, which then reduces to the choice of 
particular aggregations A and transformations CW . For instance in GraphSAGE (Hamilton 
et al. 2017), the operations are

and

while in the popular Graph Convolutional Networks (Kipf and Welling 2017), these can be 
even merged into a single step as

(1)h̃(N)(k) = A(k)({C
(k)

Wk
1

(h(M)(k−1))|M ∶ (N,M) ∈ Ei})

(2)h(N)(k) = C
(k)

Wk
2

(h(N)(k−1), h̃(N)(k))

h̃(N)(k) = max{ReLU(W ⋅ h(k−1)(M))|M ∶ (N,M) ∈ Ei}

h(N)(k) = Wf ⋅ [(h(N)
(k−1), act(k)(N)]

16 Often referred to also as “Graph Convolutional Networks”, which slightly differ from the original GNN 
proposal (Scarselli et al. 2008), but share the general principles discussed.
17 Interestingly, however, this is not necessary in general, as the variance in the graph topologies of the 
individual examples can already provide enough discriminative information on its own.
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and the same generic principle applies to many other GNN works (Xu et al. 2018b; Gilmer 
et al. 2017; Xu et al. 2018a).

GNNs can be directly utilized for both graph-level as well as node-level classification 
tasks. For output prediction on the level of individual nodes, we simply apply some activa-
tion function on top of its last layer representation, e.g. query(N) = �(h(N)(d)) . For predic-
tions on the level of the whole graph G , all the node representations need to be aggregated 
by some pooling operation such as query(G) = �(avg{h(d)(N)|N ∈ G}).

By following the same pattern at each layer k, the computation will produce increas-
ingly more aggregated representations, since at layer k each node N effectively aggregates 
representations from its “k-hops” neighborhood. Intuitively, the GNN inference can thus 
be seen as a continuous version of the popular Weisfeiler-Lehman algorithm  (Weisfeiler 
and Lehman 1968) for calculating graph fingerprints used for refutation checking in graph 
isomorphism testing.

A large number of different variants of the original GNNs  (Scarselli et  al. 2008) 
have been proposed, recently achieving state-of-the-art empirical performance in many 
tasks (Wu et al. 2020; Zhou et al. 2018). In essence, each introduced GNN variant came up 
with a certain combination of common activation and aggregation functions, and/or pro-
posed extending the architecture with additional connections  (Xu et  al. 2018b) or layers 
borrowed from other neural architectures (Veličković et al. 2017; Li et al. 2015), neverthe-
less they all share the same introduced idea of successive aggregation of node representa-
tions. For a general overview, we refer to Wu et al. (2020); Zhou et al. (2018).18

Knowledge Base Embeddings (KBEs) are a set of approaches designed for the task of 
knowledge base completion (KBC) (Kadlec et al. 2017), i.e. predicting existing (missing) 
edges in large knowledge graphs. Particularly, these methods approach the task through 
learning of a distributed representation (embedding) for the nodes. In multi-relational 
graphs, a representation of the edge (relation) can also be added, forming a commonly used 
triplet representation of (object,  relation,  subject). To predict the probability of a given 
edge in the knowledge graph, KBEs then choose one of a plethora of functions designed to 
combine19 the three embeddings from the underlying triplet (Kadlec et al. 2017).

3  The language of lifted relational neural networks

We follow up on the work of Lifted Relational Neural Networks (LRNNs) (Šourek et al. 
2018) which have been introduced as a framework for templated modeling of diverse neu-
ral architectures (Sect. 2.3.1) oriented to relational data, based on the underlying symme-
tries. In this paper, we show that it can also be understood as a differentiable version of 
simple Datalog programming (Sect.  2.2), where the templates, encoding various neuro-
relational learning architectures, take the form of parameterized Datalog programs. During 
learning, when presented with relational data, such as various forms of graphs, the program 
interpreter dynamically unfolds differentiable computational graphs to be used for the pro-
gram parameter optimization by standard (gradient descent) means. This differs from the 

h(k)(N) = ReLU(Wk
⋅ avg{h(k−1)(M)|M ∶ (N,M) ∈ Ei ∪ {N}})

18 We also note that the recently highly successful Transformer architecture (Vaswani et al. 2017) is actu-
ally closely related to this GNN scheme, too (Joshi 2020).
19 Note that there is no need for the “aggregate” operation in plain KBEs.
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commonly used frameworks, such as PyTorch or Tensorflow, in the declarative, relational 
nature of the encoding, enabling one to abstract further away from the procedural details 
of the underlying computation graphs. In turn, this allows to reveal the common principles 
and symmetries of the neural models, simplifying their extensions and generalizations. We 
explain principles of this abstraction in the following subsections.

3.1  Syntax: weighted logic programs

The syntax of LRNNs is derived directly from the Datalog  (Unman 1989) language 
(Sect. 2.2), which we further extend with numerical parameters. Note that this has been 
exploited in many previous works, where the parameters can signify values associated 
with facts (Bistarelli et al. 2008) or rules (Eisner and Filardo 2010). Such extensions are 
typically designed to integrate standard statistical (or probabilistic (De Raedt et al. 2007)) 
modelling techniques with the high expressiveness of relational representation and reason-
ing (Getoor and Taskar 2007).

In this work we seek to integrate Datalog with deep learning, for which we allow each 
literal in each clause of the logic program to be associated with a tensor weight. A param-
eterized program, formed by a multitude of such weighted rules, then declaratively encodes 
all computations to be performed in a given learning scenario. For clarity of correspond-
ence with standard (neural) learning scenarios, we here further split20 the program into unit 
clauses (facts), constituting the learning examples, and definite clauses (rules), constituting 
the learning template.

3.1.1  Learning examples

The learning examples contain factual description of a given world. For their representation 
we use weighted ground facts. A learning example is then a set E = {(V1, e1),… , (Vm, em)} , 
where each Vi is a real-valued tensor and each ei is a ground fact, i.e. expression of the form 

1 V1 : : p1(c11, . . . , c
1
l1
) .

2 . . .
3 Vm : : pm(cm1 , . . . , cmlm ) .

 where p1,… , pm are predicates with corresponding arities l1,… , lm , and cj
i
 are arbitrary 

constants. Note that the actual values, predicates, and constants at different indices may 
actually be the same (i.e. shared).

Standard logical representation is then a special case where each Vi = 1.21 One can 
either write 1::carbon(c1 ) or omit the weight and write, e.g., bond(c1, o2) . The values 
do not have to be binary and can represent a “degree of truth” to which a certain fact 
holds, such as 0.4::aromatic(c1 ). The values are also not necessarily restricted to (0,  1), 
and can thus naturally represent numerical features, such as 6::atomicNumber(c1) or 

21 Since we consider a close world assumption (CWA) and least Herbrand model, one does not enumerate 
false facts with zero value.

20 Note that this split is not necessary in general, and the template can also contain facts, as well as the 
learning examples may contain rules, such as in general ILP scenarios (Muggleton and De Raedt 1994).
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2.35::ionEnergy(c1, level2 ). Finally the values are not necessarily restricted to scalars, and 
can thus have the form of feature vectors (tensors), such as [1.0,−7,… , 3.14]:: features(c1).

Ground facts in examples are also not restricted to unary predicates, and can thus 
describe not only properties of individual objects, but values of arbitrary relational proper-
ties. For example, one can assign feature values to edges in graphs, such as describing a 
bond between two atoms [2.7,−1]::bond(c1, o2).

There is no syntactical restriction on how these representations can be mixed together, 
and one can thus select which parts of the data are better modelled with (sub-symbolic) 
distributed numerical representations, and which parts yield themselves to be represented 
by purely logical means, and move continuously along this dimension as needed.

Query: Queries (Sect.  2.2.2) represent the classification labels or regression targets 
associated with an example for supervised learning. They again utilize the same weighted 
fact representation such as 1::class or 4.7::target(c1) . Note that the target queries again do 
not have to be unary, and one can thus use the same format for different tasks. For example, 
for knowledge-graph completion, we would use queries such as 1.0::coworker(alice, bob).

3.1.2  Learning template

The weighted logic programs written in LRNNs are then often referred to 
as templates. Syntactically, a learning template T  is a set of weighted rules 
T = {(�i, {W

i
j
})} = {(Wi

0
, hi) ← (Wi

1
, bi

1
),… , (Wi

k
, bi

k
)} where each �i is a definite clause 

and each Wi
j
 is some real-valued tensor, i.e. expressions of the form 

1 W1
0 : : h1 ( . . .) :- W1

1 : b1
1 ( . . .) , . . . , W1

k1
: b1

k1
( . . .) .

2 . . .
3 Wn

0 : : hn ( . . .) :- Wn
1 : bn

1 ( . . .) , . . . , Wn
kn

: bn
kn

( . . .) .

 where h i  ’s and b i
j
 ’s are predicates forming positive literals, and Wi

j
 ’s are the associated ten-

sors. The treatment of constants within the literals is then the same as in the learning exam-
ples (Sect. 3.1.1), however note that there may also be logic variables in their place. Note also 
again that the actual predicates, constants, variables and weights can be commonly reused 
(shared) in different places in the template. Intuitively, the template constitutes roughly what 
neural architecture means in deep learning22 -- i.e. it does not (necessarily) encode a particu-
lar model or knowledge of the problem, but rather a generic mode of computation.

Example 3 Consider a simple template for learning with molecular data, encoding a generic 
idea that the (distributed) representation (h(.)) of a chemical atom (e.g. o1 ) is dependent on 
the chemical atoms adjacent to it. Given that a molecule can be represented by the set of 
contained atoms (a(.))23 and bonds (b(. , .)) between them (see left part of Fig. 2), we can 
encode this idea by the following rule 

22 We deliberately refrain from using the common term of neural “model”, since a single template can have 
multiple logical (and neural) models.
23 e.g. a(o

1
) denotes a logical atom declaring o

1
 to be a chemical atom. This fact can then be, e.g., associ-

ated with chemical features of the oxygen o
1
 (Sec 3.1.1). To distinguish, h(.) denotes the learned distributed 

representation of each chemical atom.
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1 Wh1 : : h(X) :- Wa : a (Y), Wb : b(X,Y) .

 Moreover, one might be interested in using the representation of all atoms (h(X)) for 
deducing the representation of the whole molecule, for which we can write 

1 Wq : : q :- Wh2 : h(X) .

 to derive a single ground query atom (q), which can be associated with the learning 
target of the whole molecule. The concrete semantics of this template then follows in 
the next section.

3.2  Semantics: computational graphs defined by LRNNs

To explain the correspondence between a relational template T  and a “neural architecture” 
(Sect. 2.3.1), we now describe the mapping that takes the template and a given example 
description and produces a standard neural model. Here, “standard neural model” refers to 
a specific differentiable computational graph (Section 2.3).

First, let Nl be the set of rules and facts obtained from the template and a learning exam-
ple Nl = T ∪ El by removing all the tensor weights. For instance, if we had a weighted 
rule W::h ∶ −W1:b1,W2:b2 , we would obtain h ∶ − b1, b2 . Then we construct the least Her-
brand model Nl of Nl (Sect. 2.1.2), which can be done using separate, efficient grounding 
(theorem proving) techniques.24

One option we employ is the bottom-up grounding strategy,25 repeatedly applying the 
immediate consequence operator26 (Sect.  2.2.1). We note that for the consequent neural 
learning, the target query atom q associated with El must be logically entailed by Nl , i.e. 
present in Nl.27

Having the least Herbrand model Nl containing q, we can construct a neural computa-
tional graph Gl . Intuitively, the structure of the graph contains all the logical derivations of 
the target query literal q from the example evidence El through the template T  . Now, we 
formally define the transformation mapping from Nl to a computational graph:

– For each weighted ground fact (Vi, e) occurring directly in El , there is a node F(Vi,e)
 in 

the computational graph, called a fact node.
– For each ground atom h occurring in Nl ⧵ El , there is a node Ah in the computational 

graph, called an atom node.

24 Note that this is different from the complete (naive) grounding, which would lead to unnecessarily large 
networks. In LRNNs, we limit ourselves to the least Herbrand model only, and consequently the restricted 
grounding (Sect. 2.1) of the rules.
25 Another option is backward-chaining of the rules back from the associated query atom (q) through T  
into E

l
 (Sect. 2.2.2), which has been used in an earlier version of the LRNN framework  (Aschenbrenner 

2013), too. Note, however, that this choice is purely technical and, following proper logical inference in 
both cases, does not affect the resulting neural models.
26 Note that we actually use a number of CSP-inspired optimization techniques in the grounding pro-
cess (Kuželka and Železný 2008) to make it efficient.
27 Otherwise it is automatically considered false (or having a default value) via CWA.
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– For every rule c ← b1 ∧⋯ ∧ bk ∈ T  and every grounding substitution c� = h ∈ Nl , 
there is a node Gc�=h

(c←b1∧⋯∧bk)
 in the computational graph, called an aggregation node.

– For every ground rule �i� = (c� ← b1� ∧⋯ ∧ bk�) which is active in Nl , there is a 
node R(c�←b1�∧⋯∧bk�)

 in the computational graph, called a rule node.

An overview of the correspondence between the logical and the neural model, together 
with the used notation, is reviewed in Table 1.

The nodes of the computational graph that we defined above are then interconnected so 
as to follow the derivation of the logical facts by the immediate consequence operator start-
ing from El , i.e. starting from the fact nodes F(Vi,e)

 which have no antecedent inputs in the 
computational graph and simply output their associated values as out(F(Vi,e)

) = Vi . The fact 
nodes are commonly used to represent information from the input examples or background 
knowledge.

The fact nodes are then connected into rule nodes R�� , particularly a node F(Vi,e)
 will be 

connected into every node R�� = R(c�←b1�∧⋯∧bk�)
 where e = bi� for some i. We note that an 

efficient �-subsumption engine from (Kuželka and Železný 2008)28 is used in the process 
of finding all such valid substitutions R�� in N  . Having all the inputs, corresponding to the 
body literals of the associated ground rule, connected, the rule node will output a value 
calculated as

The rule node’s activation function g∧ is up to user’s choice. For scalar inputs, it can be for 
example set to mimic conjunction from Lukasiewicz logic, as in our previous work (Šourek 
et al. 2018). However, one can also choose to ignore the fuzzy-logical interpretation and 
use completely distributed semantics and activations utilized commonly in deep learning. 
In this case, the computation follows the common (matrix) calculus by firstly aggregating 
the node’s input values into its activation value

followed by an element-wise application of any differentiable function, such as logistic 
sigmoid

In general, the rule nodes are used to represent (conjunctive) patterns to be repeatedly 
matched in the input (or transformed) data while reusing the same parameterization, such 
as the convolutional filters in CNNs.29

The rule nodes are then connected into aggregation nodes. Particularly, a rule node 
R(c�←b1�∧⋯∧bk�)

 is connected into the aggregation node Gc�=h
(c←b1∧⋯∧bk)

 that corresponds to the 

out(R��) = g∧
(
W�

1
⋅ out(F(V1,b1�)

),… ,W�

k
⋅ out(F(Vi,bk�)

)
)
.

act(R��)
(l×1)

= W�

1
(l×n)

⋅ out(F1)
(n×1)

+⋯ + W�

j
(l×m)

⋅ out(Fk)
(m×1)

,

out(R��)
(l×1)

= �(act(R��)
(l×1)

) = �
(
act(R��)1,… , act(R��)l

)
.

28 Involving a number of CSP techniques, including backtracking search with forward checking, variable 
selection heuristic and randomized restarting strategies.
29 See e.g. Fig. 4 for an example use.
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same ground head literal c� . Having all the inputs, corresponding to different grounding 
substitutions �i of the rule c ← (b1 ∧⋯ ∧ bk) with the same ground head 
h = c�1 = ⋯ = c�q , connected, the aggregation node will output the value

where g∗ is some aggregation function, such as avg or max. The aggregation nodes effec-
tively aggregate all the different ways by which a literal h can be derived from a single rule 
� . The aggregation g∗ is then applied in each dimension of the input values as

Note that since all the input values are derived from a single rule � , their dimensionalities 
are necessarily the same. Intuitively, the aggregation nodes are used to aggregate values 
from the pattern matches of the underlying rule nodes, such as the pooling operation used 
in CNNs.29

The aggregation nodes are then connected into atom nodes. In particular, an aggrega-
tion node Gh

�
 will be connected into the atom node Ah that is associated with the same atom 

h. The inputs of the atom node represent all the possible rules �i through which the same 
atom h can be derived. Having them all connected, Ah will output the value

Apart from the choice of activation function g∨ , the computation of the atom node’s output 
follows exactly the same scheme as for the rule nodes. However, the atom nodes are used to 
combine the aggregated values (pattern matches) from different rules (such as the combine 
operation in GNNs (Sect. 2.3.2)).

Finally, the atom nodes are connected into rule nodes in exactly the same fashion as fact 
nodes, i.e. Ah will be connected into every R(c�←b1�∧⋯∧bk�)

 where h = bi� for some i, and the 
whole process continues recursively. Note that only the restricted grounding (Sect. 2.1) of 
Nl is involved in the process, keeping the resulting models complete,30 yet minimal in size. 
Note also that this process of transforming a learning example into a computational graph 
is performed only once, as the subsequent neural training can only change the values of the 
parameters but not the structure of the graphs.

Example 4 Let us follow up on the Example 1 by extending the described template with 
two example molecules of hydrogen and water. The template will then be used to dynami-
cally unfold two computation graphs, one for each molecule, as depicted in Fig. 2. Note 
that the computational graphs have different structures, following from the different Her-
brand models derived from each molecule’s facts, but share parameters in a scheme deter-
mined by the lifted structure of the joint template.

out(Gc
�
� = h) = g∗

(
out(R

c�1=h

��1
),… , out(R

c�q=h

��q
)
)
.

out(Gh
�
)

l×1

= g∗(out(R1)
l×1

,… , out(Rq)
l×1

) =

(
g∗
(
out(R1)

1,… , out(Rq)
1
)
,… ,

… , g∗
(
out(R1)

l,… , out(Rq)
l
))

.

out(Ah) = g∨
(
Wc

1
⋅ out(Gh

�1
),… ,Wc

m
⋅ out(Gh

�m
)
)
.

30 i.e. containing all the possible valid inferences.
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4  Examples of common neural architectures

We now demonstrate flexibility of the declarative LRNN paradigm, stemming from the 
abstraction power of Datalog, by encoding a variety of common neural architectures 
(Sect.  2.3.1) into very simple differentiable logic programs. For completeness, we start 
from simple neural models, where the advantages of templating are not so apparent, but 
continue to advanced deep learning architectures, where the expressiveness of relational 
templating stands out more clearly. Note that all the templates in this paper are actual pro-
grams that can be run and trained with the LRNN interpreter.

4.1  Feed‑forward neural networks

A multi-layered perceptron (MLP) is the original and most common neural architec-
ture. It encodes a directed feed-forward graph, where the interconnections between 
nodes in subsequent layers k and k + 1 follow the “fully-connected” pattern where for all 
Nk,Nk+1 ∶ (Nk,Nk+1) ∈ E , i.e. a complete bipartite graph. Moreover, each edge is associ-
ated with a unique weight as E

1∶1

⟶ W . Consequently, assuming the common vector form 
of the input data sample x (features), the computational graph can be efficiently reduced 
to a linear series of full (dense) matrix Wk+1

k
 multiplications, each followed by an element-

wise application of a non-linear function f k+1 , such as the common logistic “sigmoid” (� ), 
hyperbolic tangent ( tanh ) or rectified linear unit (ReLU).

Encoding: MLPs form the most simple case where the weighted logic template is 
restricted to propositional clauses, and its single Herbrand model thus directly corresponds 
to a single neural model (Sect. 3.2). In this setting, the input example information can thus 
be encoded merely in the values of their associated tensors, which is the standard (static) 
deep learning scenario. In the vector form, we can associate each example Ei with a fact 
proposition [vi

1
,… , vi

n
]:: features(0) , forming the input (0-th) node of the neural model. Each 

labeled example is further associated with a target query value vi
q
::q.

In particular, an MLP with 3 layers, i.e. input layer(0) , 1 hidden layer(1) , and output 
layer(2) , with the corresponding weight matrices [W

m×n

(1)
, W
1×m

(2)] can be directly modelled 
with the following rule 

1 W
1×m

(2) : : q(2) :- W
m×n

(1) : f e a t u r e s (0) .

 Naturally, we can extend it to a deeper MLP by stacking more rules as 

Table 1  Correspondence 
between the logical ground 
model and computational graph

Logical construct Type of node Notation

Ground atom h Atom node A
h

Ground fact h Fact node F(h,textbfw)

Ground rule’s �� body Rule node R
c�

(Wc

0
c�←W

�
1
b1�∧⋯∧W�

k
b
k
�)

Rule’s � ground head h Aggregation node G
h=c�

i

(Wc

0
c←W

�
1
b1∧⋯∧W�

k
b
k
)
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1 W
r×m

(2) : : hidden(2) :- W
m×n

(1) : f e a t u r e s (0) .

2 . . .

3 W
1×s

(k) : : q(k) :- W
s×r

(k−1) : hidden(k−2) .

 Once the template gets transformed into the corresponding neural model (Sect. 3.2), its 
computational graph will consist of a linear chain of nodes corresponding to standard fully-
connected layers 1,… , k with associated weight matrices [W (1),W (2) … ,W (k)] , and activa-
tion functions of the user’s choice. We note that it is also possible to specify the activation 
functions with each rule (layer) separately, e.g. as 

1 W(4) : : hidden(4) :- W(3) : hidden(2) . [g∧ = ReLU ]

Note also that not all the weights need to be specified, and one can thus also write, e.g., 
either of 

1 W : : h(2) :- h(0) . h(2) :- W : h(0) .

 While each of these rules still encodes in essence a 3-layer MLP, either only the hidden 
(right) or only the output (left) layer will carry learnable parameters, respectively. Moreo-
ver, following the exact semantics (Sect.  3.2) for neural model creation, an aggregation 
node will be created on top of a rule node, representing the hidden layer. Since there is 
no need for aggregation in MLPs, i.e. only a single rule node ever gets created from each 
propositional rule, this introduces unnecessary operations in the graph. Since such nodes 
arguably do not improve learning of the model, we prune them out, as depicted in Fig. 3. 

Fig. 2  A simple LRNN template with 2 rules described in Example 1. Upon receiving 2 example mole-
cules, 2 neural computation graphs get created, as prescribed by the semantics (Sect. 3.2)
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The technique is further described in more detail in the appendix Sect. A.1.1. Note that we 
assume application of pruning, where applicable, in the remaining examples described in 
this paper.

4.2  Convolutional neural networks

A Convolutional Neural Network (CNN) is also a feed-forward architecture, yet not fully 
connected as the MLP. The interconnection patterns in one or more sub-parts of its com-
putation graph G are characterized by utilizing the particular operations of “convolution” 
(filtering) and “pooling” (Sect. 2.3.1). Given a vector input x of size n, the convolutional 
filter (kernel) will also be represented by a vector c of some size c < n . Scalar products of 
the filter and all the c-length subsequences of the input vector x are then successively cal-
culated to produce n − c + 1 scalar values. The resulting values are commonly referred to 
as “feature-maps”. The second operation is the pooling, which aggregates values from pre-
defined spatial sub-regions of the input values (feature-maps) into a single output through 
application of some (non-parameterized) aggregation function, such as the commonly used 
mean (avg) or maximum (max). The layers of these operations can then be mixed together 
with the previously introduced layers from MLPs in various combinations.

Encoding: The CNNs can no longer be represented with a propositional template. To 
emulate the additional parts w.r.t. the MLPs, i.e. the convolutional filters and pooling (Sec-
tion 2.3), we need to move to relational rules (Sect. 2.1). Note that there is a natural, close 
relationship between convolutions and relational rules (or relational patterns in general), 
where the point of both is to exploit symmetries in some form of equivariance in the data. 
Moreover, the point of both the aggregation nodes and the pooling layers is to further 
enforce invariance. Let us demonstrate this relationship with the following example.

For clarity of presentation, consider a simplistic one-dimensional “image” consisting 
of 5 pixels i = 1,… , 5 . While the regular grid structure of the image pixels is inherently 
assumed in CNN, we will need to encode it explicitly. Considering the 1-dimensional case, 
it is enough to define a linear ordering of the pixels such as next(1, 2),… , next(4, 5) . The 
(gray-scale) value vi of each pixel i can then be encoded by a corresponding weighted fact 
vi ∶ f (i) . Next we encode a convolution filter of size [1, 3], i.e. vector which combines the 
values of each three ([left,middle,right]) consecutive pixels, and a (max/avg)-pooling layer 
that aggregates all the resulting values. This computation can be encoded using the follow-
ing template

1 h :- wl : f (A), wm : f (B), wr : f (C), next (A,B), next (B,C) .

 A visualization of the CNN and the corresponding computation graph derived from the 
logic model of the template presented with some example pixel values [v1,… , v5] is shown 
in Fig.  4. Note that we exclude the purely logical (boolean) atoms (next(.,  .)) from the 
computation graphs for clarity, as they simply correspond to constant-valued (fact) nodes, 
which do not contribute to the learning capacity of the model.31

31 This can be done in the framework by prefixing the corresponding predicates with “*”.
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While this does not seem like a convenient way to represent learning with CNNs 
from images, the important insight is that convolutions in neural networks correspond to 
weighted relational rules (patterns). The efficiency of normal CNN encoding is due to the 
inherent assumptions that are present in CNNs w.r.t. topology of their application domain, 
i.e. grids of pixel values, and similarly complete, ordered structures. While with LRNNs 
we need to state all these assumptions explicitly, it also means that we are not restricted to 
them -- an advantage which will become clearer in the subsequent sections.

4.3  Recursive and recurrent neural networks

4.3.1  Recursive networks

A Recursive Neural Network (RNN)32 is a neural architecture which differs significantly 
from the previous in that it is based on the dynamic computation graphs (Sect. 2.3), i.e. 
the exact form of the computation graph is not given in advance. Instead, the computation 
graph structure Gi directly follows the structure of each input example xi , which takes the 
form of a k−regular tree. This enables to learn neural networks directly from differently-
structured regular tree examples xi , as opposed to the fixed-size tensors x (which can also 
be seen as graphs with completely regular grid topologies).

The leaf nodes N0

j
 in each input sample tree xi can be associated with feature vector 

values (embeddings) xj
i
 . Every c leaf nodes xj,… , xj+c with the same parent node N1

j
 in 

the respective computation tree Gi are consequently combined by a given c-parameterized 
operation � , such as a c-weighted dot-product, to compute the representation of the parent 
N1

j
 . This combining operation � then continues recursively for all the interior nodes, until 

the representation for the root node Nk=depth(Gi) is computed, which forms the output of the 
model for xi . Similarly to the convolution in CNNs, the parameterized combining operation 
� over the children nodes remains the same over the whole tree (Socher et al. 2013a).33

Encoding:
The dynamically changing structure of the input examples prevents us from creating 

fixed computation schemes, such as in the CNNs. Instead, we need to resort to a general 
convolutional pattern that can be applied over any k-regular tree. For that purpose, we 
again utilize the expressiveness of relational logic. Firstly, we encode the k-regular tree 
structure itself by providing a fact connecting each parent node in the tree to its child-
nodes, i.e. parent(nodei+1

j
, nodei

l
,… , nodei

l+k
) . Secondly, we associate all the leaf nodes 

in the tree with their embedding vectors [vi
1
,… , vi

n
] ∶∶ n(leafi) . Finally, a single relational 

rule can then be used to encode the recursive composition of representations in the, for 
instance 3-regular, tree as 

Fig. 3  Demonstration of the pruning technique on a sample MLP model unfolded from a 2-rule template of 
�
1
= W

1
∶∶h

1
∶ −f . and �

2
= W

2
∶∶h

2
∶ −h

1

32 Note that the abbreviation is also used for the recurrent neural networks, in this paper however, we use it 
solely to refer to recursive networks.
33 In some works, this architecture is further extended to use a set of different parameterizations, depending 
for instance on given types associated with the nodes, such as types of constituents in constituency-based 
parse trees.
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1 n(P) :- W1 :n(C1 ), W2 :n(C3 ), W3 :n(C3 ), parent (P,C1 ,C2 ,C3 ) .

which directly forms the whole learning template. Given a particular example tree, this 
rule translates to a computation graph recursively combining the children node represen-
tations (n(C)) into respective parent node representations, until the root node is reached. 
The root node representation (n(root)) could then be, e.g., fed into a standard MLP rule 
(Sect.  4.1) to output the value for a given target query associated with the whole tree 
example.

4.3.2  Recurrent networks

The basic form of the commonly known Recurrent Neural Networks (Lipton et al. 2015) 
can then be seen as a “restriction” of the idea to sequential structures, i.e. linear chains of 
input nodes.34 The computation graph G in the form of a linear chain is then successively 
unfolded along the input sequence to compute the hidden representation for each node Ni 
based on the previous node’s Ni−1 representation and the current node features xi (current 
input).

Encoding: A simple recurrent neural network unfolded over a linear (time) structure 
can then be modelled in a simpler manner, where only a single (vector) input is given at 
each step and a linear chain of hidden nodes (h(X)) replaces the prescribed tree hierarchy. 
Assuming encoding of the ordinal example structure with predicate next(X, Y) as before, 
such a model can then be written simply as 

1 h(Y) :- Wf : f (Y), Wh :h(X), next (X,Y) .

 The final hidden representation (h(k)) could then again be fed into a MLP for a whole 
sequence-level prediction. Neural architectures of both these templated models are dis-
played in Fig. 5.

Fig. 4  Left: core part of a standard CNN architecture with sparse layer composed of sequential applications 
of a convolutional filter (h), creating a feature-map layer, followed by a pooling operator. Right: the corre-
sponding computation graph derived from a LRNN template

34 We note that modern recurrent architectures use additional computation constructs to store the hidden 
state, such as the popular LSTM cells, which are more complex and do not directly follow from the input 
structure.
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5  Graph neural networks in LRNNs

Graph Neural Networks (GNNs) (Sect. 2.3.2) can be seen as a generalization of the intro-
duced neural architectures (Sect. 4) to arbitrary graphs, for which they combine the prin-
ciples of latent representation learning (Sect.  4.1), convolution (Sect.  4.2), and dynamic 
model structure (Sect. 4.3).

While modelling CNNs in the weighted logic formalism was somewhat cumbersome 
(because we had to explicitly represent the pixel grid), the encoding of GNNs is very 
straightforward. This is due to the underlying general graph representation with no addi-
tional assumptions of its structure, which yields itself very naturally to relational logic. 
The computation of the layer i update in GNNs can then be represented by a single rule as 
follows 

1 W(i) : : h(i) (V) :- h(i−1) (U), edge (V,U) .

where edge/2 is the binary relation of the given input graphs. With the choice of activa-
tion functions as g∗ = avg, g∧ = ReLU , this simple rule already models the popular Graph 
Convolutional Neural Networks (GCN)  (Kipf and Welling 2017).35 The exact same rule 
(up to parameterization) is then used at each layer. For the final output query (q) represent-
ing the whole graph we simply aggregate representations of all the nodes as 

1 W(d) : : q :- h(d−1) (U) .

 A noticeable shortcoming of GCNs is that the representation of the “central” node (V) 
itself is not used in the representation update. While this can be done by extending the 
graph (edge/2) with self-loops, a novel36 GNN model called GraphSAGE (g-SAGE) (Ham-
ilton et  al. 2017) was proposed to address this explicitly. To follow the architecture of 
g-SAGE, we thus split the template into 2 rules accordingly

1 h(i) (V) :- W(i)
1 : h(i−1) (U), edge (V,U) .

2 h(i) (V) :- W(i)
2 : h(i−1) (V) .

 and choose g∧ = ReLU, g∗ = max, g∨ = identity for the very model (g-SAGE), the 
depiction of which can be seen in Fig. 6.

Another popular extension taken from neural architectures for image recognition are resid-
ual (skip) connections, where one effectively adds links to preceding layers at arbitrary depth 
(instead of just the preceding layer), i.e. we simply add one or more rules in the form 

1 W(i)
skip : : h(i) (V) :- h(i−skip) (V) .

 This technique is also used in the Graph Isomorphism Network (GIN)  (Xu et  al. 
2018a), which is a theoretically substantiated GNN based on the expressive power of the 

35 Where the authors also denoted the rule as convolution, since it forms a linear approximation of a local-
ized spectral convolution (Kipf and Welling 2017).
36 Note that, differently from GCN with self-loops, the central node is parameterized differently from the 
neighbors.
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Weisfeiler-Lehman test (WL) (Weisfeiler and Lehman 1968). Firstly, the GIN model differs 
in that it adds residual connections from all the preceding layers to the final layer (which 
the authors refer to as “jumping knowledge” (Xu et al. 2018b)). Secondly, the particular-
ity of GIN is to add a 2-layered MLP on top of each aggregation to harvest its univer-
sal approximation power. Particularly, update formula derived from the WL-correspond-
ence (Xu et al. 2018a) is

where MLP is the 2-layered MLP (Sect. 4.1). To accommodate the extra MLP layer, we 
thus extend the template as follows  

1 mlp(i)
tmp (V) :- h(U) (i−1), edge (V,U) .

2 mlp(i)
tmp (V) :- (1+ ε(i−1)) : h(i−1) (V) .

3 W(i)
2 : : h(i) (V) :- W(i)

1 : mlp(i)
tmp (V) .

 Note that, considering that such a single rule actually already models a 2-layer37 MLP (as 
described in Sect. 4.1), a very similar computation can be carried out even simpler with 

1 W(i)
2a : : h(i) (V) :- W(i)

1a : h(U) (i−1), edge (V,U) .

2 W(i)
2b : : h(i) (V) :- W(i)

1b : h(i−1) (V) .

 corresponding to a GIN version without the special (1 + �(i)) coefficient, which the authors 
refer to as “GIN-0”  (Xu et  al. 2018a) and actually find performing better.38 Finally they 
choose g∗ = sum as the function to aggregate the neighborhood representations. The 
authors proved the GIN model to belong to the most “powerful” class of GNN models, 
i.e. no other GNN model is more expressive than GIN, and demonstrated the GIN-0 model 
to provide state-of-the-art performance in various graph classification and completion 
tasks (Xu et al. 2018a).

h(i)(v) = MLP(i)
(
(1 + �(i−1)) ⋅ h(i−1)(v) +

∑

u∈N(v)

h(i−1)(u)
)

Ff(1) Ff(2) Ff(k)

Rh(1)
α1

Ah(0) Rh(2)
α1 Rh(k)

α1

Wf Wf Wf

Wh Wh

. . .

. . .

F(0)
n(1)

F(0)
n(2)

F(0)
n(3)

. . .

. . .

Rn(i)(d−1)

α1

Rn(j)(1)
α1

Rn(k)(d−1)

α1

Rn(j)(d)
α1

W1

W2

W3

W1

W2

W3

. . .

Fig. 5  Simple recurrent (left) and recursive (right) neural structures encoded through LRNNs

37 Or 3-layer, depending on inclusion of the input layer in the count.
38 We note there is a slight difference, where GIN-0 firstly aggregates the neighbors and weights the result, 
while this template aggregates the neighbors after weighting. Nevertheless we note that GNN authors often 
switch this order themselves, for instance GraphSAGE in Dwivedi et al. (2020) performs weighting before 
aggregation, while it is vice-versa in Xu et al. (2018a).
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5.1  Extending GNNs

While the GIN model presents the most “powerful” version of the basic GNN idea, there is 
a large number of ways in which the GNN approach can be extended. We discuss some of 
the direct, natural extensions in this subsection.

5.1.1  Edge representations

Originally aimed at single-relation graphs, GNNs do not adequately utilize the informa-
tion about the possibly different types of edges. While it is straightforward to associate 
edges with scalar weights in the adjacency matrix, instead of using just binary edge indica-
tors (Kipf and Welling 2017), extending to richer edge representations is not so direct, and 
has only been explored recently (Kipf et al. 2018; Gong and Cheng 2019; Kim et al. 2019).

In the templating approach, addressing edges is very simple, since we do not operate 
directly with the graph but with the ground logical model, where each edge ( edge(n1, n2) ) 
forms an atom in exactly the same way as the actual nodes ( node(n1) ) in the graph itself 
(similarly to an extra transformation introduced in line-GNNs (Chen et al. 2017)). We can 
thus directly associate edges corresponding to different relations with arbitrary features 
( [v1,… , vn]∶∶ edge(n1, n2) ), learn their distributed representations, and predict their prop-
erties (or existence), just like GNNs do with the nodes. For basic learning with edge rep-
resentations, there is no need to change anything in the previously introduced templates. 
However, one might want to associate extra transformations for edge and node representa-
tion learning (Gong and Cheng 2019), in which case we would simply write 

1 W(i) : : h(i) (V) :- h(U) (i−1), We : edge (V,U) .

A large number of structured data then come in the form of multi-relational graphs, 
where the edges can take on different types. A straightforward extension is to learn a sepa-
rate node representation of the nodes for each of the relations, e.g. as 

Fig. 6  A computation graph of a sample (g-SAGE) GNN as encoded in LRNNs. Given an input graph of 4 
(fact) nodes (F

n1
…F

n4
 ), neighbors of each node are firstly weighted and aggregated with rule and aggrega-

tion nodes, respectively (reduced in size in picture). The result is then combined with representation of the 
(central) node from the preceding layer, to form a new layer of 4 atom nodes, copying the structure of the 
input graph. After n such layers, each with the same structure but different parameters, a global readout 
(aggregation) node aggregates all the node representations, passing to the final query (atom) node’s trans-
formation
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1 W(i) : : h(i)
x (V) :- hx (U) (i−1), We : edgetype=x (V,U) .

 and to choose from the different representations depending on context, such as in multi-
sense word embeddings (Li and Jurafsky 2015), or simply directly combine (Schlichtkrull 
et al. 2018) these representations in the template.

5.1.2  Heterogeneous graphs

The majority of current GNNs assume homogeneous graphs, and learning from hetero-
geneous graphs has just been marked as one of the future directions for GNNs (Wu et al. 
2020). In LRNNs, various heterogeneous graphs (Wang et al. 2019b) can be directly cov-
ered without any modification, since there is no restriction to the types of nodes and rela-
tions to be used in the same template (and so we do not have to e.g. split the graphs (Zhu 
et al. 2019) or perform any extra operation (Liu et al. 2018) for such a task). In the context 
of heterogeneous information networks, a similar “templating” idea has already become 
popular as defining “meta-paths” (Dong et al. 2017; Huang and Mamoulis 2017), which 
can be directly covered by a single LRNN rule and, importantly, differentiated through.

We can further represent the relations as actual objects to be operated by logical means, 
by reifying them into logical constants as 

1 W(i)
1 : : h(i) (V) :- h(U) (i−1), h (E) (i−1), edge (V,E,U ) .

where variable E represents the edge object and h(E) is its hidden representation. The 
learned embeddings of the nodes and relations can then be directly used for predicting 
triplets of (Object,Relation,Subject) in KBC (Sect.  2.3.2), again with a simple template 
extension, e.g. for an MLP-based KBE (Dong et al. 2014), as 

1 W : : edge (O,R,S ) :- Wo :h(O), Wr :h(R), Ws :h(S) .

5.1.3  Hypergraphs

Naturally, the GNN idea can be extended to hypergraphs, too, as was recently also pro-
posed (Feng et al. 2019). While extending to hypergraphs from the adjacency matrix form 
used for simple graphs can be somewhat cumbersome, in the relational Datalog, hyper-
graphs are first-class citizens, so we can just directly write 

1 W(i)
1 : : h(i) (U1 ) :- h(U1 ) (i−1) , . . . , h (Un)(i−1) , edge (U1, . . . , Un ) .

2 . . .

3 W(i)
1 : : h(i) (Un ) :- h(U1 ) (i−1) , . . . , h (Un)(i−1) , edge (U1, . . . , Un ) .

 and possibly directly combine with all the other extensions.
There are many other simple ways in which GNNs can be extended towards higher 

expressiveness and there is a wide variety of emerging works in this area. While reaching 
beyond the standard, single adjacency matrix format, each of the novel extensions typically 
requires extra transformations (and libraries) to create their necessary intermediate repre-
sentations (Chen et al. 2017; Dong et al. 2017). Many of these extensions are often deemed 
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complex from the graph (GNN) point of view, but are rather trivial template modifications 
with LRNNs, as indicated in the preceding examples (and further in Sect. 5.2). This is due 
to the adopted declarative relational abstraction, as opposed to the procedural manipula-
tions on ground graphs, defined often on a per-case basis.

5.2  Beyond GNN architectures

Previously, we discussed possible ways of direct extensions of GNNs. In this subsection, 
we introduce some more substantial generalizations that break beyond the core principles 
of current GNNs. Virtually all the GNNs are based on some form of the “message pass-
ing” idea (the WL label propagation (Weisfeiler and Lehman 1968)), where the nodes are 
restricted to “communicate” with neighbors through the existing edges. Obviously, there 
is no such restriction in LRNNs, and we can design templates for arbitrary information 
propagation schemes, corresponding to more complex and expressive convolutional filters, 
beyond the basic WL scheme. For instance, consider a simple extension beyond the imme-
diate neighborhood aggregation by defining edges as weighted paths of length 2 (intro-
duced as “soft edges” in Šourek et al. (2018)): 

1 W: : edge2 (U,W) :- W1 : edge (U,V), W2 : edge (V,W) .

We can also easily compose the edges into small subgraph patterns of interest (also 
known as “graphlets” or “motifs” used in, e.g., social network analysis  (Šourek et  al. 
2013)), such as triangles and other small cliques (alternatively conveniently representable 
by the hyper-edges (Sect. 5.1.3)), and operate on the level of these instead: 

1 W: : node (U,V,W) :- W1 : edge (U,V), W2 : edge (V,W), W3 : edge(W,U ) .

Since both nodes and edges can be treated uniformly as logic atoms, we can easily alter 
the GNN idea to hierarchically propagate latent representations of the edges, too. In other 
words, each edge can aggregate representations of “adjacent” edges from previous layers: 

1 W: : h(i)
edge (E) :- WF :h(i−1)

edge (F), WU,V : edge (U,V,E ), WV,W : edge (V,W,F) .

Naturally, this can be further combined with the standard learning of the latent node 
representations (as we do in experiments in Sect. 6).

Moreover, the messages do not have to spread homogeneously through the graph and 
a custom logic can drive the diffusion scheme. This can be, for instance, naturally put to 
work in the heterogeneous graph environments (Sect. 5.1.2) with explicit types, which can 
then be used to control communication and representation learning of the nodes: 

1 W: : h(i) (X) :- h(i−1) (Y), edge (X,Y,E ), type ( E,typee1 ) .

Besides being able to represented the types explicitly as objects (as opposed to the vec-
tor embeddings), we can actually induce new types, for instance into latent hierarchical 
categories (such as in Šourek et al. 2016): 



1721Machine Learning (2021) 110:1695–1738 

1 3

1 i s a ( edge1 , t ype e
1 ) .

2 . . .

3 W(1) : : i s a ( supertype (1)
e , t ype e

1 ) .

4 W(k) : : i s a (A,C) :- W(k−1)
1 : i s a (A,B), W(k−1)

2 : i s a (B,C) .

Importantly, there is no need to directly follow the input graph structure in each layer. 
We can completely abstract away from the graph representation in the subsequent layers 
and reason on the level of the newly invented, logically derived, entities, such as, e.g., the 
various graphlets, latent types, and their combinations: 

1 W: : node(1)motif (T1, T2, T3) :- W1 :node (X), W2 : node (Y), W3 : node (Z),
2 W4 : type (X,T1), W5 : type (Y,T2), W6 : type ( Z,T3 ),
3 edge (X,Y), edge (Y,Z ), edge (X,Z ) .

Finally, the models can be directly extended with external relational background knowl-
edge. Note that such knowledge can be specified declaratively, with the same expressiveness as 
the templates themselves, since they are consequently simply merged together, for instance39: 

1 r i ng 6(A, . . . , F ) :- Ve1 : edge (A,B), . . . , Ve6 : edge (F,A),
2 Vn1node (A), . . . , Vn6node (F) .
3 W: : node(n) (X) :- V1 : r i ng 6(X, . . . , F ) .

 Note that this is very different from the standard GNNs, where one can only input 
ground information in the form of numerical feature vectors along with the actual nodes 
(and possibly edges). Nevertheless this does not mean that LRNNs cannot work with 
numerical representations. On the contrary, besides the standard neural means, one can 
also directly interact with it by the logical means, e.g. by arithmetic predicates to define 
learnable numerical transformations (such as in Šourek et al. 2018) over some given (or 
learned) node similarities: 

1 W: : edgesim (N1 ,N2 ) :- s im i l a r (N1 ,N2 ,S im ), W0.3 :≥(Sim , 0 . 3 ) .

6  Experiments

The preceding examples were meant to demonstrate high expressiveness and encoding effi-
ciency of the declarative LRNN templating. The main purpose of the experiments is to 
assess correctness and efficiency of the actual learning. For that purpose, we select GNNs 
as the most general and flexible of the commonly used neural architectures, since they 
encompass building blocks of all the other introduced architectures. Given the focus on 
GNNs, we compare against two most popular40 GNN frameworks of Pytorch Geometric 

39 A practical case study detailing extension of GNNs with such a declarative background knowledge has 
been further demonstrated in a separate paper (Šourek et al. 2020).
40 With, as of date, PyG having 7.3K stars and DGL having 4.7K stars on Github, respectively. For refer-
ence, we used PyG 1.4.3 and DGL 0.4.3 (actual versions as of March 2020).
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(PyG) (Fey and Lenssen 2019) and Deep Graph Library (DGL) (Wang et al. 2019a). Both 
these frameworks contain reference implementations of many popular GNN models, which 
makes them ideal for such a comparison. Note also that both these frameworks are highly 
contemporary and were specifically designed and optimized for creation and training of 
GNNs.

6.1  Datasets

For clarity of presentation, we restrict ourselves to the task of graph classification, but per-
form experiments across a large number of datasets to obtain statistically significant results. 
Particularly, we assembled a collection of 78 popular molecular datasets, ranging from small 
instances, such as the infamous Mutagenesis (Lodhi and Muggleton 2005), to medium-sized, 
such as the Predictive Toxicology Challenge (Helma et al. 2001), and large, particularly vari-
ous datasets from the National Cancer Institute NCI  (Milne et al. 1994).41 Note that these 
include popular datasets such as NCI1 (Xu et al. 2018a; Morris et al. 2019; Neumann et al. 
2016) or NCI109 (Neumann et al. 2016; Niepert et al. 2016; Simonovsky and Komodakis 
2017) that are commonly picked by GNN authors (but we also include the 70 others). The 
tasks with these are generally to recognize molecules w.r.t. their mutagenicity, toxicity or 
ability to inhibit growth of different types of tumors. On average, each of these datasets con-
tains app. 3000 samples, each with app. 24 atoms and 51 bonds. Note we only use the basic 
(Mol2 (Tripos 2007)) types of atoms and bonds without extra chemical features.

While in this paper we only report experiments on the task of graph classification, we 
note that the LRNN framework is by no means limited to this setting, and can also be used 
for learning in all the standard settings,42 such as knowledge-base completion (link-predic-
tion), too, as briefly explained in the appendix Sect. A.2.1.

6.2  Modern GNN frameworks

While popular deep learning frameworks such as TensorFlow or Pytorch provide ways for 
efficient acceleration of standard neural architectures such as MLPs and CNNs, implement-
ing GNNs is more challenging due to the irregular, dynamic, and sparse structure of the 
input graph data. Nevertheless, following the success of vectorization of the classic neural 
architectures, both PyG and DGL adopt the standard (sparse) tensor representation of all 
the data to leverage vectorized operations upon these. This includes the graphs themselves, 
which are then represented by their sparse adjacency matrices Gi

i
 . Further, each node index 

i can be associated with a feature vector ( [f1,… , fj]i ) through an additional matrix Fj

i
 asso-

ciated with each input graph.
Following the standard procedural differentiable programming paradigm, both frame-

works then represent model computations explicitly through a predefined graph of tensor 
transformations applied directly to the input graph matrices, creating an updated feature 
tensor Fj(k)

i
 at each step k. The same tensor transformations are then applied to each input 

graph.

41 Available at ftp:// ftp. ics. uci. edu/ pub/ baldig/ learn ing/ nci/ gi50/.
42 And more, e.g. collective classification, thanks to the flexible definition of the learning query concept 
(Sect. 3.1.1).

ftp://ftp.ics.uci.edu/pub/baldig/learning/nci/gi50/
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Both frameworks are then based on similar ideas of message passing between the nodes 
(neighborhood aggregation) and its respective acceleration through optimized sparse ten-
sor operations and batching (gather-scatter). DGL then seems to support a wider range of 
operations (and backends), with high-level optimizations directed towards larger scale data 
and models (and a larger overhead), while PyG utilizes more efficient low-level optimiza-
tions stemming from its tighter integration with Pytorch.

6.3  Model and training correspondence

Firstly, note that the formal correctness of the GNN model encodings (Sect. 5) w.r.t. their 
mathematical definitions (Sect.  2.3.2) follows directly from the semantics of the LRNN 
compilation (Sect. 3.2) as detailed, for instance, in Examples 3 and 4 (Fig. 2).

Here, we further also empirically evaluate the actual learning correspondence between 
the GNN encodings in LRNNs and their reference implementations in PyG and DGL. 
For that, we select some of the most popular GNN models introduced in previous sec-
tions, particularly the original GCN  (Kipf and Welling 2017), highly used GraphSAGE 
(g-SAGE) (Hamilton et al. 2017) and the “most powerful” GIN (Xu et al. 2018a) (particu-
larly GIN-0). Each of the models comes with a slightly different aggregate-combine scheme 
and particular aggregation/activation functions (detailed in Sects. 2.3.2 and 5). Moreover, 
we keep original GCN and g-SAGE as 2-layered models, while we adopt 5-layers for GIN 
(as proposed by the authors).43 We further use the same latent dimension d = 10 for all the 
weights in all the models. Finally we set average-pooling operation, followed by a single lin-
ear layer, as the final graph-level readout for prediction in each of the models.

While the declarative templating takes a very different approach from the procedural 
GNN frameworks, for the specific case of GNN templates it is easy to align their computa-
tions, as they are mostly simple sequential applications of the (i) neighborhood aggrega-
tion, (ii) weighting, and (iii) non-linear activation, which can be covered altogether by a 
single rule (Sect. 5).44

For the comparison, we use the same 10-fold crossvalidation splits for all the models. 
We further use Glorot initialization scheme  (Glorot and Bengio 2010) where possible, and 
optimize using ADAM with a learning rate of lr = 1.5e−5 (betas and epsilon kept the usual 
defaults) against binary crossentropy over 2000 epochae. Note that some other works pro-
pose a more radical training scheme with lr = 0.01 and exponential decay by 0.5 every 50 
epochae (Xu et al. 2018a), however we find GNN training in this setting highly unstable,45 and 
thus unsuitable for the alignment of the different implementations. We then display the actual 
training errors (as opposed to accuracy) as the most consistent evaluation metric for the align-
ment purpose in Fig. 7 over the first 5 datasets for demonstration.46 Additionally, we report 
aggregated Mahalanobis47 pair-wise distances (Nagino and Shozakai 2006) between the train-
ing errors of the respective frameworks and models calculated over all the datasets in Table 2.

43 Obviously the number of layers could be increased/equalized for all of the models, however we keep 
them distinct to also accentuate their learning differences further.
44 However for a precise correspondence, care must be taken to respect the same order of the (i-iii) opera-
tions, which often varies across different reports and implementations.
45 As is e.g. also visible in the respective Fig. 4 reported in Xu et al. (2018a).
46 For visual clarity we present results only for the first 5 of the total 73 datasets in alphabetical order, 
while we note that the results are very similar over the whole set.
47 To capture distances between the two respective distributions for each dataset.
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While it is very difficult to align the training perfectly due to the underlying stochastic-
ity, we can see that the performances are tightly aligned within a margin of standard devia-
tion calculated over the folds and datasets. The differences are generally highest for the 
most complex GIN model, which also exhibits most unstable performance over the folds. 
Importantly, the differences between LRNNs and the other frameworks is generally not 
greater than between PyG and DGL themselves, which both utilize the exact same PyTorch 
modules and operations.

6.4  Computing performance

The main aim of the declarative LRNN framework is quick prototyping of models aim-
ing to integrate deep and relational learning capabilities, for which it generally provides 
more expressive constructs than that of GNNs (Sect. 5.2) and does not contain any specific 
optimizations for computation over graph data. Additionally, it introduces a startup model 
compilation overhead as the particular models are not specified directly by the user but 
rather automatically induced by the theorem prover. Moreover, it implements the neural 
training in a rather direct (but flexible) fashion of actual traversal over each network (such 
as in Dynet Neubig et al. 2017), and does so without batching, efficient tensor multiplica-
tion or GPU support.48 Nevertheless, we show that the increased expressiveness still does 
not come at the cost of computation performance.

We evaluate the training times of a GCN over 10 folds of a single dataset (containing 
app. 3000 molecules) over the different models. We set Pytorch as the DGL backend (to 
match PyG), and train on CPU49 with a vanilla SGD (i.e. batch size=1) in all the frame-
works. From the results in Table  3, we see that LRNNs surprisingly train significantly 
faster than PyG, which in turn runs significantly faster than DGL. While the performance 
edge of PyG over DGL generally agrees with Fey and Lenssen (2019),50 the (app. 10x) 
edge of LRNN seems unexpected. It holds even accounting for the startup (theorem prov-
ing) overhead of LRNNs, required for creation of the logical and neural models from all 
the samples in each dataset first (giving PyG a head start of app. 10 epochae).

We account the superior performance of LRNNs to the rather sparse, irregular, small, 
dynamic graphs for which the common vectorization techniques, repeatedly transforming 
the tensors there and back, often create more overhead than speedup, making it more effi-
cient to traverse the actual spatial graph representations  (Neubig et  al. 2017). Addition-
ally, LRNNs are implemented in Java, removing the Python overhead, and contain some 
generic novel computation compression (Šourek et al. 2021) techniques (providing about 
3x speedup for the GNN templates).

Note we also prevented the frameworks from batching over several graphs, which they 
do by embedding the adjacency matrices into a block-diagonal matrix. While (mini) batch-
ing has been shown to deteriorate model generalization (Masters and Luschi 2018; Wilson 

48 However it is possible to export the networks from the native Java engine, and train them with any neural 
backend of choice, incorporating these techniques.
49 We evaluated the training on CPU, as in this problem setting, the python frameworks actually run slower 
on GPU (Fig. 8).
50 We note that we run both frameworks in default configurations, and there might be settings in DGL for 
which it does not lag behind PyG so rapidly. Note that for the small models of GCN and g-SAGE it is 10x 
slower, while for the bigger GIN model only 5x, which is in agreement with DGL’s focus on large scale 
optimization.
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and Martinez 2003),51 it still remains the main source of speedup in deep learning frame-
works  (Keskar et al. 2016), and is a highlighted feature of PyG, too. We show the addi-
tional PyG speedup gained by batching on the GCN53 model in Fig. 8. While batching truly 
boosts the PyG performance significantly, it still lacks behind the non-batched LRNNs.54 
For illustration, we additionally include an inflated version of the GCN model by a 10x 
increase of all the tensor dimensionalities. In this setting, we can finally observe a per-
formance edge from mini-batching, due to vectorization and GPU,55 over the non-batched 
LRNNs.56

A Note on the Startup Overhead Recall that in the LRNNs workflow, the computation 
graphs are only created once for each of the learning samples during startup (Sect. 3.2). The 

Fig. 7  Alignment of training errors of the 3 models (GCN, g-SAGE, GIN), as implemented in the 3 differ-
ent frameworks (LRNNs, DGL, PyG), over first 5 (alphabetically) datasets

Table 2  Average distances 
between the training errors 
of the respective models and 
frameworks over all the datasets

|LRNN,PyG| |LRNN,DGL| |DGL,PyG|

GCN 0.20±0.10 0.22±0.19 0.26±0.23
G-SAGE 0.25±0.17 0.33±0.35 0.27±0.20
GIN 0.49±0.30 0.54±0.40 0.52±0.35

51 It therefore seems more reasonable to embrace the inherent irregularity and sparsity present in relational 
learning with the emerging AI hardware, such as the Graphcore’s IPU52 architecture, rather than map all 
computations to dense matrix operations for GPUs.
52 https:// www. graph core. ai/.
53 Note that the results in this context are very similar across all the GNN models, as the runtimes here are 
mostly determined by the sparsity and dimensionality of the computation graphs, rather than specific aggre-
gation and combination functions. We hence report only the GCN batching runtime progression.
54 While LRNNs currently do not support batching natively, it can be emulated by outsourcing the training, 
e.g. to Dynet.
55 Also note that we used a non-high-end Ge-Force 940m, and the performance boost could thus be even 
more significant.
56 On the other hand note that dim = 100 is considerably inflated. Most implementations we found were 
in range {8,16,32} and we did not observe any test performance improvement beyond dim = 5 with the 
reported datasets and models.

https://www.graphcore.ai/
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subsequent training times are thus completely independent of reported the startup overhead 
stemming from the involved theorem proving (grounding) and neural network creation. An 
estimate of the total learning time can thus be obtained by timestartup + 2000 ⋅ timeepocha , 
rendering the overhead practically negligible in all the reported experiments. Some further 
details on the theorem proving overhead can then be found in the appendix Sect. A.2.

6.5  Model generalization

Finally we evaluate learning performances of the different models. We select the dis-
cussed GNN models of GCN, g-SAGE and GIN (we keep only the PyG implementa-
tion for clarity), and we further include some example relational templates (imple-
mented in LRNNs) for demonstration. Particularly, we extend GIN with edge (bond) 
representations and associate all literals in all rules with learnable matrices (Sect. 5), 
denoted as “gin*”. In a second template we add a layer of graphlets (motifs) of size 3, 
aggregating jointly representations of three neighboring nodes, on top of GIN, denoted 
as “graphlets”. Lastly, we introduce latent bond learning (Sect.  5.2) into GIN, where 
bond (edge) representations are also aggregated into latent hierarchies, denoted as 
“latent_bonds”. Note that we restrict these new relational templates to the same tensor 
dimensionalities and number of layers as GIN. For statistical soundness, we increase 
the number of datasets to the first 10 (alphabetically). We run all the models on the 
same 10-fold crossvalidation splits with a 80:10:10 (train:val:test) ratio, and keep the 

Table 3  Training times per epocha across the different models and frameworks. Additionally, the startup 
model creation time (theorem proving) overhead of LRNNs is displayed

Model/engine LRNNs (s) PyG (s) DGL (s) LRNNs startup (s)

GCN 0.25 ± 0.01 3.24 ± 0.02 23.25 ± 1.94 35.2 ± 1.3
g-SAGE 0.34 ± 0.01 3.83 ± 0.04 24.23 ± 3.80 35.4 ± 1.8
GIN 1.41 ± 0.10 11.19 ± 0.06 52.04 ± 0.41 75.3 ± 3.2

Fig. 8  Improving the computing performance of PyG via mini-batching and model size blow-up. The actual 
GCN model ( 10 × 10 parameter matrices) and 10× inflated version ( 100 × 100 parameter matrices) as run 
on CPU and GPU. Compared to a non-batched (batch=1) LRNN run on CPU, denoted by the horizontal 
lines (corresponding to the first two columns from the left)
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Fig. 9  Comparison of train accuracies of selected models across 10 datasets

Fig. 10  Comparison of test accuracies of selected models across 10 datasets

same, previously reported, training hyperparameters. We display the aggregated train-
ing errors in Fig. 9, and the cross-validated test errors, corresponding to the best valida-
tion errors in each split, in Fig. 10.

We can observe that the training performance follows intuition about capacity of each 
model, where the more complex models generally dominate the simpler ones. However, 
the increased capacity does not seem to consistently translate to better test performance 
(contrary to the intuition stated in Xu et al. 2018a). While we could certainly pick a sub-
set of datasets to support the same hypothesis on test sets, we can generally see that none 
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of the models actually performs consistently better than another, and even the simplest 
models (e.g. GCN) often outperform the “powerful” ones (GIN and its modifications), 
and the test performances are thus generally inconclusive.57 While this is in contrast 
with the self-reported results accompanying the diverse GNN proposals on similar-sized 
graph datasets, it is in agreement with another (much larger) recent benchmark (Dwivedi 
et al. 2020).

Additionally, we include results of an old LRNN template reported in Šourek et al. 
(2015), denoted as “lrnn(2015)”. It was based on small graphlets of size 3, similarly 
to the “graphlets” template (and similarly to some other recent works  (Tu et al. 2019; 
Sankar et  al. 2017)), however it only contained a single layer of learnable parame-
ters for the atom and bond representations. Note that we use results from the original 
paper (Šourek et al. 2015) experiments, which were run with different hyperparameters 
and splits. Nevertheless, we can see that it is again generally on par with performance of 
the more recent, deeper, and bigger GNN models.

7  Related works

This work can actually be seen as a simple extension of the Lifted Relational Neural Net-
works  (Šourek et  al. 2015) language by increasing the amount of (tensor) parameteriza-
tion. In turn LRNNs were inspired by lifted graphical models (Kimmig et al. 2015) such as 
Bayesian Logic Programs (Kersting and De Raedt 2001) or Markov Logic Networks (Rich-
ardson and Domingos 2006), working in a probabilistic setting. From another viewpoint, 
LRNNs can also be seen roughly as a lifting of the old Knowledge-Based Neural Net-
works (Towell and Shavlik 1994) idea into the relational setting. The most closely related 
works naturally comprise of other differentiable programming languages with relational 
expressiveness (De Raedt et al. 2020).58

There is a number of works targeting similar abilities by extending logic programming 
with numerical parameters. The most prominent framework in this category is the language 
of Problog (De Raedt et al. 2007), where the parameters and values further posses proba-
bilistic interpretation. The extension of Deep-Problog (Manhaeve et al. 2018) then incor-
porates “neural predicates” into Problog programs. Since probabilistic logic programs can 
be differentiated (Fadja et al. 2017) and trained as such, the gradients can be passed from 
the logic program to the neural modules and trained jointly. While this is somewhat similar 
to LRNNs, Deep-Problog introduces a clear separation line between the neural and logical 
parts of the program, which communicate merely through the gradient values (and so any 
gradient-based learner could be used instead). The logical part with relational expressive-
ness is thus completely oblivious of structure of the gradient-ingesting learner and vice 
versa, and it is thus impossible to model complex convolutional patterns (i.e. relational 

57 We note that the conclusion could be different for different types of datasets.
58 Note that encoding computation graphs in common differentiable programming frameworks, such as 
PyTorch or TensorFlow, is effectively propositional. These frameworks provide sets of evaluation functions 
(modules), with predefined hooks for backward differentiation, that can be assembled by users into differ-
entiable programs in a procedural fashion. In contrast, with relational programming, such programs are 
firstly automatically assembled from the declarative template (by a theorem prover or grounder), and only 
then evaluated and differentiated in the same fashion. Such an approach can also be understood as “meta-
programming” Visser (2002); Hill and Gallagher (1998) from the perspective of the current procedural 
frameworks.
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patterns in the neural part) as demonstrated in this paper. On the other hand LRNNs do 
not have probabilistic interpretation, which is elegantly incorporated in Deep-Problog. 
Related is also a recent extension of kProblog (Orsini et al. 2017), proposing integration of 
algebraic expressions into logic programs towards more general tensor-algebraic and ML 
algorithms.

Neural Theorem Provers (NTPs) (Rocktäschel and Riedel 2017) share very similar idea 
by the use of a relational logic template with a theorem prover to derive ground computa-
tion graphs, which are differentiable under certain semantics inspired by fuzzy logic. The 
use of parameterization differs between the frameworks, where NTPs are focused on learn-
ing embeddings of constants and LRNNs on embeddings of whole relational constructs.59 
Nevertheless NTPs represent all constants as embedding vectors, for which the theorem 
prover cannot perform standard unification, and NTPs thus resort to “soft-unification”. 
While nicely relaxing classic unification,60 this leads to effectively trying all possible 
constant combinations in the inference process, preventing from using NTPs for explicit 
modelling of the exemplified convolutional neural architectures. Also, it severely limits 
NTP’s scalability, where the latter has been partially addressed by some recent NTP exten-
sions (Minervini et al. 2018; Weber et al. 2019). LRNNs are more flexible in this sense as 
one can use the parameterization to specify which parts of the program keep the logical 
structure and which parts should succumb themselves to the exhaustive numerical opti-
mization (and to combine them arbitrarily), enabling to find a more fine-grained neural-
symbolic trade-off.

Another line of work is focused on inducing Datalog programs with the help of numeri-
cal relaxation. While such a task has traditionally been addressed by the means of Induc-
tive Logic Programming (ILP) (Muggleton and De Raedt 1994), extending the rules with 
weights can help to relax the combinatorial search into a gradient descent optimization, 
while providing robustness to noise. An example of such an approach is �ILP (Evans and 
Grefenstette 2018). Similarly to LRNNs, Datalog programs are unfolded by chaining the 
rules, where the associated parameters are trained against given target to be solved by the 
program. The parameterization in these approaches is used differently as its purpose is to 
determine the right structure of the template. This is typically done by exhaustive enu-
meration from some restricted set of possible literal combinations (particularly 2 literals 
with arity at most 2 and no constants for �ILP), where each combination is then associ-
ated with a weight to determine its appropriateness for the program via gradient descent. 
The differentiability is again based on replacing the logical connectives with fuzzy logic 
operators (particularly product t-norm). Similarly, programs in a restricted subset of Data-
log are learned in a system called TensorLog (Cohen 2016; Yang et al. 2017), which is a 
differentiable probabilistic database based on belief propagation (limited to tree-like factor 
graphs). Another recently proposed related system is called Difflog  (Raghothaman et  al. 
2019), where the candidate rules are also exhaustively generated w.r.t. a more narrow lan-
guage bias, thanks to which it seem to scale beyond previous systems. While we explicitly 
address only parameter learning in this paper, we note that structure learning of the LRNN 
programs can also be done (Šourek et al. 2017).

Other class of approaches targets full first order logic by providing mapping of all the 
logical constructs into numerical (tensor) spaces (“tensorization”  Garcez et  al. 2019). For 

59 Note that this includes learning embeddings of constants, too, as demonstrated in some of the example 
templates.
60 We note that the soft-unification concept can be modeled in LRNNs, too.
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instance, one can cast constants to vectors, functions terms to vector functions of the cor-
responding dimensionality, and similarly predicates to tensors of the corresponding arity-
dimension (Rocktäschel et al. 2015; Diligenti et al. 2017). Again adopting a fuzzy logic inter-
pretation of the logical connectives, the learning problem can then be cast as a constrained 
numerical optimization problem, including works such as Logic Tensor Networks  (Serafini 
and d’Avila Garcez 2016) or LYRICS (Marra et al. 2019). While the distributed representa-
tion of the logical constructs is the subject of learning, in contrast with the discussed Datalog 
program structure learning approaches, the weight (strength) of each rule needs to be specified 
apriori -- a limitation which was recently addressed in Marra et al. (2020). Other recent works 
based on the idea of fully dissolving the logic into tensors, moving even further from the logi-
cal interpretation, include e.g. Neural Logic Machines (Dong et al. 2019). While these frame-
works are theoretically more expressive than LRNNs (lacking the function terms and non-
definite clauses), the whole logic interpretation is only approximate and completely dissolved 
in the tensor weights in these frameworks. Consequently, they lack the capability of precise 
relational logic inference chaining, based on the underlying theorem prover, which we use to 
explicitly model the advanced convolutional neural structures, such as GNNs, in this paper.

Alternatively, LRNNs can be seen as a (significant) extension of the GNNs, as dis-
cussed throughout this paper. From the graph-level perspective, the most similar idea to 
the introduced relational templating has become popular in the knowledge discovery com-
munity as “meta-paths”  (Dong et  al. 2017; Huang and Mamoulis 2017) defined on the 
schema-level of a heterogeneous information network. A meta-path is simply a sequence of 
types, the concrete instantiations of which are then searched for in the ground graphs. Such 
ground sequences can then be used to define node similarities (Sun et al. 2011; Shang et al. 
2016), random walks (Dong et al. 2017) as well as node embeddings (Shi et al. 2018; Fu 
et al. 2017). An extension from paths to small DAGs was then proposed as “meta-graph” 
(or “meta-structure”) (Huang et al. 2016; Sun et al. 2018). We note that any meta-path or 
meta-graph can be understood as conjunctive a rule in a LRNN template. Naturally, we can 
stack multiple meta-graphs to create deep hierarchies and, importantly, differentiate them 
through to jointly learn all the parameters, and provide further extensions towards rela-
tional expressiveness, as exemplified in this paper.

8  Conclusions

We introduced a differentiable declarative programming approach to specification of 
advanced deep (relational) learning architectures, based on the language of Lifted Rela-
tional Neural Networks (LRNNs) (Šourek et  al. 2018). We demonstrated how simple 
parameterized logic programs, also called templates, can be efficiently used for declaration 
and training of complex convolutional models, with a particular focus on Graph Neural 
Networks (GNNs). In contrast with the commonly used procedural (Python) frameworks, 
LRNNs abstract away the creation of the computational graphs, which are dynamically 
unfolded from the template by an underlying theorem prover. As a result, creating a diverse 
class of complex neural architectures reduces to rather trivial modifications of the tem-
plates, distilling only the very principles and symmetries of each architecture. We illus-
trated versatility of the approach on a number of examples, ranging gradually from simple 
neural models to complex GNNs, including very recent GNN models and their extensions. 
Finally we showed how the existing models can be easily generalized to even higher rela-
tional expressiveness.
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In the experiments, we then demonstrated correctness and computation efficiency by 
the means of comparison against modern deep learning frameworks. We showed that while 
LRNNs are designed with the main focus on expressiveness, flexibility and abstraction, 
they do not suffer from computation inefficiencies for the simpler (GNN) models, as one 
might expect. On the contrary, we demonstrated that for a range of existing GNN models 
and their practical parameterizations, LRNNs actually outperform the existing frameworks 
optimized specifically for GNNs.

While there is a number of related works targeting the integration of deep and relational 
learning, to our best knowledge, capturing advanced convolutional neural architectures 
in an exact manner, as exemplified in this paper, would not be possible with these. The 
proposed relational upgrades can then be understood as proper extensions of the existing, 
arguably popular, GNN models.

Additional, we showed that the generalization performance of the various state-of-the-
art GNN models is somewhat peculiar, as they actually performed with rather insignifi-
cant test error improvements, when measured uniformly over a large set of medium-sized, 
molecular structure-property prediction datasets, which is in agreement with another recent 
benchmark (Dwivedi et al. 2020).

Appendix

Technical differences from LRNNs (Šourek et al. 2018)

The framework introduced in this paper closely follows the original LRNNs (Šourek et al. 
2018). In fact, the main semantic difference is “merely” in the parameterization of the 
rules, where one can now include the weights within the bodies (conjunctions), too, e.g.

We note that this could be in essence emulated in the original LRNNs through the use of 
auxiliary predicates, such as in Šourek et al. (2018), as follows

which might be more appropriate in scenarios where the neurons correspond to actual logi-
cal concepts under fuzzy logic semantics,61 while the second representation is arguably 
more suitable to exploit the correspondence with standard deep learning architectures.

Another difference is that we now also allow tensor weights and values. While these 
could be modeled in LRNNs, too, for instance in the “soft-clustering” (embedding) con-
struct (Šourek et al. 2015) used for atom representation learning:
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61 Note that any model from the original LRNNs can still be directly encoded in the new formalism.
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the explicit tensor-valued weights offer an arguably more elegant representation of the 
same construct:

In general, with the new representation we can merge scalar weights of individual neurons 
into tensors used by the nodes (prev. referred to as “neurons”) in the computation graph. 
Note that we can process any ground LRNN network into this form, i.e. turn individual 
neurons into matrix layers, in a similar manner, as outlined in Algorithm 1.

Being heavily utilized in deep learning, such transformation can significantly speed up 
the training of the networks. However by reducing the number of rules, effectively merging 
together semantically equivalent rules which do not differ up to their (scalar) parameteriza-
tion, we can also alleviate much of the complexity during model creation, i.e. calculation 
of the least Herbrand model, by avoiding repeated calculations. This results in a significant 
speedup during the model creation process.

Network pruning

 
Following the computational graph creation procedure from Sect.  3.2, we might end up 
with unnecessary trivial neural transformations through auxiliary predicates in cases, where 
the original rules have only a single literal in body and are unweighted. For mitigation, we 

[wo1
,wo2

] ∶∶gr(X) ∶ − O(X) … [wh1
,wh2

]∶∶ gr(X) ∶ − H(X)
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can apply a straightforward procedure for detection and removal of linear chains of these 
trivial operations, as described in Algorithm 2. While such an operation arguably changes 
the inference and logical semantics of the original model, these structures do not contribute 
to learning capacity of the model and, on the contrary, cause gradient diminishing. This 
technique is thus particularly suited for improving training performance in correspondence 
with standard deep learning architectures. While this form of pruning can be theoretically 
performed directly in the template, it is easier to do as a post-processing step in the result-
ing neural networks.

Finally, the new LRNN framework (called “NeuraLogic”) presents a completely new 
implementation62 of the idea, with the whole functionality build from scratch, while aiming 
at flexibility and modularity.

A note on the theorem proving complexity

Naturally, the performance of the theorem prover (grounder) depends heavily on the com-
plexity of the template, and can theoretically lead to excessively large models. Neverthe-
less, for LRNNs we only need to construct the least Herbrand model, which is typically 
small for the real-world (sparse) templates, such as in the GNN computation schemes 
(Sect. 5). Also, excessively large models would be translated into computation graphs too 
large to be trainable in practice, anyway. Consequently, the overhead of the theorem prover 
(grounder) is commonly negligible w.r.t. the overall learning time for practical neural 
model classes.

Learning with large knowledge graphs

Note that the same also applies for large input graphs, such as knowledge-bases, which can 
be learned from with LRNNs, too (as shown, e.g., in Šourek et al. 2016). The only differ-
ence in this learning setting is that there is but a single (large) input graph, instead of many 
small graphs, with a number of corresponding queries, instead of a single query per each 
input graph used in the graph classification setting (Sect. 3.1.1).

While the framework is again not explicitly optimized for this task, the computation 
performance is still decent. For instance, the grounding and network creation overhead of 
(multi-relational) GNN models combining 1 layer of GNN with KBE (reported in Šourek 
et  al. 2021  63) on the knowledge-base completion datasets of Nations, Kinships and 
UMLS (Kok and Domingos 2007) takes 1s, 8s and 22s, corresponding to Herbrand models 
with app. 14314, 281552, and 845511 atoms, translated into 11681, 42196, and 27506 neu-
rons, leading to train epocha times of app. 1.2s, 0.440s, and 0.660s, respectively.
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62 Available at https:// github. com/ Gusti kS/ Neura Logic.
63 Available at https:// github. com/ Gusti kS/ Neura Lifti ng.
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