
Vol.:(0123456789)

Machine Learning (2021) 110:3015–3035
https://doi.org/10.1007/s10994-021-06054-y

1 3

Tensor decision trees for continual learning from drifting
data streams

Bartosz Krawczyk1 

Received: 2 March 2021 / Revised: 11 August 2021 / Accepted: 23 August 2021 /
Published online: 24 September 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Data stream classification is one of the most vital areas of contemporary machine learn-
ing, as many real-life problems generate data continuously and in large volumes. However,
most of research in this area focuses on vector-based representations, which are unsuitable
for capturing properties of more complex multi-dimensional structures, such as images and
video sequences. In this paper, we propose a novel methodology for learning adaptive deci-
sion trees from data streams of tensors. We introduce Chordal Kernel Decision Tree for
continual learning from tensor data streams. In order to maintain the tensor characteristics,
we propose to train and update classifiers in the kernel space designed to work with tensor
representation. We use chordal distance to compute similarities between tensors and then
apply it as a new feature space in which decision trees are trained. This allows for a direct
decision tree induction on tensors. In order to accommodate the streaming and drifting
nature of data, we propose a concept drift detection scheme based on tensor representation.
It allows us to reconstruct the kernel feature space every time when change is detected. The
proposed approach allows for fast and efficient induction of decision trees on streaming
data with tensor representation. Experimental study, conducted on 4 real-world and 52 arti-
ficial large-scale tensor data streams, shows that using the native tensor feature space leads
to more accurate classification than outperforms the vectorized representations.

Keywords  Data stream mining · Continual learning · Concept drift · Online learning ·
Decision trees

1  Introduction

Learning from data streams is one of the most rapidly developing fields in the contempo-
rary machine learning (Sun 2008; Ditzler et al. 2015). This is motivated by a plethora of
real-world applications in which data arrives continuously and floods the system. This calls

Editors: João Gama, Alípio Jorge, Salvador García.

 *	 Bartosz Krawczyk
	 bkrawczyk@vcu.edu

1	 Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA

http://orcid.org/0000-0002-9774-0106
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06054-y&domain=pdf

3016	 Machine Learning (2021) 110:3015–3035

1 3

for developing new algorithms that are able to handle the ever-growing data volume and
constantly update their structure within time and resource limits. Additionally, data streams
may be subject to changes over time, a phenomenon known as concept drift (Gama et al.
2014). Such a change point must be detected as soon as possible in order to handle the drift
appropriately and allow for fast recovery of the system. Data streams are strongly con-
nected with the recently emerging paradigm of continual learning, where it is assumed that
the machine learning model must be capable of continuous self-improvement and accumu-
lation of new knowledge (Parisi et al. 2019). It is interesting to note that data streams are de
facto a task-free continual learning scenario (Aljundi et al. 2019).

Vast majority of data stream mining algorithms are designed only for vector representa-
tion of input data. This representation is not a proper one for many real-world problems that
generate multi-dimensional data with dependencies between different dimensions, such as
computer vision (Yang et al. 2018) or social networks (Nakatsuji et al. 2017). Although
one may easily vectorize such information, it will lead to loss of information, as relation-
ships between factors in the input space will not be preserved (Gu et al. 2018). In order to
overcome this limitations a tensor representation has been proposed, where input data is
stored as multi-dimensional cubes that preserve the dependencies between factors (Lathau-
wer 2009; Fu et al. 2015). Tensors gained popularity in various areas of machine learning
and data mining (Sidiropoulos et al. 2017; Maruhashi et al. 2018), but their application to
data streams is very limited. At the same time, many modern data sources generate multi-
dimensional data streams (Mardani et al. 2015) and these areas may definitely benefit from
dedicated tensor-based streaming algorithms (Shin et al. 2017; Song et al. 2017). Most of
existing works focus on tensor factorization (Smith et al. 2018), using stochastic descent
approaches (Mardani et al. 2015), Tucker model (Sun et al. 2008), and online canonical
polyadic decomposition (Smith et al. 2018). At the same time, best to our knowledge, the
field of tensor classification has not been studied in the data stream setup, especially in the
context of concept drift. This paper aims at bridging this gap and proposing an efficient
framework for data stream classification with tensor input.

1.1 � Goal

To propose a novel continual decision tree induction technique that allows for learning
from drifting data streams using tensor-based data representation.

1.2 � Motivation

Among classifiers dedicated to data streams, decision trees have gained a significant atten-
tion, due to their excellent capabilities for incremental learning by creating new splits with
arriving instances, high classification accuracy, and low model complexity (Ditzler et al.
2015). However, existing decision trees for data streams work only with vector representa-
tion. This limits their applicability to modern data sources, such as texts or images. Vec-
torization of such data leads to a significant loss of information. Thus it is beneficial to use
tensor-based representation of such data that maintains all the properties of such complex
data. However, current techniques dedicated for tensor classification are not suitable for
data streaming scenarios, nor poses any mechanisms to handle the presence of concept
drift. The same holds for modern deep learning architectures that, while being extremely
effective for static tensor data, cannot handle velocity and rapidly evolving nature of data
streams (Sahoo et al. 2018).

3017Machine Learning (2021) 110:3015–3035	

1 3

1.3 � Overview

In this paper, we propose a novel framework classifying data streams with tensor representa-
tion. We introduce a decision tree learning scheme capable of handling tensors directly, with-
out a need for vectorization. at the same time, our proposal maintains all the advantages of
decision trees. We achieve this by training classifiers in the similarity space that is defined by
a kernel using tensor representation. Chordal distance allows to measure a similarity between
two tensors and may be used to construct a kernel feature space, which in turns allow for
induction of a decision tree directly from tensors. Additionally, we propose a concept drift
detection scheme working with tensor representation. It allows to effectively detect the
moment of change and update our model in two ways: (1) by reconstructing the kernel feature
space using new instances; and (2) by retraining the decision tree on the current concept and
new feature space. Experimental study shows the efficacy of the proposed approach and its
wide usability in various data stream classification scenarios, where tensor representation is
required.

1.4 � Main contributions

This paper offers following insights into learning from drifting data streams with complex
data:

•	 Chordal Kernel Decision Tree We propose a novel decision tree classifier (CKDT) for con-
tinual learning from drifting data streams with data arriving in tensor form. CKDT is a full
adaptive classifier, capable of both continual accumulation of new knowledge from arriv-
ing tensors, as well as flexible adaptation to drifts in the stream, when previously learned
concepts become outdated. CKDT uses McDiarmid’s inequality to control the continual
splitting procedure from streaming tensor data.

•	 Adaptive tensor kernel similarity space We introduce a kernel similarity space for con-
tinual induction of decision trees from tensor data streams. A subsampled kernel is used
to create a new tensor-based representation that allows for continual learning from tensor
data streams. We present a mechanism for rebuilding the kernel space whenever concept
drift occurs, allowing for adaptive feature crafting from evolving data.

•	 First concept drift detector for tensors We propose a simple, yet effective tool for monitor-
ing properties of tensors incoming from the data stream. This allows us for early detection
of any changes in tensor properties, allowing for cost-efficient adaptation of CKDT when-
ever streams becomes subject to significantly strong changes. The proposed drift detector
works directly on tensor representation of data.

•	 Experimental study We provide a detailed experimental benchmark on drifting tensor
data streams, comparing the proposed approach with three state-of-the-art method for
incremental tensor classification. We use 4 real-world and 52 artificial tensor data stream
benchmarks that capture various domains and learning difficulties.

3018	 Machine Learning (2021) 110:3015–3035

1 3

2 � Background

2.1 � Learning from data streams

We will now provide a short background for data stream setting in the context of machine
learning.

Definition 1  (Data stream) Data stream is a sequence < S1, S2,… , Sn,… > , where each
element Sn is a new instance arriving over time. Each instance in the stream is independent
and randomly drawn from a stationary probability distribution Ψn(�, y) . Data stream is a
task-free continual learning problem (Aljundi et al. 2019).

Definition 2  (Concept drift) Concept drift is a phenomenon that influences estimated
decision rules or classification boundaries, reducing or voiding their relevance to the new
state of the stream. Real concept drift influences the conditional probabilities pj(y|�) over
time.

Concept drift has crucial impact on the learning system and must be handled as soon
as it occurs (Gama et al. 2014). There are three main approaches for handling this learning
difficulty. The first one relies on an external tool, known as concept drift detector. It moni-
tors the properties of stream and informs when a significant change takes place in order to
rebuilt the model. This solution is often combined with decision trees. The second one uses
a sliding window that keeps most recent instances in the temporal memory, using them
as the current representation of the stream. The third one relies on online classifiers and
ensemble models (Krawczyk et al. 2017) that adapt to changes on their own, resulting in an
implicit drift detection.

2.2 � Tensors in machine learning and classification

We will define now the basic notations for representation and classification of data coming
in the form of tensors.

Definition 3  (Tensor) A tensor is a L-dimensional cube of real valued data, where each
individual dimension represents a different factor in the input data space:

The j-mode of the K-th order tensor (tensor order standing for its number of directions/
dimensionality) is a vector that is calculated from A by manipulating selected dimension
k ∈ {1, 2,⋯ ,Nj} , while remaining dimensions are intact.

Definition 4  (Tensor flattening) A j-mode tensor flattening (known also as tensor matrici-
zation) is matrix A(j) for which its columns are j-mode vectors of A:

The j-th index is a row index of A(j) , while a product of all remaining L-1 indices is its col-
umn index.

(1)A ∈ ℜ
N1×N2×…NL

(2)�(j) ∈ ℜ
Nj×(N1N2…Nj−1Nj+1…NL)

3019Machine Learning (2021) 110:3015–3035	

1 3

Definition 5  (Tensor product) A p-mode product of a tensor A ∈ ℜN1×N2×…NL with
matrix � ∈ ℜ

Q×Np creates a tensor B ∈ ℜ
N1×N2×…Np−1×Q×Np+1×…NL with elements:

where an1n2...nL is an element of A at index (n1, n2, ..., nL) and analogously mqnp
 is an element

of � at index (q, np).

The p-mode product can be represented in an equivalent manner as flattened tensors A(p)
and B(p) . Assuming the following holds:

then

Each distinctive tensor flattening creates an unique matrix with specific properties. There-
fore, by analyzing each flattening A(j) we obtain an unique perspective on A from j-th
dimension. We will use this property to construct a tensor-based kernel for data stream
representation, which will be discussed in details in the next subsection.

Definition 6  (Singular Value Decomposition) SVD is a procedure for analyzing the prop-
erties of each flattening as follows:

where �,1 and �,2 denote respectively indices of block matrices related to the kernel and null
spaces of �(j) . �

(j)

�,1
 and �T(j)

�,1
 are unitary matrices of the kernel of �(j) . �

(j)

�,1
 is a diagonal

matrix with R A non-zero elements.

By assuming this definition of SVD, it follows that:

Analogous properties are preserved for j-th mode flattening of the tensor B . However, its
rank may be different and thus we will denote it as R B.

In this work, we focus the task of tensor classification, i.e., assigning a class label to an
input tensor (Li and Schonfeld 2014).

Definition 7  (Tensor classification) This task aims at creating a classifier defined as a
function Ψ with domain A and codomain M:

(3)

Bn1n2…np−1qnp+1…nL
=
(
A×p�

)
n1n2…np−1qnp+1…nL

=

Np∑
np=1

an1n2…np−1npnp+1…nL
mqnp

.

(4)B = A×p�

(5)�(p) = ��(p)

(6)

�(j) =�
(j)�(j)�(j)T =

RA(j)∑
i=1

v
(j)

i
�
(j)

i
�
(j)T

i

=
[
�
(j)

�,1
�
(j)

�,2

][
�

(j)

�,1
�

� �

][
�

(j)T

�,1

�
(j)T

�,2

]
.

(7)�
(j)T

�,1
�

(j)

�,1
= �R�×R�

3020	 Machine Learning (2021) 110:3015–3035

1 3

where M = {1,⋯ ,M} stands for a set of class labels.

2.3 � Related works for streaming tensor analysis

Streaming tensors have been considered in the literature mainly from the perspective of
a singular tensor that evolves over time (Yang et al. 2021). This may include changes in
existing dimensions / factors (Chhaya et al. 2020), or emergence of new ones over time
(Letourneau et al. 2018). CP decomposition has been successfully used for streaming ten-
sors, either based on simultaneous diagonalization, or weighted least squares that track the
online third-order decomposition. (Rambhatla et al. 2020) Other approaches use grid divi-
sion for large streaming tensors and using local factorization independently for each sub-
tensor (Gujral et al. 2020). OnlineCP (Zhou et al. 2016) incrementally tracks CP decom-
position of streaming tensor with arbitrary modes. There exist also Tucker decomposition
methods for online tensor analysis that can be effectively used under streaming conditions
(Sun et al. 2020). From the data stream mining perspective, there exist a plethora of effec-
tive classification and drift detection methods, but all of them are dedicated to shallow vec-
tor representations and therefore cannot properly capture multi-dimensional relationships
in tensor data(Pinage et al. 2020)(Zyblewski et al. 2021).

3 � Decision tree learning for tensor data streams

3.1 � Decision trees in the era of deep learning

Deep learning have dominated the world of learning from complex and high-dimensional
data, offering unparalleled predictive and generative capabilities power. However, research
in traditional (shallow) machine learning algorithms is still as vibrant as ever, due to a
number of limitations of current deep learning architectures in specific learning scenarios.
This is especially visible for learning from data streams, where existing deep architectures
have difficulties with handling the presence of concept drift (Sahoo et al. 2018), or their
adaptation mechanisms, while well-designed, are too slow for high-speed data streams
(Ashfahani and Pratama 2019). Decision trees are well-known and attractive learning algo-
rithms for data streams, offering low computational cost with excellent adaptation capabili-
ties to concept drift (Gomes et al. 2019). Furthermore, they are explainable and interpret-
able models, offering white-box approach for streaming data. While their predictive power
is weak on their own, they can be efficiently combined in ensemble architectures, leading
to significant increase in their accuracy (Krawczyk et al. 2017). All this factors motivate us
to develop novel decision tree model that is capable of learning from tensor data streams
under concept drift.

3.2 � Proposed algorithm overview

We present the details of Chordal Kernel Decision Tree (CKDT) for continual learning
from tensor data streams. We discuss the used decision tree model for unbounded data

(8)Ψ ∶ A → M,

3021Machine Learning (2021) 110:3015–3035	

1 3

streams, the usage of kernel feature space designed for working with tensor represen-
tation, as well as concept drift detection from tensor data. Overview of the proposed
CKDT algorithm is presented in pseudo-code form in Fig. 1.

3.3 � Decision tree induction from streaming data

Decision tree induction algorithms for data streams are based on Hoeffding inequality
in order to determine what number of new instances is sufficient to conduct a new split.
Recent study highlighted the existing flaws in the Hoeffding bound (Rutkowski et al.
2013), showing its potential for incorrect calculations. Therefore, in this work we use
McDiarmid’s inequality for decision tree induction from streaming data. It can be seen
as a generalized version of Hoeffding’s inequality, more capable of handling various
types of input data and measuring the split quality.

Theorem 1  (McDiarmid’s Theorem) We define X1,⋯ ,Xn as a set of independent random
variables and define a function f (x1,⋯ , xn) that fulfills inequality :

Fig. 1   Pseudocode of the proposed Chordal Kernel Decision Tree

3022	 Machine Learning (2021) 110:3015–3035

1 3

For any 𝜖 > 0 the following is true:

McDiarmid’s inequality can be used in combination with any splitting measure to
estimate the lowest number of instances n sufficient to conduct a split when new data
arrives. It has been shown to work well with Gini gain (Rutkowski et al. 2013), thus we
use this metric. Gini gain is defined as:

where S is a set of instances in the current tree node, L and R are left and right child nodes,
nq,i(S) is the number of instances in the current node that will go to q-th child node if the
split will be conducted on i-th feature, and nk

q,i
(S) is the number of instances from k-th class

that will be passed to q-th child node if the split will be conducted on i-th feature.With this
we may formulate McDiarmid’s inequality for computing and comparing Gini gains for
any two selected features.

Theorem 2  (McDiarmid’s Inequality for Gini Gain) Let �gG
h
(S) and �gG

i
(S) be the Gini

gain values (see Eq. 11) for h-th and i-th considered feature. If the condition is satisfied:

then the inequality holds with probability of 1 − � or higher:

Theorem 3  (McDiarmid’s Split Criterion for Gini Gain) We assume that �gG
i1
(S) and

�gG
i2
(S) are the metric values for features with respectively highest and second highest Gini

gain. If the condition is satisfied:

then following Theorem 2, with the probability equal to (1 − �)d−1 the following statement
is true:

where d is the number of features and i1-th feature is selected to split the current node.

(9)
supx1,⋯,x̂i

|f (x1,⋯ , xi,⋯ , xn) − f (x1,⋯ , x̂i,⋯ , xn)|
≤ ci,∀i=1,⋯,n.

(10)
Pr

�
f (X1,⋯ ,Xn) − E

�
f (X1,⋯ ,Xn)

�
≥ �

�
≤ exp

�
−

2�2∑n

i=1
c2
i

�
= �.

(11)�gG
i
(S) = gG(S) −

�
q∈{L,R}

nq,i(S)

n(S)

⎛⎜⎜⎝
1 −

K�
k

�
nk
q,i
(S)

nq,i(S)

�2⎞⎟⎟⎠
,

(12)𝛥gG
h
(S) − 𝛥gG

i
(S) >

√
8 ln(1∕𝛿)

n(S)
,

(13)E[𝛥gG
i
(S)] > E[𝛥gG

h
(S)].

(14)𝛥gG
i1
(S) − 𝛥gG

i2
(S) >

√
8 ln(1∕𝛿)

n(S)
,

(15)i1 = arg max
i=1,⋯,d

{
E[gG

i
(S)]

}
,

3023Machine Learning (2021) 110:3015–3035	

1 3

3.4 � Induction of decision trees in kernel feature space

Existing decision tree induction algorithms, including the presented one using McDiar-
mid’s Inequality, work only with vector inputs. Therefore, it is not possible to apply them
directly on tensor data without conducting vectorization. In order to alleviate this drawback
and extend the applicability of decision trees to tensor data streams, we propose to conduct
the tree induction procedure in an alternative feature space. We need a simple, yet efficient
representation of tensors that will maintain their multi-dimensional properties and relation-
ships among different factors. In this paper, we propose to construct the new feature space
using kernels.

A kernel K can be used to transform the original feature space into a projected space
�K(X) such that K(x, y) = ⟨�K(x),�K(y)⟩ . Kernels are tricky to use in data stream scenar-
ios, as they require a computation of the whole Gram matrix, which is of size O(N2) . In
order to speed up the computations, one may use a random sampling of the input instances
to create a new projected feature space. By sampling s instances from the stream, one may
create a subsampled kernel:

One must note that this is fundamentally different from sampling the incoming instances
from the stream, as all of them will be used for decision tree induction and incremental
update - the subsample is only used for a faster computation of the new feature space. This
allows for a significant reduction of feature space projection computational complexity.

Now one required a proper kernel that is capable of working directly with tensor rep-
resentation. For this, we propose to use chordal distance kernel, capable of returning pure
tensor-based similarities that will allow us to span a new feature space for the decision tree
induction.

3.5 � Chordal distance kernel for tensor similarity

Definition 8  (Chordal distance) A chordal distance (Signoretto et al. 2011) is defined as
a similarity between two tensors represented by their j-th flattened mode matrices �(j) and
�(j):

where Π�(j)
 stands for a projection matrix of �(j):

Then one may insert Eq. 17 into Eq. 18, obtaining:

Definition 9  (Chordal kernel) A chordal distance-based kernel (Signoretto et al. 2011)
can be formulated as follows:

(16)�rand
K

(x) = [K(x, x1), ...,K(x, xs)]T .

(17)D2
ch

(
�(j),�(j)

)
= D2

F

(
Π�(j)

,Π�(j)

)
=
‖‖‖Π�(j)

− Π�(j)

‖‖‖
2

F

(18)Π�(j)
= �

(j)

�,1
�

T(j)

�,1

(19)D2
ch

(
�(j),�(j)

)
=
‖‖‖�

(j)

�,1
�

T(j)

�,1
− �

(j)

�,1
�

T(j)

�,1

‖‖‖
2

F

3024	 Machine Learning (2021) 110:3015–3035

1 3

which allows to formulate a kernel for a L-dimensional tensor product (Cyganek et al.
2015):

Computation of Eq. 21 requires computation of 2 ⋅L SVD decompositions. This makes it
prohibitive to be used in the considered scenario of learning from data streams, as new tensors
will continuously arrive and latency in their processing must be avoided. However, one may
simplify this computation as follows. We start by denoting the squared norm in Eq. 19 as:

where Tr(.) stands for matrix trace, and P and Q are defined as:

Matrices P and Q are of the same size. We may supply this to the first term in Eq. 22:

Analogously, this holds for the third term in Eq. 22:

The second term in Eq. 22 can be expanded accordingly:

These transformations of three terms allows us to write Eq. 22 as:

(20)
Kj(A,B) = exp

(
−

1

2�2
D2

ch

(
�(j),�(j)

))

= exp

(
−

1

2�2

‖‖‖�
(j)

�,1
�

T(j)

�,1
− �

(j)

�,1
�

T(j)

�,1

‖‖‖
2

F

)
.

(21)

K(A,B) =

L∏
j=1

Kj(A,B)

=

L∏
j=1

exp

(
−

1

2�2

‖‖‖�
(j)

�,1
�

T(j)

�,1
− �

(j)

�,1
�

T(j)

�,1

‖‖‖
2

F

)

(22)‖� −�‖2 = Tr
�
�T�

�
− 2Tr

�
�T�

�
+ Tr

�
�T�

�

(23)� = �
(j)

�,1
�

T(j)

�,1
, � =�

(j)

�,1
�

T(j)

�,1

(24)

Tr
�
�T�

�
=Tr

��
���

T
�

�T�
���

T
�

��

=Tr

⎛⎜⎜⎜⎝
�� �T

�
��

⏟⏟⏟
�

�T
�

⎞⎟⎟⎟⎠
= Tr

�
���

T
�

�

=Tr
�
�T

�
��

�
= R�.

(25)Tr
(
�T�

)
= R�

(26)

Tr
�
�T�

�
=Tr

��
���

T
�

�T
���

T
�

�

=Tr
�
���

T
�
���

T
�

�
= Tr

�
�T

�
���

T
�
��

�

=Tr

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝
�T

�
��

⏟⏟⏟
�

⎞
⎟⎟⎟⎠

T

�T
�
��

⏟⏟⏟
�

⎞
⎟⎟⎟⎠
= Tr

�
�T�

�
.

3025Machine Learning (2021) 110:3015–3035	

1 3

where

Obtaining this allows us to significantly speed-up computations of chordal distance and
related kernel, as Eq. 27 and Eq. 28 have significantly lower computational complexity
than Eq. 22. This is because only �(j) needs to be computed after carrying out SVD decom-
positions of j-th mode flattening of tensors A and B , respectively. In order to obtain the
chordal kernel, we need to repeat these computations L times (to account for the dimen-
sionality of tensors).

This, combined with the input subsampling (subsampled kernel) presented in Eq. 16
makes the computational cost of tensor-based feature space spanning via kernel projections
suitable for data stream scenarios.

4 � Concept drift detection in tensor data streams

Having defined the used decision tree induction method, creation of a tensor-based feature
space for it, and a proper kernel for computing similarities between tensors, we need a
concept drift detector fitting this framework. Most of existing drift detectors are based on
either statistical properties of new vectors arriving from the stream, or on the error of clas-
sifiers (Gama et al. 2014). The former ones cannot be directly used for tensor data, while
the latter ones are criticized as in real-world scenario we do not have an instant oracle
access to classifier error. Therefore, we propose a concept drift detection method based on
tensor properties.

For drift detection, we need to keep a window of w most recent tensors and use them
for comparison with the newest incoming tensor, to check if it still falls into the cur-
rent concept. We propose to conduct drift detection using j-mode tensor flattening (see
Eq. 2), computing it for all tensors in the window and the recently arrived one. Mean
( �(j) =

1

w

∑w

i=1
�(j)

(i) ) and standard deviation ( �2 =
1

w−1

∑w

i=1
(�(j)

(i) − �(j))
2 ) of these flat-

tening matrices can be used to describe the current concept. When a new tensor arrives, its
j-mode tensor flattening can be used to check how well it fits the current concept using a
popular 3� rule, allowing for a two-level signal output with alarm level and drift detection
level:

We use these two-level signals for two important actions in our tensor data stream classifi-
cation framework.

4.1 � Spanning new feature space after drift

As we use a subsample of tensors to span the kernel similarity-based feature space for
decision tree induction, we must take into consideration that after the concept drift the

(27)D2
ch

(
�(j),�(j)

)
= R� + R� − 2 Tr

(
�T

(j)
�(j)

)

(28)�(j) = �
T(j)

�,1
�

(j)

�,1

(29)Θalarm ∶ ‖�(j)
(new) − �(j)‖ ≥ �

(30)Θdrift ∶ ‖�(j)
(new) − �(j)‖ ≥ 3�

3026	 Machine Learning (2021) 110:3015–3035

1 3

current projection may no longer be representative. Therefore, we need to span a new
projection, which imposes additional computational cost on the system. As it is not fea-
sible to do this after every new tensor arrives, we propose to combine this with the drift
detector. Whenever an alarm signal is being raised, we start collecting the incoming
tensors in a temporal buffer. Then, when changes become significant and a drift alarm
is being raised, we randomly subsample this buffer (see Eq. 16) and use it to span a new
feature space with chordal kernel. This approach significantly reduces the number of
times when we need to recompute similarity-based feature projections. The entire buffer
(all stored tensors) will be then used to train a new decision tree in the newly spanned
kernel feature space.

4.2 � Updating the decision tree classifier after drift

As decision trees do not have in-built mechanisms for handling concept drift, they are
combined with drift detector to guide their update. When concept drift occurs, it is less
computationally expensive to discard the old classifier and build a new one on the cur-
rent concept than to try to adapt the pre-existing tree structure. As after the alarm signal
has been raised we already collect incoming tensors for calculating new feature space,
we may use them as well for training a new decision tree. While the new feature space
is created using only a subsample of tensors from the buffer, the new decision tree is
trained using all of the stored tensors. When a drift alarm is being raised, we train a
new decision tree using newly created kernel feature space, discard the old model, and
replace it with the new decision tree. Then we may discard all the tensors stored in the
temporal buffer, as they will not be needed.

5 � Experimental study

In this section, we present the experimental evaluation of the proposed framework
for tensor data stream classification with decision trees. We conduct two independent
experiments: (i) on large-scale real-world tensor benchmarks that have streaming char-
acteristics in order to examine the usability of the kernel feature space for training deci-
sion trees; (ii) on artificial datasets with injected specific type of concept drift in order
to evaluate the scalability of the proposed framework to growing number of tensor fac-
tor dimensionality.

The experimental study was designed to answer the following research questions:

RQ1: Does the proposed chordal kernel-based decision tree is capable of more accurate
classification of tensor data streams than the state-of-the-art reference methods?
RQ2: Does the proposed online kernel transformation of tensors and training decision
trees in the kernel feature space do not impose prohibitive computational costs on the
classification system?
RQ3: How does the proposed kernel-based decision tree handle increasing tensor
dimensionality (number of factors)?
RQ4: Does the proposed method can efficiently handle various types of concept drifts
present in tensor data streams?

3027Machine Learning (2021) 110:3015–3035	

1 3

5.1 � Tensor benchmarks for data stream classification

We have selected four real-world tensor datasets that display streaming characteristics, as
well as generated 52 artificial tensor datasets with injected specific types of concept drift.
Their details are presented below and in Table 1.

5.1.1 � Chicago Crime (CC)

A collection of crime reports in the city of Chicago, ranging from January 1st, 2001 to
December 11th, 2017. We split the original tensor into 5 000 000 separate small tensors,
each representing a single crime. The classification task is to predict the crime based on
remaining information from the report.

5.1.2 � Yahoo Music (YM)

A collection of user ratings of music items in Yahoo! services. Concept drift is strongly
embedded, as data reflects the changes in music distribution platforms and market needs.
We subsampled the dimensionality each of individual factors to make it feasible for a sin-
gle machine computation. Original task was to predict the user rating of an item. We dis-
cretized this task into class labels via average ranking values for items.

5.1.3 � Street View House Numbers (SVHN)

A collection of 640 420 images representing house numbers, each digit displayed indi-
vidually in a form of 32x32x3 RGB color image tensor. The classification task is digit
recognition.

5.1.4 � CIFAR‑100 (C100)

A collection of 60 000 images, each stored as 32x32x3 RGB color image tensor. The task
is to predict to which group target image belongs to.

Table 1   Details of used real-
world and artificial tensor
benchmarks

Name # Tensors Dimensionality # Classes

Real-world tensor data streams
CC 5,000,000 6186 x 24 x 77 x 32 31
YM 1,710,000 625 x 844 x 101 5
SVHN 640,420 32 x 32 x 3 10
C100 60,000 32 x 32 x 3 100
Artificial tensor data stream generators
STnd 2,000,000 100[3;15] 2
STgd 2,000,000 100[3;15] 2
STid 2,000,000 100[3;15] 2
STsd 2,000,000 100[3;15] 2

3028	 Machine Learning (2021) 110:3015–3035

1 3

5.1.5 � SimTensor (ST)

An artificial tensor generator (Fanaee-T and Gama 2016) that we are using to evalu-
ate the impact of different factor dimensionality in tensor data streams on decision tree
induction. Each artificial benchmark consists of 2 000 000 tensors and each tensor fac-
tor has 100 values. We investigate tensor factor dimensionality ∈ [3;15] . By combin-
ing it with MOA (Bifet et al. 2010) functionality, we are able to create four datasets
with distinctive types of concept drift (none, incremental, gradual, sudden). SimTen-
sor allows for streaming data generation with defined change points that served as drift
injection moments. Each artificial tensor data stream is a two-class problem, with each
tensor class generated from a distinct Gamma distributions. Class labels are assigned to
each distribution generator, leading to a supervised learning problem and allowing for
creation of 52 unique tensor data stream benchmarks.

5.2 � Experimental set‑up

5.2.1 � Reference methods

As mentioned, up to our best knowledge this is the first work proposing usage of deci-
sion trees for classification of tensor data streams. As we propose a native tensor rep-
resentation via chordal kernel (named Chordal Kernel Decision Tree, CKDT), as refer-
ence method we selected three state-of-the-art approaches for tensor vectorization that
are able to work in an incremental fashion. We adapted them to this particular learn-
ing scenario. Online Robust Low-Rank Tensor Modeling for Streaming Data Analysis
(LRTCR) (Li et al. 2019) uses the bilinear formulation of tensor nuclear norms and a
stochastic optimization algorithm to learn the tensor low-rank structure alternatively for
online updating. Online PCA with Optimal Regret (OPOR) (Nie et al. 2016) was pro-
posed for low-dimensional data representation in online scenarios, thus can be used for
tensors. Low-rank tensor decomposition (LRTD) (Guo et al. 2017) was developed for
motion detection from videos using deep learning. In order to ensure a fair comparison,
we train identical McDiarmid’s decision tree on these tensors representations, as we
use for our kernel-based feature space spanning. Additionally, as none of these methods
were developed for concept drift, we enhance them with our tensor-based drift detector.
Furthermore, we present results for a standard McDiarmid’s decision tree (MDDT) that
uses vector-based representation. This allows us to evaluate if operating in tensor space
holds advantages over vector space for drifting data streams.

5.2.2 � Parameters

For drift detection, we use a window w = 100 tensors. For subsampling procedure dur-
ing kernel feature space spanning, we use 20% of tensors stored in the window.

5.2.3 � Evaluation metrics

We evaluate examined tensor classifiers according to their prequential classifica-
tion accuracy (accumulative metric used in data streams) and prequential multi-class

3029Machine Learning (2021) 110:3015–3035	

1 3

AUC (Wang and Minku 2020), model update time (in seconds) and memory usage (in
RAM-hours).

5.3 � Experiment 1: real‑world tensor streams

In this experiment, we compare our proposed CKDT with three recent approaches for
incremental tensor vectorization on four diverse real-world benchmarks that display
streaming characteristics. We are interested in evaluating, if the proposed kernel feature
space is more information-rich than vectorized spaces, which will translate into improved
classification rates. Additionally, we wanted to evaluate the speed and memory consump-
tion of analyzed approaches, in order to evaluate their usefulness for data stream scenarios.

Prequential accuracies and prequential multi-class AUC results are presented in Table 2,
while Fig. 2 depicts streaming dependencies between prequential accuracy and number
of processed tensors. Table 3 presents update time and memory consumption of analyzed
models, while Table 4 presents the outcome of Shaffer multiple comparison statistical test
of significance with � = 0.05.

Obtained results show that vector-based adaptive decision tree (MDDT) cannot handle
drifting data streams with tensor representation. On the other hand, experiments highlight
the high efficacy of the proposed CKDT framework. Our approach is able to achieve sig-
nificantly better classification accuracies than the same decision tree model trained using
state-of-the-art incremental tensor vectorization. This shows how information-rich is the
tensor representation in the context of data stream classification and that it is highly ben-
eficial to maintain it. Our kernel-based feature space is capable of capturing these valuable

Table 2   Prequential accuracy (%) and prequential multi-class AUC (%) metrics for analyzed streaming-
based tensor classification methods

Best values are presented in bold
Results for artificial tensor benchmarks averaged over 13 different tensor dimensionality sizes

Dataset Metric MDDT LRTCR​ OPOR LRTD CKDT

CC pACC​ 7.28 ± 6.02 43.21 ± 9.23 47.33 ± 7.45 47.21 ± 6.29 52.45 ± 5.88
pmAUC​ 10.83 ± 5.81 48.34 ± 9.18 50.22 ± 7.29 51.67 ± 6.14 58.63 ± 5.72

YM pACC​ 13.83 ± 4.07 37.82 ± 5.29 39.30 ± 5.91 40.02 ± 4.82 44.83 ± 4.19
pmAUC​ 12.75 ± 5.22 42.65 ± 5.18 43.17 ± 5.83 41.12 ± 4.55 46.99 ± 4.03

SVHN pACC​ 33.52 ± 8.62 78.44 ± 10.06 82.19 ± 9.18 79.58 ± 8.28 87.92 ± 7.81
pmAUC​ 27.48 ± 7.59 72.04 ± 10.75 75.98 ± 10.04 73.19 ± 8.59 83.02 ± 7.53

C100 pACC​ 4.91 ± 0.60 11.23 ± 1.45 10.04 ± 1.84 11.49 ± 2.10 14.92 ± 0.94
pmAUC​ 3.28 ± 0.52 10.43 ± 1.19 10.01 ± 1.37 10.72 ± 1.89 13.98 ± 0.81

STnd pACC​ 22.75 ± 9.82 82.19 ± 14.65 77.93 ± 12.34 82.83 ± 14.99 83.86 ± 11.02
pmAUC​ 19.86 ± 7.49 81.49 ± 13.98 76.54 ± 11.96 81.04 ± 13.84 83.22 ± 10.68

STgd pACC​ 18.43 ± 10.03 72.38 ± 16.81 70.03 ± 10.76 72.84 ± 17.45 82.19 ± 11.99
pmAUC​ 16.92 ± 8.42 70.18 ± 14.99 67.95 ± 11.38 70.03 ± 12.58 81.96 ± 11.63

STid pACC​ 13.73 ± 5.91 67.93 ± 17.98 62.78 ± 16.89 68.45 ± 18.92 80.86 ± 12.87
pmAUC​ 11.88 ± 4.83 65.84 ± 17.26 59.73 ± 16.03 65.27 ± 18.48 80.11 ± 12.56

STsd pACC​ 7.04 ± 2.66 57.44 ± 20.05 54.89 ± 18.97 58.93 ± 21.02 79.28 ± 13.94
pmAUC​ 5.82 ± 1.98 56.11 ± 18.56 52.07 ± 17.82 56.01 ± 19.77 78.80 ± 12.90

3030	 Machine Learning (2021) 110:3015–3035

1 3

properties and translating them into a more effective decision tree induction. In analyzed
real-world datasets (especially in CC and YM) we can observe significant drops in per-
formance of each analyzed classifier. These moments stand for a severe drift presence that
renders the entire system outdated and needs to be handled by a drift detector that will
replace the decision tree. While all methods suffer from the presence of drift, we should
notice that CKDT achieves faster recovery rates after changes and its performance does not
drop as significantly as in reference approaches. This can be contributed to efficient span-
ning of the similarity-based feature space that leads to better handling of new concepts and
quicker adaptation after the occurrence of concept drift (RQ1 answered).

When analyzing the computational performance of CKDT, one should notice its shorter
update time and lower memory consumption than these displayed by reference methods.
This can be contributed to the computational tricks discussed in chordal kernel section, as
well as to computing the new feature space only when concept drift took place. Addition-
ally, we may observe that CKDT scales much better to bigger tensor representations (as
seen with Chicago Crime and Yahoo Music datasets), outperforming significantly other
algorithms (RQ2 answered).

30
35

40
45

50
55

Chicago Crime

no. of processed tensors

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

0.5M 1M 1.5M 2M 2.5M 3M 3.5M 4M 4.5M 5M

LRTCR
OPOR
LRTD
CKDT

30
40

50
60

Yahoo Music

no. of processed tensors

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

0.17M 0.51M 0.85M 1.19M 1.53M

70
75

80
85

90

Street View House Numbers

no. of processed tensors

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

64K 192K 320K 448K 576K

6
8

10
12

14
CIFAR−100

no. of processed tensors

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

6K 12K 18K 24K 30K 36K 42K 48K 54K 60K

Fig. 2   Prequential accuracy over progressing real-world tensor data streams

3031Machine Learning (2021) 110:3015–3035	

1 3

5.4 � Experiment 2: evaluating the impact of tensor dimensionality

In this experiment, we wanted to evaluate the scalability of our framework to high-dimen-
sional input tensors (i.e., tensors containing a high number of factors). Most existing ten-
sor datasets have between 3 to 5 factors (as they are either images, link relationships, or
reviews), but we can predict that soon more complex tensor domains will become increas-
ingly popular. Therefore, we used SimTensor generator to create a number of tensor data
streams with varying number of associated factors. This also allowed us to inject concept
drift in a controlled manner. Prequential accuracies are presented in Fig. 3.

Obtained results confirm our assumption that increasing number of factors will pose
progressively increasing difficulty for all classifiers. We can see that CKDT shows much
better scalability to high number of factors than other methods, as chordal distance allows
for maintaining the tensor properties regardless of the input. The quality of feature spaces
obtained by vectorization methods suffer in a much more significant manner, making their
usage prohibitive in such cases (RQ3 answered).

It is interesting to analyze the interplay between the type of concept drift and the
increasing number of factors. One can see that more complex tensors make proper drift

Table 3   Average update time [s.] and memory consumption [RAM-hours] (calculated over 1000 tensors
each) of analyzed decision tree approaches for tensor data stream classification

Best values are presented in bold

Dataset Metric MDDT LRTCR​ OPOR LRTD CKDT

CC Time 72.39 ± 11.04 236.43 ± 21.43 345.12 ± 68.28 183.21 ± 44.19 84.83 ± 11.28
Memory 0.72 ± 0.13 2.38 ± 0.48 5.21 ± 0.66 1.87 ± 0.71 1.21 ± 0.29

YM Time 18.42 ± 5.93 73.34 ± 19.35 139.31 ± 41.18 70.95 ± 20.09 56.72 ± 11.28
Memory 0.38 ± 0.07 1.87 ± 0.44 2.89 ± 0.90 1.72 ± 0.52 0.98 ± 0.40

SVHN Time 48.47 ± 13.59 99.23 ± 28.03 109.31 ± 33.92 94.02v14.29 95.01 ± 15.22
Memory 0.11 ± 0.03 0.45 ± 0.10 1.02 ± 0.31 0.36 ± 0.08 0.37 ± 0.05

C100 Time 38.46 ± 11.99 97.13 ± 18.29 111.47 ± 22.89 90.76 ± 16.32 68.09 ± 17.04
Memory 0.10 ± 0.03 0.44 ± 0.07 1.03 ± 0.18 0.33 ± 0.08 0.31 ± 0.07

STnd Time 62.49 ± 17.88 174.34 ± 31.56 204.98 ± 44.92 136.86 ± 21.47 74.82 ± 11.59
Memory 0.51 ± 0.11 1.93 ± 0.19 4.41 ± 1.03 1.38 ± 0.16 1.07 ± 0.11

STgd Time 78.81 ± 15.93 208.41 ± 22.98 229.72 ± 33.71 161.06 ± 31.02 104.82 ± 19.93
Memory 0.55 ± 0.22 2.19 ± 0.38 4.82 ± 1.02 1.58 ± 0.33 1.39 ± 0.34

STid Time 88.91 ± 20.74 221.09 ± 37.85 258.03 ± 39.99 142.16 ± 22.19 88.98 ± 13.69
Memory 0.79 ± 0.44 2.28 ± 0.39 4.96 ± 0.83 1.70 ± 0.32 1.50 ± 0.22

STsd Time 91.38 ± 27.54 241.64 ± 38.44 201.77 ± 39.91 122.58 ± 19.27 79.94 ± 12.86
Memory 0.80 ± 0.31 2.62 ± 0.23 5.19 ± 1.38 2.01 ± 0.14 1.69 ± 0.12

Table 4   Outcome of Shaffer post-hoc statistical test for comparison among CKDT and reference methods
over multiple datasets (4 real-world and 52 benchmarks)

CKDT vs. MDDT LRTCR​ OPOR LRTD

p-value 0.000000 0.000183 0.000149 0.000199

3032	 Machine Learning (2021) 110:3015–3035

1 3

detection much more difficult, leading to overall drops in accuracy. Most challenging type
of drift is sudden one, which come to no surprise, as system has no time to react to it. Sec-
ond most difficult drift is much more surprising, as incremental changes are usually easy to
handle (Ditzler et al. 2015). In this case, we may attribute this learning difficulty to the way
we designed our drift detector. If the change is small enough, the detection signal ( 3� rule)
will never be triggered, thus never reconstructing the feature space. We will continue our
work in this direction, to propose more advanced tensor-based drift detector that is robust
to such situations.

Overall, the proposed CKDT offers superior performance to all reference methods,
even when they are enhanced with the proposed tensor-based drift detector. This can
be contributed to the combination of the drift detection with kernel feature space that is
more sensitive to changes in data distributions (RQ4 answered).

60
65

70
75

80
85

90
95

SimTensor − no drift

no. of tensor factors (dimensions)

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

3 4 5 6 7 8 9 10 11 12 13 14 15

LRTCR
OPOR
LRTD
CKDT

50
60

70
80

90

SimTensor − gradual drift

no. of tensor factors (dimensions)

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

3 4 5 6 7 8 9 10 11 12 13 14 15

50
60

70
80

90

SimTensor − incremental drift

no. of tensor factors (dimensions)

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

3 4 5 6 7 8 9 10 11 12 13 14 15

50
55

60
65

70
75

80
85

SimTensor − sudden drift

no. of tensor factors (dimensions)

pr
eq

ue
nt

ia
l a

cc
ur

ac
y

[%
]

3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3   Averaged prequential accuracy calculated over the artificial data streams with respect to increasing
tensor dimensionality and different types of concept drift

3033Machine Learning (2021) 110:3015–3035	

1 3

6 � Conclusions and future works

6.1 � Summary

In this paper, we have presented a first framework for tensor data stream classification
with decision trees under concept drift. We have identified the drawback of existing
data stream classification approaches, namely their limitation to vector representation
of input data. We argued that as many real-world data sources generate multi-dimen-
sional data that cannot be vectorized without a loss of information, there is a need for
tensor-based classifiers for data streams. As a base classifier we selected McDiarmid’s
incremental decision tree. In order to alleviate its limitations, we proposed to create a
new feature space that operates on tensors and use it for decision tree induction. To this
aim we employed kernel feature mapping, where a dedicated similarity measure using
chordal distance was used. It allowed for calculating direct similarity between two ten-
sors, without a need for vectorization. We showed how to speed-up the creation of the
new feature space using random subsampling. We also proposed a concept drift detec-
tor based on tensor data representation that was used to control when to create a new
feature space and when to update the classifier. Experimental study carried out on large-
scale real-world and artificial tensor data streams showed that our framework preserves
the information within tensors, leading to an excellent classification accuracy. Addition-
ally, it scales-up to high-dimensional tensors and is much less computationally expen-
sive than online vectorization.

6.2 � Future works

In our future works, we plan to continue developing a holistic framework for tensor data
stream classification that will encompass the following research directions:

•	 Ensembles of CKDTs. A natural step forward will be to propose adaptive and online
ensembles of Chordal Kernel Decision Trees to boost their predictive accuracy and
make them competitive to modern deep learning algorithms (González et al. 2020).

•	 Explainable learning from tensor streams. Decision tree structure offers a natural
explainable and interpretable format (Sagi and Rokach 2020). This can be leveraged
towards understanding the nature of changes in drifting tensor streams.

•	 Speeding-up CKDTs. Current implementation of CKDT is efficient and faster than
state-of-the-art methods, but can be further improved by using approximate decomposi-
tion approaches (Cyganek and Wozniak 2016).

•	 Evolving tensor dimensionality. A fully robust framework for tensor data stream min-
ing must offer the capability of adapting to evolving dimensionality and factors of ten-
sors (da Silva Fernandes et al. 2019).

Declarations 

Conflicts of interest  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

3034	 Machine Learning (2021) 110:3015–3035

1 3

References

Aljundi, R., Kelchtermans, K., & Tuytelaars, T. (2019). Task-free continual learning. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, Com-
puter Vision Foundation, IEEE, (pp. 11254–11263).

Ashfahani, A., & Pratama, M. (2019). Autonomous deep learning: Continual learning approach for dynamic
environments. In: Proceedings of the 2019 SIAM International Conference on Data Mining, SDM 2019,
Calgary, Alberta, Canada, May 2–4, 2019, SIAM, (pp. 666–674).

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis. Journal of Machine
Learning Research, 11, 1601–1604.

Chhaya, R., Choudhari, J., Dasgupta, A., & Shit, S. (2020). Streaming coresets for symmetric tensor factoriza-
tion. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July
2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, (pp. 1855–1865).

Cyganek, B., & Wozniak, M. (2016). Efficient computation of the tensor chordal kernels. In: International Con-
ference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA, Else-
vier, Procedia Computer Science, vol 80, (pp. 1702–1711).

Cyganek, B., Krawczyk, B., & Wozniak, M. (2015). Multidimensional data classification with chordal distance
based kernel and support vector machines. Engineering Application of Artificial Intelligence, 46, 10–22.

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary environments: A survey.
Computational Intelligence Magazine, 10(4), 12–25.

Fanaee-T, H., & Gama, J. (2016). Simtensor: A synthetic tensor data generator. CoRR abs/1612.03772.
Fu, X., Huang, K., Ma, W., Sidiropoulos, N. D., & Bro, R. (2015). Joint tensor factorization and outlying slab

suppression with applications. IEEE Transaction on Signal Processing, 63(23), 6315–6328.
Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adapta-

tion. ACM Computing Survey, 46(4), 44:1-44:37.
Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., & Gama, J. (2019). Machine learning for streaming data: State

of the art, challenges, and opportunities. SIGKDD Explore, 21(2), 6–22.
González, S., García, S., Ser, J. D., Rokach, L., & Herrera, F. (2020). A practical tutorial on bagging and boost-

ing based ensembles for machine learning: Algorithms, software tools, performance study, practical per-
spectives and opportunities. Information Fusion, 64, 205–237.

Gu, L., Zhou, N., & Zhao, Y. (2018). An euclidean distance based on tensor product graph diffusion related
attribute value embedding for nominal data clustering. In: AAAI, AAAI Press.

Gujral, E., Theocharous, G., & Papalexakis, E.E. (2020). SPADE: streaming PARAFAC2 decomposition for
large datasets. In: Demeniconi C, Chawla NV (eds) Proceedings of the 2020 SIAM International Confer-
ence on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May 7-9, 2020, SIAM, (pp. 577–585).

Guo, H., Wu, X., & Feng, W. (2017). Multi-stream deep networks for human action classification with sequen-
tial tensor decomposition. Signal Processing, 140, 198–206.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Wozniak, M. (2017). Ensemble learning for data
stream analysis: A survey. Information Fusion, 37, 132–156.

Lathauwer, L.D. (2009). A survey of tensor methods. In: ISCAS, IEEE, (pp. 2773–2776).
Letourneau, P., Baskaran, M.M., Henretty, T., Ezick, J.R., & Lethin, R. (2018). Computationally efficient CP

tensor decomposition update framework for emerging component discovery in streaming data. In: 2018
IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham, MA, USA, September
25–27, 2018, IEEE, (pp. 1–8).

Li, P., Feng, J., Jin, X., Zhang, L., Xu, X., & Yan, S. (2019). Online robust low-rank tensor modeling for stream-
ing data analysis. IEEE Transactions on Neural Networks and Learning Systems, 30(4), 1061–1075.

Li, Q., & Schonfeld, D. (2014). Multilinear discriminant analysis for higher-order tensor data classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(12), 2524–2537.

Mardani, M., Mateos, G., & Giannakis, G. B. (2015). Subspace learning and imputation for streaming big data
matrices and tensors. IEEE Trans Signal Processing, 63(10), 2663–2677.

Maruhashi, K., Todoriki, M., Ohwa, T., Goto, K., Hasegawa, Y., Inakoshi, H., & Anai, H. (2018). Learning
multi-way relations via tensor decomposition with neural networks. In: AAAI, AAAI Press.

Nakatsuji, M., Zhang, Q., Lu, X., Makni, B., & Hendler, J. A. (2017). Semantic social network analysis by
cross-domain tensor factorization. IEEE Transactions on Computational Social Systems, 4(4), 207–217.

Nie, J., Kotlowski, W., & Warmuth, M. K. (2016). Online PCA with optimal regret. Journal of Machine Learn-
ing Research, 17, 173:1-173:49.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural
networks: A review. Neural Networks, 113, 54–71.

3035Machine Learning (2021) 110:3015–3035	

1 3

Pinage, F. A., dos Santos, E. M., & Gama, J. (2020). A drift detection method based on dynamic classifier selec-
tion. Data Mining and Knowledge Discovery, 34(1), 50–74.

Rambhatla, S., Li, X., & Haupt, J.D. (2020). Provable online CP/PARAFAC decomposition of a structured
tensor via dictionary learning. In: Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020, virtual.

Rutkowski, L., Pietruczuk, L., Duda, P., & Jaworski, M. (2013). Decision trees for mining data streams based
on the mcdiarmids bound. IEEE Transactions on Knowledge and Data Engineering, 25(6), 1272–1279.

Sagi, O., & Rokach, L. (2020). Explainable decision forest: Transforming a decision forest into an interpretable
tree. Information Fusion, 61, 124–138.

Sahoo, D., Pham, Q., Lu, J., & Hoi, S.C.H. (2018). Online deep learning: Learning deep neural networks on the
fly. In: Lang J (ed) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intel-
ligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden, ijcai.org. (pp 2660–2666).

Shin, K., Hooi, B., Kim, J., & Faloutsos, C. (2017). Densealert: Incremental dense-subtensor detection in tensor
streams. In: KDD, ACM, (pp. 1057–1066).

Sidiropoulos, N. D., Lathauwer, L. D., Fu, X., Huang, K., Papalexakis, E. E., & Faloutsos, C. (2017). Ten-
sor decomposition for signal processing and machine learning. IEEE Transactions on Signal Processing,
65(13), 3551–3582.

Signoretto, M., Lathauwer, L. D., & Suykens, J. A. K. (2011). A kernel-based framework to tensorial data anal-
ysis. Neural Networks, 24(8), 861–874.

da Silva Fernandes, S., Fanaee-T, H., & Gama, J. (2019). Evolving social networks analysis via tensor decom-
positions: From global event detection towards local pattern discovery and specification. In: Discovery
Science - 22nd International Conference, DS 2019, Split, Croatia, October 28-30, 2019, Proceedings,
Springer, Lecture Notes in Computer Science, vol 11828, (pp. 385–395).

Smith, S., Huang, K., Sidiropoulos, N.D., & Karypis, G. (2018). Streaming tensor factorization for infinite data
sources. In: SDM, SIAM, (pp. 81–89).

Song, Q., Huang, X., Ge, H., Caverlee, J., & Hu, X. (2017). Multi-aspect streaming tensor completion. In:
KDD, ACM, (pp. 435–443).

Sun, J. (2008). Incremental pattern discovery on streams, graphs and tensors. SIGKDD Explorations, 10(2),
28–29.

Sun, J., Tao, D., Papadimitriou, S., Yu, P. S., & Faloutsos, C. (2008). Incremental tensor analysis: Theory and
applications. TKDD, 2(3), 11:1-11:37.

Sun, Y., Guo, Y., Luo, C., Tropp, J. A., & Udell, M. (2020). Low-rank tucker approximation of a tensor from
streaming data. SIAM Journal on Mathematics of Data Science, 2(4), 1123–1150.

Wang, S., & Minku, L.L. (2020). AUC estimation and concept drift detection for imbalanced data streams with
multiple classes. In: 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19–24, 2020, IEEE, (pp. 1–8).

Yang, K., Gao, Y., Shen, Y., Zheng, B., & Chen, L. (2021). Dismastd: An efficient distributed multi-aspect
streaming tensor decomposition. In: 37th IEEE International Conference on Data Engineering, ICDE
2021, Chania, Greece, April 19–22, 2021 (pp. 1080–1091) IEEE.

Yang, S., Wang, M., Feng, Z., Liu, Z., & Li, R. (2018). Deep sparse tensor filtering network for synthetic aper-
ture radar images classification. IEEE Transactions on Neural Networks and Learning Systems, 29(8),
3919–3924.

Zhou, S., Nguyen, X.V., Bailey, J., Jia, Y., & Davidson, I. (2016). Accelerating online CP decompositions for
higher order tensors. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, ACM, (pp. 1375–1384).

Zyblewski, P., Sabourin, R., & Wozniak, M. (2021). Preprocessed dynamic classifier ensemble selection for
highly imbalanced drifted data streams. Information Fusion, 66, 138–154.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Tensor decision trees for continual learning from drifting data streams
	Abstract
	1 Introduction
	1.1 Goal
	1.2 Motivation
	1.3 Overview
	1.4 Main contributions

	2 Background
	2.1 Learning from data streams
	2.2 Tensors in machine learning and classification
	2.3 Related works for streaming tensor analysis

	3 Decision tree learning for tensor data streams
	3.1 Decision trees in the era of deep learning
	3.2 Proposed algorithm overview
	3.3 Decision tree induction from streaming data
	3.4 Induction of decision trees in kernel feature space
	3.5 Chordal distance kernel for tensor similarity

	4 Concept drift detection in tensor data streams
	4.1 Spanning new feature space after drift
	4.2 Updating the decision tree classifier after drift

	5 Experimental study
	5.1 Tensor benchmarks for data stream classification
	5.1.1 Chicago Crime (CC)
	5.1.2 Yahoo Music (YM)
	5.1.3 Street View House Numbers (SVHN)
	5.1.4 CIFAR-100 (C100)
	5.1.5 SimTensor (ST)

	5.2 Experimental set-up
	5.2.1 Reference methods
	5.2.2 Parameters
	5.2.3 Evaluation metrics

	5.3 Experiment 1: real-world tensor streams
	5.4 Experiment 2: evaluating the impact of tensor dimensionality

	6 Conclusions and future works
	6.1 Summary
	6.2 Future works

	References

