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Abstract
The success of deep learning has led to a rising interest in the generalization property of 
the stochastic gradient descent (SGD) method, and stability is one popular approach to 
study it. Existing generalization bounds based on stability do not incorporate the interplay 
between the optimization of SGD and the underlying data distribution, and hence cannot 
even capture the effect of randomized labels on the generalization performance. In this 
paper, we establish generalization error bounds for SGD by characterizing the correspond-
ing stability in terms of the on-average variance of the stochastic gradients. Such charac-
terizations lead to improved bounds on the generalization error of SGD and experimentally 
explain the effect of the random labels on the generalization performance. We also study 
the regularized risk minimization problem with strongly convex regularizers, and obtain 
improved generalization error bounds for the proximal SGD.
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1 Introduction

Many machine learning applications can be formulated as risk minimization problems, in 
which each data sample � ∈ ℝ

p is assumed to be generated by an underlying multivari-
ate distribution D . The loss function 𝓁(⋅;�) ∶ ℝ

d
→ ℝ measures the performance on the 

sample � and its form depends on specific applications, e.g., square loss for linear regres-
sion problems, logistic loss for classification problems and cross entropy loss for training 
deep neural networks, etc. The goal is to solve the following population risk minimization 
(PRM) problem over a certain parameter space 𝛺 ⊂ ℝ

d.

Directly solving the PRM can be difficult in practice, as either the distribution D is 
unknown or evaluation of the expectation of the loss function induces high compu-
tational cost. To avoid such difficulties, one usually samples a set of n data samples 
S ∶= {�1,… , �n} from the distribution D , and instead solves the following empirical risk 
minimization (ERM) problem.

The ERM serves as an approximation of the PRM with finite samples. In particular, when 
the number n of data samples is large, one wishes that the solution �S found by optimizing 
the ERM with the data set S has a good generalization performance, i.e., it also induces a 
small loss on the population risk. The gap between these two risk functions is referred to as 
the generalization error at �S , and is formally written as

Various theoretical frameworks have been established to study the generalization error 
from different aspects (see related work for references). This paper adopts the stability 
framework (Bousquet and Elisseeff 2002; Elisseeff et  al. 2005), which has been applied 
to study the generalization property of the output produced by learning algorithms. More 
specifically, for a particular learning algorithm A , its stability corresponds to how stable 
the output of the algorithm is with regard to the variations in the data set. As an example, 
consider two data sets S and S that differ at one data sample, and denote �S and �

S
 as the 

outputs of algorithm A when applied to solve the ERM with the data sets S and S , respec-
tively. Then, the stability of the algorithm measures the gap between the output function 
values of the algorithm on the perturbed data sets.

Recently, the stability framework has been further developed to study the generalization 
performance of the output produced by the stochastic gradient descent (SGD) method from 
various theoretical aspects (Hardt et al. 2016; Charles and Papailiopoulos 2017; Mou et al. 
2017; Yin et al. 2017; Kuzborskij and Lampert 2017). These studies showed that the output 
of SGD can achieve a vanishing generalization error after multiple passes over the data set 
as the sample size n → ∞ . These results provide theoretical justifications in part to the suc-
cess of SGD on training complex objectives such as deep neural networks.

However, as pointed out in Zhang et  al. (2017), these bounds do not explain some 
experimental observations, e.g., they do not capture the change of the generalization per-
formance as the fraction of random labels in training data changes. Thus, the aim of this 
paper is to develop better generalization bounds that incorporate both the optimization 

(PRM)min
�∈�

f (�) ∶= ��∼D �(�;�).

(ERM)min
�∈�

fS(�) ∶=
1

n

n∑
k=1

�(�;�k).

(1)(generalization error) ∶= |fS(�S) − f (�S)|.
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information of SGD and the underlying data distribution, so that they can explain experi-
mental observations. We summarize our contributions as follows.

1.1  Our contributions

For smooth nonconvex optimization problems, we propose a new analysis of the on-aver-
age stability of SGD that exploits the optimization properties as well as the underlying data 
distribution. Specifically, via upper-bounding the on-average stability of SGD, we provide 
a novel generalization error bound, which improves upon the existing bounds by incorpo-
rating the on-average variance of the stochastic gradient. We further corroborate the con-
nection of our bound to the generalization performance of the recent experiments in Zhang 
et al. (2017), which were not explained by the existing bounds of the same type. In specific, 
our experiments demonstrate that the obtained generalization bound captures how the gen-
eralization error changes with the fraction of random labels via the on-average variance of 
SGD. Furthermore, our bound holds under probabilistic guarantee, which is statistically 
stronger than the bounds in expectation provided in, e.g., Hardt et al. (2016), Kuzborskij 
and Lampert (2017). Then, we study nonconvex optimization under gradient dominance 
condition, and show that the corresponding generalization bound for SGD can be improved 
by its fast convergence rate.

We further consider nonconvex problems with strongly convex regularizers, and study 
the role that the regularization plays in characterizing the generalization error bound of the 
proximal SGD. In specific, our generalization bound shows that strongly convex regulariz-
ers substantially improve the generalization bound of SGD for nonconvex loss functions to 
be as good as the strongly convex loss function. Furthermore, the uniform stability of SGD 
under a strongly convex regularizer yields a generalization bound for nonconvex problems 
with exponential concentration in probability. We also provide some experimental observa-
tions to support our result.

1.2  Related works

The stability approach was initially proposed by Bousquet and Elisseeff (2002) to study the 
generalization error, where various notions of stability were introduced to provide bounds 
on the generalization error with probabilistic guarantee. Elisseeff et  al. (2005) further 
extended the stability framework to characterize the generalization error of randomized 
learning algorithms. Shalev-Shwartz et al. (2010) developed various properties of stability 
on learning problems. In Hardt et al. (2016), the authors first applied the stability frame-
work to study the expected generalization error for SGD, and Kuzborskij and Lampert 
(2017) further provided a data dependent generalization error bound. In Mou et al. (2017), 
the authors studied the generalization error of SGD with additive Gaussian noise. Yin et al. 
(2017) studied the role that gradient diversity plays in characterizing the expected generali-
zation error of SGD. All these works studied the expected generalization error of SGD. In 
Charles and Papailiopoulos (2017), the authors studied the generalization error of several 
first-order algorithms for loss functions satisfying the gradient dominance and the quad-
ratic growth conditions. Poggio et al. (2011) studied the stability of online learning algo-
rithms. This paper improves the existing bounds by incorporating the on-average variance 
of SGD into the generalization error bound and further corroborates its connection to the 
generalization performance via experiments. More detailed comparison with the existing 
bounds are given after the presentation of main results.
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The PAC Bayesian theory (Valiant 1984; McAllester 1999) is another popular frame-
work for studying the generalization error in machine learning. It was recently used to 
develop bounds on the generalization error of SGD (London 2017; Mou et al. 2017). Spe-
cifically, Mou et  al. (2017) applied the PAC Bayesian theory to study the generalization 
error of SGD with additive Gaussian noise. London (2017) combined the stability frame-
work with the PAC Bayesian theory and provided bound on the generalization error with 
probabilistic guarantee of SGD. The bound incorporates the divergence between the prior 
distribution and the posterior distribution of the parameters.

Recently, Russo and Zou (2016), Xu and Raginsky (2017) applied information-theoretic 
tools to characterize the generalization capability of learning algorithms, and Pensia et al. 
(2018) further extended the framework to study the generalization error of various first-
order algorithms with noisy updates. Other approaches were also developed for character-
izing the generalization error as well as the estimation error, which include, for example, 
the algorithm robustness framework (Xu and Mannor 2012; Zahavy et al. 2017), large mar-
gin theory (Bartlett et al. 2017; Neyshabur et al. 2018; Sokolić et al. 2017) and the classical 
VC theory (Vapnik 1995; Vapnik 1998). Also, some methods have been developed to study 
excessive risk of the output for a learning algorithm, which include the robust stochastic 
approach (Nemirovski et al. 2009), the sample average approximation approach (Shapiro 
and Nemirovski 2005; Lin and Rosasco 2017), etc.

2  Preliminary and on‑average stability

Consider applying SGD to solve the empirical risk minimization (ERM) with a particular 
data set S. In particular, at each iteration t, the algorithm samples one data sample from the 
data set S uniformly at random. Denote the index of the sampled data sample at the t-th 
iteration as �t . Then, with a stepsize sequence {�t}t and a fixed initialization �0 ∈ ℝ

d , the 
update rule of SGD can be written as, for t = 0,… , T − 1,

Throughout the paper, we denote the iterate sequence along the optimization path as 
{�t,S}t , where S in the subscript indicates that the sequence is generated by the algorithm 
using the data set S. The stepsize sequence {�t}t is a decreasing and positive sequence, and 
typical choices for SGD are 1

t
,

1

t log t
 Bottou (2010), which we adopt in our study.

Clearly, the output �T ,S is determined by the data set S and the sample path 
� ∶= {�1,… , �T−1} of SGD. We are interested in the generalization error of the T-th output 
generated by SGD, i.e., |fS(�T ,S) − f (�T ,S)| , and we adopt the following standard assump-
tions (Hardt et al. 2016; Kuzborskij and Lampert 2017) on the loss function � in our study 
throughout the paper.

Assumption 1 For all � ∼ D , the loss function satisfies: 

1. Function 𝓁(⋅ ;�) is continuously differentiable;
2. Function 𝓁(⋅ ;�) is nonnegative and �-Lipschitz, and |𝓁(⋅ ;�)| is uniformly bounded by M;
3. The gradient ∇𝓁(⋅ ;�) is L-Lipschitz, and ‖∇𝓁(⋅ ;�)‖ is uniformly bounded by � , where 

‖ ⋅ ‖ denotes the �2 norm.

(SGD)�t+1 = �t − �t∇�(�t;��t ).
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The generalization error of SGD can be viewed as a nonnegative random variable 
whose randomnesses are due to the draw of the data set S and the sample path � of the 
algorithm. In particular, the mean square generalization error has been studied in Elisseeff 
et  al. (2005) for general randomized learning algorithms. Specifically, an application of 
Lemma 11 (Elisseeff et al. 2005) to SGD under Assumption 1 yields the following result. 
Throughout the paper, we denote S as the data set that replaces one data sample of S with 
an i.i.d copy generated from the distribution D and denote �

T ,S
 as the output of SGD for 

solving the ERM with the data set S.

Proposition 1 Let Assumption 1 hold. Apply the SGD with the same sample path � to solve 
the ERM with the data sets S and S , respectively. Then, the mean square generalization 
error of SGD satisfies

where �
T ,S,S

∶= ‖�T ,S − �
T ,S

‖ and the expectation is taken over the random variables S, S 
and �.

Proposition  1 links the mean square generalization error of SGD to the quantity 
�
�,S,S

[�
T ,S,S

] . Intuitively, �
T ,S,S

 captures the variation of the algorithm output with regard 
to the variation of the dataset. Hence, its expectation can be understood as the on-average 
stability of the iterates generated by SGD. We note that similar notions of stabilities were 
proposed in Kuzborskij and Lampert (2017), Shalev-Shwartz et al. (2010), Elisseeff et al. 
(2005), which are based on the variation of the function values at the output instead.

3  Generalization bound for SGD in nonconvex optimization

In this section, we develop the generalization error of SGD by characterizing the corre-
sponding on-average stability of the algorithm.

An intrinsic quantity that affects the optimization path of SGD is the variance of the 
stochastic gradients. To capture the impact of the variance of the stochastic gradients, we 
adopt the following standard assumption from the stochastic optimization theory (Bottou 
2010; Nemirovski et al. 2009; Ghadimi et al. 2016).

Assumption 2 For any fixed training set S and any � that is generated uniformly from 
{1,… , n} at random, there exists a constant 𝜈S > 0 such that for all � ∈ � one has

Assumption 2 essentially bounds the variance of the stochastic gradients for the particu-
lar data set S. The variance �2

S
 of the stochastic gradient is typically much smaller than the 

uniform upper bound � in Assumption 1 for the norm of the stochastic gradient, e.g., nor-
mal random variable has unit variance and is unbounded, and hence may provide a tighter 
bound on the generalization error.

Based on Assumption  2 and Assumption  1, we obtain the following generalization 
bound of SGD by exploring its optimization path to study the corresponding stability.

�[|fS(�T ,S) − f (�T ,S)|2] ≤ 2M2

n
+ 12M��[�

T ,S,S
],

(2)��

‖‖‖‖‖
∇�(�;��) −

1

n

n∑
k=1

∇�(�;�k)
‖‖‖‖‖

2

≤ �2
S
.
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Theorem  1 (Bound with Probabilistic Guarantee) Suppose � is nonconvex. Let Assump-
tions 1 and 2 hold. Apply the SGD to solve the ERM with the data set S, and choose the 
step size �t =

c

(t+2) log(t+2)
 with 0 < c <

1

L
 . Then, for any 𝛿 > 0 , with probability at least 

1 − � , we have

An important variable in the above generalization bound is the on-average stochastic 
variance �S[�

2
S
] . We can compare the above bound with the generalization bound devel-

oped in the recent literature. Specifically, Hardt et  al. (2016), Kuzborskij and Lampert 
(2017), Yin et al. (2017) all developed bounds for the expected generalization error of SGD 
and choose the step size �t =

c

t
 , while our generalization bound in the above theorem is 

probabilistic and hence provides stronger guarantee, and we use a slightly smaller step size 
�t =

c

(t+2) log(t+2)
 . The generalization bound in Hardt et al. (2016) is based on the uniform 

stability sup
S,S

��[�T ,S,S] and assumes an upper bound � of the norm of all gradients. Kuz-
borskij and Lampert (2017) develops a data-dependent bound on expected generalization 
error by leveraging the notion of on-average stability, and they adopt an additional assump-
tion on the Lipschitz continuity of the Hessian matrix. Yin et al. (2017) characterizes the 
expected generalization error of SGD using the notion of uniform stability and gradient 
diversity, but their analysis requires the function to be (strongly)-convex. In comparison, 
our generalization bound is based on the more relaxed on-average stability �

S,S
��[�T ,S,S] 

that allows us to introduce the on-average variance, which is generally smaller and tighter 
than the uniform gradient bound � used in Hardt et al. (2016). Moreover, the generalization 
error bounds in all these works have a polynomial dependence on T, whereas our generali-
zation error bound only scales with logT  . Next, we outline the proof of Theorem 1 below 
and discuss other implications.

Outline of the Proof of Theorem 1 We provide an outline of the proof here, and relegate 
the detailed proof in the supplementary materials.

The central idea is to bound the on-average stability �
S,S,�

[�
T ,S,S

] of the iterates in Propo-
sition 1. Hence, suppose we apply SGD with the same sample path � to solve the ERM 
with the data sets S and S , respectively. We first obtain the following recursive property of 
the on-average iterate stability (Lemma 2 in the appendix):

We then further derive the following bound on �S,�

�‖∇�(�t,S;�1)‖
�
 by exploiting the opti-

mization path of SGD (Lemma 3 in the appendix):

Substituting (4) into (3) and telescoping, we obtain an upper bound on �
S,S,�

[�
T ,S,S

] . Fur-
ther substituting such a bound into Proposition 1, we obtain an upper bound on the second 

|fS(�T ,S) − f (�T ,S)|

≤

√√√√ 1

n�

(
2M2 + 24M�c

√
2Lf (�0) +

1

2
�S[�

2
S
] log T

)
.

(3)
�
S,S,�

[�
t+1,S,S

] ≤ (1 + �tL)�S,S,�
[�

t,S,S
]

+
2�t

n
�S,�

[‖‖∇�(�t,S;�1)
‖‖
]
.

(4)��,S

�‖∇�(�t,S;�1)‖
�
≤

�
2Lf (�0) +

1

2
�S[�

2
S
].
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moment of the generalization error. Then, the result in Theorem 1 follows from the Cheby-
shev’s inequality.   ◻

The proof of Theorem  1 is to characterize the on-average stability of SGD, and it 
explores the optimization path by applying the technical tools developed in stochastic 
optimization theory. Comparing to the generalization bound developed in Hardt et  al. 
(2016) that characterizes the expected generalization error based on the uniform stabil-
ity sup

S,S
��[�T ,S,S] , our generalization bound in Theorem 1 provides a probabilistic guar-

antee, and is based on the more relaxed on-average stability �
S,S
��[�T ,S,S] which yields 

a tighter bound. Intuitively, the on-average variance term �S[�
2
S
] in our bound measures 

the ‘stability’ of the stochastic gradients over all realizations of the dataset S. If such on-
average variance of SGD is large, then the optimization paths of SGD on two slightly 
different datasets are diverse from each other, leading to the bad stability of SGD and in 
turn yielding a high generalization error.

Remark on optimization convergence rate: We note that the generalization error 
bound in Theorem  1 is derived based on the step size �t = c∕[(t + 2) log(t + 2)] . With 
this step size, the standard nonconvex optimization convergence rate of SGD (Bottou 
2010) is in the order of

which is very slow. However, it is possible to choose a proper step size to achieve a similar 
generalization error bound and a faster optimization convergence rate. Specifically, one can 
choose �t =

c

t+2
 with constant c = log log(T+2)

2L log(T+2)
 , where T is the total number of iterations. 

Then, following the same proof of Theorem 1, one can instead prove the following stability 
bound

Therefore, the generalization error bound still scales with logT  . On the other hand, the 
optimization convergence rate is now in the order of

Remark on choice of step size: One can also adopt a constant step size in Theorem 1, which 
will lead to a very different line of proof and a different final bound. In this case, one can 
choose a sufficiently small constant step size (with polynomial dependence on the total 
number of iterations T) and obtain a comparable generalization bound.

Discussion: We next elaborate on how our generalization bound can help explain the 
observations in classification experiments with randomized labels (Zhang et al. 2017). 
Specifically, consider the following binary classification problem

∑T−1

t=0
�2
t∑T−1

t=0
�t

= O

�
1

log log T

�
,

�[�T ] ≤
2

�
2Lf (�0) +

�[�2
S
]

2

nL
(T + 2)2cL = O

⎛⎜⎜⎜⎝

�
Lf (�0) + �[�2

S
]

nL
log(T + 2)

⎞⎟⎟⎟⎠
.

∑T−1

t=0
�2
t∑T−1

t=0
�t

= O

�
log log(T + 2)

log2(T + 2)

�
.
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where � corresponds to the linear classifier and (�i, yi) denotes the i-th data sample ( yi is a 
binary label). Consider a simplified case where the feature dimension d = 1 and total sample 
size N = 2n . Assume the features x1 = x2 = ⋯ = xn = 1 and xn+1 = xn+2 = ⋯ = x2n = −1 . 
In particular, assume that � ∈ (0, 0.5) portion of the 2n samples have incorrect labels, i.e., � 
portion of the samples in {x1, x2,… , xn} are incorrectly labeled as ‘ −1 ’ (true label is ‘+1’) 
and � portion of the samples in {xn+1, xn+2,… , x2n} are incorrectly labeled as ‘+1’ (true 
label is ‘−1’). In this setting, it can be calculated that the full gradient of the empirical loss 
is ∇fS(�) = � exp(�) − (1 − �) exp(−�) . Then, the empirical gradient variance of any clas-
sifier � takes the value

Hence, as the random label probability � increases (from 0 to 0.5), the above empirical 
gradient variance keeps increasing and the generalization error also increases. In particular, 
the maximum variance is achieved when half of the data are incorrectly labeled, and this 
gives the maximum classification uncertainty. This example shows that the optimization 
gradient variance term in our Theorem 1 properly captures the impact of data distribution 
on the generalization performance. We note that one can generalize this example to high 
dimensional space d > 1 where the features follow two distinct normal distributions, and 
the conclusion will be the same but requires dedicated calculations.

4  Generalization bound for SGD under gradient dominant condition

In this section, we consider nonconvex loss functions with the empirical risk function fS 
further satisfying the following gradient dominance condition.

Definition 1 Denote f ∗ ∶= inf�∈� f (�) . Then, the function f is said to be �-gradient domi-
nant for 𝛾 > 0 if

The gradient dominance condition (also referred to as Polyak-Łojasiewicz condition 
(Polyak 1963; Łojasiewicz 1963) guarantees a linear convergence of the function value 
sequence generated by gradient-based first-order methods (Karimi et al. 2016). It is a con-
dition that is much weaker than the strong convexity, and many nonconvex machine learn-
ing problems satisfy this condition around the global minimizers (Li et al. 2016; Zhou et al. 
2016).

min
�∈ℝd

1

N

N∑
i=1

�i(�) =
1

N

N∑
i=1

exp(−yi�
T�i),

�[�2
S
] =

1

N

N�
i=1

��∇�i(�) − ∇fS(�)
��2

=
1

N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�

i ∈ {1,… , n}

yi = 1

+
�

i ∈ {1,… , n}

yi = −1

+
�

i ∈ {n + 1,… , 2n}

yi = 1

+
�

i ∈ {n + 1,… , 2n}

yi = −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

��∇�i(w) − ∇fS(�)
��2

= �(1 − �)(exp(�) + exp(−�))2.

(5)f (�) − f ∗ ≤
1

2�
‖∇f (�)‖2, ∀� ∈ �.
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The gradient dominance condition helps to improve the bound on the on-average sto-
chastic gradient norm ��,S

�‖∇�(�t,S;�1)‖
�
 (see Lemma 4 in the appendix), which is given 

by

Compared to (4) for general nonconvex functions, the above bound is further improved by 
a factor of 1

t
 . This is because SGD converges sub-linearly to the optimum function value f ∗

S
 

under the gradient dominance condition, and 1
t
 is essentially the convergence rate of SGD. 

In particular, for sufficiently large t, the on-average stochastic gradient norm is essentially 
bounded by 

√
2L�S[f

∗
S
] , which is much smaller then the bound in (4). With the bound in 

(6), we obtain the following theorem.

Theorem 2 (Mean Square Bound) Suppose � is nonconvex, and fS is �-gradient dominant 
( 𝛾 < L ). Let Assumptions 1 and 2 hold. Apply the SGD to solve the ERM with the data set S 
and choose �t =

c

(t+2) log(t+2)
 with 0 < c < min{

1

L
,

1

2𝛾
} . Then, the following bound holds.

The above bound for the mean square generalization error under gradient dominance 
condition improves that for general nonconvex functions in Theorem 1, as the dominant 
term (i.e., logT-dependent term) has coefficient 

√
2L�S[f

∗
S
] , which is much smaller than 

the term 
√

2Lf (�0) +
1

2
�S[�

2
S
] in the bound of Theorem 1. As an intuitively understanding, 

the on-average variance of the SGD is further reduced by its fast convergence rate 1
t
 under 

the gradient dominance condition. This results in a more stable on-average iterate stability 
which in turn improves the mean square generalization error. We note that Charles and 
Papailiopoulos (2017) also studied the generalization error of SGD for loss functions satis-
fying both the gradient dominance condition and an additional quadratic growth condition. 
They also assumed that the algorithm converges to a global minimizer point, which may 
not always hold for noisy algorithms like SGD.

Remark on optimization convergence rate: The optimization convergence rate of SGD 
under the gradient dominant condition has been characterized by the Theorem 4 of Karimi 
et al. (2016). In particular, with the step size �t = O(

1

t
) , Karimi et al. (2016) proved that the 

convergence rate of SGD is in the order of �[fS(�t,S) − f ∗
S
] ≤ O(

1

t
) . Note that the generali-

zation error bound in Theorem  2 is derived based on a slightly smaller step size 
�t = O(

1

t log t
) , which leads to the same order of convergence rate Õ( 1

t
) up to certain loga-

rithmic factors. Hence, under the gradient dominant condition, SGD can achieve a small 
generalization error as well as a fast convergence.

Theorem 2 directly implies the following probabilistic guarantee for the generalization 
error of SGD.

Theorem 3 (Bound with Probabilistic Guarantee) Suppose � is nonconvex, and fS is �-gra-
dient dominant ( 𝛾 < L ). Let Assumptions 1 and 2 hold. Apply the SGD to solve the ERM 
with the data set S, and choose �t =

c

(t+2) log(t+2)
 with 0 < c < min{

1

L
,

1

2𝛾
} . Then, for any 

𝛿 > 0 , with probability at least 1 − � , we have

(6)��,S

�‖∇�(�t,S;�1)‖
�
≤

�
2L�S[f

∗
S
] +

1

t

�
2Lf (�0) + �S[�

2
S
]
�
.

��,S[|fS(�T ,S) − f (�T ,S)|2]
≤
2M2

n
+
24M�c

n

(√
2L�S[f

∗
S
] logT+

√
2Lf (�0)+2�S[�

2
S
]

)
.
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5  Regularized nonconvex optimization

In practical applications, regularization is usually applied to the risk minimization problem 
in order to either promote certain structures on the desired solution or to restrict the param-
eter space. In this section, we explore how regularization can improve the generation error, 
and hence help to avoid overfitting for SGD.

Here, for any weight 𝜆 > 0 , we consider the regularized population risk minimization 
(R-PRM) and the regularized empirical risk minimization (R-ERM):

where h corresponds to the regularizer and f , fS are the population and empirical risks, 
respectively. In particular, we are interested in the following class of regularizers.

Assumption 3 The regularizer function h is 1-strongly convex and nonnegative.

Without loss of generality, we assume that the strongly convex parameter of h is 1, and 
this can be adjusted by scaling the weight parameter � . Strongly convex regularizers are 
commonly used in machine learning applications, and typical examples include �

2
‖�‖2 for 

ridge regression, Tikhonov regularization �
2
‖��‖2 and elastic net �1‖�‖1+�2‖�‖2 , etc. 

Here, we allow the regularizer h to be non-differentiable (e.g., the elastic net), and introduce 
the following proximal mapping with parameter 𝛼 > 0 to deal with the non-smoothness.

The proximal mapping is the core of the proximal method for solving convex problems 
(Parikh and Boyd 2014; Beck and Teboulle 2009) and nonconvex ones (Li et  al. 2017; 
Attouch et al. 2013). In particular, we apply the proximal SGD to solve the R-ERM. With 
the same notations as those defined in the previous section, the update rule of the proximal 
SGD can be written as, for t = 0,… , T − 1

Similarly, we denote {�t,S}t as the iterate sequence generated by the proximal SGD with 
the data set S.

It is clear that the generalization error of the function value for the regularized risk min-
imization, i.e., |�(�T ,S) −�S(�T ,S)| , is the same as that for the un-regularized risk minimi-
zation. Hence, Theorem 1 is also applicable to the mean square generalization error of the 
regularized risk minimization. However, the development of the generalization error bound 

|fS(�T ,S) − f (�T ,S)|

≤

√
2M2

n�
+

24M�c

n�

(√
2L�S[f

∗
S
] logT+

√
2Lf (�0)+2�S[�

2
S
]

)
.

(R-PRM)min
�∈�

�(�) ∶= f (�) + �h(�),

(R-ERM)min
�∈�

�S(�) ∶= fS(�) + �h(�),

(7)prox�h(�) ∶= argmin
�∈�

h(�) +
1

2�
‖� − �‖2.

(proximal-SGD)�t+1 = prox�th
(
�t − �t∇�(�t;��t )

)
.
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is different from the analysis in the previous section from two aspects. First, the analysis 
of the on-average iterate stability of the proximal SGD is technically more involved than 
that of SGD due to the possibly non-smooth regularizer. Secondly, the proximal mappings 
of strongly convex functions are strictly contractive (see item 2 of Proposition  5 in the 
appendix). Thus, the proximal step in the proximal SGD enhances the stability between the 
iterates �t,S and �

t,S
 that are generated by the algorithm using perturbed datasets, and this 

further improves the generalization error. The next result provides a quantitative statement.

Theorem  4 Consider the regularized risk minimization. Suppose � is nonconvex. Let 
Assumptions  1,  2 and3 hold, and apply the proximal SGD to solve the R-ERM with the 
dataset S. Let 𝜆 > L and �t =

c

t+2
 with 0 < c <

1

L
 . Then, the following bound holds with 

probability at least 1 − �.

Theorem 4 provides probabilistic guarantee for the generalization error of the proximal 
SGD in terms of the on-average variance of the stochastic gradients. Comparison of Theo-
rem 4 with Theorem 1 indicates that a strongly convex regularizer substantially improves 
the generalization error bound of SGD for nonconvex loss functions by removing the loga-
rithm dependence on T. It is also interesting to compare Theorem 4 with [Proposition 4 and 
Theorem 1, London 2017], which characterize the generalization error of SGD for strongly 
convex functions with probabilistic guarantee. The two bounds have the same order in 
terms of n and T, indicating that a strongly convex regularizer even improves the gener-
alization error for a nonconvex function to be the same as that for a strongly convex func-
tion. In practice, the regularization weight � should be properly chosen to balance between 
the generalization error and the training loss, as otherwise the parameter space can be too 
restrictive to yield a good solution for the risk function.

5.1  Generalization bound with high‑probability guarantee

The studies of the previous sections explore the probabilistic guarantee for the generaliza-
tion errors of nonconvex loss functions and nonconvex loss functions with strongly con-
vex regularizers. For example, apply SGD to solve a generic nonconvex loss function, then 
Theorem 1 suggests that for any 𝜖 > 0,

which decays sublinearly as n

logT
→ ∞ . In this subsection, we study a stronger probabilistic 

guarantee for the generalization error, i.e., the probability for it to be less than � decays 
exponentially. We refer to such a notion as high-probability guarantee. In particular, we 
explore for which cases of nonconvex loss functions we can establish such a stronger per-
formance guarantee.

Towards this end, we adopt the uniform stability framework proposed in Elisseeff et al. 
(2005). Note that Hardt et al. (2016) also studied the uniform stability of SGD, but only 
characterized the generalization error in expectation, which is weaker than the exponential 
probabilistic concentrtion bound that we study here.

|�(�T ,S) −�S(�T ,S)| ≤
√

1

n�

(
2M2 +

24M�

(� − L)

√
L�(�0) + �S[�

2
S
]

)
.

ℙ(|f (�T ,S) − fS(�T ,S)| > 𝜖) < O

(
logT

n𝜖2

)
,
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Suppose we apply SGD with the same sample path � to solve the ERM with the datasets 
S and S , respectively, and denote �T ,S,� and �

T ,S,�
 as the corresponding outputs. Also, sup-

pose we apply the SGD with different sample paths � and � to solve the same problem with 
the dataset S, respectively, and denote �T ,S,� and �

T ,S,�
 as the corresponding outputs. Here, 

� denotes the sample path that replaces one of the sampled indices, say �t0 , with an i.i.d 
copy �′

t0
 . The following result is a variant of Theorem 15 (Elisseeff et al. 2005).

Lemma 1 Let Assumption 1 hold. If SGD satisfies the following conditions1

Then, the following bound holds with probability at least 1 − �.

Note that Theorem 1 implies that

Hence, if � = o(n−
1

2 ) and � = o(T−
1

2 ) , then we have exponential decay in probability as 
n → ∞ and T → ∞ . It turns out that our analysis of the uniform stability of SGD for gen-
eral nonconvex functions yields that � = O(n−1), � = O(log T) , which does not lead to the 
desired high-probability guarantee for the generalization error. On the other hand, the anal-
ysis of the uniform stability of the proximal SGD for nonconvex loss functions with 
strongly convex regularizers yields that � = O(n−1), � = O(T−c(�−L)), which leads to the 
high-probability guarantee if we choose 𝜆 > L and c > 1

2(𝜆−L)
 . This further demonstrates 

that a strongly convex regularizer can significantly improve the quality of the probabilistic 
bound for the generalization error. The following result is a formal statement of the above 
discussion.

Theorem 5 Consider the regularized risk minimization with the nonconvex loss function � . 
Let Assumptions 1 and 3 hold, and apply the proximal SGD to solve the R-ERM with the 
data set S. Choose 𝜆 > L and �t =

c

t+2
 with 1

2(𝜆−L)
< c <

1

𝜆−L
 . Then, the following bound 

holds with probability at least 1 − �

Theorem 5 implies that

sup
S,S,�

��|�(�T ,S,� ;�) − �(�
T ,S,�

;�)| ≤ �,

sup
�,�,S,�

|�(�T ,S,� ;�) − �(�
T ,S,�

;�)| ≤ �.

��(�T ,S)−�S(�T ,S)� ≤ 2� +

�
M + 4n�√

2n
+
√
2T�

��
log

2

�
.

ℙ(�𝛷(�T ,S) −𝛷S(�T ,S)� > 𝜖) ≤ O

�
exp

�
−𝜖2√

n𝛽+
√
T𝜌

��
.

��(�T ,S) −�S(�T ,S)� ≤
�

M√
n
+

4�2

√
n(� − L)

+
4�2c

T
c(�−L)−

1

2

��
log

2

�
.

1 Theorem 1 is slightly different from that in Theorem 15 (Elisseeff et al. 2005), in which S excludes a par-
ticular sample instead of replacing it. The proof follows the same idea and we omit it for simplicity.
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Hence, if we choose c = 1

�−L
 and run the proximal SGD for T = O(n) iterations (i.e., 

constant passes over the data), then the probability of the event decays exponentially as 
O(exp(−

√
n�2)).

The proof of Theorem 5 characterizes the uniform iterate stability of the proximal SGD 
with regard to the perturbations of both the dataset and the sample path. Unlike the on-
average stability in Theorem 1 where the stochastic gradient norm is bounded by the on-
average variance of the stochastic gradients, the uniform stability captures the worst case 
among all datasets, and hence uses the uniform upper bound � for the stochastic gradi-
ent norm. We note that Theorem 3 (London 2017) also established a probabilistic bound 
under the PAC Bayesian framework. However, their result yields exponential concentration 
guarantee only for strongly convex loss functions. As a comparison, Theorem  5 relaxes 
the requirement of strong convexity for loss functions to nonconvex loss functions with 
strongly convex regularizers, and hence serves as a complementary result to theirs. Also, 
Mou et  al. (2017) establishes the high-probability bound for the generalization error of 
SGD with regularization. However, their result holds only for the particular regularizer 
1

2
‖�‖2 , and high-probability bound holds only with regard to the random draw of the data. 

As a comparison, our result holds for all strongly convex regularizers, and the high-proba-
bility bound hold with regard to both the draw of data and randomness of algorithm.

6  Experiments

In this section, we conduct deep learning experiments to demonstrate that the on-average 
variance of SGD does correlate with the generalization performance in practice. Specifi-
cally, it has been observed that a classification dataset with randomized labels can sub-
stantially degrade the generalization performance of the trained deep model (Zhang et al. 
2017). Following this observation, we consider training a three-layer MLP neural net-
work and a ResNet-18 network (He et  al. 2016) using the MNIST dataset (Lecun et  al. 
1998) and the CIFAR10 dataset (Krizhevsky 2009), respectively. For all the data labels in 
each dataset, we replace their underlying true labels with random labels with probability 
p ∈ [0.0, 0.4] . During the SGD training, we evaluate the on-average variance of SGD for 
the last multiple iterations of the training process. In all the experiments, we train the net-
works for a sufficient number of epochs until the training error is saturated. Also, as the on-
average variance involves an expectation over the data distribution, we use the correspond-
ing sample mean over the random draw of the training data as an approximation.

6.1  Generalization error and stability under random labels

In Fig. 1, we present the results of training MLP and ResNet-18 under the random label 
probability p ranging from 0.1 to 0.4. We use the learning rate 0.01 and batch size 256 
for both experiments. It can be seen from these results that the on-average variance (blue) 
consistently increases as the fraction of random labels increases. At the same time, the 
generalization error (red) also increases. Thus, our empirical study confirms that the on-
average variance captured in our generalization bound is correlated with the generalization 
performance in the experiments.

ℙ(|𝛷(�T ,S) −𝛷S(�T ,S)| > 𝜖) ≤ O

(
exp

(
−𝜖2

n
−
1
2 +T

1
2
−c(𝜆−L)

))
.



358 Machine Learning (2022) 111:345–375

1 3

We note that from the numerical result shown in Fig. 1, it seems that the generalization 
error does not exactly scale with the on-average variance in a way as predicted by Theorem 1. 
This is the nature and limit of the proposed statistical generalization theory, which only estab-
lishes bounds for a general class of functions. Characterizing the precise numerical depend-
ence between generalization error and on-average variance is out of the scope of this work.

6.2  Impact of batch size and data augmentation

We further explore how the batch size and data augmentation affect the generalization error 
and on-average variance of SGD under random labels.

Fig. 1  Relation of on-average variance (left y axis), generalization error (right y axis) and random label 
probability (x axis) in training MLP and ResNet using SGD
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First, we explore the impact of batch size by considering three different batch sizes, i.e., 
128, 192 and 256. We use the same learning rate 0.01 and vary the random label prob-
ability from 0.1 to 0.4. Figure 2 shows the training results of MLP and ResNet-18 with 
different batch sizes. It can be seen that the generalization error consistently correlates with 
the on-average variance under all random label probabilities. These observations support 
our theoretical findings. Also, by comparing these figures, it seems that the generalization 
error roughly stays at the same level as the batch size increases, while the on-average vari-
ance increases as the batch size increases. We think that this is because training with larger 
batch size with noisy labels makes it more challenging to reach the global minimum, and 
therefore the gradient variance remains large.

Next, we explore the impact of data augmentation on the generalization error and on-
average variance. We train MLP and ResNet-18 using learning rate 0.01 and batch size 
128 with the original datasets and their augmented versions. For the data augmentation, 
we apply the random rotation augmentation method to modify the images. Specifically for 
each image, we randomly rotate the image with a degree uniformly generated between -20 
and 20 degrees. Figure 3 shows the training results with the original and augmented data. 
It can be seen that the generalization error consistently correlates with the on-average vari-
ance under all random label probabilities and data augmentation. In the MLP training with 
the MNIST dataset, data augmentation does not yield a substantial decrease of the gener-
alization error, and the on-average variance is larger with augmented data than that with 
the original data. In the ResNet-18 training with the CIFAR10 dataset, data augmentation 
does lead to a consistent decrease of the generalization error under all random label prob-
abilities, but the on-average variance is larger with augmented data. We think that this is 
because a subset of the augmented data samples that are assigned random labels increase 
the gradient uncertainty in optimization, and is not captured by the current theoretical 
framework. This suggests a research direction for future study.

6.3  Effect of regularization

We further conduct experiments to explore the effect of regularization on the generaliza-
tion error by adding the regularizer �

2
‖�‖2 to the objective functions. In particular, we 

apply the proximal SGD to solve the logistic regression (with dataset a9a Chang and Lin 
2011) and train the MLP network (with dataset MNIST). Figure 4 shows the results where 
the left axis denotes the scale of the training error and the right axis denotes the scale of 
the generalization error. It can be seen that the corresponding generalization errors improve 
as the regularization weight gets large. This matches our theoretical finding on the impact 
of regularization. On the other hand, the training performances for both problems degrade 
as the regularization weight increases, which is reasonable because in such a case the opti-
mization focuses too much on the regularizer and the obtained solution does not minimize 
the loss function well. Hence, there is a trade-off between the training and generalization 
performance in tuning the regularization parameter.

7  Conclusion

In this paper, we develop the generalization error bound of SGD with probabilistic guar-
antee for nonconvex optimization. We obtain the improved bounds based on the variance 
of the stochastic gradients by exploiting the optimization path of SGD. Our generalization 
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bound is consistent with the effect of random labels on the generalization error that 
observed in practical experiments. We further show that strongly convex regularizers can 
significantly improve the probabilistic concentration bounds for the generalization error 
from the sub-linear rate to the exponential rate. Our study demonstrates that the geometric 
structure of the problem can be an important factor in improving the generalization perfor-
mance of algorithms. Thus, it is of interest to explore the generalization error under various 
geometric conditions of the objective function in the future work.

Appendix: Proof of main results

Proof of Proposition 1

The proof is based on Lemma 11 (Elisseeff et al. 2005) and Assumption 1. Denote Si as the 
data set that replaces the i-th sample of S with an i.i.d. copy generated from the distribution 
D . Following from Lemma 11 of Elisseeff et al. (2005), we obtain

where the second inequality uses the Lipschitz property of the loss function in Assump-
tion 1, and the last equality is due to the fact that the perturbed samples in Si and S are 
generated i.i.d from the underlying distribution.

Proof of Theorem 1

The proof is based on the following two important lemmas, which we prove first.

Lemma 2 Let Assumption  1 hold. Apply SGD with the same sample path � to solve the 
ERM with data sets S and S , respectively. Choose �t =

c

(t+2) log(t+2)
 with 0 < c <

1

L
 , then the 

following bound holds.

Proof of Lemma 2 Consider the two fixed data sets S and S that differ at, say, the first data 
sample. At the t-th iteration, we consider two cases of the sampled index �t . In the first 
case, 1 ∉ �t (w.p. n−1

n
 ), i.e., the sampled data from S and S are the same, and we obtain that

�S,��fS(�T ,S) − f (�T ,S)�2 ≤ 2M2

n
+

12M

n

n�
i=1

��,S,Si

���(�T ,S;�i) − �(�T ,Si ;�i)�
�

≤
2M2

n
+

12M�

n

n�
i=1

��,S,Si‖�T ,S − �T ,Si‖

=
2M2

n
+ 12M��

�,S,S
‖�T ,S − �

T ,S
‖,

�
S,S,�

[�
t+1,S,S

] ≤ (1 + �tL)�S,S,�
[�

t,S,S
] +

2�t

n
�S,�

[‖‖∇�(�t,S;�1)
‖‖
]
.

Fig. 2  Comparison of on-average variance, generalization error and random label probability under differ-
ent choices of batch size of SGD

▸
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Fig. 2  (continued)
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Fig. 3  Comparison of on-average variance, generalization error and random label probability with/without 
data augmentation



364 Machine Learning (2022) 111:345–375

1 3

where the last inequality uses the L-Lipschitz property of ∇� . In the other case, 1 ∈ �t (w.p. 
1

n
 ), we obtain that

Combining the above two cases and taking expectation with respect to all randomness, we 
obtain that

where (i) uses the fact that �′
1
 is an i.i.d. copy of �1 .   ◻

(8)

�
t+1,S,S

=
‖‖‖�t,S − �t∇�(�t,S;��t ) − �

t,S
+ �t∇�(�t,S

;��t )
‖‖‖

≤ �
t,S,S

+ �t
‖‖‖∇�(�t,S;��t ) − ∇�(�

t,S
;��t )

‖‖‖
≤ (1 + �tL)�t,S,S,

(9)

�
t+1,S,S

=
����t,S − �t∇�(�t,S;�1) − �

t,S
+ �t∇�(�t,S

;��
1
)
���

≤ �
t,S,S

+ �t
���∇�(�t,S;�1) − ∇�(�

t,S
;��

1
)
���

≤ �
t,S,S

+ �t

���∇�(�t,S;�1)
�� + ‖∇�(�

t,S
;��

1
)‖
�
.

(10)

�
S,S,�

[�
t+1,S,S

] ≤
�
n − 1

n
(1 + �tL) +

1

n

�
�
S,S,�

[�
t,S,S

] +
1

n
�t�S,S,�

���∇�(�t,S;�1)
�� + ‖∇�(�

t,S
;��
1
)‖
�

(i)

≤ (1 + �tL)�S,S,�
[�

t,S,S
] +

2�t

n
�S,�

���∇�(�t,S;�1)
��
�
,

Fig. 4  Generalization error vs. 
regularization parameter
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Lemma 3 Let Assumptions 1 and 2 hold. Apply SGD to solve the ERM with data set S and 
choosing �t ≤

c

t+2
 for some 0 < c <

1

L
 . Then, the following bound holds.

Proof of Lemma 3 By Assumption  1, � is nonnegative and ∇� is L-Lipschitz. Then, eq. 
(12.6) of Shalev-Shwartz and Ben-David (2014) shows that

Based on (11), we further obtain that

where (i) uses the Jesen’s inequality and (ii) uses the fact that all samples in S are generated 
i.i.d. from D.

Next, consider a fixed data set S and denote �t,S = ∇�(�t,S;��t ) as the sampled stochastic 
gradient at iteration t. Then, by smoothness of � and the update rule of the SGD, we obtain 
that

Conditioning on �t,S and taking expectation with respect to � , we further obtain from the 
above inequality that

Note that L𝛼
2
t

2
− 𝛼t < 0 by our choice of stepsize. Further taking expectation with respect 

to the randomness of �t,S and S, and telescoping the above inequality over 0,… , t − 1 , we 
obtain that

where (i) uses the fact that the variance of the stochastic gradients is bounded by �S[�
2
S
] , 

and (ii) upper bounds the summation by the integral, i.e., 
∑t−1

t�=0

1

(t�+2)2
≲ ∫ t

1

1

t�2
dt� . Substitut-

ing the above result into (12) and noting that cL ≤ 1 , we obtain the desired result.   ◻

��,S

�‖∇�(�t,S;�1)‖
�
≤

�
2Lf (�0) +

1

2
�S[�

2
S
].

(11)∀�, ‖∇�(�;�)‖ ≤
√
2L�(�;�).

(12)

��,S‖∇�(�t,S;�1)‖ ≤
√
2L��,S

�
�(�t,S;�1)

(i)

≤
√
2L

�
��,S�(�t,S;�1)

(ii)

≤
√
2L

����
��,S

1

n

n�
j=1

�(�t,S;�j) =
√
2L

�
��,SfS(�t,S),

fS(�t+1,S) − fS(�t,S) ≤ ⟨�t+1,S − �t,S,∇fS(�t,S)⟩ + L

2
‖�t+1,S − �t,S‖2

= ⟨−�t�t,S,∇fS(�t,S)⟩ +
L�2

t

2
���t,S��2.

(13)

��

[
fS(�t+1,S) − fS(�t,S)|�t,S

]

≤

(
L�2

t

2
− �t

)
‖‖∇fS(�t,S)

‖‖2 +
L�2

t

2
��

[‖‖�t,S‖‖2 − ‖‖∇fS(�t,S)
‖‖2|�t,S

]
.

��,S

[
fS(�t,S)

] (i)

≤ �SfS(�0) +

t−1∑
t�=0

L�2
t�

2
�S[�

2
S
]

= f (�0) +

t−1∑
t�=0

Lc2�S[�
2
S
]

2(t� + 2)2

(ii)

≤ f (�0) +
Lc2�S[�

2
S
]

4
,
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Now by Lemma 2, we obtain that

where (i) applies Lemma 3. Recursively applying (14) over t = 0,… , T − 1 and noting that 
�0 = 0 and �t =

c

(t+2) log(t+2)
 , we obtain

where (i) uses the fact that 1 + x ≤ exp(x) . For (ii) and (iii), we apply the integral upper 
bounds to bound the summations, i.e., ∑T−1

k=t+1

cL

(k+2) log(k+2)
≲ ∫ T

t

cL

k log k
dk,

∑T−1

t=0
(t + 2)−1 log−1−cL(t + 2) ≲ ∫ T

t=1
t−1 log−1−cL tdt , and 

use the fact that cL < 1 . Substituting the above result into Proposition 1 and applying the 
Chebyshev’s inequality yields the desired result.

Proof of Theorem 2

We first prove a useful lemma.

Lemma 4 Let Assumptions 1 and 2 hold. Apply the SGD to solve the ERM with data set S, 
where fS is �-gradient dominant ( 𝛾 < L ) with the minimum function value f ∗

S
 . Suppose we 

choose �t ≤
c

t+2
 for some 0 < c < min{

2

𝛾
,
1

L
} . Then the following bound holds.

Proof of Lemma 4 We first note that (12) and (13) both hold here, which we rewritten below 
for convenience.

(14)

�
S,S,�

[�
t+1,S,S

] ≤ (1 + �tL)�S,S,�
[�

t,S,S
] +

2�t

n
�S,�

[‖‖∇�(�t,S;�1)
‖‖
]

(i)

≤ (1 + �tL)�S,S,�
[�

t,S,S
] +

2�t

√
2Lf (�0) +

�S[�
2
S
]

2

n
,

�
S,S,�

[�T ] ≤
T−1∑
t=0

[
T−1∏
k=t+1

(1 + �kL)

]
2c

√
2Lf (�0) +

�S[�
2
S
]

2

(t + 2)log(t + 2)n

(i)

≤
T−1∑
t=0

[
exp

(
T−1∑
k=t+1

cL

(k + 2) log(k + 2)

)]
2c

√
2Lf (�0) +

�S[�
2
S
]

2

(t + 2)log(t + 2)n

(ii)

≤
T−1∑
t=0

(
log T

log(t + 2)

)cL 2c

√
2Lf (�0) +

�S[�
2
S
]

2

(t + 2)log(t + 2)n

(iii)

≤
2c

√
2Lf (�0) +

�S[�
2
S
]

2

n
log T ,

��,S

�‖∇�(�t,S;�1)‖
�
≤

�
2L�S[f

∗
S
] +

1

t

�
2Lf (�0) + 2�S[�

2
S
]
�
.

(15)��,S‖∇�(�t,S;�1)‖ ≤
√
2L

�
��,SfS(�t,S),
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Following from (16) and the fact that fS is �-gradient dominant, we obtain

Further taking expectation with respect to the randomness of �t,S and S, we obtain from the 
above inequality that

where the last inequality uses the fact that L�
2
t

2
≤ �t∕2 for c < 1

L
 . Rearranging the above 

inequality, we further obtain that

where (i) uses the fact that 1 − x ≤ exp(−x) and upper bounds the summations by the cor-
responding integrals, i.e., exp(−c𝛾

∑t

t�=0

1

t�+2
) ≲ exp(−c𝛾 ∫ t

0

1

t�
dt�) and (ii) uses the fact that 

c𝛾 < 1∕2 . We then conclude that

Substituting this bound into (15) and noting that cL ≤ 1 , we obtain the desired result.  
 ◻

To continue our proof, by Lemma 2, we obtain that

(16)

��

[
fS(�t+1,S) − fS(�t,S)|�t,S

]

≤

(
L�2

t

2
− �t

)
‖‖∇fS(�t,S)

‖‖2 +
L�2

t

2
��

[‖‖�t,S‖‖2 − ‖‖∇fS(�t,S)
‖‖2|�t,S

]
.

(17)

��

[
fS(�t+1,S) − fS(�t,S) |�t,S

]

≤

(
L�2

t

2
− �t

)
2�(fS(�t,S) − f ∗

S
) +

L�2
t

2
��

[‖‖gt,S‖‖2 − ‖‖∇fS(�t,S)
‖‖2 |�t,S

]
.

��,S

[
fS(�t+1,S) − fS(�t,S)

]
≤

(
L�2

t

2
− �t

)
2���,S(fS(�t,S) − f ∗

S
) +

L�2
t

2
�S[�

2
S
]

≤ −�t���,S(fS(�t,S) − f ∗
S
) +

L�2
t
�S[�

2
S
]

2
,

��,S

[
fS(�t+1,S) − f ∗

S

]
≤ (1 − �t�)��,S(fS(�t,S) − f ∗

S
) +

L�2
t
�2

2

≤
t∏

t�=0

(1 − �t��)�S(fS(�0) − f ∗
S
) +

t∑
t�=0

t−1∏
k=t�+1

(1 − �k�)
L�2

t�
�S[�

2
S
]

2

(i)

≤ t−c��S(fS(�0) − f ∗
S
) +

Lc2�S[�
2
S
]

tc�

(ii)

≤
1

tc�

[
f (�0) + Lc2�S[�

2
S
]
]
,

��,SfS(�t,S) ≤ �S[f
∗
S
] +

1

tc�

[
f (�0) + L�2c2

]
.

(18)

�
S,S,�

[�
t+1,S,S

] ≤ (1 + �tL)�S,S,�
[�

t,S,S
] +

2�t

n
�S,�

[‖‖∇�(�t,S;�1)
‖‖
]

≤ (1 + �tL)�S,S,�
[�

t,S,S
] +

2�t

n

√
2L�S[f

∗
S
] +

1

tc�

(
2Lf (�0) + 2�S[�

2
S
]
)
,
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where the last line applies Lemma 4. Applying (18) recursively over t = 0,… , T − 1 and 
noting that �0 = 0, �t =

c

(t+2) log(t+2)
 , we obtain that

Substituting the above result into Proposition 1 yields the desired result.

Proof of Theorem 4

Consider the fixed data sets S and S that are differ at the first sample. At the t-th iteration, if 
1 ∉ �t (w.p. n−1

n
 ), we obtain that

where (i) uses item 2 of Lemma 5. On the other hand, if 1 ∈ �t (w.p. 1
n
 ), we obtain that

where (i) uses item 2 of Lemma 5. Combining the above two cases and taking expectation 
with respect to the randomness of � , S and S , we obtain that

where (i) uses Lemma 6. Recursively applying the above inequality over t = 0,… , T − 1 
and noting that �0 = 0, �t =

c

t+2
 , we obtain that

�
S,S,�

[�T ] ≤
T−1�
t=0

�
T−1�
k=t+1

(1 + �kL)

�
2c

(t + 2) log(t + 2)n

�
2L�S[f

∗
S
] +

1

tc�

�
2Lf (�0) + 2�S[�

2
S
]
�

≤
2c

n

T−1�
t=0

�
log T

log(t + 2)

�cL
√
2L�S[f

∗
S
] +

�
1

tc�

�
2Lf (�0) + 2�S[�

2
S
]
�

(t + 2) log(t + 2)

≤
2c

n

��
2L�S[f

∗
S
] log T +

�
2Lf (�0) + 2�S[�

2
S
]

�
.

(19)

�
t+1,S,S

=
‖‖‖‖prox�th

(
�t,S − �t∇�(�t,S;��t )

)
− prox�th

(
�

t,S
− �t∇�(�t,S

;��t )
)‖‖‖‖

(i)

≤
1

1 + �t�

‖‖‖�t,S − �t∇�(�t,S;��t ) − �
t,S

+ �t∇�(�t,S
;��t )

‖‖‖
≤

1 + �tL

1 + �t�
�
t,S,S

,

(20)

�
t+1,S,S

=
����prox�th

�
�t,S − �t∇�(�t,S;�1)

�
− prox�th

�
�

t,S
− �t∇�(�t,S

;��
1
)
�����

(i)

≤
1

1 + �t�

����t,S − �t∇�(�t,S;�1) − �
t,S

+ �t∇�(�t,S
;��

1
)
���

≤
1

1 + �t�
�
t,S,S

+
�t

1 + �t�

�
‖∇�(�t,S;�1)‖ + ‖∇�(�

t,S
;��

1
)‖
�
,

�
S,S,�

[𝛿
t+1,S,S

] ≤
�
n − 1

n

1 + 𝛼tL

1 + 𝛼t𝜆
+

1

n

1

1 + 𝛼t𝜆

�
�
S,S,�

[𝛿
t,S,S

] +
1

n

2𝛼t

1 + 𝛼t𝜆
�S,�‖∇�(�t,S;�1)‖

(i)

≤
1 + 𝛼tL

1 + 𝛼t𝜆
�
S,S,�

[𝛿
S,S,�

] +
2𝛼t

n

1

1 + 𝛼t𝜆

�
2L𝛷(�0) + 2�S[𝜈

2
S
] log t

≲ exp(𝛼t(L − 𝜆))�
S,S,�

[𝛿
S,S,�

] +
2𝛼t

n

�
2L𝛷(�0) + 2�S[𝜈

2
S
] log t,
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where the log t term in (i) is ignored as it is order-wise smaller than other polynomial terms 
(In particular, for any 𝛿 > 0 we have limt→∞ log t∕t� = 0 ), and (ii) further upper bounds 
the summation with the integral, i.e., 

∑T−1

t=0
(t + 2)c(𝜆−L)−1 ≲ ∫ T

1
tc(𝜆−L)−1dt , and uses the fact 

that c < 1

L
 . Then, applying Proposition 1 to the regularized risk minimization, we further 

obtain that

The desired result then follows by applying Chebyshev’s inequality.

Proof of Theorem 5

The idea of the proof is to apply Lemma 1 by developing the uniform stability bounds � and � . 
The proof also applies two useful lemmas on the proximal SGD.

We first evaluate � . Following the proof logic of Theorem 4 and replacing the bound for the 
on-average stochastic gradient norm �S,�‖∇�(�t,S;�1)‖ with the uniform upper bound � , we 
obtain that

Next, we evaluate � . Consider any two sample paths � ∶= {�1,… , �t0 ,… , �T−1} and 
� ∶= {�1,… , ��

t0
,… , �T−1} , which are different at the t0-th mini-batch. Note that

Since the two sample paths only differ at the t0-th iteration, we have that �t,S,� − �
t,S,�

= � 
for t = 0,… , t0 . In particular, for t = t0 we obtain that

�
S,S,�

[�
T ,S,S

] ≤
T−1∑
t=0

[
T−1∏
k=t+1

exp(�k(L − �))

]
2c

√
2L�(�0) + 2�S[�

2
S
] log t

(t + 2)n

(i)

≤
T−1∑
t=0

(
t + 2

T

)c(�−L) 2c

√
2L�(�0) + 2�S[�

2
S
]

(t + 2)n
log t

(ii)

≤
2

n(� − L)

√
2L�(�0) + 2�S[�

2
S
],

��,S

[|�S(�T ,S) −�(�T ,S)|2
]
≤

1

n

(
2M2 +

24M�

(� − L)

√
L�(�0) + �S[�

2
S
]

)
.

sup
S,S,�

��|�(�T ,S;�) − �(�
T ,S

;�)| ≤ � sup
S,S,�

��[�T ,S,S] ≤
2�2

n(� − L)
∶= �.

(21)sup
�,�,S,�

��(�T ,S,� ;�) − �(�
T ,S,�

;�)� ≤ sup
�,�,S,�

�‖�T ,S,� − �
T ,S,�

‖.
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where (i) uses Lemma  5 and (ii) uses the �-bounded property of ‖∇�‖ . Now consider 
t > t0 + 1 . Note that in this case the sampled indices in � and � are the same, and we further 
obtain that

Telescoping over t = t0,… , T − 1 , we further obtain that

Thus, from (21) we obtain that � =
2�2c

Tc(�−L)
 . Substituting the expressions of � and � into 

Lemma 1, we conclude that with probability at least 1 − �

Proof of technical Lemmas for proximal SGD

For any vector � ∈ ℝ
d , we define the following quantity:

‖�t0+1,S,�
− �

t0+1,S,�
‖

=
����prox�t0 h

�
�t0,S,�

− �t0∇�(�t0,S,�
;��t0

)
�
− prox�t0h

�
�

t0,S,�
− �t0∇�(�t0,S,�

;���t0
)
�����

(i)

≤
1

1 + �t0�

����t0,S,�
− �t0∇�(�t0,S,�

;��t0
) − �

t0,S,�
+ �t0∇�(�t0,S,�

;���t0
)
���

=
1

1 + �t0�

����t0∇�(�t0,S,�
;��t0

) − �t0∇�(�t0,S,�
;���t0

)
���

(ii)

≤ 2�t0�,

‖�t+1,S,� − �
t+1,S,�

‖
=
����prox𝛼th

�
�t,S,� − 𝛼t∇�(�t,S,� ;�𝜉t )

�
− prox𝛼th

�
�

t,S,�
+ 𝛼t∇�(�t,S,�

;�𝜉t )
�����

≤
1

1 + 𝛼t𝜆

����t,S,� − 𝛼t∇�(�t,S,� ;�𝜉t ) − �
t,S,�

+ 𝛼t∇�(�t,S,�
;�𝜉t )

���
≤

1 + 𝛼tL

1 + 𝛼t𝜆
‖�t,S,� − �

t,S,�
‖ ≲ exp(−𝛼t(𝜆 − L))‖�t,S,� − �

t,S,�
‖.

‖�T ,S,� − �
T ,S,�

‖ ≤ 2𝛼t0𝜎 exp

�
−(𝜆 − L)

T−1�
t=t0+1

𝛼t

�

≲
2𝜎c

(t0 + 2)
exp

�
−(𝜆 − L)c log

T

(t0 + 2)

�

=
2𝜎c

(t0 + 2)1−c(𝜆−L)Tc(𝜆−L)

≤
2𝜎c

Tc(𝜆−L)
.

�(�T ,S) −�S(�T ,S) ≤
4�2

n(� − L)
+

�
M√
n
2
√
n

2�2

n(� − L)
+
√
2T

2�2c

Tc(�−L)

��
log

2

�

≤

�
M√
n
+

4�2

√
n(� − L)

+
4�2c

T
c(�−L)−

1

2

��
log

2

�
.
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Lemma 5 Let h be a convex and possibly non-smooth function. Then, the following state-
ments hold.

1. For any �, �1, �2 ∈ � , it holds that

2. If h is � strongly convex, then for all �, � ∈ � and 𝛼 > 0 , it holds that

Proof of Lemma 5 Consider the first item. By definition, we have

where the inequality uses the 1-Lipschitz property of the proximal mapping for convex 
functions.

Next, consider the second item. Recall the resolvent representation Bauschke and Com-
bettes (2011) of the proximal mapping for convex functions, i.e.,

where I denotes the identity operator. Applying the operator (I + �∇h) on both sides of the 
above equation, we obtain that (I + �∇h)(prox�h(�)) = � . Thus, we conclude that

which further implies that

where the last inequality uses the fact that h is �-strongly convex. Rearranging the above 
inequality, we obtain that

Applying Cauchy-Swartz inequality on the left hand side, we obtain the desired result.  
 ◻

(22)G�(�, �) ∶=
1

�

(
� − prox�h(� − ��)

)
.

‖‖G�(�, �1) − G�(�, �2)
‖‖ ≤ ‖‖�1 − �2

‖‖.

‖prox�h(�) − prox�h(�)‖ ≤ 1

1+��
‖� − �‖.

(23)

‖‖G�(�, �1) − G�(�, �2)
‖‖ =

1

�
‖‖prox�h(� − ��1) − prox�h(� − ��2)

‖‖
≤

1

�
‖‖(� − ��1) − (� − ��2)

‖‖
= ‖‖�1 − �2

‖‖,

prox�h(�) = (I + �∇h)−1(�),

� − prox�h(�) = �∇h(prox�h(�)),

⟨[� − prox�h(�)] − [� − prox�h(�)], prox�h(�) − prox�h(�)⟩
= �⟨∇h(prox�h(�)) − ∇h(prox�h(�)), prox�h(�) − prox�h(�)⟩
≥ ��‖prox�h(�) − prox�h(�)‖2,

⟨� − �, prox�h(�) − prox�h(�)⟩
≥ (1 + ��)‖prox�h(�) − prox�h(�)‖2.
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Lemma 6 Let Assumptions 1, 2 and 3 hold. Applying the proximal SGD to solve the R-ERM 
with data set S and choosing �t ≤

c

t+2
 with 0 < c <

1

L
 . Then, it holds that

Proof of Lemma 6 The proof is based on the technical tools developed in Ghadimi et  al. 
(2016) for analyzing the optimization path of the proximal SGD.

Under the assumptions of the lemma, we first recall the following result from [Lemma 
1, Ghadimi et al. 2016]: For any � ∈ �, � ∈ ℝ

d , it holds that

Denoting �t,S = ∇�(�t,S;��t ) as the stochastic gradient sampled at iteration t and setting 
� = �t,S, � = �t,S in the above inequality, we obtain that

On the other hand, using (11) and non-negativity of h, we obtain

Next, consider a fixed S, by the smoothness of � we obtain

Now combining with (24) and rearranging, we obtain that

�S,�

�‖∇�(�t,S;�1)‖
�
≤
�

2L�(�0) + 2�S[�
2
S
] log t.

⟨�,G�(�, �)⟩ ≥ ‖G�(�, �)‖2 + 1

�

�
h(prox�h(� − ��)) − h(�)

�
.

(24)⟨�t,S,G�t (�t,S, �t,S)⟩ ≥ ‖G�(�t,S, �t,S)‖2 + 1

�t

�
h(�t+1,S) − h(�t,S)

�
.

(25)��,S‖∇�(�t,S;�1)‖ ≤
√
2L

�
��,SfS(�t,S) ≤

√
2L

�
��,S�S(�t,S).

(26)

fS(�t+1,S) − fS(�t,S)

≤ ⟨�t+1,S − �t,S,∇fS(�t,S)⟩ + L

2
‖�t+1,S − �t,S‖2

= ⟨−�tG�t (�t,S, �t,S),∇fS(�t,S)⟩ +
L�2

t

2
��G�t (�t,S, �t,S)

��2

= −�t⟨G�t (�t,S, �t,S), �t,S⟩ − �t⟨G�t (�t,S, �t,S),∇fS(�t,S) − �t,S⟩ +
L�2

t

2
��G�t (�t,S, �t,S)

��2

= −�t⟨G�t (�t,S, �t,S), �t,S⟩ − �t⟨G�t (�t,S,∇fS(�t,S)),∇fS(�t,S) − �t,S⟩

+
L�2

t

2
��G�t (�t,S, �t,S)

��2

+ �t⟨G�t (�t,S,∇fS(�t,S)) − G�t (�t,S, �t,S),∇fS(�t,S) − �t,S⟩.
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where the last line uses item 1 of Lemma 5. Conditioning on �t,S , and taking expectation 
with respect to � , we further obtain from the above inequality that

Further taking expectation with respect to the randomness of �t,S and S, telescoping the 
above inequality over 0,… , t − 1 and noting that L𝛼

2
t

2
< 𝛼t , we obtain that

where we have used the bound for the variance of the stochastic gradients. Substituting the 
above expression into (25) and note that cL < 1 , we obtain the desired result.   ◻
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�S(�t+1,S) −�S(�t,S)

≤

�
L�2

t

2
− �t

�
��G�t (�t,S, �t,S)

��2 − �t⟨G�t (�t,S,∇fS(�t,S)),∇fS(�t,S) − �t,S⟩

+ �t⟨G�t (�t,S,∇fS(�t,S)) − G�t (�t,S, �t,S),∇fS(�t,S) − �t,S⟩

≤

�
L�2

t

2
− �t

�
��G�t (�t,S, �t,S)

��2 − �t⟨G�t (�t,S,∇fS(�t,S)),∇fS(�t,S) − �t,S⟩

+ �t‖G�t (�t,S,∇fS(�t,S)) − G�t (�t,S, �t,S)‖‖∇fS(�t,S) − �t,S‖

≤

�
L�2

t

2
− �t

�
��G�t (�t,S, �t,S)

��2 − �t⟨G�t (�t,S,∇fS(�t,S)),∇fS(�t,S) − �t,S⟩

+ �t‖∇fS(�t,S) − �t,S‖2,

��[�S(�t+1,S) −�S(�t,S) ��t,S]

≤

�
L�2

t

2
− �t

�
��

���G�t (�t,S, �t,S)
��2 ��t,S

�
+ �t��

�‖∇fS(�t,S) − �t,S‖2 ��t,S

�
.

��,S

[
�S(�t,S)

]
≤ �S�S(�0) +

t−1∑
t�=0

c�S[�
2
S
]

t� + 2

≤ �(�0) + c�S[�
2
S
] log t,

https://github.com/ccheng21/Generalization_of_Nonconvex_SGD.git
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