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Abstract
Multi-view spectral clustering has drawn much attention due to the effectiveness of 
exploiting the similarity relationships among data points. These methods typically reveal 
the intrinsic structure using a predefined graph for each view. The predefined graphs are 
fused to a consensus one, on which the final clustering results are obtained. However, such 
common strategies may lead to information loss because of the inconsistency or noise 
among multiple views. In this paper, we propose to merge multi-view information in parti-
tion level instead of the raw feature space where the data points lie. The partition of each 
view is treated as a perturbation of the consensus clustering, and the multiple partitions are 
integrated by estimating a distinct rotation for each partition. The proposed model is for-
mulated as a joint learning framework, i.e., with the input data matrix, our model directly 
outputs the final discrete clustering result. Hence it is an end-to-end single-stage learning 
model. An iterative updating algorithm is proposed to solve the learning problem, in which 
the involved variables can be optimized in a mutual reinforcement manner. Experimental 
results on real-world data sets illustrate the effectiveness of our model.
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1 Introduction

Multi-view learning methods aim to exploit the complementary and compatible infor-
mation among multiple views such that the learning performance can be boosted (Sun 
2013; Huang et al. 2020). Among these, multi-view clustering plays a significant part of 
multi-view learning in unsupervised scenario (Zhang et al. 2019; Lin et al. 2021; Yang 
et al. 2021).

Due to the efficiency of revealing the similarity relationships between data points, 
graph-based strategies have been popularly applied in multi-view clustering. Co-regu-
larized multi-view spectral clustering (Kumar et al. 2012), co-training multi-view spec-
tral clustering (Kumar and Daumé 2011), multi-view clustering with kernelized graph 
learning (Huang et  al. 2019), multi-view graph partitioning via discriminative metric 
learning (Li et  al. 2018), multi-view graph embedding for connectome analysis (Ma 
et al. 2017), weighted multi-view projected clustering with graph learning (Wang et al. 
2019), to name a few.

For graph-based multi-view clustering methods, there are mainly three techniques 
used to construct similarity graph. A dominating one is the classical k-nearest neigh-
bors algorithm, which has been widely utilized to explore the similarity relationships as 
well as the local manifold structure Hong et al. (2015). For instance, Nie et al. (2017) 
presented a self-weighted multi-view clustering by introducing a Laplacian rank con-
strained graph that can be treated as the centroid of the built graph for each view with 
different confidences. Zong et  al. (2018) investigated a weighted multi-view spectral 
clustering, in which the largest canonical angle is utilized to measure the difference 
between spectral clustering results. The second type is the so-called self-expressive 
property, which assumes that each data point can be represented by a linear combina-
tion of other points. Gao et al. (2015) proposed a multi-view subspace clustering that 
enforces each constructed graph to share the same embedded subspace. Huang et  al. 
(2019) introduced a kernelized multi-view subspace clustering by extracting the non-
linear structure in kernel space. The third type concentrated on learning the similar-
ity graph based on adaptive neighbors idea. For example, Feiping  Nie and Li (2017) 
designed a multi-view learning framework with adaptive neighbors, which is able to 
tackle clustering as well as semi-supervised classification tasks. Wang et al. (2020) con-
structed an adaptive graph for each view, and then fused the multiple graphs into a uni-
fied one to obtain the final clustering results. Yang et al. (2019) established an adaptive 
sample-level graph fusion mechanism for partial multi-view clustering, where the con-
tributions of distinct views are automatically adjusted. The data samples in this model 
are partitioned into complete and incomplete parts, while a joint learning strategy is 
designed to facilitate the similarity between them and thereby improve the final cluster-
ing performance.

Despite the progress in multi-view clustering brought by the aforementioned methods, a 
main drawback is that they mainly merge the heterogeneous information in the raw feature 
space where the data points lie. Considering the unavoidable noise in data representation, 
the constructed graphs might be corrupted and cannot reveal the true similarity relation-
ships among data points. For multi-view clustering, the basic principle is that there exists a 
latent common cluster structure shared by all views. The natural space for multi-view clus-
tering should be all partitions. Hence, partitions from different views might be less affected 
by noise and easier to achieve an agreement (Nie et al. 2018; Kang et al. 2018). Therefore, 
it would be more favorable to achieve consensus clustering in partition space.
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In this paper, we propose to merge multi-view information in partition level instead 
of the raw feature space where the data points lie. Inspire by the spectral rotation tech-
nique Huang et al. (2013), we consider the partition of each view as a perturbation of 
the consensus clustering, and the multiple partitions can be integrated by estimating a 
distinct rotation for each partition. We model the partitions fusion following two intui-
tive principles: (1) each partition can be essentially seen as a perturbation of the con-
sensus clustering; and (2) the closer a partition to the consensus clustering, the larger 
weight should be allocated. As a result, different partitions are integrated into a consen-
sus one with reasonable weights. Moreover, considering the predefined graph might not 
be suitable for the subsequent clustering task. We adopt a joint learning framework that 
accomplishes from similarity graph construction to final clustering. Hence it is an end-
to-end single-stage learning model. An iterative updating algorithm is proposed to solve 
the learning problem, in which the involved variables can be optimized in a mutual rein-
forcement manner (Fig. 1).

We outline the salient contributions of our work as follows: 

1. Motivation This work studies an advanced multi-view graph clustering paradigm and 
provides a new clustering solution for multi-view data.

2. Model We propose a general and effective model to fuse multiple partitions by estimat-
ing a distinct rotation for each partition, which is able to merge multi-view information 
in partition level instead of the raw feature space where the data points lie. Our model 
accomplishes the subtasks of learning the similarity graphs adaptively, fusing the mul-
tiple partitions, and assigning cluster label to each instance in a unified framework. 
Remarkably, these three learning subtasks can be mutually boosted.

3. Algorithm An alternating iterative algorithm with convergence guarantee is proposed to 
solve the proposed problem, wherein each subproblem can be deduced with an optimal 
solution.

Fig. 1  The framework of our model. The similarity graphs are firstly constructed by utilizing adaptive 
learning strategy. Then the multiple base partitions are obtained based on the similarity graphs. Finally, the 
multiple partitions are fused to a consensus partition. These three learning subtasks are mutually boosted 
until convergence
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4. Results Extensive experiments on several benchmark multi-view datasets are performed 
to demonstrate the effectiveness of our model in comparison to the state-of-the-art 
baseline algorithms.

Notations Throughout this paper, matrices, vectors and scalars are respectively represented 
by boldface uppercase letters (e.g., � ), boldface lowercase letter (e.g., � ) and lowercase letter 
(e.g., m). The ijth element of � is denoted as mij . Tr(�) means the trace of � and ‖�‖F is the 
Frobenius norm of � . � ≥ 0 indicates that all elements of � are nonnegative. 1 is a column 
vector with all its elements being 1. Ind

def
= {� ∈ {0, 1}n×c|�� = �} indicates a set of indica-

tor matrices.

2  Preliminaries

For dataset � = [�1,⋯ , �n] ∈ ℝ
d×n with n data samples and d features, the k-nearest neighbor 

(k-NN) graph is one of the most widely used strategies to construct similarity graph � ∈ ℝ
n×n . 

The ijth element of � , sij , denotes the similarity between data points �i and �j . It is usually 

defined by a Gaussian function, sij = exp

�
−‖�i−�j‖2

2�2

�
 , where � determines the width of neigh-

borhoods. One major limitation of k-NN graph is that the hyperparameter � is difficult to tune 
because of the negative influence of noise and outliers in data.

Instead of relying on the determinate neighborhood relationship, we intend to learn a prob-
abilistic neighborhood similarity graph. For a data point �i , other data points {�j}nj=1 can be 
treated as the neighborhood of �i with probability sij . Mathematically, we model this thought 
by solving:

where � is a regularization parameter, and R(�) denotes a regularization term which is 
commonly instantiated by sparse learning Huang et  al. (2015), low-rank learning Zhang 
et  al. (2013), block diagonal representation Lu et  al. (2018), etc. Various studies have 
shown that sparse representation is robust to noisy data and outliers He et al. (2013). We 
can simply utilize the sparsity-inducing norm, �1-norm, to achieve a sparse representation 
by setting R(�) =

∑n

i=1
���i��1 . Thus (1) becomes

where �i is the ith column of � . Typically, we normalize �T
i
� = 1 , thus the regularization 

term becomes a constant. In other words, the normalization �T
i
� = 1 actually enforces a 

sparse constraint on � . Then, (2) can be written as

(1)
min
�

n∑
i,j=1

‖‖‖�i − �j
‖‖‖
2

2
sij + �R(�)

s.t. sii = 0, sij ≥ 0,

(2)
min
�

n∑
i,j=1

‖‖‖�i − �j
‖‖‖
2

2
sij + �

n∑
i=1

‖‖�i‖‖1
s.t. sii = 0, sij ≥ 0,
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However, (3) has a trivial solution, i.e., only one data point (the nearest one) can be con-
sidered as neighbor of �i with probability 1. Following Nie et al. (2014) and Du and Shen 
(2015), we impose a prior on (3), and thus it can be reformulated as

where � is a trade-off parameter. The prior 
∑n

i,j=1
s2
ij
 can be considered as uniform distribu-

tion. When � → ∞ , we can see all data points are connected to xi with identical probability 
1

n
 . Thus it is important to allocate a suitable value to � such that the first term and the sec-

ond term in (4) can be well balanced, which will be analyzed in a later section.
Once the affinity graph � is obtained, one can perform the classical spectral clustering 

algorithm (Ng et al. 2002) on it to get the clustering results:

where � ∈ ℝ
n×n is the Laplacian of � , � denotes the spectral embedding and k is the cluster 

number. Here, � is given by � = � − � , and � is a diagonal matrix with its i-th diagonal 
element being dii =

∑
j sij . In fact, � can be considered as a continuous partition result. The 

final discrete clustering result is usually obtained by implementing the standard k-means 
algorithm on �.

3  The proposed approach

Apparently the aforementioned formulations are designed for single-view data clustering. 
Despite the promising performance made by these methods, they still cannot deal with the 
multi-view data. In this paper, we focus on solving the multi-view clustering problem by 
extending the above formulations such that the multi-view information can be reasonably 
integrated. Denote � = {�(1),… ,�(m)|�(v) ∈ ℝ

dv×n} as a multi-view dataset with m views, 
and dv is the number of features in the vth view. (4) and (5) can be jointly extended to the 
multi-view formulation:

(3)
min
�

n∑
i,j=1

‖‖‖�i − �j
‖‖‖
2

2
sij

s.t. ∀i, �T
i
� = 1, sii = 0, sij ≥ 0.

(4)
min
�

n∑
i,j=1

(‖‖‖�i − �j
‖‖‖
2

2
sij + �s2

ij

)

s.t. ∀i, �T
i
� = 1, sii = 0, sij ≥ 0.

(5)
min
�

Tr
(
�
T
��

)

s.t. � ∈ ℝ
n×k,�T

� = �,

(6)

min
{�(v)},{�(v)}

m∑
v=1

{
n∑

i,j=1

‖‖‖�
(v)

i
− �

(v)

j

‖‖‖
2

2
s
(v)

ij
+ �

(
s
(v)

ij

)2

+�Tr
((

�
(v)
)T
�
(v)
�
(v)
)}

s.t. ∀i,
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0,�(v) ∈ ℝ

n×c,
(
�
(v)
)T
�
(v) = �,
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where � is a balance parameter. Following (5), we can simply feed the average of multi-
ple spectral embeddings, �̂ =

1

m

∑m

v=1
�(v) , to the spectral clustering and obtain the discrete 

clustering with k-means. However, this naive way is not enough to take full advantage of 
rich information. Besides, the final clustering result would be unstable as k-means is sensi-
tive to initialization Huang et al. (2021). In order to reasonably merge the heterogeneous 
information, we propose to obtain the clustering indicator matrix from a more geometric 
viewpoint. We consider the partition of each view as a perturbation of the consensus clus-
tering � , and the multiple partitions can be integrated by estimating a distinct rotation �(v) 
for each partition (Huang et al. 2013; Kang et al. 2018). Mathematically, we have

and � = [�(1),… ,�(m)]T are the weights for different views. To effectively measure the 
weight �(v) for each view, we adopt an inverse distance weighting strategy as follows 
(Huang et al. 2018; Nie et al. 2018):

To achieve from graph learning to final discrete clustering label, we combine (7) and (8) 
into a joint learning framework. Thus our model named as Multiple Partitions Alignment 
via Spectral Rotation (MPASR) can be given by

where � is a trade-off parameter.
We summarize the properties of the proposed model as follows.

• Unlike previous multi-view clustering methods, the proposed MPASR merges multi-
view information in partition level instead of the raw feature space where the data 
points lie. Considering the natural space for multi-view clustering should be all parti-
tions, it would be more favorable to carry out information fusion based on multiple 
partitions.

• A weight is allocated to each view by taking the clustering capacity differences of dif-
ferent views into consideration. According to (8), if the v-th view has a good cluster-
ing capacity, ‖‖� − �(v)�(v)‖‖F should be small, thus the corresponding weight is large. 
Accordingly, a small weight will be allocated to a weak view. As a result, the clustering 
capacity of each view is automatically and well taken care of.

• MPASR performs graph learning, spectral clustering, and partitions fusion in a mutual 
reinforcement manner. That is, with the input data matrix � , MPASR will output the 

(7)
min

{�(v)},�

m∑
v=1

�(v)‖‖‖� − �
(v)
�

(v)‖‖‖
2

F

s.t.
(
�

(v)
)T
�

(v) = �,� ∈ Ind,

(8)�(v) =
1

2‖‖� − �(v)�(v)‖‖F
.

(9)

min
{�(v)},{�(v)},{�(v)},�

m∑
v=1

{
n∑

i,j=1

‖‖‖�
(v)

i
− �

(v)

j

‖‖‖
2

2
s
(v)

ij
+ �

(
s
(v)

ij

)2

+�Tr
((

�
(v)
)T
�
(v)
�
(v)
)
+ ��(v)‖‖‖� − �

(v)
�

(v)‖‖‖
2

F

}

s.t. ∀i,
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0,

(
�

(v)
)T
�

(v) = �,

�
(v) ∈ ℝ

n×c,
(
�
(v)
)T
�
(v) = �,� ∈ Ind,
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final discrete cluster label � . Hence it is an end-to-end single-stage joint learning 
model. Besides, the discretization procedure is no longer required. Thus avoids the 
extra postprocessing step (e.g., the k-means step), which is sensitive to initialization.

• Actually, (9) not only unifies the pipeline of optimization steps but also attempts to 
learn optimal structured graphs for clustering. According to the spectral graph the-
ory, the ideal graph is expected to be c-connected if there are exactly c clusters Nie 
et al. (2014). That is to say, the corresponding Laplacian matrix has exactly c zero 
eigenvalues �i s. Note that minimizing 

∑c

i=1
�i is equivalent to min

�T�=�
Tr(�T��) . Hence 

the third term in (9) with a suitable � is able to guarantee that each graph �v contains 
a clear clustering structure.

3.1  Optimization algorithm for (9)

In the following, we will adopt an iterative updating algorithm to optimize problem (9). 
We optimize it with respect to one variable while keeping others fixed. The specific 
steps are introduced as follows.

(1) Updating {�(v)} : the optimization formula for {�(v)} is

We can see (10) is independent for each view. For a fixed specific v, we need to solve

Note that (11) is further independent between different i, thus it can be optimized in a vec-
tor form as

where dx
ij
=
‖‖‖�

(v)

i
− �

(v)

j

‖‖‖
2

2
 , df

ij
=
‖‖‖�

(v)

i
− �

(v)

j

‖‖‖
2

2
 , and the following equation in spectral analy-

sis is adopted

Denote �i as a vector with its jth element being dij = dx
ij
+

�

2
d
f

ij
 , the optimal solution can be 

obtained by solving the following compact formula

(10)
min
{�(v)}

m∑
v=1

{
n∑

i,j=1

‖‖‖�
(v)

i
− �

(v)

j

‖‖‖
2

2
s
(v)

ij
+ �

(
s
(v)

ij

)2

+ �Tr
((

�
(v)
)T
�
(v)
�
(v)
)}

s.t. ∀i,
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0,

(11)
min
�(v)

n∑
i,j=1

‖‖‖�
(v)

i
− �

(v)

j

‖‖‖
2

2
s
(v)

ij
+ �

(
s
(v)

ij

)2

+ �Tr
((

�
(v)
)T
�
(v)
�
(v)
)

s.t. ∀i,
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0,

(12)
min
�
(v)

i

n∑
j=1

(
dx
ij
s
(v)

ij
+ �

(
s
(v)

ij

)2

+
�

2
d
f

ij
s
(v)

ij

)

s.t.
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0,

(13)Tr
((

�
(v)
)T
�
(v)
�
(v)
)
=

1

2

n∑
i,j=1

‖‖‖�
(v)

i
− �

(v)

j

‖‖‖
2

2
s
(v)

ij
.
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The solution of problem (14) will be detailedly discussed in a later section, in which the 
parameter � can also be automatically determined.

(2) Updating {�(v)} : the optimization formula for {�(v)} is

For a fixed specific v, we need to solve

This subproblem can be solved efficiently by a iterative algorithm developed in Wen and 
Yin (2013).

(3) Updating {�(v)} : the optimization formula for {�(v)} is

Similarly, for a specific v, we need to optimize

(18) is essentially an orthogonal Procrustes problem, thus we can draw a closed-form solu-
tion with the following lemma.

Lemma 1 For problem

the corresponding closed-form solution is �∗ = ��T , where � and � are the left and 
right singular vectors of �T� , respectively (Schönemann 1966).

According to Lemma 1, the solution of (18) is given by

where �(v) and �(v) are the the left and right singular vectors of 
(
�(v)

)T
�.

(14)
min
�
(v)

i

‖‖‖‖�
(v)

i
+

1

2�
�i

‖‖‖‖
2

2

s.t.
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0.

(15)
min
{�(v)}

m∑
v=1

{
�Tr

((
�
(v)
)T
�
(v)
�
(v)
)
+ ��(v)‖‖‖� − �

(v)
�

(v)‖‖‖
2

F

}

s.t. �
(v) ∈ ℝ

n×c,
(
�
(v)
)T
�
(v) = �.

(16)
min
�(v)

Tr
((

�
(v)
)T
�
(v)
�
(v)
)
+

��(v)

�

‖‖‖� − �
(v)
�

(v)‖‖‖
2

F

s.t. �
(v) ∈ ℝ

n×c,
(
�
(v)
)T
�
(v) = �.

(17)
min
{�(v)}

m∑
v=1

�(v)‖‖‖� − �
(v)
�

(v)‖‖‖
2

F

s.t.
(
�

(v)
)T
�

(v) = �.

(18)
min
�(v)

�(v)‖‖‖� − �
(v)
�

(v)‖‖‖
2

F

s.t.
(
�

(v)
)T
�

(v) = �.

(19)min
�T�=�

‖� − ��‖2
F
,

(20)�
(v) = �

(v)
(
�

(v)
)T
,
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(4) Updating � : the optimization formula for � is

Unfold the above equation, we have

Thus the optimal solution can be obtained by solving

It has a closed-form solution, i.e., ∀i = 1,… , n,

The detailed algorithm to solve the objective in (9) is summarized in Algorithm 1. 

3.2  Solution of problem (14)

Recall that the formulation of problem (14) is

(21)min
�∈Ind

m∑
v=1

�(v)‖‖‖� − �
(v)
�

(v)‖‖‖
2

F

(22)

m�
v=1

�(v)���� − �
(v)
�

(v)���
2

F

=

m�
v=1

�(v)

�
‖�‖2

F
+
����

(v)
�

(v)���
2

F

�
− 2

m�
v=1

�(v)Tr
�
�

T
�
(v)
�

(v)
�

=

m�
v=1

�(v)(n + c) − 2Tr

�
�

T

�
m�
v=1

�(v)
�
(v)
�

(v)

��
.

(23)max
�∈Ind

Tr

(
�

T

(
m∑
v=1

�(v)
�
(v)
�

(v)

))
.

(24)�ij =

⎧⎪⎨⎪⎩

1, j = argmax
k

�
m∑
v=1

�(v)�(v)�(v)

�

k

,

0, otherwise.
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The Lagrangian function of (25) can be defined as

where � and � are the Lagrange multipliers with respect to the corresponding constraints.
Taking the derivative with respect to �(v)

i
 and setting the derivation to zero, we get

The jth element of �(v)
i

 in (27) can be given as

Assuming that the optimal solution to (25) is �̃(v)
i

 , and the corresponding Lagrange multi-
pliers are �̃  and �̃ , respectively. According to the KKT condition (Boyd and Vandenberghe 
2004), we have

Thus we can obtain the following solution

Suppose s(v)
i1
, s

(v)

i2
,… , s

(v)

in
 are ordered from small to large. In order to guarantee a sparse �(v)

i
 , 

we enforce �(v)
i

 having k nonzero entries, i.e., �s(v)
ik

> 0 and s̃(v)
i,k+1

= 0 . Hence we obtain

Combining (33) and the constraint 
(
�
(v)

i

)T

� = 1 , �̃  can be explicitly defined as

(25)
min
�
(v)

i

1

2

‖‖‖‖�
(v)

i
+

1

2�
�i

‖‖‖‖
2

2

s.t.
(
�
(v)

i

)T

� = 1, s
(v)

ii
= 0, s

(v)

ij
≥ 0.

(26)L

(
�
(v)

i
,�,�

)
=

1

2

‖‖‖‖�
(v)

i
+

1
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�i

‖‖‖‖
2

2

− �
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�
(v)

i

)T

� − 1

)
− �

T
�
(v)

i
,

(27)�
(v)

i
+

1

2�
�i − �� − � = �.

(28)s
(v)

ij
+

1

2�
dij − � − �j = 0.

(29)∀j, s̃
(v)

ij
+

1

2�
dij − �̃ − �̃j = 0

(30)∀j, s̃ij ≥ 0

(31)∀j, �̃j ≥ 0

(32)∀j, s̃ij�̃j = 0

(33)s̃
(v)

ij
=

(
��̃ −

1

2
dij

�

)

+

.

(34)𝛼 �𝜙 −
1

2
dik > 0, and 𝛼 �𝜙 −

1

2
di,k+1 ≤ 0.

(35)�̃ =
1

k

(
1 +

k∑
h=1

dih

2�

)
.
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According to (34) and (35), we get

To constrain the optimal solution �(v)
i

 to have exactly k nonzero entries, � can be set to

Instead of directly searching the parameter � , where the value could be from zero to infi-
nite, we pre-define the number of neighbors k. Thus the parameter searching of � can be 
easier since k is an integer and its value is finite.

According to (34), (35) and (37), the final optimal solution for s(v)
ij

 in �(v)
i

 can be given as

3.3  Time complexity analysis

There are five steps that mainly determine the complexity of the propose Algorithm, as 
shown in Algorithm 1. Recall that n, m and c respectively represent the number of data 
points, views and clusters. Thus the computational complexity of each step can be sum-
marized in Table 1

Considering that k ≪ n and v ≪ n in practical, the overall Complexity is O
(
n2
)
.

3.4  Convergence analysis

In this subsection, we will show that our algorithm, as shown in Algorithm 1, can find a 
local optimal solution. As described in (14), we can find the closed-form solution of the 
proposed algorithm with respect to �(v) . Here we prove the convergence of Algorithm 1 
under the iteration of �(v) , �(v) , and � . First we introduce an important lemma as follows 
(Nie et al. 2010; Huang et al. 2021):

(36)

⎧⎪⎨⎪⎩

𝛼 >
kdik−

∑k

h=1
dih

2
,

𝛼 ≤
kdi,k+1−

∑k

h=1
dih

2
.

(37)� =
kdi,k+1 −

∑k

h=1
dih

2
.

(38)�s
(v)

ij
=

�
di,k+1−dij

kdi,k+1−
∑k

h=1
dih

j ≤ k,

0 j > k.

Table 1  Details of computational 
complexity

Steps Calculation Complexity

Equation (14) Update each column of �(v) O(nc)

Equation (16) c eigenvectors of �(v)
O
(
cn2

)
Equation (20) �(i)

O
(
cn2

)
Equation (24)

argmax
k

�
m∑
v=1

�(v)�(v)�(v)

�

k

O
(
nc2

)

Equation (8) �(v) =
1

2‖�−�(v)�(v)‖
F

O
(
nc2

)

Total ≈ O
(
n2
)
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Lemma 2 For any positive real number q and t, the following inequality holds:

Proof It is obvious that inequality (
√
q −

√
t)2 ≥ 0 , thus we have

which completes the proof.   ◻

Theorem  1 In each iteration until the algorithm converges, updated variables �(v) , �(v) , 
and � will monotonically decrease the value of the objective as follows:

where �̂(v) =
�

�
�(v).

Proof Let �̃(v) , �̃(v) , and �̃ denote the updated �(v) , �(v) , and � respectively. According to 
(16), (20), and (24), �̃(v) , �̃(v) , and �̃ obviously represent the optimal solution to each cor-
responding subproblem. Hence we arrive at

Combining with definition given in (8), i.e., �(v) =
1

2‖�−�(v)�(v)‖F

 , we get

According to Lemma 2, we have

By summing over (42) and (43) on two sides, we obtain

(39)
√
q −

q

2
√
t
≤

√
t −

t

2
√
t
.

(
√
q −

√
t)2 ≥ 0 ⇒ q − 2

√
qt + t ≥ 0 ⇒

√
q −

q

2
√
t
≤

√
t

2
⇒

√
q −

q

2
√
t
≤

√
t −

t

2
√
t

(40)
min

�(v) ,�(v),�

m∑
v=1

{
Tr
((

�
(v)
)T
�̂
(v)
�
(v)
)
+ �(v)‖‖‖� − �

(v)
�

(v)‖‖‖
2

F

}

s.t.
(
�

(v)
)T
�

(v) = �,�(v) ∈ ℝ
n×c,

(
�
(v)
)T
�
(v) = �,� ∈ Ind,

(41)
�̃
(v), �̃(v), �̃ = arg min

�(v) ,�(v),�

m∑
v=1

{
Tr
((

�
(v)
)T
�̂
(v)
�
(v)
)
+ �(v)‖‖‖� − �

(v)
�

(v)‖‖‖
2

F

}

s.t.
(
�

(v)
)T
�

(v) = �,�(v) ∈ ℝ
n×c,

(
�
(v)
)T
�
(v) = �,� ∈ Ind.

(42)

m�
v=1

⎧
⎪⎨⎪⎩
Tr

��
�̃
(v)
�T

�̂
(v)
�̃
(v)

�
+

����̃ − �̃(v)�̃(v)���
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2��� − �(v)�(v)��F

⎫
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≤

m�
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�
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��

�
(v)
�T
�̂
(v)
�
(v)
�
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�
.

(43)

m�
v=1

⎧
⎪⎨⎪⎩
����̃ − �̃

(v)
�̃

(v)���F −

����̃ − �̃(v)�̃(v)���
2
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2��� − �(v)�(v)��F

⎫
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≤
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���� − �
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�

(v)���F −
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�
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Note that the KKT conditions of (40) are equivalent to the KKT condition of the following 
formulation

which completes the proof.   ◻

4  Experiments

We evaluate the performance of the proposed MPASR by comparing it with several related 
state-of-the-art methods: Co-trained multi-view spectral clustering (Co-train) Kumar 
and Daumé (2011), Co-regularized multi-view spectral clustering (Co-reg) Kumar et  al. 
(2012), Auto-weighted multiple graph learning (AMGL) Nie et al. (2016), Self-weighted 
multi-view clustering (SwMC) Nie et  al. (2017), Graph learning for multi-view cluster-
ing (MVGL) Zhan et al. (2018), Weighted multi-view spectral clustering (WMSC) Zong 
et  al. (2018), Multiview clustering via adaptively weighted procrustes (AWP) Nie et  al. 
(2018), Multiple partitions aligned clustering (mPAC) Kang et al. (2019), Multi-view con-
sensus graph clustering (MCGC) Zhan et al. (2019), and Graph-based multi-view cluster-
ing (GMC) Wang et al. (2020). We also conduct the classic spectral clustering algorithm 
(SC) Ng et al. (2002) as baseline. We run SC on each view of a data set (e.g., SC(1) means 
performing SC on the 1st view) to get the clustering performance of each individual view.

4.1  Data Sets

This section evaluates the performance of the proposed method on several real-world data 
sets: 3 source data set (3source)1 is collected from three news sources, i.e., Reuters, BBC, 
and The Guardian. There are 948 news articles covering 416 different news stories. Among 
them, 169 news were reported in all three sources and each news was annotated with one of 
six topical labels. Yale2 is a classical face database which contains 165 images of 15 indi-
viduals. Each individual consists of 11 images that are obtained under different configura-
tions: center-light, left-light, happy, sad, etc. Each image is described by three types of 
features. ORL is another face database that is comprised of 400 images from 40 subjects. 
Each image is taken at different times under different conditions (Cao et al. 2015). There 

(44)

m∑
v=1

{
Tr

((
�̃
(v)
)T

�̂
(v)
�̃
(v)

)
+
‖‖‖�̃ − �̃

(v)
�̃

(v)‖‖‖F
}

≤

m∑
v=1

{
Tr
((

�
(v)
)T
�̂
(v)
�
(v)
)
+
‖‖‖� − �

(v)
�

(v)‖‖‖F
}
.

(45)
min

�(v) ,�(v),�

m∑
v=1

{
Tr
((

�
(v)
)T
�̂
(v)
�
(v)
)
+
‖‖‖� − �

(v)
�

(v)‖‖‖F
}
,

s.t.
(
�

(v)
)T
�

(v) = �,�(v) ∈ ℝ
n×c,

(
�
(v)
)T
�
(v) = �,� ∈ Ind,

1 http:// mlg. ucd. ie/ datas ets/ 3sour ces. html.
2 http:// vision. ucsd. edu/ conte nt/ yale- face- datab ase.

http://mlg.ucd.ie/datasets/3sources.html
http://vision.ucsd.edu/content/yale-face-database
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are three views of this dataset used in our experiment. Caltech1013 is an object recogni-
tion dataset containing 101 categories of images. Each image is represented by six type of 
features: Gabor, Wavelet Moments, Centrist, HOG, GIST and LBP. Following Feiping Nie 
and Li (2017), we select a subset which contains 2386 images of 20 classes (Caltech20): 
Brain, Binocular, Camera, Car-Side, Dolla-Bill, Face, Ferry, Hedgehog, Garfield, Motor-
bikes, Leopards, Pagoda, Rhino, Snoopy, Stapler, Stop-Sign, Water-Lilly, Wrench, Wind-
sor Chair and Yin-yang. Human Activity Recognition (HAR)4 database built from the 
recordings of subjects performing six activities (walking, standing, lying, etc) of daily liv-
ing while carrying a waist-mounted smartphone with embedded inertial sensors. It con-
tains 7352 instances with each being recorded by the time and frequency domain variables. 
Handwritten digit (Digit)5 is from two sources, i.e., MNIST Handwritten Digits and USPS 
Handwritten Digits. The data set consists of 10,000 samples.

All the data sets are summarized in Table 2, where d v denotes the dimension of features 
in view v.

4.2  Experimental settings

We adopt seven widely-used metrics to evaluate the performance of our model: cluster-
ing accuracy (ACC), Normalized Mutual Information (NMI), Purity, Precision, Recall, 
F-score, and Adjusted Rand Index (ARI) (Zhan et al. 2018). Note that these measures with 
a higher value means a better performance.

For the compared algorithms, we use the code from authors’ website with default 
parameters. The parameter settings of our model will be introduced in a later section. The 
experiments are repeated 20 times under each parameter setting with the best average 
results being recorded.

4.3  Clustering results

The experimental results of various methods on all data sets are reported in Tables 3, 4, 5, 
6, 7, and 8. We can observe that:

Table 2  Description of the data 
sets (dimensionality)

Dataset Yale 3sources ORL Caltech20 HAR Digit

#Instance 165 169 400 2386 7352 10000
#View 3 3 3 6 2 2
#Cluster 6 15 40 20 6 10
#d1 4096 3560 4096 48 343 784
#d2 3304 3631 3304 40 211 256
#d3 6750 3068 6750 254 – –
#d4 – – – 1984 – –
#d5 – – – 512 – –
#d6 – – – 928 – –

4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Human+ Activ ity+ Recog nition+ Using+ Smart phones#.
5 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Multi ple+ Featu res.

3 http:// www. vision. calte ch. edu/ Image_ Datas ets/ Calte ch101/.

https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
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• The performance of the multi-view clustering methods, including ours, generally 
outperforms that of baseline single-view method on each individual view. It is con-
sistent with the empirical theory that the clustering performance can be effectively 
improved by exploring the complementary information among multiple views.

Table 3  Clustering performance (mean±standard deviation) on dataset 3sources (%)

The best, the second best, and the third best results are highlighted in bold with underline, bold, and italic, 
respectively

Method ACC NMI Purity F-score Precision Recall ARI

SC(1) 49.11 ± 2.12 41.73 ± 0.93 62.43 ± 2.47 39.24 ± 1.69 39.69 ± 2.77 38.89 ± 1.55 21.05 ± 2.75

SC(2) 51.07 ± 4.90 44.94 ± 4.40 64.91 ± 3.25 43.84 ± 3.29 48.65 ± 5.51 40.08 ± 2.89 28.84 ± 4.65

SC(3) 49.59 ± 4.52 40.56 ± 2.57 63.79 ± 1.21 40.05 ± 3.58 44.11 ± 3.99 36.72 ± 3.51 24.02 ± 4.48

Co-train 55.38 ± 3.21 ��.�� ± �.�� ��.�� ± �.�� 53.96 ± 3.42 62.47±3.59 47.53 ± 3.54 42.40 ± 4.14

Co-reg 57.81 ± 3.69 55.82 ± 0.31 75.38 ± 1.34 54.65 ± 2.22 58.33 ± 4.11 50.73 ± 1.51 42.25 ± 3.19

AMGL 48.25 ± 6.66 46.93 ± 6.75 68.93 ± 6.96 57.29 ± 3.43 55.42 ± 3.23 51.14 ± 6.45 34.56 ± 6.71

SwMC 49.64 ± 0.00 41.81 ± 0.00 54.38 ± 0.00 35.95 ± 0.00 43.40 ± 0.00 57.48 ± 0.00 30.40 ± 0.00

MVGL 40.77 ± 0.00 36.60 ± 0.00 57.87 ± 0.00 44.17 ± 0.00 41.86 ± 0.00 48.18 ± 0.00 33.38 ± 0.00

WMSC 57.40 ± 0.28 48.80 ± 1.00 71.18 ± 0.69 50.21 ± 0.50 54.24 ± 0.40 46.74 ± 0.74 36.57 ± 0.55

AWP 54.44 ± 0.00 45.88 ± 0.00 63.31 ± 0.00 42.46 ± 0.00 38.19 ± 0.00 47.80 ± 0.00 22.42 ± 0.00

MCGC 56.80 ± 0.00 34.21 ± 0.00 65.09 ± 0.00 51.58 ± 0.00 41.21 ± 0.00 68.93 ± 0.00 31.72 ± 0.00

mPAC 61.34 ± 0.90 50.48 ± 2.77 67.06 ± 2.46 59.28 ± 4.65 58.69 ± 6.65 60.03 ± 3.33 ��.�� ± �.��

GMC ��.�� ± �.�� 54.80 ± 0.00 74.56 ± 0.00 ��.�� ± �.�� 48.44 ± 0.00 ��.�� ± �.�� 44.31 ± 0.00

MPASR 73.37±0.00 66.67±0.00 79.88±0.00 67.91±0.00 ��.�� ± �.�� 79.57±0.00 56.25±0.00

Table 4  Clustering performance (mean±standard deviation) on dataset Yale (%)

The best, the second best, and the third best results are highlighted in bold with underline, bold, and italic, 
respectively

Method ACC NMI Purity F-score Precision Recall ARI

SC(1) 59.76 ± 3.63 63.23 ± 2.93 61.15 ± 3.64 44.80 ± 3.81 43.23 ± 3.78 46.51 ± 3.92 41.08 ± 4.08

SC(2) 54.12 ± 3.69 57.13 ± 3.16 54.91 ± 3.74 37.85 ± 3.14 35.62 ± 2.87 40.40 ± 3.61 33.54 ± 3.34

SC(3) 62.06 ± 4.90 64.11 ± 3.36 62.48 ± 4.89 46.97 ± 4.34 45.29 ± 4.40 48.81 ± 4.43 43.39 ± 4.64

Co-train 55.76 ± 4.71 60.30 ± 3.23 56.73 ± 4.09 41.49 ± 4.24 39.89 ± 4.53 43.26 ± 3.97 37.52 ± 4.57

Co-reg 56.30 ± 4.15 60.49 ± 3.11 58.00 ± 3.68 42.13 ± 3.99 40.71 ± 4.27 43.68 ± 3.80 38.23 ± 4.30

AMGL 60.73 ± 3.94 62.81 ± 1.58 62.18 ± 3.17 39.97 ± 3.17 32.97 ± 4.71 51.75 ± 3.42 35.11 ± 3.77

SwMC 65.45 ± 0.00 68.35 ± 0.00 65.45 ± 0.00 47.41 ± 0.00 42.37 ± 0.00 53.82 ± 0.00 43.56 ± 0.00

MVGL 64.24 ± 0.00 64.72 ± 0.00 65.45 ± 0.00 46.42 ± 0.00 42.50 ± 0.00 51.15 ± 0.00 42.60 ± 0.00

WMSC 61.27 ± 2.47 65.06 ± 2.06 61.64 ± 2.59 48.13 ± 2.50 46.32 ± 2.62 50.11 ± 2.51 44.62 ± 2.68

AWP 63.64 ± 0.00 64.99 ± 0.00 64.24 ± 0.00 48.76 ± 0.00 46.48 ± 0.00 51.27 ± 0.00 45.26 ± 0.00

MCGC ��.�� ± �.�� ��.�� ± �.�� 67.27 ± 0.00 48.33 ± 0.00 42.44 ± 0.00 56.12 ± 0.00 44.47 ± 0.00

mPAC 62.42 ± 3.21 67.49 ± 2.92 73.13±1.75 ��.�� ± �.�� ��.�� ± �.�� 45.43 ± 3.68 ��.�� ± �.��

GMC 65.45 ± 0.00 67.36 ± 0.00 66.06 ± 0.00 48.01 ± 0.00 41.88 ± 0.00 ��.�� ± �.�� 44.10 ± 0.00

MPASR 70.30±0.00 72.04±0.00 ��.�� ± �.�� 56.51±0.00 54.30±0.00 58.91±0.00 53.57±0.00
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Table 5  Clustering performance (mean±standard deviation) on dataset ORL (%)

The best, the second best, and the third best results are highlighted in bold with underline, bold, and italic, 
respectively

Method ACC NMI Purity F-score Precision Recall ARI

SC(1) 66.47 ± 3.99 62.67 ± 1.50 70.85 ± 2.97 57.34 ± 3.28 53.06 ± 3.35 62.40 ± 3.42 56.27 ± 3.37

SC(2) 67.80 ± 3.53 79.86 ± 1.59 71.15 ± 2.93 62.30 ± 4.00 57.25 ± 4.91 68.24 ± 2.98 61.61 ± 4.11

SC(3) 71.50 ± 4.60 76.07 ± 1.82 75.33 ± 3.66 64.53 ± 4.48 60.35 ± 5.37 69.42 ± 3.72 63.65 ± 4.61

Co-train 63.90 ± 2.90 81.17 ± 1.66 68.02 ± 2.42 54.02 ± 3.41 50.00 ± 3.80 58.78 ± 3.17 52.87 ± 3.50

Co-reg 66.70 ± 3.19 82.19 ± 1.38 70.08 ± 2.28 56.97 ± 3.00 53.13 ± 3.26 61.44 ± 2.92 55.90 ± 3.08

AMGL 72.90 ± 2.16 85.21 ± 1.37 77.90 ± 1.78 58.58 ± 4.11 48.31 ± 5.10 74.78 ± 2.17 57.41 ± 4.27

SwMC 70.75 ± 0.00 83.31 ± 0.00 76.75 ± 0.00 43.33 ± 0.00 29.61 ± 0.00 80.72 ± 0.00 41.39 ± 0.00

MVGL 75.00 ± 0.00 85.44 ± 0.00 79.25 ± 0.00 48.92 ± 0.00 34.81 ± 0.00 82.28±0.00 47.25 ± 0.00

WMSC 78.48 ± 1.11 82.15 ± 0.78 81.53 ± 0.95 71.61 ± 1.69 67.64 ± 1.78 76.08 ± 1.93 60.91 ± 1.74

AWP ��.�� ± �.�� 88.98±0.00 81.25 ± 0.00 ��.�� ± �.�� ��.�� ± �.�� 77.89 ± 0.00 ��.�� ± �.��

MCGC 77.00 ± 0.00 ��.�� ± �.�� ��.�� ± �.�� 56.25 ± 0.00 42.83 ± 0.00 ��.�� ± �.�� 54.92 ± 0.00

mPAC 67.25 ± 2.54 85.45 ± 1.02 80.17 ± 0.76 60.56 ± 2.71 73.00±0.84 51.78 ± 3.53 59.48 ± 2.81

GMC 63.25 ± 0.00 80.35 ± 0.00 71.50 ± 0.00 65.99 ± 0.00 53.21 ± 0.00 80.11 ± 0.00 63.67 ± 0.00

MPASR 79.75±0.00 84.34 ± 0.00 85.00±0.00 73.42±0.00 67.73 ± 0.00 82.28±0.00 72.24±0.00

Table 6  Clustering performance (mean±standard deviation) on dataset Caltech20 (%)

The best, the second best, and the third best results are highlighted in bold with underline, bold, and italic, 
respectively

Method ACC NMI Purity F-score Precision Recall ARI

SC(1) 25.85 ± 0.48 27.12 ± 0.48 52.95 ± 1.03 18.59 ± 0.42 36.73 ± 1.06 12.45 ± 0.31 11.28 ± 0.46

SC(2) 28.70 ± 0.73 34.69 ± 0.48 61.83 ± 0.75 24.16 ± 1.38 49.20 ± 2.55 16.01 ± 0.97 17.58 ± 1.45

SC(3) 29.79 ± 1.43 33.76 ± 0.87 59.21 ± 0.95 23.81 ± 1.11 47.53 ± 1.90 15.88 ± 0.81 17.05 ± 1.13

SC(4) 39.58 ± 2.89 52.53 ± 1.05 74.68 ± 1.55 34.55 ± 2.05 68.41 ± 3.03 23.11 ± 1.53 28.69 ± 2.12

SC(5) 38.39 ± 1.35 48.13 ± 0.81 71.90 ± 0.91 32.69 ± 1.51 66.02 ± 1.90 21.72 ± 1.15 26.79 ± 1.52

SC(6) 34.15 ± 1.00 45.20 ± 0.82 69.33 ± 1.12 31.51 ± 1.47 63.08 ± 2.36 21.00 ± 1.06 25.45 ± 1.52

Co-train 41.46 ± 2.45 48.57 ± 0.40 71.53 ± 0.34 35.13 ± 2.65 67.73 ± 2.15 23.73 ± 2.15 29.16 ± 2.60

Co-reg 41.93 ± 3.32 53.75 ± 0.22 ��.�� ± �.�� 35.56 ± 1.80 67.80 ± 2.26 24.13 ± 1.71 29.55 ± 1.64

AMGL 50.29 ± 1.98 52.39 ± 3.95 66.79 ± 3.40 38.55 ± 3.03 33.81 ± 4.44 45.24 ± 1.23 24.38 ± 4.69

SwMC ��.�� ± �.�� 44.52 ± 0.00 66.43 ± 0.00 38.03 ± 0.00 27.91 ± 0.00 ��.�� ± �.�� 20.38 ± 0.00

MVGL 52.10 ± 0.00 43.78 ± 0.00 64.63 ± 0.00 37.02 ± 0.00 26.87 ± 0.00 59.50 ± 0.00 18.82 ± 0.00

WMSC 33.48 ± 1.09 41.51 ± 0.48 67.02 ± 0.49 30.11 ± 1.06 58.49 ± 1.84 20.27 ± 0.75 23.72 ± 1.12

AWP 51.59 ± 0.00 ��.�� ± �.�� 73.22 ± 0.00 ��.�� ± �.�� 71.17±0.00 42.56 ± 0.00 ��.�� ± �.��

MCGC 47.53 ± 0.00 54.57 ± 0.00 68.65 ± 0.00 40.17 ± 0.00 41.74 ± 0.00 38.71 ± 0.00 29.06 ± 0.00

mPAC 43.83 ± 2.64 53.54 ± 0.78 53.21 ± 3.48 38.89 ± 2.23 28.22 ± 2.29 62.70±1.57 32.03 ± 2.12

GMC 45.64 ± 0.00 38.46 ± 0.00 55.49 ± 0.00 34.03 ± 0.00 52.78 ± 0.00 47.28 ± 0.00 12.84 ± 0.00

MPASR 61.53±0.00 62.05±0.00 75.27±0.00 61.75±0.00 ��.�� ± �.�� 55.83 ± 0.00 55.23±0.00



1065Machine Learning (2022) 111:1049–1072 

1 3

• Our proposed MPASR consistently has superior or comparable performance com-
pared to the other ten multi-view clustering methods, which verifies the effectiveness 
of our approach. Besides, we can see that the improvement is remarkable on several 
data sets. Note that the results of Co-train, Co-reg, and mPAC on Digit dataset are 
not recorded. It may well be because the Digit dataset is too sparse, especially the 
first view of Digit, nearly 90% of the elements are zeros, thus these three methods 
cannot handle it.

• Note that AWP performs initialization and optimization process on a fixed graph, 
thus is unavoidably sensitive to the input affinity matrix as well as the corresponding 
spectral embedding matrix. While our model accomplishes the subtasks of learning 

Table 7  Clustering performance (mean±standard deviation) on dataset HAR (%)

The best, the second best, and the third best results are highlighted in bold with underline, bold, and italic, 
respectively

Method ACC NMI Purity F-score Precision Recall ARI

SC(1) 63.53 ± 6.50 61.34 ± 0.85 66.33 ± 2.71 ��.�� ± �.�� 57.14 ± 3.73 61.69 ± 5.79 ��.�� ± �.��

SC(2) 43.91 ± 3.55 40.62 ± 0.84 45.92 ± 1.11 37.91 ± 0.48 36.06 ± 0.86 40.05 ± 2.16 24.47 ± 0.13

Co-train 53.78 ± 2.25 47.18 ± 1.00 54.60 ± 1.75 43.87 ± 1.09 42.53 ± 0.75 45.30 ± 1.47 32.01 ± 1.21

Co-reg 64.51 ± 6.46 62.13±0.43 ��.�� ± �.�� 58.55 ± 2.72 58.03 ± 3.48 59.10 ± 1.91 50.01 ± 3.45

AMGL 37.09 ± 1.25 40.52 ± 3.50 39.30 ± 1.59 48.64 ± 1.41 33.20 ± 1.30 91.02 ± 0.40 31.71 ± 2.13

SwMC 37.60 ± 0.00 41.95 ± 0.00 39.85 ± 0.00 49.34 ± 0.00 33.74 ± 0.00 91.76±0.00 32.70 ± 0.00

MVGL 38.21 ± 0.00 42.95 ± 0.00 40.72 ± 0.00 49.23 ± 0.00 33.91 ± 0.00 89.79 ± 0.00 32.71 ± 0.00

WMSC ��.�� ± �.�� ��.�� ± �.�� 66.88±0.00 59.04 ± 0.00 ��.�� ± �.�� 59.33 ± 0.00 50.66 ± 0.00

AWP 45.16 ± 0.00 43.68 ± 0.00 45.48 ± 0.00 42.01 ± 0.00 37.04 ± 0.00 48.51 ± 0.00 28.25 ± 0.00

MCGC 39.15 ± 0.00 50.07 ± 0.00 39.21 ± 0.00 48.93 ± 0.00 36.92 ± 0.00 89.88 ± 0.00 30.01 ± 0.00

mPAC 45.80 ± 0.00 40.91 ± 0.00 49.66 ± 0.00 40.83 ± 0.00 36.88 ± 0.00 45.72 ± 0.00 27.20 ± 0.00

GMC 37.54 ± 0.00 42.10 ± 0.00 39.88 ± 0.00 49.34 ± 0.00 33.76 ± 0.00 ��.�� ± �.�� 32.71 ± 0.00

MPASR 66.64±0.00 59.59 ± 0.00 57.49 ± 0.00 62.85±0.00 58.75±0.00 89.42 ± 0.00 52.41±0.00

Table 8  Clustering performance (mean±standard deviation) on dataset Digit (%)

The best, the second best, and the third best results are highlighted in bold with underline, bold, and italic, 
respectively

Method ACC NMI Purity F-score Precision Recall ARI

SC(1) 55.33 ± 4.33 47.42 ± 1.31 58.45 ± 3.46 43.37 ± 2.27 42.56 ± 2.29 44.22 ± 2.28 36.95 ± 2.54

SC(2) 49.34 ± 1.36 46.08 ± 0.96 51.88 ± 1.30 39.11 ± 0.76 38.81 ± 0.85 39.41 ± 0.69 32.29 ± 0.86

AMGL 91.45 ± 12.3294.90 ± 6.41 93.68 ± 8.98 91.50 ± 12.2987.88 ± 17.7096.55 ± 4.27 90.38 ± 13.96

SwMC 89.87 ± 0.00 93.39 ± 0.00 89.87 ± 0.00 90.56 ± 0.00 83.05 ± 0.00 99.56±0.00 89.40 ± 0.00

MVGL 99.09±0.00 97.25±0.00 99.09±0.00 98.19±0.00 98.19±0.00 98.19 ± 0.00 97.99±0.00

WMSC 74.20 ± 0.10 66.02 ± 0.03 74.20 ± 0.10 63.12 ± 0.08 62.97 ± 0.09 63.26 ± 0.08 59.01 ± 0.09

AWP 70.28 ± 0.00 60.54 ± 0.00 70.95 ± 0.00 60.05 ± 0.00 57.00 ± 0.00 63.45 ± 0.00 55.35 ± 0.00

MCGC 27.39 ± 0.00 21.43 ± 0.00 27.45 ± 0.00 23.96 ± 0.00 13.72 ± 0.00 94.48 ± 0.00 7.89 ± 0.00

GMC 90.23 ± 0.00 89.74 ± 0.00 ��.�� ± �.�� 89.91 ± 0.00 ��.�� ± �.�� 94.77 ± 0.00 91.27 ± 0.00

MPASR ��.�� ± �.�� ��.�� ± �.�� 96.74 ± 0.00 ��.�� ± �.�� 88.24 ± 0.00 ��.�� ± �.�� ��.�� ± �.��



1066 Machine Learning (2022) 111:1049–1072

1 3

the similarity graphs adaptively, fusing the multiple partitions, and assigning cluster 
label to each instance in a unified framework.

• Previous studies have shown that exploring the local connectivity of data is a success-
ful strategy for clustering task. Differ to the proposed MPASR that learns the similarity 
graph by exploring the local connectivity of data, mPAC focuses on learning a sub-
space representation by making use of the global structure of data. Note that mPAC 
achieves comparable clustering results several times. This inspires us that exploring 
both the global structure and local connectivity of data could be a good strategy to 
boost the clustering performance in future work.

• With respect to the compared methods that consider all graphs produce the same parti-
tion, MPASR focuses on learning one partition for each view and integrating them into 
a consensus one via spectral rotation. Our empirical studies demonstrate the superiority 
of this aligning mechanism.

• It is noteworthy that the clustering results obtained by MPASR are quite stable with the 
standard deviation always being zero. The reason for this is that MPASR directly out-
puts the discrete clustering label for each data sample, thus avoids the extra discretiza-
tion procedure which is unstable and sensitive to initialization.

To better illustrate the rotation strategy of our model, we showcase the dynamics of 
basic partitions �(v) as well as the consensus partition � in Fig. 2. Note that the datasets 
3sources, ORL, and Yale contain three views, while Caltech20 contains six views, hence 
we plot the first three partitions of Caltech20 for convenient illustration. We can observe 
that our model is able to find a good consensus partition with better clustering results, com-
pared with other basic partitions. Despite the diverse of the basic partitions with different 
clustering performance, the proposed model can integrate them reasonably via the spec-
tral rotation and achieve a a good clustering. Consequently, the proposed partition aligning 
mechanism is validated.

4.4  Parameter Study

For view weight parameter �(v) , it can be automatically calculated according to (8). For 
balance parameter � , it can also be automatically determined as mentioned before. Thus 

Fig. 2  Clustering performance of 
multiple partitions {�(v)}|m

v=1
 and 

the final consensus partition �

Partitions

N
M
I

3sources

ORL

Yale

Caltech20
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we only need to tune the parameters � and � . In this section, we set both � and � by 
the grid {1e-4,1e-3,1e-2,1e-1,1,1e2,1e2,1e3,1e4} for simplicity. As shown in Figure 3, 
we can find that our performance is relatively stable with respect to � under a wide 
range of parameter settings. As mentioned before, the ideal graph is c-connected if there 
are exactly c clusters (Nie et  al. 2014; Huang et  al. 2019). That’s the possible reason 
why the final performance is a little sensitive to the choice of � since the third term in 
(9) needs to search a suitable � that is able to guarantee each graph �(v) is optimal for 
clustering. Generally, MPASR obtains good performance when � varies in the range 
[1e-2,1e1] and � in the range [1e-3,1e-1].

As shown in (37), parameter � can be set by the number of the nearest neighbors k, 
which guarantees that the optimal solution �(v)

i
 to have exactly k nonzero entries. We set 

k = 10 in previous experiments for simplicity. Here we illustrate the clustering perfor-
mance with respect to different k. Take the dataset 3sources as an example, we see that 
MPASR is a little sensitive to k, as plotted in Fig. 4. Note that obtaining an optimal k 
in such case is still an open problem. It is clear that the parameters of MPASR is tuned 

(a) (b)

(c) (d)

Fig. 3  The effect of parameters on datasets
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roughly. Better parameter tuning would achieve better clustering performance than that 
recorded in this paper (e.g., k = 20).

4.5  Computational performance

This section reports the execution time of our model as well as other compared methods. 
We conduct all experiments with Matlab R2018b on a machine with Core 18 Duad 2.6 
GHz and 256 GB memory. As shown in Table 9, the running time of graph-based methods, 
including ours, is generally higher than that of other methods (e.g., AWP) due to the extra 
construction of the graph similarity. We see that mPAC, SwMC and MVGL are the top 
three time-consuming methods, whereas the execution time of AWP, GMC, and WMSC is 
the lowest three among the eleven multi-view clustering methods. On the whole, the pro-
posed MPASR is faster than mPAC, SwMC and MVGL, slower then AWP and GMC but 
comparable with other methods, which showcases the effectiveness of MPASR. As men-
tioned before, the results of Co-train, Co-reg, and mPAC on Digit dataset are not recorded 
probably because of the high sparsity of this dataset. Hence we do not report the running 
time of Co-train, Co-reg, and mPAC on Digit.
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Fig. 4  Clustering performance of MPASR with respect to the number of neighbors k 

Table 9  Running time of all 
multi-view clustering methods 
(seconds)

Method Yale 3sources ORL Caltech20 HAR Digit

Co-train 0.70 1.26 8.37 384.42 2539.48 –
Co-reg 1.82 1.44 6.64 198.57 529.56 –
AMGL 0.08 0.12 0.41 60.07 531.63 4054.04
SwMC 0.39 0.42 2.28 455.65 13643.60 26230.25
MVGL 0.19 0.28 0.98 248.84 4837.84 9941.77
WMSC 0.16 0.33 0.73 202.18 916.00 1153.09
AWP 0.07 0.08 0.34 63.88 612.62 1646.49
MCGC 0.12 0.14 0.59 53.14 712.13 1871.10
mPAC 1.00 6.59 10.39 11503.35 23577.02 –
GMC 0.18 0.26 0.60 34.01 606.16 1242.91
MPASR 0.65 0.96 5.51 328.53 768.63 2952.93
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4.6  Convergence analysis

The proposed iterative updating algorithm for MPASR is iterative. Here we study how 
fast the proposed algorithm can converge. The stop criteria for our model is defined as 
|Ot+1 − Ot|∕Ot ≤ 10−6 where Ot denotes the objective value in the tth iteration. We plot 
the convergence curves of MPASR in Fig. 5, where the x-axis means the number of itera-
tion and y-axis denotes the objective value. It is clear that the updating rules for our model 
converge very fast, usually within 20 iterations, which empirically verifies the efficiency 
of the proposed optimization algorithm. Note that the inputs of the proposed Algorithm 1, 
�(v) and �(v) , are well initialized for each view by solving (4) and (5) respectively. That’s 
the possible reason why the proposed optimization algorithm only needs a few iterations to 
converge. Particularly for some small-scale datasets, e.g., 3sources and Yale, about two or 
three iterations are enough to reach the convergence.

(a) (b)

(c) (d)

(e) (f)

Fig. 5  The convergence of our model on datasets
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5  Conclusion

In this paper, we propose to merge multi-view information in partition level instead of 
the raw feature space where the data points lie. The partition of each view is treated as 
a perturbation of the consensus clustering, and the multiple partitions are integrated by 
estimating a distinct rotation for each partition. We model the partitions fusion following 
two intuitive principles: (1) each partition can be essentially seen as a perturbation of the 
consensus clustering; and (2) the closer a partition to the consensus clustering, the larger 
weight should be allocated. Furthermore, the weight of each partition can be determined 
automatically. The proposed model is formulated as a joint learning framework, i.e., with 
the input data matrix, our model directly outputs the final discrete clustering result. Hence 
it is an end-to-end single-stage learning model. An iterative updating algorithm is proposed 
to solve the learning problem, in which the involved variables can be optimized in a mutual 
reinforcement manner. Finally, the experimental results have shown that (1) MPASR has 
superior performance compared to the other multi-view clustering methods which dem-
onstrates the superiority of this aligning mechanism; (2) the proposed model is relatively 
stable across a wide range of parameter settings which showcases the robustness of the pro-
posed model; and (3) the designed optimization algorithm is very efficient and converges 
fast. In the future, we are interested in extending the proposed aligning mechanism to other 
machine learning framework such as semi-supervised learning and deep learning.
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