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Abstract
We propose in this paper the Stochastic Variance-reduced Gradient Descent for Kernel 
Online Learning (DualSVRG), which obtains the �-approximate linear convergence rate 
and is not vulnerable to the curse of kernelization. Our approach uses a variance reduc-
tion technique to reduce the variance when estimating full gradient, and further exploits 
recent work in dual space gradient descent for online learning to achieve model optimal-
ity. This is achieved by introducing the concept of an instant memory, which is a snapshot 
storing the most recent incoming data instances and proposing three transformer oracles, 
namely budget, coverage, and always-move oracles. We further develop rigorous theoreti-
cal analysis to demonstrate that our proposed approach can obtain the �-approximate linear 
convergence rate, while maintaining model sparsity, hence encourages fast training. We 
conduct extensive experiments on several benchmark datasets to compare our DualSVRG 
with state-of-the-art baselines in both batch and online settings. The experimental results 
show that our DualSVRG yields superior predictive performance, while spending compa-
rable training time with baselines.

Keywords  Kernel online learning · Incremental stochastic gradient descent · Online 
learning · Kernel methods · Stochastic optimization

Editors: Yu-Feng Li, Mehmet Gönen, Kee-Eung Kim.

 *	 Trung Le 
	 trunglm@monash.edu

	 Khanh Nguyen 
	 nkhanh@vinai.io

	 Dinh Phung 
	 dinh.phung@monash.edu

1	 Department of Data Science and AI, Monash University, Melbourne, Australia
2	 VinAI Research, Hanoi, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06075-7&domain=pdf


998	 Machine Learning (2022) 111:997–1018

1 3

1  Introduction

An optimization problem in machine learning is usually expressed as the sum of the aver-
age of the loss function over training data and a regularization term. Given this type of 
objective function, it is very computationally expensive to evaluate the full gradient needed 
in gradient descent, hence motivating techniques to estimate this quantity. Stochastic gradi-
ent descent (SGD) is such a technique that estimates the full gradient using the reduced 
gradient at a data instance randomly drawn from training set. The typical convergence rate 
for SGD up to the T-th iteration is known to be O

�
1√
T

�
 (Hazan et al. 2007; Shalev-Shwartz 

et  al. 2007). Subsequently, several works have achieved a better convergence rate, i.e., 
O

(
1

T

)
 , for the strongly convex case (Rakhlin et al. 2012; Hazan and Kale 2014). Nonethe-

less, due to its high variance in estimating the full gradient, SGD-based method cannot 
achieve a higher convergence rate (e.g., the linear convergence rate), hence raising the 
necessity to devise estimators of the full gradient with lower variance. Recent incremental 
gradient methods (Schmidt et  al. 2013; Shalev-Shwartz and Zhang 2013; Johnson and 
Zhang 2013; Lin and Tong 2014) address this issue by designing estimators with low vari-
ance. Although these approaches have made an important progress in achieving the ideal 
linear convergence rate which is significant from the computational perspective, their anal-
yses are restricted to the batch setting which requires to know the total number of data 
instances beforehand.

Online learning represents a family of effective and scalable learning algorithms for 
incrementally building a predictive model from a sequence of data samples (Rosenb-
latt 1958). Different from the conventional learning algorithms which usually require an 
expensive procedure to retrain entire dataset, when a new instance arrives (Chang and Lin 
2011), the goal of online learning is to utilize this data instance to improve model without 
revisiting previously processed data. The seminal line of work in online learning, referred 
to as linear online learning (Rosenblatt 1958; Crammer et al. 2006), aims to learn a linear 
predictor in input space, which has a key limitation in representing data with nonlinear 
dependency, commonly seen in many real-world applications. This motivates the works of 
kernel online learning (Freund and Schapire 1999) that use a linear model in the feature 
space to capture non-linearity of input data. Although kernel online learning methods can 
capture non-linear nature of input data, a naive application stochastic gradient descent or 
incremental gradient descent to kernel-based methods for online learning encounters the 
curse of kernelization, that is, model size linearly grows with training size accumulated 
over time (Steinwart 2003; Wang et al. 2012).

To address the curse of kernelization, a remarkable approach is to use a budget (Dekel 
et al. 2005; Wang et al. 2012; Le et al. 2016a, b). Wang et al. (2012) conjoined the budg-
eted approach and stochastic gradient descent (SGD) (Shalev-Shwartz et al. 2007), wherein 
model was updated using an SGD-based style and a budget maintenance procedure (e.g., 
removal, projection, or merging) was employed to maintain the model size. Although the 
projection and merging were shown to be effective (Wang et  al. 2012), their associated 
computational costs render them impractical for large-scale datasets. Another notable 
workaround to address the curse of kernelization is to employ random features (Rahimi 
and Recht 2007) in order to approximate a given kernel function (Lu et al. 2015; Le et al. 
2016). Lu et  al. (2015) transformed data from input space to random-feature space, and 
then performed SGD in this approximate space. However, to achieve a good kernel approx-
imation in this approach, excessive number of random features might be required, hence 
possibly leading to serious computational issue. To overcome the issues emerged in Wang 
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et al. (2012), Lu et al. (2015), Le et al. (2016 proposed to distribute model in a dual space 
including original and random feature spaces, which allows information carried in ignored 
vectors to be more accurately preserved. Though these aforementioned methods can avoid 
the curse of kernelization, none of them has achieved the ideal linear convergence rate.

Incremental methods (Schmidt et  al. 2013; Shalev-Shwartz and Zhang 2013; Johnson 
and Zhang 2013; Lin and Tong 2014) are not applicable to online learning because these 
methods require an entire training set beforehand during their training process and need 
to revisit past data instances when updating current models. In this paper, we make it pos-
sible by leveraging an instant memory that can store a snapshot of the most recent m data 
instances with the update style of Stochastic Variance-reduced Gradient Descent (SVRG) 
(Johnson and Zhang 2013; Ming et al. 2014) to propose Dual space Stochastic Variance-
reduced Gradient Descent ( DualSVRG ). Particularly, for our DualSVRG , the new model 
is updated based on the current memory and an SVRG update style to reduce the vari-
ance when estimating gradient. Moreover, to address the curse of kernelization and scale 
up training time, we propose transformer oracles (see Sect. 3.6) to either move an incom-
ing instance to a Fourier random feature space (Rahimi and Recht 2007) or keep it in the 
original kernel space, hence allowing the models to be distributed in a dual space. Further-
more, we establish rigorous theory to prove the �-approximate linear convergence rate of 
our proposed DualSVRG . Overall, the key contributions in our paper can be summarized 
as follows:

•	 We propose a novel kernel online learning method and theoretically prove its approxi-
mate linear convergence rate. In terms of modeling, our proposed approach leverages 
SVRG (Johnson and Zhang 2013; Lin and Tong 2014) and DualSGD (Le et al. 2016) 
with adaptation to target the problem of kernel online learning. However, the adapta-
tion undertaken in our proposed approach is significant as this requires to tackle three 
crucial challenges: (1) how to approximate efficiently the full gradients required in 
SVRG in the context of kernel online learning, (2) how to distribute the model into 
the dual space, and (3) how to develop theory for a convergence rate. We address the 
first challenge by using the concept of memory, which, to our knowledge, is new and 
novel in the context of kernel online learning, whilst the second challenge is addressed 
via three transformer oracles. The last challenge is addressed thoughtfully by devel-
oping theory to indicate that our DualSVRG achieves a faster convergence rate than 
DualSGD, which is also empirically verified by our comprehensive experiments.

•	 We conduct comprehensive experiments to compare our proposed methods with state-
of-the-art baselines. The experimental results show that our proposed DualSVRG 
achieves superior predictive performance due to its faster convergence and ability to 
rapidly find a solution up to any level of precision, while spending comparable training 
time compared with state-of-the-art baselines.

2 � Related background

2.1 � Fourier random feature

Let x ∈ ℝ
d denote the d-dimensional vector in data domain X  and K ∶ X × X → ℝ is a 

kernel function. According to Mercer theorem, if K(⋅, ⋅) is a positive semi-definite (p.s.d) 
kernel, there exists a transformation �(⋅) that maps from X  to a feature space H such that 
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K
(
x, x�

)
= �(x)��

(
x
�
)
 for all x, x� ∈ X  . The kernel function K

(
x, x′

)
 can be regarded as 

the similarity of x and x′ in the feature space. However, for the most popular Gaussian ker-
nel K

(
x, x�

)
= exp

(
−

1

2

(
x − x

�
)�
Σ
(
x − x

�
))

 , the dimension of the feaure space H is infi-
nite, hence obliging models in this space to be represented as � =

∑t

i=1
�i�

�
xi

�
 where t is 

the training size in batch setting or the number of data instances processed so far. The dot 
product between � and any �(x) which is crucial in developing kernel methods is repre-
sented as:

which is highly expensive when t is big. This issue is known as the curse of kernelization.
To construct an explicit representation of �(x) , the key idea is to approximate the origi-

nal kernel K
(
x, x′

)
 using a kernel induced by a random finite-dimensional feature map. The 

mathematical tool behind this approximation is the Bochner’s theorem (2003) which states 
that every shift-invariant and p.s.d kernel K

(
x, x′

)
 can be represented as an inverse Fourier 

transform of a proper distribution p(�) as below:

where u = x − x
� and i represents the imaginary unit (i.e., i2 = −1 ). In addition, the cor-

responding proper distribution p(�) can be recovered through Fourier transform as follows:

From Eq. (1), we can use Monte Carlo estimation to approximate the kernel K
(
x, x′

)
 as:

where we have sampled �i

iid
∼p(�) as formulated in Eq. (2). Denote D = 2L . Eq. (3) sheds 

light on the construction of a D-dimensional Fourier random map 𝛷̃ ∶ X → ℝ
D:

resulting in the induced kernel K̃
(
x, x�

)
= 𝛷̃(x)⊤𝛷̃

(
x
�
)
 that can accurately and efficiently 

approximate the original kernel: K̃
(
x, x�

)
≈ K

(
x, x�

)
.

2.2 � SGD update style for kernel online learning and curse of kernelization

In a kernel online learning system, at the time step t, the system receives data instance (
xt, yt

)
 and the current model is updated using an SGD-based formula as follows:

�
�
�(x) =

t∑

i=1

�iK
(
xi, x

)
,

(1)K
(
x, x�

)
= k(u) = ∫ p(�)ei�

⊤
ud�,

(2)p(�) =
(

1

2𝜋

)d

∫ k(u)e−iu
⊤�du.

(3)K
(
x, x�

)
≈

1

L
L
i=1

∑[
cos

(
�⊤

i

(
x − x

�
))]

.

(4)𝛷̃(x)� =
�
cos

�
�⊤

i
x

�
∕
√
L, sin

�
�⊤

i
x

�
∕
√
L
�L
i=1

,

�t = �t−1 − �t∇�
l
(
�t−1;xt, yt

)

= �t−1 − �tyt�t�
(
xt

)
,
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where 𝜂t > 0 is a learning rate and �t is a scalar which depends on the loss function 
l
(
�t−1;xt, yt

)
 . For example, if l

(
�t−1;xt, yt

)
= max

{
0, 1 − yt�

�

t
�

(
xt

)}
 is the Hinge loss 

then 𝛼t = −�yt��

t 𝛷(xt)<1 where � is the indicator function.
It follows that the model at the time step t has the form �t =

∑t

i=1
�i�

�
xi

�
 and the model 

size is defined as ‖�‖0 . It follows that the model size is proportional to the number of data 
instances received so far which is accumulated over time. This issue is known as the curse 
of kernelization (Steinwart 2003; Wang et al. 2012) in the online learning context.

2.3 � Dual space gradient descent for kernel online learning

DualSGD addressed the curse of kernelization by allowing the models to be stored in a 
dual space– a combination of the original feature space and the Fourier random feature 
space that approximates it. In particular, the model �t at the time step t is distributed 
over two spaces (i.e., the original feature space and the Fourier random feature space) as 
�d

t
= �o

t
⊕ �̃t where �o

t
=
∑

i∈I �i�
�
xi

�
 and �̃t =

∑
i∈J 𝛽i𝛷̃

�
xi

�
∈ ℝ

D where I ∩ J = � 
and I ∪ J = {1, 2,… , t} . Since �̃t ∈ ℝ

D can be stored directly in the Fourier random fea-
ture, the model size is defined as the cardinality |I| of the index set I. In DualSGD (Le et al. 
2016), the model size |I| is kept at most B via the budget maintaining k-merging, that is, 
whenever the model size |I| exceeds the budget size B, the k vectors in I with smallest coef-
ficients are shifted to the Fourier random feature space and �̃t is updated using the approxi-
mate versions of these vectors in the Fourier random feature. In particular, assume that 
the k vectors xi1 ,… , xik are chosen to move to the Fourier random feature and the relevant 
models are updated as follows:

Because DualSGD employed the SGD update style wherein gradients using in update may 
approximate full gradients with high variances, the theoritical analysis in DualSGD only 
achieved the �-approximate O

(
log T

T

)
 (see Definition 2). In this work, we used the variance 

reduction technique (Johnson and Zhang 2013; Lin and Tong 2014) to allow gradients in 
use to be approximated with much lower variances, hence achieving the �-approximate lin-
ear convergent rate (see Definition 1). However, because Stochastic Variance Reduction 
used the entire training set to periodically compute full gradients involving in update for-
mulas, this is not applicable to online learning. In the next section, we present variance 
reduction technique for batch setting and also give detailed discussions on the reason why 
this technique cannot be applied to online learning context.

2.4 � Stochastic variance reduction for batch setting

Given a training set D =
{(

x1, y1
)
,… ,

(
xN , yN

)}
 , the common optimization problem of 

kernel methods with the �2-regularizer in the batch setting has the following form

�
o
t+1

= �
o
t
−

k∑

j=1

𝛽ij
𝛷

(
xij

)
,

�̃t+1 = �̃t +

k∑

j=1

𝛽ij
𝛷̃

(
xij

)
.
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where l(�;x, y) = �
(
y��

�(x)
)
 with � ∶ ℝ → ℝ to be a convex, L-Lipschitz and M-smooth 

loss function, and �(⋅) is a transformation from the input space to the feature space.
At the time step t, we uniformly sample it from {1, 2,… ,N} and update �t−1 using the 

gradient ∇Jt

(
�t−1

)
 of the instantaneous objective function, which is defined as

whose gradient ∇Jt

(
�t−1

)
 is an estimation of the full gradient ∇J

(
�t−1

)
 . The variance of 

this estimation is crucial for the convergence rate of the SGD-based method. To reduce the 
variance of the full gradient estimation, the works of Johnson and Zhang (2013), Lin and 
Tong (2014) proposed using predictive variance reduction to update the current model as 
follows:

where 𝜂 > 0 is the learning rate, the snapshot model u is updated periodically after every n 
iterations.

It is worth noting that since the evaluation of the full gradient ∇J(u) involves all data 
instances in the training set, Stochastic Variance-reduced Gradient Descent (Johnson and 
Zhang 2013; Lin and Tong 2014) cannot be performed in the online learning context. To 
enable our proposed DualSVRG to work in the online context, we propose to approximate 
the full gradient ∇J(u) using the most recent m data instances (e.g., m = 100 ), which are 
drawn from an existed but unknown joint data-label distribution over X × Y . Specifically, 
the online system is equipped with a snapshot memory M that can store the most m recent 
data instances to make the computations feasible.

3 � Dual space SVRG for kernel online learning

3.1 � Optimization problem setting

In an online learning context (Kivinen et al. 2004), we aim to solve the following optimiza-
tion problem:

where ℙX×Y is a distribution over X × Y , l(�;x, y) = �
(
y��

�(x)
)
 where � ∶ ℝ → ℝ is a 

convex, L-Lipschitz and M-smooth loss function, and �(⋅) is a transformation from input 
space to feature space. We now introduce the definitions of the �-approximate linear con-
vergence rate and the �-approximate O

(
log T

T

)
 convergence rate, which are necessary for 

our theoretical analysis.

Definition 1  An online learning algorithm is said to achieve the �-approximate linear con-
vergence rate if the gap between the objective values of the current and optimal models 

min
�

�
J(�) ≜ �

2
‖�‖2 + 1

N

N�

i=1

l
�
�;xi, yi

�
�
,

J(�) ≜ �

2
‖�‖2 + l

�
�;xit , yit

�
,

�t = �t−1 − �∇Jt

(
�t−1

)
+ �∇Jt(u) − �∇J(u),

min
�

�
J(�) =

�

2
‖�‖2 + 𝔼

ℙX×Y

�
l(�;x, y)

��
,
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decreases multiplicatively with the decay ratio 0 < 𝜌 < 1 with the to an �-gap. Mathemati-
cally, it is stated as follows:

where a > 0 , b ∈ ℝ.

Definition 2  An online learning algorithm is said to achieve the �-approximate O
(

log T

T

)
 

rate if the gap between the objective values of the current and optimal models decreases 
with the rate O

(
logT

T

)
 to an �-gap. Mathematically, it is stated as follows:

where a > 0 and b ≥ 0.

3.2 � Models in the dual space

The dual space (Le et  al. 2016) is a combination of the original feature space with the 
feature map �(x) and its corresponding random feature space with the Fourier random 
map 𝛷̃(x) . In the online learning setting, when a data instance x arrives to the system, it 
is stored either in the original feature space or the random feature space. As a result, if we 
assume at the time step t, the system has received data instances x1, ..., xt , this set is split to 
two disjoint sets: 

{
xi

}
i∈I

 and 
{
xi

}
i∈Ĩ

 (i.e., I ∪ Ĩ = {1, ..., t} ), each of which is either stored 
in the original or random space. Specifically, the former 

{
xi

}
i∈I

 is stored in the original 
feature space, hence resulting in the model �o

t
=
∑

i∈I �i�
�
xi

�
 (o means original) in this 

space, whilst the latter 
{
xi

}
i∈Ĩ

 is stored in the random feature space, hence resulting in the 
model �̃t =

∑
i∈Ĩ 𝛼i𝛷̃

�
xi

�
∈ ℝ

D (D is the dimension of the random feature space) in this 
space. As a result, the dual-model �d

t
∶= �o

t
⊕ �̃t (i.e., d means dual) can be regarded 

as an approximation of the exact model �t =
∑t

i=1
�i�

�
xi

�
 for which all data instances 

are stored in the original feature space. Here we note that the operator ⊕ is used to imply 
the fact that our dual model is distributed over two spaces. Using this dual space strat-
egy brings up some advantages: i) �d

t
 can approximate the exact model �t accurately, ii) 

�̃t ∈ ℝ
D can be stored using a single vector, hence avoiding the curse of kernelization, and 

iii) the kernel operation which can be performed economically and conveniently as

can approximate accurately and efficiently the kernel operation ��

t
�(x) , which appears all 

the time in kernel methods, as �̃t
�
𝛷̃(x) can be computed directly as dot product of two vec-

tors in ℝD.

3.3 � The proposed method

In an online learning context, we assume that at the time step t when the data instance/label (
xt, yt

)
∼ ℙX×Y arrives in our learning system, there is a transformer oracle, which makes 

a decision about if this instance is stored in the original feature space or in the random 

�
[
J
(
�t

)]
− J(�∗) ≤ �

t∕ab + �,

�
[
J
(
�t

)]
− J(�∗) ≤ a(log T + b)

T
+ �,

⟨
�

d
t
, x
⟩
∶=

∑

i∈I

𝛼iK
(
xi, x

)
+ �̃t

�
𝛷̃(x),
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feature space. We depict this decision using a binary random variable Zt , where Zt = 1 
implies that this instance lies in the random feature space and vice versa. The current dual 
model �d

t−1
 in the dual space is hence as follows:

where It−1 =
{
i ∶ Zi = 0 for 1 ≤ i ≤ t − 1

}
 and Ĩt−1 =

{
i ∶ Zi = 1 for 1 ≤ i ≤ t − 1

}
.

We now present how to update those models to incorporate 
(
xt, yt

)
 . Specifically, in our 

proposed model, we always maintain a memory M of the most recent m data instances/
labels M =

[(
xi, yi

)]t
i=t−m+1

 and a dual checkpoint model ud ∶= 1

n

∑t

i=t−n+1
�

d
i
 , which is 

updated after every n iterations. The new models are updated based on the current memory 
M and checkpoint model ud as follows:

where vo
t
 and ṽt lie in the original and Fourier random feature spaces respectively and are 

defined as:

Here we remind that l(�;x, y) = �
(
y��

�(x)
)
 where � ∶ ℝ → ℝ is the loss function, imply-

ing ∇𝓁(⋅) is a scalar and 𝜂 > 0 is the learning rate. We note that �t and vt in Eqs. (8, 5) lie 
in the original feature space and only are used later for our theoretical analysis.

The key steps of our proposed DualSVRG are presented in Fig. 1. In addition, the pseu-
docode of our proposed DualSVRG is detailed in Algorithm 1. When receiving a new data 

�
d
t−1

= �
o
t−1

⊕ �̃t−1,

�
o
t−1

=
∑

i∈It−1

𝛼i𝛷

(
xi

)
=

t−1∑

i=1

(
1 − Zi

)
𝛼i𝛷

(
xi

)
,

�̃t−1 =
∑

i∈Ĩt−1

𝛼i𝛷̃

(
xi

)
=

t−1∑

i=1

Zi𝛼i𝛷̃
(
xi

)
∈ ℝ

D,

(5)

vt =∇�
(
yt
⟨
�

d
t−1

, xt
⟩)

yt�
(
xt

)
− ∇�

(
yt
⟨
u
d, xt

⟩)
yt�

(
xt

)

+
1

m

t∑

i=t−m+1

∇�
(
yi
⟨
u
d, xi

⟩)
yi�

(
xi

)
,

(6)v
d
t
= v

o
t
⊕ ṽt,

v
o
t
=
(
1 − Zt

)
∇�

(
yt
⟨
�

d
t−1

, xt

⟩)
yt𝛷

(
xt

)
−
(
1 − Zt

)
∇�

(
yt
⟨
u
d
, xt

⟩)
yt𝛷

(
xt

)

+
1

m

t∑

i=t−m+1

[(
1 − Zi

)
∇�

(
yi
⟨
u
d
, xi

⟩)
yi𝛷

(
xi

)]
,

ṽt = Zt∇�
(
yt
⟨
�

d
t−1

, xt

⟩)
yt𝛷̃

(
xt

)
− Zt∇�

(
yt
⟨
u
d
, xt

⟩)
yt𝛷̃

(
xt

)

+
1

m

t∑

i=t−m+1

[
Zi∇�

(
yi
⟨
u
d
, xi

⟩)
yi𝛷̃

(
xi

)]
.

(7)�
d
t
=
�

d
t−1

− �v
d
t

�� + 1
,

(8)�t =
�t−1 − �vt

�� + 1
.
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instance 
(
xt, yt

)
 , a transformer oracle (see Sect. 3.6) is invoked to decide if this instance 

stays in the original (i.e., Zt = 0 ) or random feature space (i.e., Zt = 1 ). Subsequently, we 
compute two dual vectors vd

t
 and �d

t
 using Eqs. (6, 7) respectively. After every n consecu-

tive iterations in (r − 1)n + 1,… , rn , termed as an updating period, we recompute two vec-
tors ud in the dual space and u (for analysis only) in the original feature space by averaging 
of n consecutive models �d

t
(s) and �t(s) as in lines 8 and 9. In addition, in the end of the 

updating periods, we also update �d
t
 and �t (for analysis only) as in lines 10, 11.

3.4 � The role of memory and comparison to full SVRG

If we apply the full SVRG strategy to the kernel online problem, we need to compute vfull
t

 
as

and then rely on vfull
t

 to compute �full
t

 as in Eq. (8) but substituting vt by vfull
t

 . However, 
this involves all data instances/labels 

[(
xi, yi

)]t
1
 , hence infeasible for the online learning for 

which we require instant and immediate update without any revisiting the entire dataset.
Our workaround is to use a memory M =

[(
xi, yi

)]t
t−m+1

 to store a snapshot of the most 
recent m data instances/labels. The computation in Eq. (6) becomes infeasible because it 
only uses a snapshot of the most recent m data instances/labels. Additionally, in our experi-
ments, though we only set m = 100 (i.e., a tiny memory), our proposed methods achieve 
very good performance. We note that at very first rounds, when the system has not received 
sufficiently m data instances/labels, we use up all existing data instances for the memory 
M and the formula is modified accordingly.

The formulas to update vd
t
 and �d

t
 are quite complex due to the involvement of the dual 

space. However, they are derived in such a way that vd
t
 in Eq. (6) is a replicate in the dual 

space of vt in the original feature space, which in turn is an approximation of vfull
t

 . By these 

(9)

v
full
t

=∇�
(
yt�

�

t−1
�

(
xt

))
yt�

(
xt

)
− ∇�

(
ytu

�
�

(
xt

))
yt�

(
xt

)

+
1

t

t∑

i=1

∇�
(
yi
(
u
d
)�
�

(
xi

))
yi�

(
xi

)
,

Fig. 1   The overall framework of our DualSVRG approach. When an incoming data instance 
(
xt , yt)

)
 arrives, 

a transformer oracle is invoked to decide if we move this data instance to the random feature space (i.e., 
Zt = 1 ) or the original feature space (i.e., Zt = 0 ). We then update �d

t
 and ud for the next round. The dual 

checkpoint model ud ∶= 1

n

∑t

i=t−n+1
�

d
i
 is updated after every n iterations
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means, we can develop our theory in sequel to show that the gap between our current 
model and the optimal one is proportional to 1

m
 , which decreases rapidly when using more 

memory.
Finally, similar to SVRG, we always maintain a dual checkpoint model 

u
d =

1

n

∑t

i=t−n+1
�

d
i
 which is used to compute vd

t
 . The dual checkpoint model ud is updated 

after every n iterations. In our experiments, we set the updating period n = 100 and con-
duct the ablation study on the influence of the updating period n to the performance.

Algorithm 1 The pseudocode of the proposed method. We note that lines 9 and
11 are only used for theoretical analysis.
Input: λ, K (·, ·) , m, n
Output: wd

T

1: wd
0 = 0; ud = 0; u = 0

2: for t = 1 to T do
3: Receive (xt, yt) ∼ PX×Y
4: Invoke a transformer oracle to find Zt ∈{0;1}
5: Compute vd

t as in Eq. (6)
6: Compute wd

t as in Eq. (7)
7: if t mod n == 0 then
8: ud = 1

n

∑t
i=t−n+1 w

d
i

9: u = 1
n

∑t
i=t−n+1 wi //analysis

10: wd
t = ud

11: wt = u //analysis
12: end if
13: end for

3.5 � Convergence analysis

In what follows we present the convergence analysis for our proposed method. This rig-
orous analysis shows that our proposed method enjoys the �-approximate linear conver-
gence rate, hence converging rapidly to its global minima. Without loss of generality, we 
assume that the kernel function K(⋅, ⋅) is symmetric, shift-invariant, positive semi-definite, 
and ‖�(x)‖ = K(x, x)1∕2 = 1 for every x . We further assume that the convex loss function 
𝓁(⋅) is L-Lipschitz and M- strongly smooth. Finally, we also denote �∗ = argmin

�
J(�) and 

ur to be the vector u at the r-th updating period (i.e., ur = �rn ). All proofs of convergence 
analysis can be found in the supplementary material.1.

Our aim is to prove that DualSVRG achieves the �-approximate linear convergence rate 
and can rapidly converge to the true optimal solution �∗ . The pathway of our proof is as 
follows:

•	 We define ft(x) = ��

t
�(x) , f d

t
(x) =

⟨
�d

t
, x
⟩
 , and in Theorem  1, we prove that given 

𝜀 > 0 with a high probability, we have ||ft(x) − f d
t
(x)|| < 𝜀 for every t and x ∈ X  or 

equivalently ‖‖ft − f d
t
‖‖ = supx∈X

||ft(x) − f d
t
(x)|| < 𝜀 in the function space.

1  https://​app.​box.​com/s/​t5gww​u4qcr​l0knq​99lik​a74yf​2jx12​mr

https://app.box.com/s/t5gwwu4qcrl0knq99lika74yf2jx12mr
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•	 Theorem 2 and Corollary 1 show the �−approximate linear convergence rate (cf. Defi-
nition 1) of our DualSVRG where the gap, which is O

(
1

m

)
 , reduces rapidly to 0. This 

also implies that �rn = ur converges rapidly to �∗ when r approaches +∞.

In particular, Theorem 1 shows that the decision function f d
t
(⋅) induced by �d

t
 is a tight 

approximation of the decision function ft(⋅) induced by �t in function space, followed 
by Theorem 2, which respectively point out that the proposed DualSVRG achieves the �
-approximate linear convergence rate. It is worth noting that in Theorem  2 , the gap 
2(6L2+12M)�

m(1−�)
 can plunge rapidly when increasing m. We empirically found that m = 100 

works satisfactorily for real datasets.

Theorem 1  Given 𝜀 > 0 , with a probability at least 1 − � = 1 − 28
(

3�Ld
��

)2
exp

(
−

D�
2
�
2

36(d+2)L2

)
 , 

where dX is the diameter of the data domain X  , L is a constant, � is defined as �
[
���

]
 , and 

D and d are the dimensions of the random feature space and the data space, we have the 
following inequalities

(1) ||ft(x) − f d
t
(x)|| < 𝜀 for every t and x ∈ X .

(2) Assume that �t has the representation �t =
∑t

i=1
�i�

�
xi

�
 , we then have for every x

(3) |||u
�
𝛷(x) −

⟨
u
d, x

⟩||| < 𝜀 for every t and x ∈ X .

Theorem  2  Assume that m ≥ 2, 𝜂 <
𝛽

(13+12𝛽)M
, n ≥ max

{
1

��(1−�)(1−12M�)
, 13

}
 for some 

0 < 𝛽 < 1 , and 𝜀 <
1

m
 , with a probability at least 1 − � , we then have:

where 𝜌 =
13M𝜂

(𝜂𝜆+1)(1−12𝜂M)
+

1

n𝜆𝜂(1−12𝜂M)
< 1.

Here we note that from 𝜂 <
𝛽

(13+12𝛽)M
, n ≥ 1

𝜂𝜆(1−𝛽)(1−12M𝜂)
 , we arrive

hence 𝜌 =
13M𝜂

(𝜂𝜆+1)(1−12𝜂M)
+

1

n𝜆𝜂(1−12𝜂M)
< 𝛽 + 1 − 𝛽 = 1.

𝔼

[|||�
�

t
𝛷(x) −

⟨
�

d
t
, x
⟩|||
]
<

𝜆𝜀

3L

t∑

i=1

ℙ
(
Zi = 1

)1∕2
𝔼
[
𝛼
2
i

]1∕2
.

�
[
J
(
�rn

)]
− J(�∗) < 𝜌

r

[
J(�) − J(�∗) −

2
(
6L2 + 12Mm2

𝜀
2
)
𝜂

m(1 − 𝜌)

]
+

2
(
6L2 + 12M

)
𝜂

m(1 − 𝜌)
,

13M𝜂

(1 + 𝜂𝜆)(1 − 12M𝜂)
<

13M𝜂

1 − 12M𝜂

< 𝛽,

1

n𝜆𝜂(1 − 12M𝜂)
< 1 − 𝛽,
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Corollary 1  Assume that

for some 0 < 𝛽 < 1 , and 𝜀 <
1

m
 , with a probability at least 1 − � , we then have:

where 𝜌 =
13M𝜂

(𝜂𝜆+1)(1−12𝜂M)
+

1

n𝜆𝜂(1−12𝜂M)
< 1.

3.6 � The transformer oracles

In what follows we present three transformer oracles which decide whether an incoming data 
instance 

(
xt, yt

)
 stays in the original (i.e., Zt = 0 ) or random (i.e., Zt = 1 ) feature space. We define 

I ⊂ {1, 2, ..., t} as the set of indices i whose element xi is stored in the original feature space and 
Ĩ = {1, 2, ..., t}�I as the set of indices i whose element xi is stored in the random feature space. 
We note that the model size of our DualSVRG is defined as the cardinality of I denoted by |I|.

3.6.1 � Budget oracle

We employ a predefined budget B. When an incoming data instance 
(
xt, yt

)
 arrives, it is 

first added to the original feature space and then if the model size exceeds the budget B, 
this data instance will be moved to the random feature space. The pseudocode of this ora-
cle is presented in Algorithm 2.

Algorithm 2 The budget oracle.
Input: I, Ĩ, (xt, yt) , B
Output: Zt ∈{0; 1}
1: Zt = 0; I = I ∪{t}
2: if |I| > B then
3: Zt = 1; Ĩ = Ĩ ∪{t}
4: I = I\{t}
5: end if

3.6.2 � Always‑move oracle

It is the simplest oracle, where we always move incoming instance 
(
xt, yt

)
 to the random 

feature space (i.e., always set Zt = 1 ). The pseudocode of the always-move oracle is pre-
sented in Algorithm 3. The model size of our DualSVRG using this transformer oracle is 0.

m ≥ 2, 𝜂 < min

{
𝛽

(13 + 12𝛽)M
,

𝜀m(1 − 𝜌)

2
(
6L2 + 12M

)

}
,

n ≥ max

{
1

𝜂𝜆(1 − 𝛽)(1 − 12M𝜂)
, 13

}
,

�
[
J
(
�rn

)]
− J(�∗) < 𝜌

r

[
J(�) − J(�∗)

−
2
(
6L2 + 12Mm2

𝜀
2
)
𝜂

m(1 − 𝜌)

]
+ 𝜀,
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Algorithm 3 The always-move oracle.
Input: I, Ĩ, (xt, yt)
Output: Zt ∈{0; 1}
1: Zt = 1; Ĩ = Ĩ ∪{t}

Algorithm 4 The coverage oracle.
Input: I, Ĩ, (xt, yt) , θ
Output: Zt ∈{0; 1}
1: d (xt, C) = minx∈C ‖xt − x‖
2: if d (xt, C) ≤ θ then
3: Zt = 1
4: Ĩ = Ĩ ∪{t}
5: else
6: Zt = 0
7: I = I ∪{t}
8: C = C ∪{xt}
9: end if

3.6.3 � Coverage oracle

We maintain a core set C ⊂

{
x1, ..., xt−1

}
 . When an incoming data instance 

(
xt, yt

)
 arrives, 

we compute the distance from xt to C , which is defined as d
(
xt, C

)
= min

x∈C
‖‖xt − x

‖‖ . If 
this distance is less than a predefined threshold � , we keep 

(
xt, yt

)
 in the original feature 

space and add xt to the core set. Otherwise, we move 
(
xt, yt

)
 to the random feature space. 

The pseudocode of the coverage oracle is presented in Algorithm  4. The model size of 
our DualSVRG with this transformer oracle is bounded by N(X, �∕2) , which is the cov-
ering number of the compact set X  w.r.t the radius �∕2 (Shalev-Shwartz and Ben-David 
2014). Assuming that the data domain X  is a compact set, the model size of the proposed 
DualSVRG with the coverage oracle cannot exceed N(X, �∕2) , which is the covering num-
ber of the compact set X  w.r.t the radius �∕2 . When increasing the budget size B in the 
budget oracle and the approximation threshold � in the coverage oracle, we also increase 
the probability of performing the budget maintenance (i.e., ℙ

(
Zt = 1

)
 ). Referring to Theo-

rem  1 ii, this also rises the gap between the approximation and true decision functions, 
hence might reduce the predictive performance. In addition, by making some conditions 
to simplify the data distribution ℙX , we can further bound ℙ

(
Zt = 1

)
 and gain theoretical 

results involving B, � . We leave this theoretical development to future work.

4 � Experiments

In this section, we conduct comprehensive experiments to quantitatively evaluate the 
capacity and scalability of our proposed DualSVRG(s) on classification task under two dif-
ferent settings:

•	 Batch classification2 the regular binary and multi-class classification tasks that follow a 
standard setup, wherein each dataset is partitioned into training set and testing set. The 

2  This setting is also known as offline classification.
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models are trained on the training part, and tested on the testing part; the testing error 
rate and training time are reported.

•	 Online classification the binary and multi-class classification tasks that follow a purely 
online learning setup, wherein there is no division of training and testing sets as in batch 
setting. The algorithms sequentially receive and process a single data instance turn-by-
turn. When an individual data instance arrives, the models perform prediction to com-
pute the mistake rate first, then use this data instance to update the models; the accu-
mulated mistake rate and execution time are reported. Specifically, the mistake rate can 
be viewed as the online predictive performance for which we require a current model 
to predict an incoming data instance first before using this incoming data instance to 
update the current model. As a result, a lower mistake rate means an online learning 
method can adapt better and generalize more efficiently to future data instances.

We use 4 datasets which are w8a, cod-rna, covtype, and airlines. The datasets where 
purposely are selected with various sizes in order to clearly expose the differences among 
scalable capabilities of the models (w8a: 64,700; cod-rna: 331,152; covtype: 581,012 and 
airlines: 5,929,413). These datasets can be downloaded from LIBSVM and UCI websites, 
except the airlines which was obtained from American Statistical Association (ASA3). 
For the airlines dataset, our aim is to predict whether a flight will be delayed or not under 
binary classification setting. A flight is considered delayed if its delay time is above 15 
minutes, and non-delayed otherwise. Following the procedure in (Hensman et  al. 2013), 
we extract 8 features for flights in the year of 2008, and then normalize them into the range 
[0,1].

In batch classification experiments, we follow the original divisions of training and test-
ing sets in LIBSVM and UCI sites wherever available. For covtype and airlines datasets, 
we split the data into 90% for training and 10% for testing. In online classification task, we 

Table 1   Classification performance of ours and the baselines in the batch mode

The error (%) and training time (second). The best and runner-up performance are in bold and italic-bold 
respectively

Dataset w8a Cod-rna Covtype Airlines

Algorithm Error Time Error Time Error Time Error Time

LIBSVM 0.94 51 3.61 115 – – – –
LLSVM 1.36 92 5.84 20 – – – –
BSGD-M 1.83 ± 0.07 265 4.33 ± 0.21 91 27.74 ± 0.16 2413 – –
BSGD-R 2.90 ± 0.04 253 33.17 ± 0.11 19 38.91 ± 1.69 419 19.73 ± 0.06 4741
FOGD 2.08 ± 0.38 32 7.35 ± 4.20 8 40.66 ± 5.85 70 19.63 ± 0.21 1086
NOGD 1.94 ± 0.18 375 8.17 ± 3.35 10 31.80 ± 2.96 679 25.17 ± 0.20 3112
DualSGD-Hinge 3.44 ± 0.17 34 29.15 ± 0.02 19 30.54 ± 0.54 375 23.13 ± 0.00 1696
DualSVRG-H-B 1.36 ± 0.13 150 6.30 ± 1.17 87 26.73 ± 1.55 2144 19.28 ± 0.05 3583
DualSVRG-H-C 1.35 ± 0.09 127 6.61 ± 0.85 83 26.50 ± 1.61 1724 19.25 ± 0.02 4019
DualSVRG-H-AM 1.29 ± 0.01 109 5.98 ± 1.53 74 26.15 ± 0.44 1737 19.28 ± 0.04 4517
DualSVRG-L-B 2.24 ± 1.66 158 6.20 ± 0.79 86 27.61 ± 0.64 2127 19.28 ± 0.06 3447
DualSVRG-L-C 2.27 ± 1.75 127 7.13 ± 0.91 79 26.14 ± 1.31 1788 19.26 ± 0.04 3594
DualSVRG-L-AM 1.71 ± 0.47 112 5.77 ± 0.27 104 26.59 ± 1.64 1855 19.28 ± 0.07 4447
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either use the entire datasets or concatenate training and testing parts into one. The online 
learning algorithms are then trained in a single pass through the data. In both batch and 
online settings, for each dataset, the models perform 10 runs on different random permuta-
tions of the training data samples. Their prediction results and time costs are then reported 
by taking the average with the standard deviation of the results over these runs. We create 
six variants of our DualSVRG by combining two loss functions with three stochastic ora-
cles. In particular, in the abbreviations of variants in Tables 1 and 2, H and L stand for �
-smooth Hinge (Shalev-Shwartz and Zhang 2013) and Logistic losses respectively, whilst 
B, C, and AM stands for the budget, coverage, and always-move oracles respectively.

For comparison, we employ some baseline methods whose C++, Python implementa-
tions with Matlab interfaces are published as a part of LIBSVM, BudgetedSVM3 LSOKL4 
toolboxes, and DualSGD GitHub5. Our DualSVRG is implemented using Python and can 
be found here6. Throughout the experiments, we utilize RBF kernel, i.e., 
K
�
x, x�

�
= exp

�
−�‖x − x

�‖2
�
 for all algorithms including ours. All experiments are con-

Table 2   Classification performance of our proposed methods and baselines in the online mode

Here � , B, B̂, D, D̂ are identical to the batch classification task. The mistake rate (%) and execution time 
(second)
The best and runner-up performance are in bold and italic-bold respectively

Dataset w8a cod-rna covtype Airlines

Algorithm Mistake rate Time Mistake rate Time Mistake rate Time Mistake rate Time

Perceptron 3.51 ± 0.03 691 9.79 ± 0.04 1394 – – – –
OGD 2.54 ± 0.03 1290 7.81 ± 0.03 2804 – – – –
RBP 4.02 ± 0.07 545 26.02 ± 0.39 86 – – – –
Forgetron 3.96 ± 0.10 558 28.56 ± 2.22 103 – – – –
Projectron 4.76 ± 1.13 572 11.16 ± 3.61 97 – – – –
Projectron++ 3.08 ± 0.63 1322 17.97 ± 15.60 1780 – – – –
BOGD 3.16 ± 0.08 589 38.13 ± 0.11 105 – – – –
FOGD 3.52 ± 0.05 26 7.15 ± 0.03 53 40.45 ± 0.05 223 20.98 ± 0.01 1271
NOGD 2.55 ± 0.05 585 7.83 ± 0.06 105 34.72 ± 0.07 838 25.56 ± 0.01 3554
DualSGD-Hinge 2.99 ± 0.01 32 4.92 ± 0.25 98 49.64 ± 0.50 222 19.28 ± 0.00 1113
DualSVRG-H-B 2.99 ± 0.00 93 7.72 ± 0.14 274 23.08 ± 0.35 966 19.00 ± 0.09 6102
DualSVRG-H-C 2.50 ± 0.01 82 4.95 ± 0.01 248 22.94 ± 0.31 654 18.96 ± 0.01 4631
DualSVRG-H-

AM
2.43 ± 0.02 69 7.64 ± 0.09 225 22.92 ± 0.39 751 18.91 ± 0.01 4333

DualSVRG-L-B 2.99 ± 0.00 97 5.02 ± 0.18 251 24.67 ± 0.01 820 18.60 ± 0.08 6336
DualSVRG-L-C 2.99 ± 0.00 77 5.06 ± 0.13 229 24.72 ± 0.20 666 18.65 ± 0.02 4605
DualSVRG-L-

AM
2.99 ± 0.00 60 5.01 ± 0.18 253 24.73 ± 0.20 654 18.58 ± 0.03 4465

3  http://​www.​dabi.​temple.​edu/​budge​tedsvm/​index.​html.
4  http://​lsokl.​steve​nhoi.​com/.
5  https://​github.​com/​tund/​dsgd.
6  https://​anony​mous.​4open.​scien​ce/r/​8c28b​b53-​f223-​4c39-​8c83-​04806​e5ca8​cd/.

http://www.dabi.temple.edu/budgetedsvm/index.html
http://lsokl.stevenhoi.com/
https://github.com/tund/dsgd
https://anonymous.4open.science/r/8c28bb53-f223-4c39-8c83-04806e5ca8cd/


1012	 Machine Learning (2022) 111:997–1018

1 3

ducted using a Windows machine with 3.46GHz Xeon processor and 96GB RAM. It is 
worth noting that the LLSVM does not support multi-class classification and we terminate 
all runs exceeding the limit of two hours, therefore some results are unavailable. Note that 
for a fair comparison, we implement DualSGD which bases on the memory to update the 
current model. However, we observe a comparable performance to the original DualSGD, 
whilst the training time is approximately multiplicative by m (e.g., m = 100) due to more 
gradient estimations. We hence do not report these results here.

4.1 � Batch mode

4.1.1 � Baselines for the batch mode

For classification in batch mode, we compare with the following state-of-the-art baselines 
to train kernel SVMs:

•	 LIBSVM one of the most widely-used and state-of-the-art implementations for batch 
kernel SVM solver (Chang and Lin 2011). We use the one-vs-all approach as the 
default setting for the multiclass tasks.

•	 LLSVM low-rank linearization SVM algorithm that approximates kernel SVM optimi-
zation by a linear SVM using low-rank decomposition of the kernel matrix (Zhanget al. 
2012).

•	 BSGD-M budgeted SGD algorithm which extends the Pegasos algorithm (Shalev-
Shwartz et al. 2007) by introducing a merging strategy for support vector budget main-
tenance (Wang et al. 2012).

•	 BSGD-R budgeted SGD algorithm which extends the Pegasos algorithm (Shalev-
Shwartz et al. 2007) by introducing a removal strategy for support vector budget main-
tenance (Wang et al. 2012).

•	 FOGD Fourier online gradient descent algorithm that applies the random Fourier fea-
tures for approximating kernel functions (Lu et al. 2015).

•	 NOGD Nystrom online gradient descent (NOGD) algorithm that applies the Nystrom 
method to approximate large kernel matrices (Lu et al. 2015).

4.1.2 � Hyperparameters setting

There are a number of different hyperparameters for all methods. Each method requires a 
different set of hyperparameters, e.g., the regularization parameters (C in LIBSVM, � in 
Pegasos and DualSVRG ), the learning rates ( � in FOGD and NOGD), the coverage diame-
ter ( � in DualSVRG with the coverage oracle) and the RBF kernel width ( � in all methods). 
Thus, for a fair comparison, these hyperparameters are specified using cross-validation on 
training subset.

In particular, we further partition the training set into 80% for learning and 20% 
 for validation. For large-scale databases, we use only 1% of training set, so that 
 the searching can finish within an acceptable time budget. The hyperparameters  
are varied in certain ranges and selected for the best performance on the validation set. The 
ranges are given as follows: C ∈

{
2−5, 2−3, ..., 215

}
 , � ∈

{
2−4

N
,
2−2

N
, ...,

216

N

}
 , 

� ∈ {16.0, 8.0, 4.0, 2.0, 0.2, 0.02, 0.002, 0.0002} , and � ∈
{
2−8, 2−4, 2−2, 20, 22, 24, 28

}
 , 
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where N is the number of data points. For the budget size B in NOGD and budgeted algo-
rithms, and the feature dimension D in FOGD for each dataset, we use identical values to 
those used in Lu et al. (2015) (cf. Table 3). The budget size B̂ and the feature dimension D̂ 
of DualSGD and DualSVRG(s) are identical with those in Le et al. (2016) (cf. Table 3). 
The learning rate � of DualSVRG(s) is set to 1

76M
 (cf. Theorem  2 with � = 0.5 ). For 

DualSVRG(s), the parameters m and n are set to 100 and 100 respectively, the parameter � 
in � - smooth Hinge loss is set to 0.5.

4.1.3 � Experimental results

The experimental results in the batch mode (cf. Table 1) show that with respect to predic-
tive performance our proposed DualSVRG(s) are comparable with LIBSVM and almost 
outperform other baselines. Regarding the training time, our DualSVRG(s) are slower 
than FOGD, NOGD, and DualSGD-Hinge because of their additional computations in 
approximating full gradient and periodically updating ud . However, our DualSVRG(s) 
are still scalable with large-scale datasets. Overall, LIBSVM outperforms others for the 
batch setting, but LIBSVM is not scalable for large scale datasets in terms of training time 
and memory consumption because it solves a quadratic programming problem requiring 
to store a kernel matrix in the main memory. Although our proposed methods are only 
slightly superior or comparable with other baselines on the batch setting, for the online set-
ting (i.e., the main setting in this paper as shown in Table 2), the snapshot memory really 
benefits in capturing correlation of data instances in it and allows us to estimate gradients 
more precisely. As a result, our proposed methods significantly outperform the baselines in 
the online setting.

4.2 � Online mode

4.2.1 � Baselines for the online mode

We employ the two widely-used algorithms – Perceptron and OGD for regular online ker-
nel classification without budget maintenance and 8 state-of-the-art budget online kernel 
learning methods as follows:

Table 3  
[
𝜃 ∣ B̂ ∣ B ∣ D̂ |D| S

]
 denotes diameter � in coverage oracle, budget size B̂ of DualSGD and ours 

with budget oracle, budget size B of other bugeted algorithm, number of random features D̂ of DualSGD 
and ours, number of random features D of FOGD, and model size S 

Dataset w8 cod-rna Covtype Airlines

� 13.0 1.0 3.0 1.0

B̂ 100 100 100 100
B 1000 400 400 1000
D̂ 200 200 200 200
D 4000 1600 1600 4000
S 131 436 400 388
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•	 Perceptron the kernelized variant without budget of Perceptron algorithm (Freund and 
Schapire 1999).

•	 OGD the kernelized variant without budget of online gradient descent (Kivinen et al. 
2004).

•	 RBP a budgeted Perceptron algorithm using random support vector removal strategy 
(Cavallanti et al. 2007).

•	 Forgetron a kernel-based Perceptron maintaining a fixed budget by discarding oldest 
support vectors (Dekel et al. 2005).

•	 Projectron a Projectron algorithm using the projection strategy (Orabona et al. 2009).
•	 Projectron++ the aggressive version of Projectron algorithm (Orabona et al. 2009).
•	 BOGD a budgeted variant of online gradient descent algorithm using simple SV 

removal strategy (Zhao er al. 2012).
•	 FOGD and NOGD described in Sect. 4.1.

4.2.2 � Hyperparameters setting

For each method learning on each dataset, we follow the same hyperparameter setting in 
the batch classification task.

4.2.3 � Experimental results

The experimental results in the online mode (cf. Table  2) show that our proposed 
DualSVRG(s) achieve superior predictive performance over its rivals except for the cod-
rna dataset. The training times of our DualSVRG(s) are slightly higher than those of 
FOGD, NOGD, and DualSGD-Hinge. However, it is arguably not a matter for the online 
learning problem because the time amount which our methods take to process each data 
instance (i.e., reported time divides by number of data instances processed, for instance, 
≈

6.000

5,929,413
≈ 10−4 seconds/data instance for the airlines dataset)) is negligible. Comparing 

among the variants, DualSVRG-H-C with the hinge loss and coverage oracle works overall 
better than others and is a good choice in practice.

Another observation from Table 2 is that our proposed methods show more significant 
improvements with large scale datasets (e.g., the covtype and airlines datasets). This can 
be partly explained as the snapshot memory can capture better correlation among data 
instances stored in it, which benefits for large scale datasets because this helps to reduce 
catastrophic forgetting more likely and seriously happening for long-term data streams.

4.3 � Ablation study

4.3.1 � Convergence rate

We now turn to empirically prove that our DualSVRG converges more rapidly than 
DualSGD, hence yielding lower objective value– the average of losses at data points pro-
cessed so far. We choose to investigate this convergence behavior on the w8a and cod-
rna datasets by training and computing the objective value for the same parameter set (
𝜆, 𝛾 , B̂, D̂

)
 . As can be observed from Fig. 2, the same pattern appears for two experimental 

datasets, that is, the plot of DualSGD-Hinge highly fluctuates and ends with a high value, 
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whilst ours rapidly and stably converges to the optimal value. This empirically confirms the 
better convergence rate of our DualSVRG in comparison with DualSGD.

4.3.2 � Model behaviors when varying m and n

In this section, we inspect the model behaviors when varying m and n. To this end, we 
choose to do experiments on the w8a and cod-rna datasets. In the first experiment, we 
vary m to observe the variation of both accuracy and training time (cf. Fig. 3). As can be 
seen from Fig. 3, the same pattern repeats for both w8a and cod-rna datasets, that is, the 
accuracy slightly fluctuates, whilst the training time almost linearly grows. It can be rea-
soned from our developed theory as follows. Because of the O

(
1

m

)
 gap in Theorem 2 

which rapidly decreases to 0, the value of m does not significantly influence in the pre-
dictive performance. In contrast, the value of m does significantly impact on the training 
time due to the requirement of averaging of m component gradients (i.e., gradients at m 
recent data points) in Eq. (6). In practice, we suggest to set m to 100.

In the second experiment, we vary n to observe the variation of both accuracy and 
training time. From Fig. 4, we conclude that the increase of n does slightly impact on 

Fig. 2   The convergence rates of DualSVRG-H-B and DualSGD-Hinge on the w8a (left) and cod-rna (right) 
datasets

Fig. 3   The variation of accuracy and training time when varying m on w8a (left) and cod-rna (right) data-
sets
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the predictive performance, whilst fairly reducing the training time. The reason is that 
the increase of n reduces the frequency of re-updating ud (cf. line 10 of Algorithm 1). In 
contrast, the increase of n leads to a consumption of more main memory using to store 
the previous models �t−n+1,… ,�t . Furthermore, according to our theory, a larger value 
for n leads to a smaller value for � , hence resulting in a faster convergence. Therefore, in 
practice we recommend to set n as large as possible depending on the available memory 
of learning system. In addition, we empirically found that n = 100 works well for real 
datasets.

5 � Conclusion, limitation, and future work

In this paper, we have proposed the Dual Space Stochastic Variance-reduced Gradi-
ent Descent for Kernel Online Learning(DualSVRG ), which obtains the �-approximate 
linear convergence rate and avoids the curse of kernelization. The proposed method is 
developed relying on the spirit of the variance reduction technique and the idea of dual 
space. Furthermore, we have also proposed three stochastic oracles that efficiently gov-
ern how to store model in a dual space. We have conducted extensive experiments on 
bench-marked datasets in both batch and online modes. The experimental results have 
shown that our proposed DualSVRG has achieved superior predictive performance due 
to its ability in rapidly and accurately solving its optimization problem, whilst spending 
comparable training time in comparison with its rivals.

Our work has some limitation from the practical aspect and some left questions to 
answer from the theoretical aspect, which open rooms for future advancements. First, 
although the time to process one data instance is tolerable, the total training time is gen-
erally higher than the baselines. This hints a question to answer in future work: how to 
approximate relevant gradients more rapidly, while maintaining the approximation pre-
cision. From the theoretical perspective, the question regarding the expected variance of 
gradient approximation is still left unanswered. Additionally, the influence of increasing 
the budget size B in the budget oracle and the approximation threshold � in the cover-
age oracle to the gap between the approximation and true decision functions needs to be 
addressed more rigorously.

Fig. 4   The variation of accuracy and training time when varying n on the w8a (left) and cod-rna (right) 
datasets
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