
Vol.:(0123456789)

Machine Learning (2022) 111:1259–1301
https://doi.org/10.1007/s10994-021-06086-4

1 3

Handling epistemic and aleatory uncertainties
in probabilistic circuits

Federico Cerutti1,2 · Lance M. Kaplan3 · Angelika Kimmig4,5 · Murat Şensoy6,7

Received: 15 May 2020 / Revised: 27 March 2021 / Accepted: 27 September 2021 /
Published online: 10 January 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
When collaborating with an AI system, we need to assess when to trust its recommenda-
tions. If we mistakenly trust it in regions where it is likely to err, catastrophic failures may
occur, hence the need for Bayesian approaches for probabilistic reasoning in order to deter-
mine the confidence (or epistemic uncertainty) in the probabilities in light of the training
data. We propose an approach to Bayesian inference of posterior distributions that over-
comes the independence assumption behind most of the approaches dealing with a large
class of probabilistic reasoning that includes Bayesian networks as well as several instances
of probabilistic logic. We provide an algorithm for Bayesian inference of posterior distribu-
tions from sparse, albeit complete, observations, and for deriving inferences and their con-
fidences keeping track of the dependencies between variables when they are manipulated
within the unifying computational formalism provided by probabilistic circuits. Each leaf
of such circuits is labelled with a beta-distributed random variable that provides us with an
elegant framework for representing uncertain probabilities. We achieve better estimation of
epistemic uncertainty than state-of-the-art approaches, including highly engineered ones,
while being able to handle general circuits and with just a modest increase in the computa-
tional effort compared to using point probabilities.

Keywords Bayesian learning · Probabilistic circuit · Imprecise probabilities

1 Introduction

Even in simple collaboration scenarios—like those in which an artificial intelligence (AI)
system assists a human operator with predictions—the success of the team hinges on the
human correctly deciding when to follow the recommendations of the AI system and when
to override them (Bansal et al., 2019b). When that happens, the human has developed
insights (i.e., a mental model) of when to trust the AI system with its recommendations

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Ute Schmid, Jay Pujara.

 * Federico Cerutti
 federico.cerutti@unibs.it

Extended author information available on the last page of the article

http://orcid.org/0000-0003-0755-0358
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06086-4&domain=pdf

1260 Machine Learning (2022) 111:1259–1301

1 3

(Bansal et al., 2019b). If the human mistakenly trusts the AI system in regions where it is
likely to err, catastrophic failures may occur. This is a strong argument in favour of Bayes-
ian approaches to probabilistic reasoning: research in the intersection of AI and HCI has
found that interaction improves when setting expectations right about what the system can
do and how well it performs (Kocielnik et al., 2019; Bansal et al., 2019a). Guidelines have
been produced (Amershi et al., 2019), and they recommend to Make clear what the system
can do (G1), and Make clear how well the system can do what it can do (G2).

To identify such regions where the AI system is likely to err, we need to distinguish
between (at least) two different sources of uncertainty: aleatory (or aleatoric), and epis-
temic uncertainty (Hora, 1996; Hüllermeier and Waegeman, 2019). Aleatory uncertainty
refers to the variability in the outcome of an experiment which is due to inherently random
effects (e.g. flipping a fair coin): no additional source of information but Laplace’s dae-
mon1 can reduce such a variability. Epistemic uncertainty refers to the epistemic state of
the agent using the model, hence its lack of knowledge that—in principle—can be reduced
on the basis of additional data samples. Particularly when considering sparse data, the
epistemic uncertainty around the learnt model can significantly affect decision making
(Antonucci et al., 2014; Anderson et al., 2016), for instance when used for computing an
expected utility (Von Neumann and Morgenstern, 2007).

In this paper, we propose an approach to probabilistic reasoning that manipulates joint
distributions of probabilities without assuming independence between the single random
variables (i.e. their covariances may not be zero), and without resorting to sampling. We
operate within the unifying computational formalism provided by arithmetic circuits (von
zur Gathen, 1988), sometimes named probabilistic circuits when manipulating probabili-
ties, or simply circuits. This is clearly a novel contribution as the few approaches (Rashwan
et al., 2016; Jaini et al., 2016; Cerutti et al., 2019) resorting to distribution estimation via
moment matching, the very same technique we also use in this work, still assume inde-
pendence between the random variables when computing their joint distribution using a
probabilistic circuit. Instead, we provide an algorithm for Bayesian learning from sparse—
albeit complete—observations, and for probabilistic inferences that keep track of the
dependencies between variables when they are manipulated within the circuit. In particu-
lar, we focus on the large class of approaches to probabilistic reasoning that rely upon alge-
braic model counting (AMC) (Kimmig et al., 2017) (Sect. 2.1), which has been proven to
encompass probabilistic inferences under Sato (1995)’s semantics, thus covering not only
Bayesian networks (Sang et al. 2005), but also probabilistic logic programming approaches
such as ProbLog (Fierens et al., 2015), and others as discussed by Cerutti and Thimm
(2019). We can exploit the results of Darwiche and Marquis (2002) (Sect. 2.2) who stud-
ied the succinctness relations between various types of circuits and thus their applicability
to model counting. Their work, indeed, directly refers to set of models of a propositional
logic theory exactly as AMC does. To stress the applicability of this setting, circuit com-
pilation techniques (Darwiche, 2004; Choi and Darwiche, 2013; Oztok and Darwiche,
2015) are behind state-of-the-art algorithms for (1) exact and approximate inference in
discrete probabilistic graphical models (Chavira and Darwiche, 2008; Kisa et al., 2014;
Friedman and den Broeck, 2018); and (2) probabilistic programs (Bellodi and Riguzzi,
2013; Fierens et al., 2015). Also, learning tractable circuits is the current method of choice
for discrete density estimation (Gens and Domingos, 2013; Rooshenas and Lowd, 2014;

1 “An intelligence that, at a given instant, could comprehend all the forces by which nature is animated and
the respective situation of the beings that make it up” (Laplace, 1825, p.2).

1261Machine Learning (2022) 111:1259–1301

1 3

2015; Vergari et al., 2019; Liang et al., 2017). Finally, Xu et al. (2018) also used circuits to
enforce logical constraints on deep neural networks.

In this paper, we label each leaf of the circuit with a beta-distributed random varia-
ble (Sect. 3). The beta distribution is a well-defined theoretical framework that specifies a
distribution of probabilities representing all the possible values of a probability when the
exact value is unknown. In this way, the expected value of a beta-distributed random vari-
able relates to the aleatory uncertainty of the phenomenon, and the variance to the epis-
temic uncertainty: the higher the variance, the less certain the machine is, thus targeting
directly (Amershi et al., 2019, G1 and G2). In previous work (Cerutti et al., 2019) we
provided operators for manipulating beta-distributed random variables under strong inde-
pendence assumptions (Sect. 4). This paper significantly extends and improves our previ-
ous approach by eliminating the independence assumption in manipulating beta-distributed
random variables within a circuit.

Indeed, our main contribution (Sect. 5) is an algorithm for reasoning over a circuit
whose leaves are labelled with beta-distributed random variables, with the additional piece
of information describing which of those are actually independent (Sect. 5.1). This is the
input to an algorithm that shadows the circuit by superimposing a second circuit for com-
puting the probability of a query conditioned on pieces of evidence (Sect. 5.2) in a sin-
gle feed forward. While this at first might seems unnecessary, it is actually essential when
inspecting the main algorithm that evaluates such a shadowed circuit (Sect. 5.3), where a
covariance matrix plays an essential role by keeping track of the dependencies between
random variables while they are manipulated within the circuit. We also include discus-
sions on memory management of the covariance matrix in Sect. 5.4.

We evaluate our approach against a set of competing approaches in an extensive set
of experiments detailed in Sect. 6, comparing against leading approaches to dealing with
uncertain probabilities, notably: (1) Monte Carlo sampling; (2) our previous proposal
(Cerutti et al., 2019) taken as representative of the class of approaches using moment
matching with strong independence assumptions; (3) Subjective Logic (Jøsang, 2016), that
provides an alternative representation of beta distributions as well as a calculus for manipu-
lating them applied already in a variety of domains, e.g. (Jøsang et al., 2006; Moglia et al.,
2012; Sensoy et al., 2018); (4) Subjective Bayesian Network (SBN) on circuits derived
from singly-connected Bayesian networks (Ivanovska et al., 2015; Kaplan & Ivanovska,
2016; Kaplan & Ivanovska, 2018), that already showed higher performance against other
traditional approaches dealing with uncertain probabilities, such as (5) Dempster-Shafer
Theory of Evidence (Dempster, 1968; Smets, 1993), and (6) replacing single probability
values with closed intervals representing the possible range of probability values (Zaffalon
and Fagiuoli, 1998). We achieve better estimation of epistemic uncertainty than state-of-
the-art approaches, including highly engineered ones for a narrow domain such as SBN,
while being able to handle general circuits with just a modest increase in the computational
effort compared to using point probabilities.

2 Background

2.1 Algebraic model counting

Kimmig et al. (2017) introduce the task of algebraic model counting (AMC). AMC gener-
alises weighted model counting (WMC) to the semiring setting and supports various types

1262 Machine Learning (2022) 111:1259–1301

1 3

of labels, including numerical ones as used in WMC, but also sets, polynomials, Boolean
formulae, and many more. The underlying mathematical structure is that of a commutative
semiring.

A semiring is a structure (A,⊕,⊗, e⊕, e⊗) , where addition ⊕ and multiplica-
tion ⊗ are associative binary operations over the set A , ⊕ is commutative, ⊗ distrib-
utes over ⊕ , e⊕ ∈ A is the neutral element of ⊕ , e⊗ ∈ A that of ⊗ , and for all a ∈ A ,
e⊕ ⊗ a = a⊗ e⊕ = e⊕ . In a commutative semiring, ⊗ is commutative as well.

Algebraic model counting is now defined as follows. Given:

– a propositional logic theory T over a set of variables V,
– a commutative semiring (A,⊕,⊗, e⊕, e⊗) , and
– a labelling function � ∶ L → A , mapping literals L of the variables in V to elements of

the semiring set A,

compute

where M(T) denotes the set of models of T.
Among others, AMC generalises the task of probabilistic inference according to Sato

(1995)’s semantics (PROB), (Kimmig et al., 2017, Thm. 1), (Goodman, 1999; Eisner,
2002; Bacchus et al., 2009; Baras and Theodorakopoulos, 2010; Kimmig et al., 2011).

A query q is a finite set of algebraic literals q ⊆ L . We denote the set of interpretations
where the query is true by I(q),

The label of query q is defined2 as the label of I(q),

As both operators are commutative and associative, the label is independent of the order of
both literals and interpretations.

In the context of this paper, we extend AMC for handling PROB of queries with evi-
dence by introducing an additional division operator ⊘ that defines the conditional label of
a query as follows:

where �(I(q ∧ E = e)) ⊘ �(I(E = e)) returns the label of q ∧ E = e given the label of a
set of pieces of evidence E = e.

In the case of probabilities as labels, i.e. �(⋅) ∈ [0, 1] , (5) presents the AMC-condition-
ing parametrisation Sp for handling PROB of (conditioned) queries:

(1)�(T) =
⨁

I∈M(T)

⨂
l∈I

�(l),

(2)I(q) = {I | I ∈ M(T) ∧ q ⊆ I}

(3)�(q) = �(I(q)) =
⨁
I∈I(q)

⨂
l∈I

�(l).

(4)�(q|E = e) = �(I(q ∧ E = e)) ⊘ �(I(E = e))

2 Albeit � has been introduced to operate over propositional logic theories, with a small abuse of notation
we use it also for a finite set of algebraic literals, i.e. query, and a set of interpretations.

1263Machine Learning (2022) 111:1259–1301

1 3

A naïve implementation of (4) is clearly exponential: Darwiche (2004) introduced the
first method for deriving tractable circuits (d-DNNFs) that allow polytime algorithms for
clausal entailment, model counting and enumeration. Also, while for a generic AMC it
is true that �(q) might not be an un-normalised probability distribution, we will see in
the following section that the decomposability and determinism restrictions to the circuits
solve the problem.

2.2 Probabilistic circuits

After defining what AMC is, we turn our attention to how we can compute it. From (1) we
can see that it requires two operations ⊕ and ⊗ whose operands are elements of the com-
mutative semiring A that are associated to literals in a propositional logic theory T. Not
only, but we explicitly need to consider the set of models M(T) of such a propositional
logic theory T to compute the result of AMC.

AMC is thus computed by, informally speaking, multiplying and adding3 labels of prop-
ositions that belong to one of the models M(T) of a propositional theory T: this is a hard
problem. Therefore, the difficulty of AMC does not rely in the addition or multiplication,
rather in computing the models of a theory. To illustrate this, the truth table for just vari-
ables of the form like p ∧ q ∨ r ∧ ¬s leads to 24 rows.

To better manage the hard problem of computing the models M(T) of a propositional
theory T, we can exploit the succinctness results of the knowledge compilation map by
Darwiche and Marquis (2002). The restriction to two-valued variables allows us to directly
compile AMC tasks to circuits without adding constraints on legal variable assignments to
the theory.

In their knowledge compilation map, Darwiche and Marquis (2002) provide an over-
view of succinctness relationships between various types of circuits. Instead of focusing
on classical, flat target compilation languages based on conjunctive or disjunctive normal
forms, Darwiche and Marquis (2002) consider a richer, nested class based on representing
propositional sentences using directed acyclic graphs: NNFs. A sentence in negation nor-
mal form (NNF) over a set of propositional variables V is a rooted, directed acyclic graph
where each leaf node is labeled with true (⊤), false (⊥), or a literal of a variable in V , and
each internal node with disjunction (∨) or conjunction (∧).

An NNF is decomposable if for each conjunction node
⋀n

i=1
�i , no two children �i and �j

share any variable.

(5)

A = ℝ≥0
a ⊕ b = a + b

a ⊗ b = a ⋅ b

e⊕ = 0

e⊗ = 1

𝜌(f) ∈ [0, 1]

𝜌(¬f) = 1 − 𝜌(f)

a ⊘ b =
a

b

3 Formally speaking, AMC is computed by the using ⊗ , the usual multiplication operation in PROB, and
⊕ , the usual addition operation in PROB.

1264 Machine Learning (2022) 111:1259–1301

1 3

An NNF is deterministic if for each disjunction node
⋁n

i=1
�i , each pair of different chil-

dren �i and �j is logically contradictory, that is 𝜙i ∧ 𝜙j ⊧ ⊥ for i ≠ j . In other terms, only
one child can be true at any time.4

The function eval specified in Algorithm 1 evaluates an NNF circuit for a commutative
semiring (A,⊕,⊗, e⊕, e⊗) and labelling function � . Evaluating an NNF representation NT
of a propositional theory T for a semiring (A,⊕,⊗, e⊕, e⊗) and labelling function � is a
sound AMC computation iff eval(NT ,⊕,⊗, e⊕, e⊗, 𝜌) = �(T).

In particular, (Kimmig et al., 2017, Theorem 4) shows that evaluating a d-DNNF rep-
resentation of the propositional theory T for a semiring and labelling function with neu-
tral (⊕, 𝜌) is a sound AMC computation. A semiring addition and labelling function
pair (⊕, 𝜌) is neutral iff ∀v ∈ V ∶ 𝜌(v)⊕ 𝜌(¬v) = e⊗.

Unless specified otherwise, in the following we will refer to d-DNNF circuits labelled
with probabilities or distributions of probability simply as circuits, and any addition and
labelling function pair (⊕, 𝜌) are neutral. Also, we extend the definition of the labelling
function such that it also operates on {⊥,⊤} , i.e. 𝜌(⊥) = e⊕ and 𝜌(⊤) = e⊗.

Let us now introduce a graphical notation for circuits in this paper: Fig. 1 illustrates
a d-DNNF circuit where each node has a unique integer (positive or negative) identifier.
Moreover, circled nodes are labelled either with ⊕ for disjunction (a.k.a. ⊕-gates) or with
⊗ for conjunction (a.k.a. ⊗-gates). Leaves nodes are marked with a squared box and they
are labelled with the literal, ⊤ or ⊥ , as well as its label via the labelling function �.

Unless specified otherwise, in the following we will slightly abuse the notation by defin-
ing an ⋅ operator both for variables and ⊤ , ⊥ , i.e. for x ∈ V ∪ {⊥,⊤},

and for elements of the set A of labels, s.t. �(x) = �(x).

(6)x =

⎧
⎪⎨⎪⎩

¬x if x ∈ V
⊥ if x = ⊤

⊤ if x = ⊥

4 In the case �i and �j are seen as events in a sample space, the determinism can be equivalently rewritten
as �i ∩ �j = � and hence P(�i ∩ �j) = 0.

1265Machine Learning (2022) 111:1259–1301

1 3

Finally, each leaf node i presents an additional parameter �i—i.e. the indicator variable
cf. (Fierens et al. 2015)—that assumes values 0 or 1, which allows one to reuse the same
circuit for different purposes.

In the following, we will make use of a running example based upon the burglary exam-
ple as presented in (Fierens et al., 2015, Example 6). In this way, we hope to better convey
to the reader the value of our approach as the circuit derived from it using (Darwiche,
2004) will have a clear, intuitive meaning behind. However, our approach is independent
from the system that employs circuit compilation for its reasoning process, as long as it can
make use of d-DNNFs circuits. The d-DNNF circuit for our running example is depicted
in Fig. 1 and has been derived by compiling the ProbLog (Fierens et al., 2015) code listed
in Listing 1 (Fierens et al., 2015, Example 6) into a d-DNNF using the methods intro-
duced in (Darwiche, 2004). For compactness, in the graph each literal of the program

1

ρ(a) = 1
λ1 = 1

1

ρ(a) = 1
λ1 = 1

2

ρ(c(j)) = 1
λ2 = 1

2

ρ(c(j)) = 1
λ2 = 0

7

ρ(b) = 0.1
λ7 = 1

7

ρ(b) = 0.1
λ7 = 1

3

ρ(h(j)) = 0.7
λ3 = 1

8

ρ(e) = 0.2
λ8 = 1

3

ρ(h(j)) = 0.7
λ3 = 1

4
⊗

5
⊗

6
⊕

8

ρ(e) = 0.2
λ8 = 1

9
⊗

10
⊕

11
⊗

12
⊕

13
⊗

14
⊗

15
⊕

16
⊗

17
⊕

Fig. 1 Circuit computing p(�����(����)) for the Burglary example (Listing 1). Solid box for query, double
box for evidence

1266 Machine Learning (2022) 111:1259–1301

1 3

is represented only by its initials, i.e. burglary becomes b, hears_alarm(john)
becomes h(j). ProbLog is an approach to augment5 Prolog programs (Kowalski, 1988;
Bratko, 2001) annotating facts6 with probabilities: see Appendix A for an introduction. As
discussed in (Fierens et al., 2015), the Prolog language admits a propositional representa-
tion of its semantics. For the example the propositional representation of Listing 1 is:

Figure 1 thus shows the result of the compilation of (7) in a circuit, annotated with a unique
id that is either a number x or x to indicate the node that represents the negation of the vari-
able represented by node x; and with weights (probabilities) as per Listing 1.

The fact that calls(john) is true (see line 7 of Listing 1) translates in having �2 = 1
for the double boxed node with index 2 in Fig. 1—that indeed is labelled with the short-
hand for calls(john), i.e. c(j)—and �2 = 0 for the double boxed node with index 2
that is instead labelled with the shorthand for �����(����) , i.e. �(�).

The �i indicators modify the execution of the function eval (Alg. 1) in the way illus-
trated by Algorithm 2: note that Algorithm 2 is analogous to Algorithm 1 when all �i = 1 .
Hence, in the following, when considering the function eval, we will be referring to the
one defined in Algorithm 2.

(7)
����� ↔ �������� ∨ ����������

�����(����) ↔ ����� ∧ �����_�����(����)

�����(����)

5 We refer readers interested in probabilistic augmentation of logical theories in general to (Cerutti and
Thimm, 2019).
6 Albeit ProbLog allows for rules to be annotated with probabilities: rules of the form p::h :- b are
translated into h :- b,t with t a new fact of the form p::t.

1267Machine Learning (2022) 111:1259–1301

1 3

Finally, the ProbLog program in Listing 1 queries the value of burglary, hence we
need to compute the probability of burglary given calls(john),

While the denominator of (8) is given by eval of the circuit in Fig. 1, we obtain the numer-
ator p(�������� ∧ �����(����)) by evaluating the same circuit with �

7
= 0 that is the

parameter for the node labelled with �������� (see Fig. 2). eval on the circuit in Fig. 2
will thus return the value of the denominator in (8).

It is worth highlighting that computing p(query ∣ evidences) for an arbirtrary query and
arbirtrary set of evidences requires eval to be executed at least twice on slightly modified
circuits.

In this paper, similarly to (Kisa et al., 2014), we are interested in learning the parameters
of our circuit, i.e. the � function for each of the leaves nodes, or � in the following, thus
representing it as a vector. We will learn � from a set of examples, where each example is
an instantiation of all propositional variables: for n propositional variables, there are 2n of
such instantiations. In the case the circuit is derived from a logic program, an example is a
complete interpretation of all the ground atoms. A complete dataset D is then a sequence
(allowing for repetitions) of examples, each of those is a vector of instantiations of inde-
pendent Bernoulli distributions with true but unknown parameter � . Indeed, in this case,
the dataset is assumed to have been sampled from the joint Bernoulli distribution repre-
sented by a circuit whose parameters are unknown. This, for complete training datasets,
translates into observing independent Bernoulli distributions, one for each (pair) of leaves.
Covariances will be not null only between one leaf and its negation (see Appendix C).

From this, the likelihood is thus:

(8)p(�������� ∣ �����(����)) =
p(�������� ∧ �����(����))

p(�����(����))

(9)p(D ∣ �) =

|D|∏
i=1

p(xi ∣ �)

1268 Machine Learning (2022) 111:1259–1301

1 3

where xi represents the i-th example in the dataset D . Differently, however, from (Kisa
et al., 2014), we do not search for a maximum likelihood solution of this problem, rather
we provide a Bayesian analysis of it in Sect. 3.

The following analysis provides the distribution of the probabilities (second-order prob-
abilities) for each propositional variable. For complete datasets, their joint distributions is
factorised into probabilities on individual variables, meaning that the second-order prob-
abilities for the propositional variables are statistically independent (see Appendix C).
Nevertheless, it is shown that second-order probabilities of a variable and its negation are
correlated because the first-order probabilities (i.e. the expected values of the distribu-
tions) sum up to one. For complete datasets, the covariances at the leaves are only non-zero
between a variable and its negation.

1

ρ(a) = 1
λ1 = 1

1

ρ(a) = 1
λ1 = 1

2

ρ(c(j)) = 1
λ2 = 1

2

ρ(c(j)) = 1
λ2 = 0

7

ρ(b) = 0.1
λ7 = 1

7

ρ(b) = 0.1
λ7 = 0

3

ρ(h(j)) = 0.7
λ3 = 1

8

ρ(e) = 0.2
λ8 = 1

3

ρ(h(j)) = 0.7
λ3 = 1

4
⊗

5
⊗

6
⊕

8

ρ(e) = 0.2
λ8 = 1

9
⊗

10
⊕

11
⊗

12
⊕

13
⊗

14
⊗

15
⊕

16
⊗

17
⊕

Fig. 2 Circuit computing p(�������� ∧ �����(����)) for the Burglary example (Listing 1). Solid box for
query, double box for evidence. White over black for the numeric value that has changed from Fig. 1. In
particular, in this case, �

7
 for the node labelled with �������� is set to 0

1269Machine Learning (2022) 111:1259–1301

1 3

In this paper, we propose an inference process that does not assume independent second
order probabilities. Indeed, when training using incomplete data—i.e. with not all variable
values visible during training—the random variables associated to the leaves of the circuits
are no longer independent, hence they can have non-null covariance. The derivations of
these correlations during the learning process with partial observations is left for future
work. Nevertheless, the proposed inference method can accommodate such correlations
without any modifications.

This seamless integration of covariance information is one of our main contributions,
that separates our approach from the literature on Bayesian approach to learning parameters
in circuits (Jaini et al., 2016; Rashwan et al., 2016; Zhao et al.,2016a; Zhao et al., 2016b;
Trapp et al., 2019; Vergari et al., 2019). In addition, similarly to (Rashwan et al., 2016;
Jaini et al., 2016) we also apply the idea of moment matching instead of using sampling.

3 A Bayesian account of uncertain probabilities

Let us now expand further (9): for simplicity, let us consider here only the case of a single
propositional variable, i.e. a single binary random variable x ∈ {0, 1} , e.g. flipping coin,
not necessary fair, whose probability is thus conditioned by a parameter 0 ≤ � ≤ 1:

The probability distribution over x is known as the Bernoulli distribution:

Given a data set D of i.i.d. observations (x1,… , xN)
T drawn from the Bernoulli with param-

eter � , which is assumed unknown, the likelihood of data given � is:

To develop a Bayesian analysis of the phenomenon, we can choose as prior the beta dis-
tribution, with parameters � = ⟨�x, �x⟩ , 𝛼x≥ 1> 0 and 𝛼x≥ 1> 0 , that is conjugate to the
Bernoulli:

where

is the gamma function.
Given a beta-distributed random variable X,

is its Dirichlet strength and

(10)p(x = 1 ∣ �) = �

(11)Bern(x ∣ �) = �x(1 − �)1−x

(12)p(D ∣ �) =

N∏
n=1

p(xn ∣ �) =

N∏
n=1

�xn (1 − �)1−xn

(13)Beta(� ∣ �) =
� (�x + �x)

� (�x)� (�x)
��x−1(1 − �)�x−1

(14)� (t) ≡ �
∞

0

ut−1e−udu

(15)sX = �x + �x

1270 Machine Learning (2022) 111:1259–1301

1 3

is its expected value. From (15) and (16) the beta parameters can equivalently be written
as:

The variance of a beta-distributed random variable X is

and because X + (1 − X) = 1 , it is easy to see that

From (18) we can rewrite sX (15) as

Considering a beta distribution prior and the binomial likelihood function, and given N
observations of x such that for r observations x = 1 and for s = N − r observations x = 0

Hence p(� ∣ r, s,�0) is another beta distribution such that after normalization via p(D),

We can specify the parameters for the prior we are using for deriving our beta distrib-
uted random variable X as �0 = ⟨aXW, (1 − aX)W⟩ where aX is the prior assumption, i.e.
p(x = 1) in the absence of observations; and W > 0 is a prior weight indicating the strength
of the prior assumption. Unless specified otherwise, in the following we will assume
∀X, aX = 0.5 and W = 2 , so to have an uninformative, uniformly distributed, prior.

The complete dataset D is modelled as samples from independent Bernoulli distribu-
tions. As such, the posterior factors as a product of beta distributions representing the pos-
terior distribution for each fact or rule as in (22) for a single fact (see Appendix C for
further details). This posterior distribution enables the computation of the means and
covariances for the leaves of the circuit, and because it factors, the different variables are
statistically independent leading to zero covariances. Only the leaves associated to a vari-
able and its complement exhibit nonzero covariance via (19). Now, the means and covari-
ances of the leaves can be propagated through the circuit to determine the distribution of
the queried conditional probability as described in Sect. 5.

Given an inference, like the conditioned query of our running example (8), we approxi-
mate its distribution by a beta distribution by finding the corresponding Dirichlet strength
to match the computed variance. Given a random variable Z with known mean �[Z] and
variance var[Z] , we can use the method of moments and (20) to determine the � parameters
of a beta-distributed variable approximation Z′ with mean �[Z�] = �[Z] . To ensure that the

(16)�[X] =
�x
sX

(17)�X = ⟨�[X]sX , (1 − �[X])sX⟩.

(18)var[X] = var[1 − X] =
�[X](1 − �[X])

sX + 1

(19)cov[X, 1 − X] = −var[X].

(20)sX =
�[X](1 − �[X])

var[X]
− 1.

(21)p(� ∣ D,�0) =
p(D ∣ �)p(� ∣ �0)

p(D)
∝ �r+�

0
x
−1(1 − �)s+�

0

x
−1

(22)p(� ∣ r, s,�0) =
� (r + �0

x
+ s + �0

x
)

� (r + �0
x
)� (s + �0

x
)
�r+�

0
x
−1(1 − �)s+�

0

x
−1

1271Machine Learning (2022) 111:1259–1301

1 3

approximated variable can be seen as a posterior beta distribution and thus that its param-
eters can be interpreted as observations pro and against a phenomenon further to a Bayes-
ian update starting with a prior �0,7 we need to impose a restriction on such a Dirichlet
strength to ensure that, for the approximated random variable Z′ , �Z′ ≥ �0:

To summarise, each time we use the method of moments to approximate a random variable
Z with a beta-distributed random variable Z′ such that �[Z�] = �[Z] and var[Z�] ≊ var[Z] .
The approximation of the variance is computed using (18), that bounds together variance
and the Dirichlet strength, and the constraint on the Dirichlet strength added by (23).

3.1 Subjective logic

Subjective logic (Jøsang, 2016) provides (1) an alternative, more intuitive, way of repre-
senting the parameters of beta-distributed random variables, and (2) a set of operators for
manipulating them that we use to compare against our proposal in an empirical evaluation
in Sect. 6. Our proposal, in fact, is inspired by subjective logic, which approximates Bayes-
ian reasoning via a least commitment principle, i.e., matching the expected values, but then
maximising the variance. Contrarily, in our approach not only we match the expected val-
ues but also the variances.

A subjective opinion about a proposition X is a tuple �X = ⟨bX , dX , uX , aX⟩ , representing
the belief, disbelief and uncertainty that X is true at a given instance, and, as above, aX is
the prior probability that X is true in the absence of observations. These values are non-
negative and bX + dX + uX = 1 . The projected probability p(x) = bX + uX ⋅ aX , provides an
estimate of the ground truth probability �.

The mapping from a beta-distributed random variable X with parameters �X = ⟨�x, �x⟩
to a subjective opinion is:

With this transformation, the mean of X is equivalent to the projected probability p(x), and
the Dirichlet strength is inversely proportional to the uncertainty of the opinion:

Conversely, a subjective opinion �X translates directly into a beta-distributed random vari-
able with:

(23)sZ� = max

{
�[Z](1 − �[Z])

var[Z]
− 1,

WaZ

�[Z]
,
W(1 − aZ)

(1 − �[Z])

}
.

(24)�X =

⟨
�x −WaX

sX
,
�x −W(1 − aX)

sX
,
W

sX
, aX

⟩

(25)�[X] = p(x) = bX + uXaX , sX =
W

uX

(26)�X =

⟨
W

uX
bX +WaX ,

W

uX
dX +W(1 − aX)

⟩

7 This is also needed by Subjective Logic (SL) (Jøsang, 2016) discussed in Sect. B, from which this work
was inspired.

1272 Machine Learning (2022) 111:1259–1301

1 3

Subjective logic is a framework that includes various operators to indirectly determine
opinions from various logical operations. In particular, we will make use of ⊞SL , ⊠SL , and

, resp. summing, multiplying, and dividing two subjective opinions as they are defined
in (Jøsang, 2016) (Appendix B). Those operators aim at faithfully matching the projected
probabilities: for instance the multiplication of two subjective opinions 𝜔X ⊠SL 𝜔Y results
in an opinion �Z such that p(z) = p(x) ⋅ p(z).

4 AMC‑conditioning parametrisation with strong independence
assumptions

Building upon our previous work (Cerutti et al., 2019), we allow manipulation of imprecise
probabilities as labels in our circuits. Figure 3 shows an example of the circuits we will be
manipulating, where probabilities from the circuit depicted in Fig. 1 have been replaced by
uncertain probabilities represented as beta-distributed random variables and formalised as
SL opinions, in a shorthand format listing only belief and uncertainty values.

4.1 SL AMC‑conditioning parametrisation with strong independence assumptions

The straightforward approach, we first introduced in (Cerutti et al., 2019), to derive an
AMC-conditioning parametrisation under complete independence assumptions at each step
of the evaluation of the probabilistic circuit using subjective logic, is to use the operators
⊞ , ⊠ , and . This gives rise to the SL AMC-conditioning parametrisation SSL , defined as
follows:

Note that ⟨ASL,⊕SL,⊗SL, e
⊕SL , e⊗SL⟩ does not form a commutative semiring in general.

If we consider only the projected probabilities—i.e. the means of the associated beta

(27)

1273Machine Learning (2022) 111:1259–1301

1 3

distributions—then ⊞ and ⊠ are indeed commutative, associative, and ⊠ distributes over
⊞ . However, the uncertainty of the resulting opinion depends on the order of operands.

4.2 Moment Matching AMC‑conditioning parametrisation with strong
independence assumptions

In (Cerutti et al., 2019) we derived another set of operators operating with moment match-
ing: they aim at maintaining a stronger connection to beta distribution as the result of the
manipulation. Indeed, while SL operators try to faithfully characterise the projected prob-
abilities, they employ an uncertainty maximisation principle to limit the belief commit-
ments, hence they have a looser connection to the beta distribution. Instead, in (Cerutti
et al., 2019) we first represented beta distributions (and thus also SL opinions) not para-
metric in � , but rather parametric on mean and variance. Hence we proposed operators that
manipulate means and variances, and then we transformed them back into beta distribu-
tions by moment matching.

1

ρ(a) = 〈1.00, 0.00〉
λ1 = 1

1

ρ(a) = 〈1.00, 0.00〉
λ1 = 1

2

ρ(c(j)) = 〈1.00, 0.00〉
λ2 = 1

2

ρ(c(j)) = 〈1.00, 0.00〉
λ2 = 0

7

ρ(b) = 〈0.00, 0.20〉
λ7 = 1

7

ρ(b) = 〈0.00, 0.20〉
λ7 = 1

3

ρ(h(j)) = 〈0.68, 0.05〉
λ3 = 1

8

ρ(e) = 〈0.13, 0.13〉
λ8 = 1

3

ρ(h(j)) = 〈0.68, 0.05〉
λ3 = 1

4
⊗

5
⊗

6
⊕

8

ρ(e) = 〈0.13, 0.13〉
λ8 = 1

9
⊗

10
⊕

11
⊗

12
⊕

13
⊗

14
⊗

15
⊕

16
⊗

17
⊕

Fig. 3 Variation on the circuit represented in Fig. 1 with leaves labelled with imprecise probabilities repre-
sented as Subjective Logic opinions, listing only bX and uX : dX = 1 − bX − uX , and aX = 0.5 . Solid box for
query, double box for evidence

1274 Machine Learning (2022) 111:1259–1301

1 3

In (Cerutti et al., 2019) we chose to represent all labels—not only of leaves—as beta
distributions. Since the sum (and in the following the product as well) of two beta ran-
dom variables is not necessarily a beta random variable, we follow (Kaplan and Ivanovska,
2018) and approximate the result as a beta distribution via moment matching on mean and
variance.

Given X and Y independent beta-distributed random variables represented by the subjec-
tive opinion �X and �Y , the sum of X and Y (𝜔X ⊞𝛽 𝜔Y) is defined as the beta-distributed
random variable Z such that:

and

𝜔Z = 𝜔X ⊞𝛽 𝜔Y can then be obtained as discussed in Sect. 3, taking (23) into considera-
tion. The same applies for the following operators as well.

The product operator between two independent beta-distributed random variables X and
Y is then defined as the beta-distributed random variable Z such that �[Z] = �[XY] and
�2
Z
= �2

XY
 . Given X and Y independent beta-distributed random variables represented by the

subjective opinion �X and �Y , the product of X and Y (𝜔X ⊠𝛽 𝜔Y) is defined as the beta-
distributed random variable Z such that:

and

Finally, the conditioning-division operator between two independent beta-distributed ran-
dom variables X and Y, represented by subjective opinions �X and �Y , is the beta-distrib-
uted random variable Z such that �[Z] = �[

X

Y
] and �2

Z
= �2

X

Y

 . Given �X = ⟨bX , dX , uX , aX⟩
and �Y = ⟨bY , dY , uY , aY⟩ subjective opinions such that X and Y are beta-distributed ran-
dom variables, the conditioning-division of X by is defined as the beta-
distributed random variable Z such that:

and8

Similarly to (27), the moment matching AMC-conditioning parametrisation S� is defined
as follows:

(28)�[Z] = �[X + Y] = �[X] + �[Y]

(29)�2
Z
= �2

X+Y
= �2

X
+ �2

Y
.

(30)�[Z] = �[XY] = �[X]�[Y]

(31)�2
Z
= �2

XY
= �2

X
(�[Y])2 + �2

Y
(�[X])2 + �2

X
�2
Y
.

(32)�[Z] = �

[
X

Y

]
= �[X]�

[
1

Y

]
≃

�[X]

�[Y]

(33)�2
Z
≃ (�[Z])2(1 − �[Z])2

(
�2
X

(�[X])2
+

�2
Y
+ �2

X

(�[Y] − �[X])2
+

2�2
X

�[X](�[Y] − �[X])

)

8 Please note that (33) corrects a typo that is present in its version in (Cerutti et al., 2019).

1275Machine Learning (2022) 111:1259–1301

1 3

As per (27), also ⟨A𝛽 ,⊕𝛽 ,⊗𝛽 , e⊕
𝛽
, e⊗

𝛽 ⟩ is not in general a commutative semiring. Means
are correctly matched to projected probabilities, therefore for them S� actually operates
as a semiring. However, for what concerns variance, by using (31) and (29)—thus under
independence assumption—the product is not distributive over addition: var[X(Y + Z)] =

var[X](�[Y] + �[Z])2 + (var[Y] + var[Z])�[X]2 + var[X](var[Y] + var[Z]) ≠ var[X](�[Y]2

+�[Z]2) + (var[Y] + var[Z])�[X]2 + var[X](var[Y] + var[Z]) = var[(XY) + (XZ)].
To illustrate the discrepancy, let’s consider node 6 in Fig. 3: the disjunction operator

there is summing up probabilities that are not statistically independent, despite the inde-
pendence assumption used in developing the operator. Due to the dependencies between
nodes in the circuit, the error grows during propagation, and then the numerator and
denominator in the conditioning operator exhibit strong correlation due to redundant oper-
ators. Therefore, (33) introduces further error leading to an overall inadequate characterisa-
tion of variance. The next section reformulates the operations to account for the existing
correlations.

5 CPB: covariance‑aware probabilistic inference with beta‑distributed
random variables

We now propose an entirely novel approach to the AMC-conditioning problem that con-
siders the covariances between the various distributions we are manipulating. Indeed, our
approach for computing Covariance-aware Probabilistic entailment with beta-distributed
random variables CPB is designed to satisfy the total probability theorem, and in particu-
lar to enforce that for any X and Y beta-disributed random variables,

Algorithm 3 provides an overview of CPB , that comprises three stages: (1) pre-process-
ing; (2) circuit shadowing; and (3) evaluation. In particular, we associate each node in the
circuit with a beta distribution that gives us a distribution of values between 0 and 1 that
can be interpreted as a measure of imprecise probabilities, i.e., a second-order probabil-
ity. The determination of the distributions is through moment matching via the first and
second moments through (18) and (20). Effectively, the collection of nodes are treated as

(34)

(35)var[(Y ⊗ X)⊕ (Y ⊗ X)] = var[Y]

1276 Machine Learning (2022) 111:1259–1301

1 3

multivariate Gaussian characterised by a mean vector and covariance matrix that it com-
puted via the propagation process described below. When analysing the distribution for
particular node (via marginalisation of the Gaussian), it is approximated via the best-fitting
beta distribution through moment-matching.

5.1 Pre‑processing

We assume that the circuit we are receiving has the leaves labelled with unique identi-
fiers of beta-distributed random variables. We also allow for the specification of the
covariance matrix between the beta-distributed random variables, bearing in mind that
cov[X, 1 − X] = −var[X] , cf. (18) and (19). In our running example, we assume the Prob-
Log code from Listing 1 has been transformed into the aProbLog9 code in Listing 2.

We also expect there is a table associating the identifier with the actual value of the beta-
distributed random variable. In the following, we assume that �1 is a reserved indicator
for the Beta(∞, 1.00) (in Subjective Logic term ⟨1.0, 0.0, 0.0, 0.5⟩). For instance, Table 1
provides the associations for code in Listing 2, and Table 2 the covariance matrix for those
beta-distributed random variables that we assume being learnt from complete observations
of independent random variables, and hence the posterior beta-distributed random vari-
ables are also independent (cf. Appendix C).

Table 1 Associative table for the
aProbLog code in Listing 2

Identifier Beta parameters Subjective Logic opinion

�1 Beta(∞, 1) ⟨1.00, 0.00, 0.00, 0.50⟩
�1 Beta(1,∞) ⟨0.00, 1.00, 0.00, 0.50⟩
�2 Beta(2, 18) ⟨0.05, 0.85, 0.10, 0.50⟩
�2 Beta(18, 2) ⟨0.85, 0.05, 0.10, 0.50⟩
�3 Beta(2, 8) ⟨0.10, 0.70, 0.20, 0.50⟩
�3 Beta(8, 2) ⟨0.70, 0.10, 0.20, 0.50⟩
�4 Beta(3.5, 1.5) ⟨0.50, 0.10, 0.40, 0.50⟩
�4 Beta(1.5, 3.5) ⟨0.10, 0.50, 0.40, 0.50⟩

9 aProbLog (Kimmig et al., 2011) is the algebraic version of ProbLog that allows for arbitrary labels to be
used.

1277Machine Learning (2022) 111:1259–1301

1 3

5.2 Circuit shadowing

We then augment the circuit adding shadow nodes to superimpose a second circuit to
enable the possibility to assess, in a single forward pass, both p(query ∧ evidence) and
p(evidence). This can provide a benefit time-wise at the expense of memory, but more
importantly it simplifies the bookkeeping of indexes in the covariance matrix as we will
see below. The pseudocode is provided in Appendix D, Algorithm 5.

Figure 4 depicts the result of such an algorithm applied to our running example. The
algorithm begins by focusing on the node that identifies the negation of the query we want
to evaluate with this circuit, that we mark with QNODE(NA)):10 indeed, to evaluate
p(query ∧ evidence) , the �

QNODE(NA)
 parameter for such a node must be set to 0. In Fig. 4,

QNODE(NA) = 7 . The algorithm then superimposes a new circuit by creating shadow
nodes, e.g. ĉ , that will represent random variables affected by the change in the �

QNODE(NA)

parameter. Figure 4 depicts the 7 node right next to its shadow ̂7 . The algorithm then allo-
cates new nodes for each and every node that would be affected by this change in �

QNODE(NA)
 :

in Fig. 4, nodes 9, 12, 13, 14, 16, and 17.

Table 2 Covariance matrix for
the associative table (Table 1)
under the assumption that all the
beta-distributed random variables
are independent each other. We
use a short-hand notation for
clarity: �2

i
= cov[�i] . Zeros are

omitted

�1 �1 �2 �2 �3 �3 �4 �4

�1 �2
1

−�2
1

�1 −�2
1

�2
1

�2 �2
2

−�2
2

�2 −�2
2

�2
2

�3 �2
3

−�2
3

�3 −�2
3

�2
3

�4 �2
4

−�2
4

�4 −�2
4

�2
4

10 In this paper we focus on a query composed by a single literal.

1278 Machine Learning (2022) 111:1259–1301

1 3

1

ρ(a) = ω1
X1 = ω1
λ1 = 1

1

ρ(a) = ω1
X1 = ω1
λ1 = 1

2

ρ(c(j)) = ω1
X2 = ω1
λ2 = 1

2

ρ(c(j)) = ω1
X2 = ω1
λ2 = 0

12
⊕

1̂2
⊕

13
⊗

1̂3
⊗

14
⊗

1̂4
⊗

16
⊗

1̂6
⊗

17
⊕

1̂7
⊕

7

ρ(b) = ω2
X7 = ω2
λ7 = 1

̂7

ρ(b) = ω2
X

7̂
= ω2

λ
7̂
= 0

7

ρ(b) = ω2
X7 = ω2
λ7 = 1

9
⊗

9̂
⊗

8

ρ(e) = ω3
X8 = ω3
λ8 = 1

8

ρ(e) = ω3
X8 = ω3
λ8 = 1

11
⊗

6
⊕

15
⊕

3

ρ(h(j)) = ω4
X3 = ω4
λ3 = 1

3

ρ(h(j)) = ω4
X3 = ω4
λ3 = 1

4
⊗

5
⊗

10
⊕

Fig. 4 Shadowing of the circuit represented in Fig. 1 according to Algorithm 5. Solid box for query, double
box for evidence, in grey the shadow nodes added to the circuit. If a node has a shadow, they are grouped
together with a dashed box. Dashed arrows connect shadow nodes to their children

1279Machine Learning (2022) 111:1259–1301

1 3

5.3 Evaluating the shadowed circuit

Each of the nodes in the shadowed circuit (e.g. Fig. 4) has associated a (beta-distributed)
random variable. In the following, and in Algorithm 4, given a node n, its associated ran-
dom variable is identified as Xn . For the nodes for which exists a � label, its associated ran-
dom variable is the beta-distributed random variable labelled via the � function, cf. Fig. 4.

Algorithm 4 takes a shadowed circuit and a covariance matrix, to then output means and
variance of a beta-distributed random variable that approximates the probabilistic evalua-
tion of a given query, see (44) and (45) below.

Algorithm 4 begins with building a vector of means (means), and a matrix of covar-
iances (cov) of the random variables associated to the leaves of the circuit (lines 2–16)
derived from the CA covariance matrix provided as input. At lines 2 and 3 we make use of

1280 Machine Learning (2022) 111:1259–1301

1 3

a support function ZEROS(X, Y) that returns a matrix of X rows and Y columns filled with
zeroes: when Y = 1 , this is equivalently a vector of X values. The algorithm can also be
modified to handle the case where CA is in this case, assuming independence among the
variables, it is straightforward to obtain a matrix such as Table 2.

Then, Algorithm 4 proceeds to compute the means and covariances for all the remaining
nodes in the circuit (lines 17–31). Here two cases arise.

Let n be a ⊕-gate over C nodes, its children: hence (lines 22–35)

with

and cov[X] ≡ cov[X,X] = var[X].
Let n be a ⊗-gate over C nodes, its children (lines 26–30). Following (Benaroya et al.,

2005, §4.3.2) we perform a Taylor approximation: let’s assume Xn = Π(XC) =
∏
c∈C

Xc , with

XC = (Xc1
,… ,Xck

)T and k = |C|.
Expanding the first two terms of the Taylor series about �[XC] yields:

Taking the expectation of both leads to approximating �[Xn]] as Π(�[XC]).
Using this approximation, then (lines 34–42 of Algorithm 4)

Finally, Algorithm 4 computes a conditioning between Xr and Xr̂ , with r being the root of
the circuit (r ∶= ROOT(N̂A) at line 46). This shows how critical is to keep track of the non-
zero covariances where they exist. The Taylor series approximation of Xr and 1

Xr̂

 about

�[Xr̂] and 1

�[Xr]
 leads to

(36)�[Xn] =
∑
c∈C

�[Xc],

(37)cov[Xn] =
∑
c∈C

∑
c�∈C

cov[Xc,Xc�],

(38)cov[Xn,Xz] =
∑
c∈C

cov[Xc,Xz] for z ∈ N̂A ⧵ {n}

(39)cov[X, Y] = �[XY] − �[X]�[Y]

(40)

Xn ≃ Π(�[XC]) + (XC − �[XC])
T∇Π(XC)

���XC=�[XC]

=≃ �[Xn] + (X⌋1
− �[Xc1

])
�

⌋∈C⧵{c1}

�[Xc] + ... + (X⌋k
− �[Xck

])
�

⌋∈C⧵{ck}

�[Xc]

= �[Xn] +
�
c∈C

∏
c�∈C �[Xc�]

�[Xc]
(Xc − �[Xc])

= �[Xn] +
�
c∈C

�[Xn]

�[Xc]
(Xc − �[Xc])

(41)cov[Xn] ≃
∑
c∈C

∑
c�∈C

�[Xn]
2

�[Xc]�[Xc�]
cov[Xc,Xc�],

(42)cov[Xn,Xz] ≃
∑
c∈C

�[Xn]

�[Xc]
cov[Xc,Xz] for z ∈ N̂A ⧵ {n}.

1281Machine Learning (2022) 111:1259–1301

1 3

which implies

Tables 3 and 4 depict respectively the non-zero values of the means vector and cov matrix
for our running example. Overall, the mean and variance for p(��������|�����(����))
are 0.3571 and 0.0528, respectively. Figure 5 depicts the resulting beta-distributed random
variable (solid line) against a Monte Carlo simulation.

5.4 Scalability and memory performance

Algorithm 3 returns the mean and variance of the probability for the query conditioned on
the evidence. Algorithm 5 adds shadow nodes to the initial circuit formed by the evidence
to avoid redundant computations in the second pass. For the sake of clarity, Algorithm 4
is presented in its most simple form. As formulated, it requires a |N̂A| × |N̂A| array to store
the covariance values between the nodes. For large circuits, this memory requirement can
significantly slow down the processing (e.g., disk swaps) or simply become prohibitive.
The covariances of a particular node are only required after it is computed via lines 24–25
or 34–35 in Algorithm 4. Furthermore, these covariances are no longer needed once all the
parent node values have been computed. Thus, it is straightforward to dynamically allo-
cate/de-allocate portions of the covariance array as needed. In fact, the selection of node n
to compute in line 19, which is currently arbitrary, can be designed to minimise processing
time in light of the resident memory requirements for the covariance array. Such an opti-
misation depends on the computing architecture and complicates the presentation. Thus,
further details are beyond the scope of this paper.

6 Experimental results

6.1 The benefits of considering covariances

To illustrate the benefits of Algorithm 3 (Sect. 5), we run an experimental analysis involv-
ing several circuits with unspecified labelling function. For each circuit, first labels are
derived for the case of parametrisation Sp (5) by selecting the ground truth probabilities
from a uniform random distribution. Then, for each label, we derive a set of subjective
opinions by observing Nins instantiations of a random variable derived from the chosen
probability, so to simulate data sparsity (Kaplan and Ivanovska 2018).

We then proceed analysing the inference on specific query nodes q in the presence of a
set of evidence E = e using:

(43)
Xr̂

Xr

≃
�[Xr̂]

�[Xr]
+

1

Xr̂

(Xr̂ − �[Xr̂]) −
�[Xr̂]

�[Xr]
2
(Xr − �[Xr]),

(44)�

[
Xr̂

Xr

]
≃
�[Xr̂]

�[Xr]
,

(45)cov

[
Xr̂

Xr

]
≃

1

�[Xr]
2
cov[Xr̂] +

�[Xr̂]
2

�[Xr]
4
cov[Xr] − 2

�[Xr̂]

�[Xr]
3
cov[Xr̂,Xr].

1282 Machine Learning (2022) 111:1259–1301

1 3

– CPB as articulated in Sect. 5;11

– S� , cf. (34);
– SSL , cf. (27);

– MC , a Monte Carlo analysis with 100 samples from the derived random variables to
obtain probabilities, and then computing the probability of queries in presence of evi-
dence using the parametrisation Sp.

Table 3 Means as computed by Algorithm 4 on our running example. In grey the shadow nodes. Values
very close or equal to zero are omitted. Also, values for nodes labelled with negated variables are omitted.
̂
7 , i.e. the shadow of qnode(NA), is included for illustration purposes

Table 4 Covariances (×10−2) as computed by Algorithm 4 on our running example. In grey the shadow
nodes. Values very close or equal to zero are omitted. Also, values for nodes labelled with negated variables
are omitted. ̂7 , i.e. the shadow of qnode(NA), is included for illustration purposes

11 Source code is available at https:// github. com/ feder icoce rutti/ CPB.

https://github.com/federicocerutti/CPB

1283Machine Learning (2022) 111:1259–1301

1 3

We then compare the RMSE to the actual ground truth. This process of inference to deter-
mine the marginal beta distributions is repeated 1000 times by considering 100 random
choices for each label of the circuit, i.e. the ground truth, and for each ground truth 10 rep-
etitions of sampling the interpretations used to derive the subjective opinion labels observ-
ing Nins instantiations of all the variables.

We judge the quality of the beta distributions of the queries on how well its expres-
sion of uncertainty captures the spread between its projected probability and the actual
ground truth probability, as also Kaplan and Ivanovska (2018) did. In simulations where
the ground truths are known, such as ours, confidence bounds can be formed around the
projected probabilities at a significance level of � and determine the fraction of cases when
the ground truth falls within the bounds. If the uncertainty is well determined by the beta
distributions, then this fraction should correspond to the strength � of the confidence inter-
val (Kaplan & Ivanovska, 2018, Appendix C).

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

MC

CPB

Fig. 5 Resulting distribution of probabilities for our running example using Algorithm 3 (solid line), and a
Monte Carlo simulation with 100,000 samples grouped in 25 bins and then interpolated with a cubic poly-
nomial (dashed line)

1284 Machine Learning (2022) 111:1259–1301

1 3

Following (Cerutti et al. 2019), we consider the famous Friends & Smokers problem, cf.
Listing 3,12 with fixed queries and set of evidence. Table 5 provides the root mean square
error (RMSE) between the projected probabilities and the ground truth probabilities for all
the inferred query variables for Nins = 10, 50, 100. The table also includes the predicted
RMSE by taking the square root of the average—over the number of runs—variances from
the inferred marginal beta distributions, cf. (18). Figure 6 plots the desired and actual sig-
nificance levels for the confidence intervals (best closest to the diagonal), i.e. the fractions
of times the ground truth falls within confidence bounds set to capture x% Finally, Fig. 8
depicts the correlation of Dirichlet strengths between the Monte Carlo approach MC run-
ning with variable number of samples and the golden standard (i.e. a Monte Carlo run
with 10,000 samples), as well as between the golden standard and CPB , which is clearly
independent of the number of samples used in MC. We, however, rephrased the sentence
to clarify it. of the number of samples used in the Monte Carlo approach MC . Given
Xg
q
 (resp. Xq) the random variable associated to the queries q computed using the golden

standard (resp. computed using either MC or CPB), the Pearson’s correlation coeffi-
cient displayed in Fig. 8 is given by:

(46)r =
cov[sXg

q
, sXq

]

cov[sXg
q
]cov[sXq

]

12 https:// dtai. cs. kuleu ven. be/ probl og/ tutor ial/ basic/ 05_ smoke rs. html (on 29th April 2020).

https://dtai.cs.kuleuven.be/problog/tutorial/basic/05_smokers.html

1285Machine Learning (2022) 111:1259–1301

1 3

This is a measure of the quality of the epistemic uncertainty associated with the evalua-
tion of the circuit using MC with varying number of samples, and CPB : the closer the
Dirichlet strengths are to those of the golden standard, the better the computed epistemic
uncertainty represents the actual uncertainty,13 hence the closer the correlations are to 1 in
Fig. 8 the better.

From Table 5, CPB exhibits the lowest RMSE and the best prediction of its own
RMSE. As already noticed in (Cerutti et al., 2019), S� is a little conservative in estimat-
ing its own RMSE, while SSL is overconfident. This is reflected in Fig. 6, with the results
of S� being over the diagonal, and those of SSL being below it, while CPB sits exactly

on the diagonal, like also MC . However, MC with 100 samples does not exhibit the
lowest RMSE according to Table 5, although the difference with the best one is much
lower compared with SSL .

Considering the execution time, Fig. 7, we can see that there is a substantial difference
between CPB and MC with 100 samples.

Table 5 RMSE for the queried
variables in the Friends &
Smokers program: A stands for
Actual, P for Predicted. Best
results—also considering hidden
decimals—for the actual RMSE
boxed . MC has been run

over 100 samples

Nins CPB S
� SSL MC

Friends & Smokers 10 A 0.1065 0.1065 0.1198 0.1072
P 0.1024 0.1412 0.1060 0.1027

50 A 0.0489 0.0489 0.0617 0.0490
P 0.0491 0.0898 0.0587 0.0489

100 A 0.0354 0.0354 0.0521 0.0355
P 0.0357 0.0709 0.0487 0.0356

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

(c)

Fig. 6 Actual versus desired significance of bounds derived from the uncertainty for Smokers & Friends
with: (a) Nins = 10 ; (b) Nins = 50 ; and (c) Nins = 100 . Best closest to the diagonal. MC has been run over
100 samples

13 The Dirichlet strengths are inversely proportional to the epistemic uncertainty.

1286 Machine Learning (2022) 111:1259–1301

1 3

Finally, Fig. 8 depicts the correlation of the Dirichlet strength between the golden
standard, i.e. a Monte Carlo simulation with 10,000 samples, and both CPB and MC ,
this last one varying the number of samples used. It is straightforward to see that MC
improves the accuracy of the computed epistemic uncertainty when increasing the number
of samples considered, approaching the same level of CPB when considering more than
200 samples.

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(a)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es
(b)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(c)

Fig. 7 Distribution of execution time for running the different algorithms for Smokers & Friends with: (a)
Nins = 10 ; (b) Nins = 50 ; and (c) Nins = 100 . Best lowest. MC has been run over 100 samples

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(a)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(b)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(c)

Fig. 8 Correlation of Dirichlet strengths between runs of MC varying the number of samples and golden
standard (i.e. a Monte Carlo run with 10,000 samples) as well as between CPB and golden standard with

cubic interpolation—that is independent of the number of samples used in MC —for Smokers & Friends
with: (a) Nins = 10 ; (b) Nins = 50 ; and (c) Nins = 100

1287Machine Learning (2022) 111:1259–1301

1 3

6.2 Comparison with other approaches for dealing with uncertain probabilities

To compare our approach against the state-of-the-art approaches for reasoning with uncer-
tain probabilities, following (Cerutti et al., 2019) we restrict ourselves to the case of cir-
cuits representing inferences over a Bayesian network. For instance, Listing 4 shows an
aProblog code that can also be interpreted as a Bayesian network. We considered three
circuits and their Bayesian network representation: Net1 (Listing 4); Net2; and Net3. Fig-
ure 12 in Appendix E depicts the Bayesian networks that can be derived from such circuits.
In the following, we will refer to NetX as both the circuit and the Bayesian network with-
out distinction. We then compared CPB against three approaches specifically designed
for dealing with uncertain probabilities in Bayesian networks: Subjective Bayesian Net-
works; Belief Networks; and Credal Networks.

Subjective Bayesian Network SBN (Ivanovska et al., 2015; Kaplan & Ivanovska,
2016; Kaplan & Ivanovska, 2018), was first proposed in (Ivanovska et al., 2015), and it is
an uncertain Bayesian network where the conditionals are subjective opinions instead of
dogmatic probabilities. In other words, the conditional probabilities are known within a
beta distribution. SBN uses subjective belief propagation (SBP), which was introduced
for trees in (Kaplan & Ivanovska 2016) and extended for singly-connected networks in
(Kaplan & Ivanovska, 2018), that extends the Belief Propagation (BP) inference method of
Pearl (1986). In BP, � - and �-messages are passed from parents and children, respectively,
to a node, i.e., variable. The node uses these messages to formulate the inferred marginal
probability of the corresponding variable. The node also uses these messages to determine

1288 Machine Learning (2022) 111:1259–1301

1 3

the � - and �-messages to send to its children and parents, respectively. In SBP, the � - and
�-messages are subjective opinions characterised by a projected probability and Dirichlet
strength. The SBP formulation approximates output messages as beta-distributed random
variables using the methods of moments and a first-order Taylor series approximation to
determine the mean and variance of the output messages in light of the beta-distributed
input messages. The details of the derivations are provided in (Kaplan & Ivanovska, 2016;
Kaplan & Ivanovska, 2018).

Belief Networks GBT Smets (1993) introduced a computationally efficient method to
reason over networks via Dempster-Shafer theory (Dempster, 1968). It is an approximation
of a valuation-based system. Namely, a (conditional) subjective opinion 𝜔X = [bx, bx̄, uX]
from our circuit obtained from data is converted to the following belief mass assignment:
m(x) = bx , m(x̄) = bx̄ and m(x ∪ x̄) = uX . Note that in the binary case, the belief function
overlaps with the belief mass assignment. The method exploits the disjunctive rule of
combination to compose beliefs conditioned on the Cartesian product space of the binary
power sets. This enables both forward propagation and backward propagation after invert-
ing the belief conditionals via the generalized Bayes’ theorem (GBT). By operating in the
Cartesian product space of the binary power sets, the computational complexity grows
exponentially with respect to the number of parents.

Credal Networks Credal (Zaffalon & Fagiuoli, 1998). A credal network over binary
random variables extends a Bayesian network by replacing single probability values with
closed intervals representing the possible range of probability values. The extension of
Pearl’s message-passing algorithm by the 2U algorithm for credal networks is described
in (Zaffalon & Fagiuoli, 1998). This algorithm works by determining the maximum and
minimum value (an interval) for each of the target probabilities based on the given input
intervals. It turns out that these extreme values lie at the vertices of the polytope dictated
by the extreme values of the input intervals. As a result, the computational complexity
grows exponentially with respect to the number of parents nodes. For the sake of com-
parison, we assume that the random variables we label our circuts with and elicited from
the given data corresponds to a credal network in the following way: if 𝜔x = [bx, bx̄, uX]
is a subjective opinion on the probability � , then we have [bx, bx + uX] as an interval cor-
responding to this probability in the credal network. It should be noted that this mapping
from the beta-distributed random variables to an interval is consistent with past studies of
credal networks (Karlsson et al., 2008).

As before, Table 6 provides the root mean square error (RMSE) between the projected
probabilities and the ground truth probabilities for all the inferred query variables for Nins
= 10, 50, 100, together with the RMSE predicted by taking the square root of the aver-
age variances from the inferred marginal beta distributions. Figure 9 plots the desired and
actual significance levels for the confidence intervals (best closest to the diagonal). Fig-
ure 10 depicts the distribution of execution time for running the various algorithms, and
Fig. 11 the correlation of the Dirichlet strength between the golden standard, i.e. a Monte
Carlo simulation with 10,000 samples, and both CPB and MC varying the number of
samples.

Table 6 shows that CPB shares the best performance with the state-of-the-art SBN
and S� almost constantly. This is clearly a significant achievement considering that
SBN is the state-of-the-art approach when dealing only with single connected Bayesian

Networks with uncertain probabilities, while we can also handle much more complex prob-
lems. Consistently with Table 5, and also with (Cerutti et al., 2019), S� has lower RMSE

1289Machine Learning (2022) 111:1259–1301

1 3

than SSL and it seems that S� overestimates the predicted RMSE and SSL underesti-

mates it as SSL predicts smaller error than is realised and vice versa for S� .

From visual inspection of Fig. 9, it is evident that CPB , SBN , and MC all are

very close to the diagonal, thus correctly assessing their own epistemic uncertainty. S�

performance is heavily affected by the fact that it computes the conditional distributions
at the very end of the process and it relies, in (33), on the assumption of independence.
CPB , keeping track of the covariance between the various nodes in the circuits, does not

suffer from this problem. This positive result has been achieved without substantial dete-
rioration of the performance in terms of execution time, as displayed in Fig. 10, for which
the same commentary of Fig. 7 applies.

Finally, Fig. 11 depicts the correlation of the Dirichlet strength between the golden
standard, i.e. a Monte Carlo simulation with 10,000 samples, and both CPB and MC ,
this last one varying the number of samples used. Like for Fig. 8, it is straightforward to
see that MC improves the accuracy of its computed epistemic uncertainty when increas-
ing the number of samples considered, approaching the same level of CPB when consid-
ering more than 200 samples, while CPB performs very closely to the optimal value of 1.

Table 6 RMSE for the queried variables in the various networks: A stands for Actual, P for Predicted. Best
results—also considering hidden decimals—for the Actual RMSE boxed. MC has been run over 100 sam-
ples

Nins CPB S
� SSL MC SBN GBT Credal

Net1 10 A 0.1511 0.2078 0.1517 0.1511 0.1542 0.1633
P 0.1473 0.1864 0.1559 0.1465 0.1472 0.0873 0.2009

Net1 50 A 0.0816 0.1237 0.0818 0.0816 0.0848 0.0827

P 0.0802 0.1227 0.0825 0.0789 0.0794 0.0372 0.1069
Net1 100 A 0.0544 0.0837 0.0550 0.0544 0.0601 0.0557

P 0.0572 0.0971 0.0592 0.0564 0.0566 0.0262 0.0766
Net2 10 A 0.1389 0.1916 0.1392 0.1389 0.1418 0.1473

P 0.1391 0.1808 0.1457 0.1381 0.1399 0.1058 0.1856
Net2 50 A 0.1092 0.0702 0.0730 0.0702

P 0.0722 0.1148 0.0755 0.0714 0.0720 0.0486 0.0952
Net2 100 A 0.0534 0.0901 0.0536 0.0534 0.0553 0.0537

P 0.0533 0.0937 0.0601 0.0526 0.0531 0.0340 0.0696
Net3 10 A 0.1481 0.2160 0.1488 0.1481 0.1511 0.1634

P 0.1453 0.1708 0.1578 0.1438 0.1454 0.0821 0.1947
Net3 50 A 0.0737 0.0737 0.1167 0.0741 0.0760 0.0756

P 0.0777 0.1115 0.0780 0.0763 0.0772 0.0348 0.1003
Net3 100 A 0.0574 0.0909 0.0578 0.0574 0.0608 0.0582

P 0.0564 0.0882 0.0584 0.0553 0.0560 0.0239 0.0728

0.0544

0.0701 0.0701 0.0701

0.0534

0.1481

0.0737

0.0574

0.1511

0.0816

0.1389

1290 Machine Learning (2022) 111:1259–1301

1 3

7 Conclusion

In this paper, we introduce (Sect. 5) an algorithm for reasoning over a probabilistic cir-
cuit whose leaves are labelled with beta-distributed random variables, with the additional
piece of information describing which of those are actually independent (Sect. 5.1). This
provides the input to an algorithm that shadows the circuit derived for computing the prob-
ability of the pieces of evidence by superimposing a second circuit modified for computing
the probability of a given query and the pieces of evidence, thus having all the necessary
components for computing the probability of a query conditioned on the pieces of evidence
(Sect. 5.2). This is essential when evaluating such a shadowed circuit (Sect. 5.3), with the
covariance matrix playing an essential role by keeping track of the dependencies between
random variables while they are manipulated within the circuit. We also include discus-
sions on memory management in Sect. 5.4.

In our extensive experimental analysis (Sect. 6) we compare against leading approaches
to compute uncertain probabilities, notably: (1) Monte Carlo sampling; (2) our previ-
ous proposal (Cerutti et al., 2019) as representative of the family of approaches using a
moment matching approach with strong independence assumptions; (3) Subjective Logic

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(f)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(h)

0.0 0.2 0.4 0.6 0.8 1.0
Desired Confidence

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
ua

l
C
on

fid
en
ce

CPB

Sβ

SSL

MC

SBN

GBT

Credal

(i)

Fig. 9 Actual versus desired significance of bounds derived from the uncertainty for: (a) Net1 with
Nins = 10 ; (b) Net1 with Nins = 50 ; (c) Net1 with Nins = 100 ; (d) Net2 with Nins = 10 ; (e) Net2 with
Nins = 50 ; (f) Net2 with Nins = 100 ; (g) Net3 with Nins = 10 ; (h) Net3 with Nins = 50 ; (i) Net3 with

Nins = 100 . Best closest to the diagonal. MC has been run over 100 samples

1291Machine Learning (2022) 111:1259–1301

1 3

(Jøsang, 2016); (4) Subjective Bayesian Network (SBN) (Ivanovska et al., 2015; Kaplan
& Ivanovska, 2016; Kaplan & Ivanovska, 2018); (5) Dempster-Shafer Theory of Evidence
(Dempster, 1968; Smets, 1993); and (6) credal networks (Zaffalon and Fagiuoli 1998).

We achieve the same or better results of state-of-the-art approaches for dealing with
epistemic uncertainty, including highly engineered ones for a narrow domain such as SBN,
while being able to handle general probabilistic circuits and with just a modest increase
in the computational effort. In fact, this work has inspired us to leverage probabilistic cir-
cuits to expand second-order inference for SBN for arbitrary directed acyclic graphs whose
variables are multinomials. As part of future work, we will expand our experimental inves-
tigation to consider larger models, also leveraging recent advancements in engineering

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(a)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es
(b)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(c)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(d)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(e)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(f)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(g)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(h)

CPB MC
0

2

4

6

8

10

12

E
xe
cu
ti
on

T
im

es

(i)

Fig. 10 Distribution of computational time for running the different algorithms for: (a) Net1 with
Nins = 10 ; (b) Net1 with Nins = 50 ; (c) Net1 with Nins = 100 ; (d) Net2 with Nins = 10 ; (e) Net2 with
Nins = 50 ; (f) Net2 with Nins = 100 ; (g) Net3 with Nins = 10 ; (h) Net3 with Nins = 50 ; (i) Net3 with
Nins = 100 . MC has been run over 100 samples

1292 Machine Learning (2022) 111:1259–1301

1 3

highly-efficient procedures over probablistic circuits, e.g. (Peharz et al., 2020). However, as
also highlighted in Figs. 7 and 10 our research-grade prototype is substantially faster than
using Monte Carlo sampling for estimating variances. Indeed, we can estimate it from just
one pass over the circuit (see Algorithm 4), while a Monte Carlo approach would need to
go through the circuit once for each sample.

We focused our attention on probabilistic circuits derived from d-DNNFs: work by Dar-
wiche (2011), and then also by Kisa et al. (2014) has introduced Sentential Decision Dia-
grams (SDDs) as a new canonical formalism respectively for propositional and for proba-
bilistic circuits. However, as we can read in (Darwiche, 2011, p. 819) SDDs is a strict
subset of d-DNNF, which is thus the least constrained type of propositional circuit we can
safely rely on according to (Kimmig et al., 2017, Theorem 4). However, in future work we
will enable our approach to efficiently make use of SDDs.

In addition, we will also work in the direction of enabling learning with partial obser-
vations—incomplete data where the instantiations of each of the propositional variables
are not always visible over all training instantiations—on top of its ability of tracking the
covariance values between the various random variables for a better estimation of epis-
temic uncertainty.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(a)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(b)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(c)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(d)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(e)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(f)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(g)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(h)

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Number of Monte Carlo Samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
or
re
la
ti
on

w
it
h
G
ol
de
n
St
an
da
rd

(i)

Fig. 11 Correlation of Dirichlet strengths between runs of MC varying the number of samples and
golden standard (i.e. a Monte Carlo run with 10,000 samples) as well as between CPB and golden stand-

ard with cubic interpolation—that is independent of the number of samples used in MC —for: (a) Net1
with Nins = 10 ; (b) Net1 with Nins = 50 ; (c) Net1 with Nins = 100 ; (d) Net2 with Nins = 10 ; (e) Net2
with Nins = 50 ; (f) Net2 with Nins = 100 ; (g) Net3 with Nins = 10 ; (h) Net3 with Nins = 50 ; (i) Net3 with
Nins = 100

1293Machine Learning (2022) 111:1259–1301

1 3

A. aProbLog

In the last years, several probabilistic variants of Prolog have been developed, such as
ICL (Poole, 2000), Dyna (Eisner et al., 2005), PRISM (Sato and Kameya, 2001) and Prob-
Log (De Raedt et al. 2007), with its aProbLog extension (Kimmig et al., 2011) to handle
arbitrary labels from a semiring. They all are based on definite clause logic (pure Prolog)
extended with facts labelled with probability values. Their meaning is typically derived
from Sato’s distribution semantics (Sato, 1995), which assigns a probability to every lit-
eral. The probability of a Herbrand interpretation, or possible world, is the product of the
probabilities of the literals occurring in this world. The success probability is the probabil-
ity that a query succeeds in a randomly selected world.

For a set J of ground facts, we define the set of literals L(J) and the set of interpretations
I(J) as follows:

An algebraic Prolog (aProbLog) program (Kimmig et al., 2011) consists of:

– a commutative semiring ⟨A,⊕,⊗, e⊕, e⊗⟩
– a finite set of ground algebraic facts F = {f1,… , fn}

– a finite set BK of background knowledge clauses
– a labeling function � ∶ L(F) → A

Background knowledge clauses are definite clauses, but their bodies may contain negative
literals for algebraic facts. Their heads may not unify with any algebraic fact.

For instance, in the following aProbLog program

alarm :- burglary.
0.05 :: burglary.

 is an algebraic fact with label 0.05, and represents a back-
ground knowledge clause, whose intuitive meaning is: in case of burglary, the alarm should
go off.

The idea of splitting a logic program in a set of facts and a set of clauses goes back to
Sato’s distribution semantics (Sato, 1995), where it is used to define a probability distribu-
tion over interpretations of the entire program in terms of a distribution over the facts. This
is possible because a truth value assignment to the facts in F uniquely determines the truth
values of all other atoms defined in the background knowledge. In the simplest case, as
realised in ProbLog (De Raedt et al., 2007; Fierens et al., 2015), this basic distribution con-
siders facts to be independent random variables and thus multiplies their individual prob-
abilities. aProbLog uses the same basic idea, but generalises from the semiring of prob-
abilities to general commutative semirings. While the distribution semantics is defined for
countably infinite sets of facts, the set of ground algebraic facts in aProbLog must be finite.

In aProbLog, the label of a complete interpretation I ∈ I(F) is defined as the product of
the labels of its literals

(47)L(J) = J ∪ {¬f | f ∈ J}

(48)I(J) = {S | S ⊆ L(J) ∧ ∀l ∈ J ∶ l ∈ S ↔ ¬l ∉ S}

1294 Machine Learning (2022) 111:1259–1301

1 3

and the label of a set of interpretations S ⊆ I(F) as the sum of the interpretation labels

A query q is a finite set of algebraic literals and atoms from the Herbrand base,14
q ⊆ L(F) ∪ HB(F ∪ BK) . We denote the set of interpretations where the query is true by
I(q),

The label of query q is defined as the label of I(q),

As both operators are commutative and associative, the label is independent of the order of
both literals and interpretations.

ProbLog (Fierens et al., 2015) is an instance of aProbLog with

B. Subjective logic operators of sum, multiplication, and division

Let us recall the following operators as defined in (Jøsang, 2016). In the following, let
�X = ⟨bX , dX , uX , aX⟩ and �Y = ⟨bY , dY , uY , aY⟩ be two subjective logic opinions.

Sum

The opinion about X ∪ Y (sum, 𝜔X ⊞SL 𝜔Y) is defined as �X∪Y = ⟨bX∪Y , dX∪Y , uX∪Y , aX∪Y⟩ ,
where:

• bX∪Y = bX + bY;
• dX∪Y =

aX (dX−bY)+aY (dY−bX)

aX+aY
;

• uX∪Y =
aXuX+aYuY

aX+aY
 ; and

• aX∪Y = aX + aY.

(49)�(I) =
⨂
l∈I

�(l)

(50)�(S) =
⨁
I∈S

⨂
l∈I

�(l)

(51)I(q) = {I | I ∈ I(F) ∧ I ∪ BK ⊧ q}

(52)�(q) = �(I(q)) =
⨁
I∈I(q)

⨂
l∈I

�(l).

(53)

A = ℝ≥0;
a ⊕ b = a + b;

a ⊗ b = a ⋅ b;

e⊕ = 0;

e⊗ = 1;

𝛿(f) ∈ [0, 1];

𝛿(¬f) = 1 − 𝛿(f)

14 I.e., the set of ground atoms that can be constructed from the predicate, functor and constant symbols of
the program.

1295Machine Learning (2022) 111:1259–1301

1 3

Product

The opinion about X ∧ Y (product, 𝜔X ⊠SL 𝜔Y) is defined—under assumption of inde-
pendence—as �X∧Y = ⟨bX∧Y , dX∧Y , uX∧Y , aX∧Y⟩ , where:

– bX∧Y = bXbY +
(1−aX)aYbXuY+aX (1−aY)uXbY

1−aXaY
;

– dX∧Y = dX + dY − dXdY;
– uX∧Y = uXuY +

(1−aY)bXuY+(1−aX)uXbY

1−aXaY
 ; and

– aX∧Y = aXaY.

Division

The opinion about the division of X by Y, X∧̃Y (division,) is defined as
�X∧̃Y = ⟨bX∧̃Y , dX∧̃Y , uX∧̃Y , aX∧̃Y⟩ where

• bX∧̃Y = aY (bX+aXuX)

(aY−aX)(bY+aYuY)
−

aX (1−dX)

(aY−aX)(1−dY)
;

• dX∧̃Y =
dX−dY

1−dY
;

• uX∧̃Y =
aY (1−dX)

(aY−aX)(1−dY)
−

aY (bX+aXuX)

(aY−aX)(bY+aYuY)
 ; and

• aX∧̃Y =
aX

aY

subject to:

– aX < aY ; dX ≥ dY;

– bX ≥ aX (1−aY)(1−dX)bY

(1−aX)aY (1−dY)
 ; and

– uX ≥ (1−aY)(1−dX)uY

(1−aX)(1−dY)
.

C. Independence of posterior distributions when learning
from complete observations

Let us instantiate AMC using probabilities as labels (cf. (5)) and let us consider a proposi-
tional logic theory over M variables. We can thus re-write (1) as:

Hence, the probability of a theory is function of the probabilities of interpretations
p(I ∈ M(T)) , where

(54)p(T) =
∑

I∈M(T)

M∏
m=1

p(lm)

(55)p(I ∈ M(T)) =

M∏
m=1

p(lm)

1296 Machine Learning (2022) 111:1259–1301

1 3

Let’s assume that we want to learn such probabilities from a dataset D = (x1,… , xN)
T , then

by (55) the variables for which we are learning probabilities are independent, hence

We can thus re-write the likelihood (9) as:

Assuming a uniform prior, and letting rm be the number of observations for xm = 1 and sm
the number of observations for xm = 0 , we can thus compute the posterior as:

which, in turns, show that the independence is maintained also considering the posterior
beta distributions.

D. Algorithm for shadowing a given circuit

In Algorithm 5 we make use of a stack data structure with associated pop and push func-
tions (cf. lines 3, 5, 8, 16): that is for ease of presentation as the algorithm does not require
a stack.

(56)p(l1,… , lM) =

M∏
m=1

p(lm)

(57)
p(D ∣ px) =

|D|∏
i=1

p(xi|pxi)

=

|D|∏
i=1

M∏
m=1

p
xi,m
xm

(1 − pxm)
1−xi,m

(58)
p(px ∣ D,�0) ∝ p(D ∣ px) ⋅ p(px ∣ �

0)

∝

M∏
m=1

p
rm+�

0
xm
−1

xm
(1 − pxm)

sm+�
0

xm
−1

1297Machine Learning (2022) 111:1259–1301

1 3

E. Bayesian networks derived from aProbLog programs

Figure 12 depicts the Bayesian networks that can be derived from the three circuits consid-
ered in the experiments described in Sect. 6.2.

(a) (b) (c)

Fig. 12 Network structures tested where the exterior gray variables are directly observed and the remain-
ing are queried: (a) Net1, a tree; (b) Net2, singly connected network with one node having two parents; (c)
Net3, singly connected network with one node having three parents

1298 Machine Learning (2022) 111:1259–1301

1 3

Acknowledgements We thank the anonymous reviews whose comments improve the first draft submitted
for consideration to this journal. This research was sponsored by the U.S. Army Research Laboratory and
the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce
and distribute reprints for Government purposes notwithstanding any copyright notation hereon. This work
was performed using the computational facilities of the Advanced Research Computing at Cardiff (ARCCA)
Division, Cardiff University.

References

Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P.
N., Inkpen, K., Teevan, J., Kikin-Gil, R., Horvitz, E. (2019). Guidelines for human-AI interaction. In
Conference on human factors in computing systems - proceedings, association for computing machin-
ery, New York, New York, USA, pp. 1–13. https:// doi. org/ 10. 1145/ 32906 05. 33002 33.

Anderson, R., Hare, N., Maskell, S. (2016). Using a bayesian model for confidence to make decisions that
consider epistemic regret. In 19th International conference on information fusion, pp. 264–269.

Antonucci, A., Karlsson, A., Sundgren, D. (2014). Decision making with hierarchical credal sets. In A. Lau-
rent, O. Strauss, B. Bouchon-Meunier, R. R. Yager (Eds.) Information processing and management of
uncertainty in knowledge-based systems, pp. 456–465.

Bacchus, F., Dalmao, S., & Pitassi, T. (2009). Solving #Sat and Bayesian inference with backtracking
search. Journal of Artificial Intelligence Research, 34, 391–442. https:// doi. org/ 10. 1613/ jair. 2648.

Bansal, G., Nushi, B., Kamar, E., Lasecki, W., Weld, D., Horvitz, E. (2019a). Beyond accuracy: The role of
mental models in human-AI team performance. In HCOMP, AAAI, https:// www. micro soft. com/ en- us/
resea rch/ publi cation/ beyond- accur acy- the- role- of- mental- models- in- human- ai- team- perfo rmance/.

Bansal, G., Nushi, B., Kamar, E., Weld, D. S., Lasecki, W. S., Horvitz, E. (2019b). Updates in human-AI
teams: Understanding and addressing the performance/compatibility tradeoff. In AAAI, pp. 2429–2437.
https:// doi. org/ 10. 1609/ aaai. v33i01. 33012 429

Baras, J. S., & Theodorakopoulos, G. (2010). Path problems in networks. Synthesis Lectures on Communi-
cation Networks, 3, 1–77. https:// doi. org/ 10. 2200/ S0024 5ED1V 01Y20 1001C NT003.

Bellodi, E., & Riguzzi, F. (2013). Expectation maximization over binary decision diagrams for probabilistic
logic programs. Intelligent Data Analysis, 17(2), 343–363.

Benaroya, H., Han, S. M., Han, S. M., & Nagurka, M. (2005). Probability models in engineering and sci-
ence. CRC Press.

Bratko, I. (2001). Prolog programming for artificial intelligence. Addison Wesley.
Cerutti, F., Kaplan, L. M., Kimmig, A., Sensoy, M. (2019). Probabilistic logic programming with beta-

distributed random variables. In The thirty-third AAAI conference on artificial intelligence, AAAI 2019,
the thirty-first innovative applications of artificial intelligence conference, IAAI 2019, the ninth AAAI
symposium on educational advances in artificial intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27–February 1, 2019, AAAI Press, pp. 7769–7776, https:// doi. org/ 10. 1609/ aaai. v33i01. 33017
769

Cerutti, F., & Thimm, M. (2019). A general approach to reasoning with probabilities. International Journal
of Approximate Reasoning, 111, 35–50. https:// doi. org/ 10. 1016/j. ijar. 2019. 05. 003.

Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6), 772–799.

Choi, A., & Darwiche, A. (2013) Dynamic minimization of sentential decision diagrams. In Proceedings of
the 27th AAAI conference on artificial intelligence, AAAI 2013, AAAI Press, AAAI’13, pp. 187–194.

Darwiche, A. (2004). New advances in compiling CNF to decomposable negation normal form. In Pro-
ceedings of the 16th European conference on artificial intelligence, IOS Press, NLD, ECAI04, pp.
318–322.

Darwiche, A. (2011) SDD: A new canonical representation of propositional knowledge bases. In Proceed-
ings of the twenty-second international joint conference on artificial intelligence—Volume Two, AAAI
Press, IJCAI’11, pp. 819–826.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial Intelligence
Research, 17(1), 229–264.

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1613/jair.2648
https://www.microsoft.com/en-us/research/publication/beyond-accuracy-the-role-of-mental-models-in-human-ai-team-performance/
https://www.microsoft.com/en-us/research/publication/beyond-accuracy-the-role-of-mental-models-in-human-ai-team-performance/
https://doi.org/10.1609/aaai.v33i01.33012429
https://doi.org/10.2200/S00245ED1V01Y201001CNT003
https://doi.org/10.1609/aaai.v33i01.33017769
https://doi.org/10.1609/aaai.v33i01.33017769
https://doi.org/10.1016/j.ijar.2019.05.003

1299Machine Learning (2022) 111:1259–1301

1 3

De Raedt, L., Kimmig, A., Toivonen, H. (2007). ProbLog: A probabilistic Prolog and its application in
link discovery. In Proceedings of the 20th international joint conference on artificial intelligence, pp.
2462–2467. https:// lirias. kuleu ven. be/ handle/ 12345 6789/ 146072.

Dempster, A. P. (1968). A generalization of bayesian inference. Journal of the Royal Statistical Society
Series B (Methodological) 30(2), 205–247. http:// www. jstor. org/ stable/ 29845 04

Eisner, J. (2002). Parameter estimation for probabilistic finite-state transducers. In Proceedings of the 40th
annual meeting of the association for computational linguistics, association for computational lin-
guistics, Philadelphia, Pennsylvania, USA, pp. 1–8. https:// doi. org/ 10. 3115/ 10730 83. 10730 85, https://
www. aclweb. org/ antho logy/ P02- 1001

Eisner, J., Goldlust, E., Smith, N. A. (2005). Compiling comp ling: Practical weighted dynamic program-
ming and the dyna language. In Proceedings of the conference on human language technology and
empirical methods in natural language processing, HLT ’05, pp. 281–290. https:// doi. org/ 10. 3115/
12205 75. 12206 11.

Fierens, D., den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., et al. (2015). Inference
and learning in probabilistic logic programs using weighted Boolean formulas. Theory and Practice of
Logic Programming, 15(03), 358–401. https:// doi. org/ 10. 1017/ S1471 06841 40000 76.

Friedman, T., den Broeck, G. (2018). Approximate knowledge compilation by online collapsed importance
sampling. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi., R. Garnett (Eds.)
Advances in neural information processing systems 31, Curran Associates, Inc., pp. 8024–8034, http://
papers. nips. cc/ paper/ 8026- appro ximate- knowl edge- compi lation- by- online- colla psed- impor tance-
sampl ing. pdf

Gens, R., Domingos, P. (2013) Learning the structure of sum-product networks. In: S. Dasgupta, D. McAl-
lester (Eds.) 30th International conference on machine learning, ICML 2013, PMLR, Atlanta, Geor-
gia, USA, Proceedings of Machine Learning Research, vol 28, pp. 1910–1917, http:// proce edings. mlr.
press/ v28/ gens13. html

Goodman, J. (1999). Semiring parsing. Computational Linguistics, 25(4):573–606, https:// www. aclweb. org/
antho logy/ J99- 4004

Hora, S. C. (1996). Aleatory and epistemic uncertainty in probability elicitation with an example from haz-
ardous waste management. Reliability Engineering & System Safety 54(2), 217–223, treatment of Ale-
atory and Epistemic Uncertainty https:// doi. org/ 10. 1016/ S0951- 8320(96) 00077-4

Hüllermeier, E., & Waegeman, W. (2019). Aleatoric and epistemic uncertainty in machine learning: A tuto-
rial introduction. 1910.09457.

Ivanovska, M., Jøsang, A., Kaplan, L., Sambo, F. (2015). Subjective networks: Perspectives and challenges.
In Proceedings of the 4th international workshop on graph structures for knowledge representation
and reasoning, Buenos Aires, Argentina, pp. 107–124.

Jaini, P., Rashwan, A., Zhao, H., Liu, Y., Banijamali, E., Chen, Z., Poupart, P. (2016). Online algorithms for
sum-product networks with continuous variables. In Conference on probabilistic graphical models, pp.
228–239.

Jøsang, A. (2016). Subjective logic: A formalism for reasoning under uncertainty. Springer.
Jøsang, A., Hayward, R., Pope, S. (2006). Trust network analysis with subjective logic. In Proceedings of

the 29th Australasian computer science conference-volume, 48, pp. 85–94.
Kaplan, L., Ivanovska, M. (2016). Efficient subjective Bayesian network belief propagation for trees. In 19th

International conference on information fusion, pp. 1300–1307.
Kaplan, L., & Ivanovska, M. (2018). Efficient belief propagation in second-order Bayesian networks for

singly-connected graphs. International Journal of Approximate Reasoning, 93, 132–152.
Karlsson, A., Johansson, R., Andler, S. F. (2008). An empirical comparison of Bayesian and credal net-

works for dependable high-level information fusion. In International conference on information fusion
(FUSION), pp. 1–8.

Kimmig, A., Van den Broeck, G., De Raedt, L. (2011). An algebraic prolog for reasoning about possible
worlds. In Proceedings of the twenty-fifth AAAI conference on artificial intelligence, pp. 209–214,
http:// www. aaai. org/ ocs/ index. php/ AAAI/ AAAI11/ paper/ view/ 3685.

Kimmig, A., Van den Broeck, G., & De Raedt, L. (2017). Algebraic model counting. Journal of Applied
Logic, 22, 46–62. https:// doi. org/ 10. 1016/j. jal. 2016. 11. 031.

Kisa, D., den Broeck, G., Choi, A., Darwiche, A. (2014). Probabilistic sentential decision diagrams. InPro-
ceedings of the fourteenth international conference on principles of knowledge representation and rea-
soning, AAAI Press, KR’14, pp. 558–567.

Kocielnik, R., Amershi, S., Bennett, P. N. (2019). Will you accept an imperfect AI? Exploring designs for
adjusting end-user expectations of AI systems. In Conference on human factors in computing sys-
tems—proceedings, association for computing machinery, New York, USA, pp. 1–14, https:// doi. org/
10. 1145/ 32906 05. 33006 41.

https://lirias.kuleuven.be/handle/123456789/146072
http://www.jstor.org/stable/2984504
https://doi.org/10.3115/1073083.1073085
https://www.aclweb.org/anthology/P02-1001
https://www.aclweb.org/anthology/P02-1001
https://doi.org/10.3115/1220575.1220611
https://doi.org/10.3115/1220575.1220611
https://doi.org/10.1017/S1471068414000076
http://papers.nips.cc/paper/8026-approximate-knowledge-compilation-by-online-collapsed-importance-sampling.pdf
http://papers.nips.cc/paper/8026-approximate-knowledge-compilation-by-online-collapsed-importance-sampling.pdf
http://papers.nips.cc/paper/8026-approximate-knowledge-compilation-by-online-collapsed-importance-sampling.pdf
http://proceedings.mlr.press/v28/gens13.html
http://proceedings.mlr.press/v28/gens13.html
https://www.aclweb.org/anthology/J99-4004
https://www.aclweb.org/anthology/J99-4004
https://doi.org/10.1016/S0951-8320(96)00077-4
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3685
https://doi.org/10.1016/j.jal.2016.11.031
https://doi.org/10.1145/3290605.3300641
https://doi.org/10.1145/3290605.3300641

1300 Machine Learning (2022) 111:1259–1301

1 3

Kowalski, R. A. (1988). The early years of logic programming. Communications of the ACM, 31(1), 38–43.
Laplace, P. S. (1825). A philosophical essay on probabilities. Springer, translator Andrew I. Dale, Published

in 1995.
Liang, Y., Bekker, J., Van Den Broeck, G. (2017). Learning the structure of probabilistic sentential deci-

sion diagrams. In Uncertainty in artificial intelligence - proceedings of the 33rd conference, UAI 2017,
http:// starai. cs. ucla. edu/ papers/ Liang UAI17. pdf

Moglia, M., Sharma, A. K., & Maheepala, S. (2012). Multi-criteria decision assessments using subjective
logic: Methodology and the case of urban water strategies. Journal of Hydrology, 452–453, 180–189.

Oztok, U., & Darwiche, A. (2015). A top-down compiler for sentential decision diagrams. In Proceedings
of the 24th international conference on artificial intelligence, AAAI Press, IJCAI’15, pp. 3141–3148.

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3),
241–288.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Van Den Broeck, G., Kersting, K.,
Ghahramani, Z. (2020). Einsum networks: Fast and scalable learning of tractable probabilistic circuits.
In H. D. Iii, A. Singh (Eds.) Proceedings of the 37th international conference on machine learning,
PMLR, proceedings of machine learning research, vol. 119, pp. 7563–7574, http:// proce edings. mlr.
press/ v119/ pehar z20a. html

Poole, D. (2000). Abducing through negation as failure: Stable models within the independent choice logic.
The Journal of Logic Programming, 44(1), 5–35. https:// doi. org/ 10. 1016/ S0743- 1066(99) 00071-0.

Rashwan, A., Zhao, H., Poupart, P. (2016). Online and distributed bayesian moment matching for parameter
learning in sum-product networks. In Artificial intelligence and statistics, pp 1469–1477.

Rooshenas, A., & Lowd, D. (2014). Learning sum-product networks with direct and indirect variable inter-
actions. In Proceedings of the 31st international conference on international conference on machine
learning - volume 32, JMLR.org, ICML’14, pp. I-710–I-718.

Sang, T., Bearne, P., Kautz, H. (2005). Performing bayesian inference by weighted model counting. In Pro-
ceedings of the 20th National Conference on Artificial Intelligence—volume 1, pp. 475–481.

Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In Proceedings
of the 12th international conference on logic programming (ICLP-95).

Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical modeling.
Journal of Artificial Intelligence Research, 15(1), 391–454. http:// dl. acm. org/ citat ion. cfm? id= 16228
45. 16228 58

Sensoy, M., Kaplan, L., Kandemir, M. (2018). Evidential deep learning to quantify classification uncer-
tainty. In 32nd Conference on neural information processing systems (NIPS 2018).

Smets, P. (1993). Belief functions: The disjunctive rule of combination and the generalized Bayesian theo-
rem. International Journal of Approximate Reasoning, 9, 1–35.

Trapp, M., Peharz, R., Ge, H., Pernkopf, F., Ghahramani, Z. (2019). Bayesian learning of sum-product net-
works. In Advances in neural information processing systems, pp. 6344–6355.

Van Allen, T., Singh, A., Greiner, R., & Hooper, P. (2008). Quantifying the uncertainty of a belief net
response: Bayesian error-bars for belief net inference. Artificial Intelligence,172(4), 483–513.

Vergari, A., Di Mauro, N., & Esposito, F. (2015). Simplifying, regularizing and strengthening sum-prod-
uct network structure learning. In A. Appice, P. P. Rodrigues, V. Santos Costa, J. Gama, A. Jorge,
& C. Soares (Eds.), Machine learning and knowledge discovery in databases (pp. 343–358). Cham:
Springer International Publishing.

Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., & Valera, I. (2019). Automatic Bayesian
density analysis. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 5207–5215.

Von Neumann, J., & Morgenstern, O. (2007). Theory of games and economic behavior (commemorative
edition). Princeton: Princeton University Press.

von zur Gathen, J. (1988). Algebraic complexity theory. Annual Review of Computer Science,3(1), 317–348.
https:// doi. org/ 10. 1146/ annur ev. cs. 03. 060188. 001533

Xu, J., Zhang, Z., Friedman, T., Liang, Y., Van Den Broeck, G. (2018) A semantic loss function for deep
learning with symbolic knowledge. In 35th International conference on machine learning, ICML 2018,
12, 8752–8760, http:// starai. cs. ucla. edu/ papers/ XuICM L18. pdf

Zaffalon, M., & Fagiuoli, E. (1998). 2U: An exact interval propagation algorithm for polytrees with binary
variables. Artificial Intelligence, 106(1), 77–107.

Zhao, H., Adel, T., Gordon, G., Amos, B. (2016a). Collapsed variational inference for sum-product net-
works. In International conference on machine learning, pp. 1310–1318.

Zhao, H., Poupart, P., Gordon, G. (2016b). A unified approach for learning the parameters of sum-product
networks. In Proceedings of the 30th international conference on neural information processing sys-
tems, Curran Associates Inc., Red Hook, NY, USA, NIPS’16, pp. 433–441.

http://starai.cs.ucla.edu/papers/LiangUAI17.pdf
http://proceedings.mlr.press/v119/peharz20a.html
http://proceedings.mlr.press/v119/peharz20a.html
https://doi.org/10.1016/S0743-1066(99)00071-0
http://dl.acm.org/citation.cfm?id=1622845.1622858
http://dl.acm.org/citation.cfm?id=1622845.1622858
https://doi.org/10.1146/annurev.cs.03.060188.001533
http://starai.cs.ucla.edu/papers/XuICML18.pdf

1301Machine Learning (2022) 111:1259–1301

1 3

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Federico Cerutti1,2 · Lance M. Kaplan3 · Angelika Kimmig4,5 · Murat Şensoy6,7

 Lance M. Kaplan
 lance.m.kaplan.civ@army.mil

 Angelika Kimmig
 angelika.kimmig@cs.kuleuven.be

 Murat Şensoy
 murat.sensoy@ozyegin.edu.tr

1 Department of Information Engineering, University of Brescia, Brescia, Italy
2 Crime and Security Research Institute, Cardiff University, Cardiff, UK
3 US DEVCOM Army Research Laboratory, Adelphi, MD, USA
4 Department of Computer Science, KU Leuven, Leuven, Belgium
5 Leuven.AI - KU Leuven Institute for AI, Leuven, Belgium
6 Blue Prism AI Labs, London, UK
7 Department of Computer Science, Ozyegin University, Istanbul, Turkey

http://orcid.org/0000-0003-0755-0358

	Handling epistemic and aleatory uncertainties in probabilistic circuits
	Abstract
	1 Introduction
	2 Background
	2.1 Algebraic model counting
	2.2 Probabilistic circuits

	3 A Bayesian account of uncertain probabilities
	3.1 Subjective logic

	4 AMC-conditioning parametrisation with strong independence assumptions
	4.1 SL AMC-conditioning parametrisation with strong independence assumptions
	4.2 Moment Matching AMC-conditioning parametrisation with strong independence assumptions

	5 CPB: covariance-aware probabilistic inference with beta-distributed random variables
	5.1 Pre-processing
	5.2 Circuit shadowing
	5.3 Evaluating the shadowed circuit
	5.4 Scalability and memory performance

	6 Experimental results
	6.1 The benefits of considering covariances
	6.2 Comparison with other approaches for dealing with uncertain probabilities

	7 Conclusion
	Acknowledgements
	References

