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Abstract
We address the problem of unsupervised domain adaptation under the setting of gener-
alized target shift (joint class-conditional and label shifts). For this framework, we theo-
retically show that, for good generalization, it is necessary to learn a latent representation 
in which both marginals and class-conditional distributions are aligned across domains. 
For this sake, we propose a learning problem that minimizes importance weighted loss in 
the source domain and a Wasserstein distance between weighted marginals. For a proper 
weighting, we provide an estimator of target label proportion by blending mixture esti-
mation and optimal matching by optimal transport. This estimation comes with theoreti-
cal guarantees of correctness under mild assumptions. Our experimental results show that 
our method performs better on average than competitors across a range domain adapta-
tion problems including digits,VisDA and Office. Code for this paper is available at https://​
github.​com/​arako​tom/​mars_​domain_​adapt​ation.

1  Introduction

Unsupervised Domain Adaptation (UDA) is a machine learning subfield that aims at 
addressing issues due to the discrepancy of train/test, also denoted as source/test, data dis-
tributions. There exists a large amount of literature addressing the UDA problem under 
different assumptions. One of the most studied setting is based on the covariate shift 
assumption (marginal distributions on source and target pS(x) ≠ pT (x) and conditional 
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distributions pS(y|x) = pT (y|x)) for which methods perform importance weighting (Sugi-
yama et  al., 2007) or aim at aligning the marginal distributions in some learned feature 
space (Pan et al., 2010; Long et al., 2015; Ganin & Lempitsky, 2015). Target shift, also 
denoted as label shift (Schölkopf et al., 2012) assumes that for the class prior probability, 
pS(y) ≠ pT (y) while, for the class-conditional distributions, we have pS(x|y) = pT (x|y) . For 
this problem, most works seek at estimating either the ratio pT (y)∕pS(y) or the label pro-
portions (Lipton et al., 2018; Azizzadenesheli et al., 2019;  Li et al., 2019; Redko et al., 
2019; Shrikumar et al., 2020;).

However as most models now learn the latent representation space, in practical situ-
ations we have both a label shift ( pS(y) ≠ pT (y) ) and class-conditional probability shift 
( pS(z|y) ≠ pT (z|y) , z being a vector in the latent space). For this more general DA assump-
tion, denoted as generalized target shift, fewer works have been proposed. Zhang et  al. 
(2013) have been among the first authors that proposed a methodology for handling both 
shifts. They used a kernel embedding of distributions for estimating importance weights 
and for transforming samples so as to match class-conditional distributions. Gong et  al. 
(2016) follow similar idea by assuming that there exists a linear mapping that maps source 
class-conditionals to the target ones. For addressing the same problem (Wu et al., 2019) 
introduced a so-called asymmetrically-relaxed distance on distributions that allows to miti-
gate the effect of label shift when aligning marginal distributions. Interestingly, they also 
show that, when marginals in the latent space are aligned, error in the target domain is 
lower-bounded by the mismatch of label distributions between the two domains. Recently, 
Combes et  al. (2020) have presented a theoretical analysis of this problem showing that 
target generalization can be achieved by matching label proportions and class-conditionals 
in both domains. The key component of their algorithm relies on a importance weight esti-
mation of the label distributions. Unfortunately, although relevant in practice, their label 
distribution estimator got theoretical guarantee only when class conditionals match across 
domains and empirically breaks as soon as class conditionals mismatch becomes large 
enough.

Our work addresses UDA with generalized target shift and we make the following con-
tributions. From a theoretical side, we introduce a bound which clarifies the role of the 
label shift and class-conditional shift in the target generalization error bound. Our theoreti-
cal analysis emphasizes the importance of learning with same label distributions in source 
and target domains while seeking at minimizing class-conditional shifts in a latent space. 
Based on this theory, we derive a learning problem and an algorithm which aims at min-
imizing Wasserstein distance between weighted marginals while ensuring low empirical 
error in a weighted source domain. Since a weighting scheme requires the knowledge of 
the label distribution in the target domain, we solve this estimation problem by blending 
a consistent mixture proportion estimator and an optimal matching assignment problem. 
While conceptually simple, our strategy is supported by theoretical guarantees of correct-
ness. Then, given the estimated label proportion in the target domain, we theoretically 
show that finding a latent space in which the Wasserstein distance between the weighted 
source marginal distribution and the target one is zero, guarantees that class-conditionals 
are also matched. We illustrate in our experimental analyses how our algorithm (named 
MARS from Match And Reweight Strategy) copes with label and class-conditional shifts 
and show that it performs better than other generalized target shift competitors on several 
UDA problems.
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2 � Notation and background

Let X  and Y be the input and output space. We denote by Z the latent space and G the class 
of representation mappings from X  to Z . Similarly, H represents the hypothesis space, 
which is a set of functions from Z to Y . A labeling function f is a function from X  to 
Y . Elements of X  , Y and Z are respectively noted as x, y and z. For our UDA problem, 
we assume a learning problem with source and target domains and respectively note as 
pS(x, y) and pT (x, y) their joint distributions of features and labels. We have at our disposal 
a labeled source dataset {(xs

i
, ys

i
)}

ns
i=1

 with ys
i
∈ {1…C} (or {0, 1} for binary classification) 

and only unlabeled examples from the target domain {xt
i
}
nt
i=1

 with all xi ∈ X  , sampled i.i.d 
from their respective distributions. We refer to the marginal distributions of the source and 
target domains in the latent space as pg

S
(z) and pg

T
(z) . Class-conditional probabilities in the 

latent space and label proportion for class j will be respectively noted as pj
U
≜ pU(z|y = j) 

and py=j
U

≜ pU(y = j) with U ∈ {S, T} . Finally, we defer proofs of the theoretical results to 
the appendix.

2.1 � Domain adaptation framework

Since the seminal work of Pan et  al. (2010), Long et  al. (2015), Ganin and Lempitsky 
(2015), a common formulation of the covariate shift domain adaptation problem is to learn 
a mapping of the source and target samples into a latent representation space where the 
distance between their marginal distributions is minimized and to learn a hypothesis that 
correctly predicts labels of samples in the source domain. This typically translates into the 
following optimization problem:

where h(⋅) is the hypothesis, g(⋅) a representation mapping and L(⋅, ⋅) ∶ Y × Y ↦ ℝ
+ is a 

continuous loss function differentiable on its second parameter and Ω a regularization term. 
Here, D(⋅, ⋅) is a distance metric between distributions that measures discrepancy between 
source and target marginal distributions as mapped in a latent space induced by g. Most 
used distance measures are MMD (Tzeng et al., 2014), Wasserstein distance (Shen et al., 
2018) or Jensen–Shannon distance (Ganin et al., 2016).

2.2 � Optimal transport (OT)

We provide here some background on optimal transport as it will be a key concept for 
assigning label proportion. More details can be found in Peyré et al. (2019). Optimal trans-
port measures the distance between two distributions over a space X  given a transporta-
tion cost c ∶ X × X → ℝ

+ . It seeks for an optimal coupling between the two measures 
that minimizes a transportation cost. In a discrete case, we denote the two measures as 
� =

∑n

i=1
ai�xi and � =

∑m

i=1
bi�x�

i
 . The Kantorovitch relaxation of the OT problem seeks for 

a transportation coupling � that minimizes the problem

(1)min
h,g

1

n

ns∑

i=1

L(ys
i
, h(g(xs

i
))) + �D(p

g

S
, p

g

T
) + Ω(h, g)

(2)min
�∈Π(�,�)

⟨�,�⟩
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where � ∈ ℝ
n×m is the matrix of all pairwise costs, �i,j = c(xi, x

�
j
) and 

Π(�, �) = {� ∈ ℝ
n×m
+

|�� = �,�⊤� = �} is the transport polytope between the two distribu-
tions. The above problem is known as the discrete optimal transport problem and in the 
specific case where n = m and the weights � and � are positive and uniform then the solu-
tion of the above problem is a scaled permutation matrix (Peyré et al., 2019). One of the 
key features of OT that we are going to exploit for solving the domain adaptation problem 
is its ability to find correspondences between samples in an unsupervised way by exploit-
ing the underlying space geometry. These features have been for instance exploited for 
unsupervised word translation (Alvarez-Melis et al., 2019; Alaux et al., 2019).

3 � Theoretical insights

In this work, we are interested in a situation where both class-conditional and label 
shifts occur between source and target distributions i.e there exists some j so that 
pS(z|y = j) ≠ pT (z|y = j) and py=j

S
≠ p

y=j

T
 . Because we have these two sources of mismatch, 

the resulting domain adaptation problem is difficult and aligning marginals is not sufficient 
(Wu et al., 2019).

For better understanding the key aspects of the problem, we provide an upper bound on 
the target generalization error which exhibits the role of class-conditional and label distri-
bution mismatches. For a sake of simplicity, we will consider binary classification prob-
lem. Let X  be the input space and assume that the function f ∶ X ↦ {0, 1} is the domain-
invariant labeling function, which is a classical assumption in DA (Shen et al., 2018; Wu 
et al., 2019). For a domain U, with U = {S, T} , the induced marginal probability of sam-
ples in Z is formally defined as pg

U
(A) = pU(g

−1(A)) for any subset A ⊂ Z and g−1(A) being 
potentially a set ( pg

U
(A) is thus the push-forward of pU(x) by g(⋅) ). Similarly, we define the 

conditional distribution gU(⋅|z) such that pU(x) = ∫ gU(x|z)p
g
u(z)dz holds for all x ∈ X  . For 

a representation mapping g, an hypothesis h and the labeling function f, the expected risk is 
defined as �U(h◦g, f ) ≜ �x∼pU

[|h(g(x)) − f (x)|] = �z∼pz
U
[|h(z) − f

g

U
(z)|] ≜ �z

U
(h, f

g

U
) with f g

U
 

being a domain-dependent labeling function defined as f g
U
(z) = ∫ f (x)gU(x|z)dx.

Now, we are in position to derive a bound on the target error but first, we introduce a 
key intermediate result.

Lemma 1  Assume two marginal distributions p
g

S
 and p

g

T
 , with p

g

U
=
∑C

k=1
p
y=k

U
pk
U

 , 
U = {S, T} . For all py

T
 , py

S
 and for any continuous class-conditional density distribution pk

S
 

and pk
T
 such that for all z and k, we have pS(z|y = k) > 0 and pS(y = k) > 0 , the inequality 

supk,z[w(z)Sk(z)] ≥ 1 holds with Sk(z) =
pT (z|y=k)
pS(z|y=k)

 and w(z) = p
y=k

T

p
y=k

S

 , if z is of class k.

Intuitively, this lemma says that the maximum ratio between class-conditionals weighted 
by label proportion ratio is lower-bounded by 1, and that potentially, this bound can be 
achieved when both py=k

S
= p

y=k

T
 and pk

S
= pk

T
 . Interestingly, Wu et  al. (2019)’s results 

involve a similar term supz
p
g

T
(z)

p
g

S
(z)

 for defining their assymetrically-relaxed distribution 
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distance. But we use a finer modeling that allows us to explicitly disentangle the role of the 
class-conditionals and label distribution ratio. In our case, owing to this inequality, we can 
bound one of the key term that upper bounds the generalization error in the target domain.

Theorem 1  Under the assumption of Lemma 1, and assuming that any function h ∈ H is 
K-Lipschitz and g is a continuous function then for every function h and g, we have

where Sk(z) and w(z) are as defined in Lemma  1, h⋆ = argminh∈H 𝜀S(h◦g;f ) and 
�z
T
(f

g

S
, f

g

T
) = �z∼pz

T
[|f g

T
(z) − f

g

S
(z)|] and WD1 defined through its dual form as

with w(⋅) = 1.

Let us analyze the terms that bound the target generalization error. The first term 
�S(h◦g, f ) ≜ �z

S
(h, f

g

S
) can be understood as the error induced by the hypothesis h and the 

mapping g. This term is controllable through an empirical risk minimization approach as 
we have some supervised training data available from the source domain. The second term 
is the Wasserstein distance between the marginals of the source and target distribution in 
the latent space. Again, this can be minimized based on empirical examples and the Lip-
schitz constant K can be controlled either by regularizing the model g(⋅) or by properly 
setting the architecture of the neural network model used for g(⋅) . The last term �T (f

g

S
, f

g

T
) 

is not directly controllable (Wu et al., 2019) but it becomes zero if the latent space label-
ling function is domain-invariant which is a reasonable assumption especially when latent 
joint distributions of the source and target domains are equal. The remaining term that we 
have to analyze is supk,z[w(z)Sk(z)] which according to Lemma 1 is lower bounded by 1. 
This lower bound is attained when the label distributions are equal and class-conditional 
distributions are all equal and in this case, the joint distributions in the source and target 
domains are equal and thus �z

T
(f

g

S
, f

g

T
) = 0.

4 � Match and reweight strategy

4.1 � The learning problem

The bound in Theorem 1 suggests that a good model should: (i) look for a latent represen-
tation mapping g and a hypothesis h that generalizes well on the source domain, ii) have 
minimal Wasserstein distance between marginal distributions of the latent representations 

𝜀T (h◦g, f ) ≤ 𝜀S(h◦g, f ) + 2K ⋅WD1

(
p
g

S
, p

g

T

)

+

[
1 + sup

k,z

w(z)Sk(z))

]
𝜀S
(
h⋆◦g, f

)

+ 𝜀z
T

(
f
g

S
, f

g

T

)

(3)WD1

�
p
g

S
, p

g

T

�
= sup

‖v‖L≤1
�z∼p

g

S
w(z)v(z) − �z∼p

g

T
v(z)
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while having class-conditional probabilities that match, and iii) learn from source data with 
equal label proportions as the target so as to have w(z) = 1 for all z. For yielding our learn-
ing problem, we will translate these properties into an optimization problem.

At first, let us note that one simple and efficient way to handle mismatch in label distri-
bution is to consider importance weigthing in the source domain. Hence, instead of learn-
ing from the marginal source distribution pS =

∑C

k=1
p
y=k

S
pk
S
 , we learn from a reweighted 

version denoted as pS̃ =
∑C

k=1
p
y=k

T
pk
S
 , as proposed by Sugiyama et al. (2007), Combes et al. 

(2020), so that no label shift occurs between pS̃ and pT . This approach needs an estimation 
of py=k

T
 that we will detail in the next subsection, but interestingly, in this case, for Theo-

rem 1, we will have w(z) = p
y=k

T

p
y=k

S̃

=
p
y=k

T

p
y=k

T

= 1 . Then, based on the bound in Theorem 1 applied 

to pS̃ and pT , we propose to learn the functions h and g by solving the problem

where the importance weight w†(xs
i
) =

p
y=yi
T

p
y=yi
S

 allows to simulate sampling from pg
S̃
 given pg

S
 , 

and the discrepancy between marginals is the Wasserstein distance

The first term of Eq. (4) corresponds to the empirical loss related to the error 𝜀S̃ in The-
orem 1 while the distribution divergence aims at minimizing distance between marginal 
probabilities, the second term in that theorem. In the next subsections, we will make clear 
why the Wasserstein distance is used as the divergence and provide conditions and guar-
antees for having WD1(p̃

g

S
, p

g

T
) = 0 ⟹ WD(pk

S
, pk

T
) = 0 , i.e. perfect class-condition-

als matching, and thus Sk(z) = 1 for all k, z. Recall that in this case, the lower bound on 
maxk,z[w(z)Sk(z)] will be attained.

Algorithmically, for solving the problem in Eq. (4), we employ a classical adversarial 
learning strategy. It is based on a standard back-propagation strategy using stochastic gradi-
ent descent (detailed in Algorithm 1). We estimate the label proportion using Algorithm 2 
and then use this proportion for computing the importance weights w(⋅) . The first part of 
the algorithm consists then in computing the weighted Wassertein distance using gradient 
penalty (Gulrajani et  al., 2017). Once this distance is computed, we back-propagate the 
error through the parameters of the feature extractor g and the classifier f. In practice, we 
use weight decay as regularizer Ω over the representation mapping and classifier functions 
g and h. 

(4)min
g,h

1

n

ns∑

i=1

w†
(
xs
i

)
L
(
ys
i
, h
(
g
(
xs
i

)))
+ 𝜆WD1

(
p
g

S̃
, p

g

T

)
+ Ω(h, g)

(5)WD1

�
p̃g
s
, p

g

t

�
= sup

‖v‖L≤1
�z∼p

g

S
w†(z)v(z) − �z∼p

g

T
v(z).
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4.2 � Estimating target label proportion using optimal assignment

The above learning problem needs an estimation of PT (y) for weighting the classification 
loss and for computing the Wasserstein distance between pg

S̃
 and pg

T
 . Several approaches 

exist for estimating py
T
 when class-conditional distributions in source and target matches 

(Redko et al., 2019; Combes et al., 2020). However, this is not the case in our general set-
ting. Hence, in order to make the problem tractable, we will introduce some assumptions 
on the structure and geometry of the class-conditional distributions in the target domain 
that allow us to provide guarantee on the correct estimation of py

T
.

For achieving this goal, we first consider the target marginal distribution as a mixture 
of models and estimate the proportions of the mixture. Next we aim at finding a permuta-
tion �(⋅) that guarantees, under mild assumptions, correspondence between the class-con-
ditional probabilities of same class in the source and target domain. Then, this permutation 
allows us to correctly assign a class to each mixture proportion leading to a proper estima-
tion of each class label proportion in the target domain.

In practice, for the first step, we assume that the target distribution is a mixture model 
with C components {pj

T
} and we want to estimate the mixture proportion of each com-

ponent. For this purpose, we have considered two alternative strategies coming from the 
literature : i) applying agglomerative clustering on the target samples tells us about the 
membership class of each sample and thus, the resulting clustering provides the propor-
tion of each component in the mixture. ii) learning a Gaussian mixture model over the data 
in the target domain. This gives us both the estimate components {pj

T
} and the proportion 
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of the mixture �u . Under some conditions on its initialization and assuming the model is 
well-calibrated, Zhao et  al. (2020) have shown that the sample estimator asymptotically 
converges towards the true mixture model. 

Matching class-conditionals with OT Since, we do not know to which class each com-
ponent of the mixture in target domain is related to, we assume that the conditional distri-
bution in the source and target domain of the same class can be matched owing to optimal 
assignment. The resulting permutation would then help us assign each label proportion 
estimated as above to the correct class-conditional. Figure 1 in the appendix illustrates this 
matching problem.

Let us suppose that we have an estimation of all C class-conditional probabilities on 
source and target domain (based on empirical distributions). We want to solve an optimal 
assignment problem with respect to the class-conditional probabilities {pi

S
}C
i=1

 and {pj
T
}C
j=1

 
and we clarify under which conditions on distance between class-conditional probabilities, 
the assignment problem solution achieves a correct matching of classes (i.e pi

S
 is correctly 

assigned to pi
T
 for all i). Formally, denote as ℙ the set of probability distributions over ℝd 

and assume a metric over ℙ . We want to optimally assign a finite number C of probability 
distributions of ℙ to another set of finite number C of probability distributions belonging to 
ℙ , in a minimizing distance sense. Based on a distance D between couple of class-condi-
tional probability distributions, the assignment problems looks for the permutation that 
solves min�

1

C

∑
j D(p

j

S
, p

�(j)

T
). Note that the best permutation 𝜎⋆ solution to this problem 

can be retrieved by solving a Kantorovitch relaxed version of the optimal transport (Peyré 
et al., 2019) with marginals � = � =

1

C
1 . Hence, this OT-based formulation of the match-

ing problem can be interpreted as an optimal transport one between discrete measures of 
probability distributions of the form 1

C

∑C

j=1
�
p
j

U

 . In order to be able to correctly match 
class-conditional probabilities in source and target domain by optimal assignement, we ask 
ourselves:

Under which conditions the retrieved permutation matrix would correctly match the 
class-conditionals? 

In other word, we are looking for conditions of identifiability of classes in the target 
domain based on their geometry with respect to the classes in source domain. Our proposi-
tion below presents an abstract sufficient condition for identifiability based on the notion of 
cyclical monotonicity and then we exhibit some practical situations in which this property 
holds.
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Fig. 1   Example of geometrical arrangments of the source and target class-conditional distributions that 
allows correct and incorrect matching of classes by optimal transport of empirical means (assuming correct 
estimation of these means). Blue lines denote the matching. (top-left) In this setting, the displacements of 
each class-conditionals is so that for each class i ‖�i

S
−�i

T
‖2 ≤ ‖�i

S
−�

j

T
‖2 , for all j. We are thus in the 

first example that we gave as satisfying Proposition 1. (top-right) Class-conditionals have been displaced 
such that the “nearness” hypothesis is not respected anymore. However, target class-conditional distribu-
tions are obtained by a linear Monge map of their source counterparts. This ensures that optimal transport 
allows their matchings (based on their means). (middle) We have illustrated two other examples of distri-
bution arrangments that allow class matching. (bottom) Two examples that break our assumption. In both 
cases, one target class-conditional is “near” another source class, without the global displacements of all 
target class-conditionals being uniform in direction (Color figure online)
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Proposition 1  Denote as � =
1

C

∑C

j=1
�
p
j

S

 and � =
1

C

∑C

j=1
�
p
j

T

 , representing respectively the 
balanced weighted sum of class-conditionals probabilities in source and target domains. 
Given D a distance over probability distributions, assume that for any permutation � of C 
elements, the following assumption, known as the D-cyclical monotonicity relation, holds

then solving the optimal transport problem between � and � as defined in Eq. (2) using D 
as the ground cost matches correctly class-conditional probabilities.

While the cyclical monotonicity assumption above can be hard to grasp, there exists 
several situations where it applies. One condition that is simple and intuitive is when class-
conditionals of same source and target classes are "near" each other in the latent space. 
More formally, if we assume that ∀j D(p

j

S
, p

j

T
) ≤ D(p

j

S
, pk

T
) ∀ k , then summing over all 

possible j, and choosing k so that all the couples of (j, k) form a permutation, we recover the 
cyclical monotonicity condition 

∑C

j
D(p

j

S
, p

j

T
) ≤

∑D

j
(p

j

S
, p

�(j)

T
),∀� . Another more general 

condition on the identifiability of the target class-conditional can be retrieved by exploiting 
the fact that, for discrete optimal transport with uniform marginals, the support of optimal 
transport plan satisfies the cyclical monotonicity condition (Santambrogio, 2015). This is 
for instance the case, when pj

S
 and pj

T
 are Gaussian distributions of same covariance matri-

ces and the mean mj

T
 of each pj

T
 is obtained as a linear symmetric positive definite mapping 

of the mean mj

S
 of pj

S
 and the distance D(p

j

S
, p

j

T
) is ‖mj

S
− m

j

T
‖2
2
 (Courty et al., 2016). This 

situation would correspond to a linear shift of the class-conditionals of the source domain 
to get the target ones. Figure 1 illustrates how our class-conditional matching algorithm 
performs on a simple toy problem. While our assumptions can be considered as strong, we 
illustrate in Fig. 4, that the above hypotheses hold for the VisDA problem, and lead after-
wards to a correct matching of the class-conditionals.

It is interesting to compare our assumptions on identifiability to other hypotheses pro-
posed in the literature for solving (generalized) target shift problems. When handling only 
target shift, one common hypothesis (Redko et al., 2019) is that class-conditional probabil-
ities are equal. This in our case boils down to have a 0 distance between D(P

j

S
,P

j

T
) guaran-

teeing matching under our more general assumptions. When both shifts occur on labels and 
class-conditionals, Wu et al. (2019) assume that there exists continuity of support between 
the p(z|y) in source and target domains. Again, this assumption may be related to the above 
minimum distance hypothesis if class-conditionals in source domain are far enough. Inter-
estingly, one of the hypothesis of Zhang et al. (2013) for handling generalized target shift 
is that there exists a linear transformation between the class-conditional probabilities in 
source and target domains. This is a particular case of our Proposition 1 and subsequent 
discussion, where the mapping between class-conditionals is supposed to be linear. Our 
conditions for correct matching and thus for identifying classes in the target domain are 
more general than those proposed in the current literature.

4.3 � When matching marginals lead to matched class‑conditionals?

In our learning problem, since one term we aim at minimizing is WD1(p
g

S̃
, p

g

T
) , with 

p
g

S̃
=
∑

j p
y=j

T
p
j

S
 and pg

T
=
∑

j p
y=j

T
p
j

T
 , we want to understand under which assumptions 

WD1(p
g

S̃
, p

g

T
) = 0 implies that pS(z|y = j) = pT (z|y = j) for all j, which is key for a good 

∑

j

D

(
p
j

S
, p

j

T

)
≤
∑

j

D

(
p
j

S
, p

�(j)

T

)
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generalization as stated in Theorem 1. Interestingly, the assumptions needed for guarantee-
ing this implication are the same as those in Proposition 1.

Proposition 2  Denote as � the optimal coupling plan for distributions � and � defined as 
balanced weighted sum of class-conditionals that is � =

1

C

∑C

j=1
�
p
j

S

 and � =
1

C

∑C

j=1
�
p
j

T

 
under assumptions given in Proposition 1. Assume that the classes are ordered so that we 
have � =

1

C
diag(1) . Then  � � = diag(�) is also optimal for the transportation problem with 

marginals �� =
∑C

j=1
aj�pj

S

 and �� =
∑C

j=1
aj�pj

T

 , with aj > 0,∀j . In addition, if the Wasser-
stein distance between �′ and �′ is 0, it implies that the distance between class-conditionals 
are all 0.

Applying this proposition with aj = p
y=j

T
 brings us the guarantee that under some geo-

metrical assumptions on the class-conditionals in the latent space, having WD1(p̃
g

S
, p

g

T
) = 0 

implies matching of the class-conditionals, resulting in a minimization of maxk,z w(z)Sk(z) 
(remind that w(z) = 1 as mixture components pj

S
 and pj

T
 of pg

S̃
 and pg

T
 are both weighted by 

p
y=j

T
 for all j, since we learn using pg

S̃
).

5 � Discussions

From a theoretical point of view, several works have pointed out the limitations of learn-
ing domain invariant representations. Johansson et al. (2019), Zhao et al. (2019) and Wu 
et al. (2019) have introduced some generalization bounds on the target error that show the 
key role of label distribution and conditional distribution shifts when learning invariant 
representations. Importantly, Zhao et al. (2019) and Wu et al. (2019) have shown that in a 
label shift situation, minimizing source error while achieving invariant representation will 
tend to increase the target error. In our work, we introduce an upper bound that clarifies the 
importance of learning invariant representations that also align class-conditional represen-
tations in source and target domains.

Algorithmically, most related works are the one by Wu et al. (2019) and Combes et al. 
(2020) that also address generalized target shift. The first approach does not seek at esti-
mating label proportion but instead allows flexibility in the alignment by using an assy-
metrically-relaxed distance. In the case of Wasserstein distance, the approach of Wu et al. 
(2019) consists in reweighting the marginal of the source distribution and in its dual form, 
their distance boils to

where w(⋅ ) is actually a constant 1

1+�
 . We can note that the adversarial loss we propose is a 

general case of this one. Indeed, in the above, the same amount of weighting applies to all 
the samples of the source distribution. At the contrary, our reweighting scheme depends on 
the class-conditional probability and their estimate target label proportion. Hence, we 
believe that our approach would adapt better to imbalance without the need to tune � (by 
validation for instance, which is hard in unsupervised domain adaptation). The work of 
Combes et al. (2020) and our differs only in the way the weights w(x) are estimated. In our 
case, we consider a theoretically supported and consistent estimation of the target label 
proportion, while they directly estimate w(⋅) by applying a technique tailored and grounded 

WDw(pS, pT ) = sup
‖v‖L≤1

�x∼pS
w(x)v(x) − �x∼pT

v(x)
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for problems without class-conditional shifts. We will show in the experimental section 
that their estimator in some cases lead to poor generalization.

Still in the context of reweighting, Yan et  al. (2017) proposed a weighted Maximum 
Mean discrepancy distance for handling target shift in UDA. However, their weights are 
estimated based on pseudo-labels obtained from the learned classifier and thus, it is dif-
ficult to understand whether they provide accurate estimation of label proportion even in 
simple setting. While their distance is MMD-transposed version of our weighted Wasser-
stein, our approach applies to representation learning and is more theoretically grounded as 
the label proportion estimation is based on sound algorithm with proven convergence guar-
antees (see below) and our optimal assignment assumption provides guarantees on situa-
tions under which class-conditional probability matching is correct.

The idea of matching moment of distributions have already been proven to be an effec-
tive for handling distribution mismatch. About ten years ago, Huang et al. (2007), Gretton 
et al. (2009), Yu and Szepesvári (2012) already leveraged such an idea for handling covari-
ate shift by matching means of distributions in some reproducing kernel Hilbert space. Li 
et al. (2019) recycled the same idea for label proportion estimation and extended the idea 
to distribution matching. Interestingly, our approach differs on its usage. While most above 
works employ mean matching for density ratio estimation or for label proportion estima-
tion, we use it as a mean for identifying displacement of class-conditional distributions 
through optimal assignment/transport. Hence, it allows us to assign estimated label propor-
tion to the appropriate class.

For estimating the label proportion, we have proposed to learn a Gaussian mixture model 
of the target distribution. By doing so we are actually trying to solve a harder problem than 
necessary. However, once the target distribution estimation has been evaluated and class-con-
ditional probabilities being assigned from the source class, one can use that Gaussian mix-
ture model for labelling the target samples. Note however that Gaussian mixture learned by 
expectation-minimization can be hard to estimate especially in high-dimension (Zhao et al., 
2020) and that the speed of convergence of the EM algorithm depends on smallest mixture 
weights (Naim & Gildea, 2012). Hence, in high-dimension and/or highly imbalanced situa-
tions, one may get a poor estimate of the target distribution. Nonetheless, one can consider 
other non-EM approach (Kannan et al., 2005; Arora et al., 2005). Hence, in practice, we can 
expect the approach GMM estimation and OT-based matching to be a strong baseline in low-
dimension and well-clustered mixtures setting but to break in high-dimension one.

6 � Numerical experiments

We present in this section some experimental analyses of the proposed algorithm on a toy 
dataset as well as on real-world visual domain adaptation problems. The code for reproduc-
ing part of the experiments is available at https://​github.​com/​arako​tom/​mars_​domain_​adapt​
ation.

6.1 � Experimental setup

Our goal is to show that among algorithms tailored for handling generalized target shift, 
our method is the best performing one (on average). Hence, we compare with two very 
recent methods designed for generalized target shift and with two domain adaptation algo-
rithms tailored for covariate shift for sanity check.

https://github.com/arakotom/mars_domain_adaptation
https://github.com/arakotom/mars_domain_adaptation
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As a baseline, we consider a model, denoted as Source trained for f and g on the source 
examples and tested without adaptation on the target examples. Two other competitors use 
respectively an adversarial domain learning (Ganin et al., 2016) and the Wasserstein distance 
(Shen et al., 2018) computed in the dual as distances for measuring discrepancy between pS 
and pT , denoted as DANN and WD�=0 . We consider the model proposed by Wu et al. (2019) 
and Combes et al. (2020) as competing algorithms able to cope with generalized target shift. 
For this former approach, we use the asymmetrically-relaxed Wasserstein distance so as to 
make it similar to our approach and also report results for different values of the relaxation � . 
This model is named WD� with � ≥ 1 . The Combes et al. (2020)’s method, named IW-WD 
(for importance weighted Wasserstein distance) solves the same learning problem as ours and 
differs only on the way the ratio w(x) is estimated. Our approaches are denoted as MARSc or 
MARSg respectively when estimating proportion by hierarchical clustering or by Gaussian 
mixtures. All methods differ only in the metric used for computing the distance between mar-
ginal distributions and most of them except DANN use a Wassertein distance. The difference 
essentially relies on the reweighting strategy of the source samples. For all models, learning 
rate and the hyperparameter � in Eq. (4) have been chosen based on a reverse cross-validation 
strategy. The metric that we have used for comparison is the balanced accuracy (the aver-
age recall obtained on each class) which is better suited for imbalanced problems (Brodersen 
et al., 2010). All presented results have been obtained as averages over 20 runs.

6.2 � Toy dataset

The toy dataset is a 3-class problem in which class-conditional probabilities are Gauss-
ian distributions. For the source distribution, we fix the mean and the covariance matrix 
of each of the three Gaussians and for the target, we simply shift the means (by a fixed 
translation). We have carried out two sets of experiments where we have fixed the shift and 
modified the label proportion imbalance and another one with fixed imbalance and increas-
ing shift. For space reasons, we have deported to the supplementary the results of the latter. 
Figure 2 show how models perform for varying imbalance and fixed shift. The plots nicely 
show what we expect. DANN performs worse as the imbalance increases. WD� works well 
for all balancing but its parameter � needs to increase with the imbalance level. Because 
of the shift in class-conditional probabilities, IW-WD is not able to properly estimate the 
importance weights and fails. Our approaches are adaptive to the imbalance and perform 
very well over a large range for both a low-noise and mid-noise setting (examples of how 
the Gaussians are mixed are provided in the supplementary material). For the hardest 

Fig. 2   Performance of the compared algorithms for three different covariance matrices of the Gaussians 
composing the toy dataset with respect to the imbalance. The x-axis is given with respect to the percentage 
of majority class which is the class 1. (left) Low-error setting. (middle) mid-error setting. (right) high-error 
setting. Example of the source and target samples for the different cases are provided in the supplementary 
material
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problem (most-right panel), all models have difficulties and achieve only a balanced accu-
racy of 0.67 over some range of imbalance. Note that for this low-dimension toy problem, 
as expected, the approach GMM and OT-based matching achieves the best performance as 
reported in the supplementary material.

6.3 � Digits, VisDA and office

We present some UDA experiments on computer vision datasets (Peng et al., 2017; Ven-
kateswara et al., 2017), with different imbalanced settings. Details of problem configura-
tions as well as model architecture and training procedure can be found in the appendix.

Our first result provides an illustration in Fig. 4 of the latent representation we obtain 
for the VisDA problem after training on the source domain only and after convergence of 
the different DA algorithms. We first note that for this problem, the assumptions for correct 
matching seem to hold and this leads to very good visual matching of class-conditionals for 
MARS.

Table  1 reports the averaged balanced accuracy achieved by the different models for 
only a fairly chosen subset of problems. The full table is in the supplementary. Results pre-
sented here are not comparable to results available in the literature as they mostly consider 
covariate shift DA (hence with balanced proportions). For these subsets of problems, our 
approaches yield the best average ranking. They perform better than competitors except 
on the MNIST-MNISTM problems where the change in distribution might violate our 
assumptions. Figure 3 presents some quantitative results label proportion estimation in the 
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Fig. 3   Examples of �1 norm error of estimated label proportion. We have reported the performance of our 
two methods (MARSg and MARSc) as well as the performance of IW-WD. The three panels are related to 
the (left) VisDA-3, (middle) VisDA-12, (right) Office 31 and the different experimental imbalance settings 
(see Table 1). We have also reported, with a ‘*’ on top, among the three approaches, the best performing 
one in term of balanced accuracy. We note that MARSc provides better estimation than IW-WD on 12 out 
of 16 experiments. Note also the correlation between better �T estimation and accuracy

Fig. 4   t-sne embeddings of the target sample for the VisDA-3 problem and imbalance setting 2 
( �S = [0.4, 0.2, 0.4] and �T = [0.2, 0.6, 0.2] ). The columns depict the embeddings obtained (left) after train-
ing on the source data without adaptation for about 10 iterations, which is sufficient for 0 training error. 
(right) after adaptation by minimizing the appropriate discrepancy loss between marginal distributions. 
From top to bottom, we have : (first-row) DANN, (second-row) WD�=1 , (third-row), IW-WD (last row) 
MARSc. From the right column, we note how DANN and WD�=1 struggle in aligning the class condition-
als, especially those of Class 1, which is the class that varies the most in term of label proportion. IW-WD 
manages to aligns the classes “0” and “2” but is not able to correctly match the class “1”. Instead, our 
MARSc approach achieves high performance and correctly aligns the class conditionals, although some few 
examples seem to be mis-classified. Importantly, we can remark from the left column that for this exam-
ple, before alignment, the embeddings seem to satisfy our Proposition 1 hypothesis. At the contrary, the 
assumption needed for correctly estimating �T for IW-WD is not satisfied, justifying thus the good and poor 
performance of those models

▸
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target domain between our method and IW-WD. We show that MARSc provides better 
estimation than this competitor 12 out of 16 experiments. As the key issue in generalized 
target shift problem is the ability to estimate accurately the importance weight or the tar-
get label proportion, we believe that the learnt latent representation fairly satisfies our OT 
hypothesis leading to good performance.
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7 � Conclusion

The paper proposed a strategy for handling generalized target shift in domain adaptation. It 
builds upon the simple idea that if the target label proportion where known, then reweight-
ing class-conditional probabilities in the source domain is sufficient for designing a distri-
bution discrepancy that takes into account those shifts. In practice, our algorithm estimates 
the label proportion using Gaussian Mixture models or agglomerative clustering and then 
matches source and target class-conditional components for allocating the label propor-
tion estimations. Resulting label proportion is then plugged into an weighted Wasserstein 
distance. When used for adversarial domain adaptation, we show that our approach outper-
forms competitors and is able to adapt to imbalance in target domains.

Several points are worth to be extended in future works. Our main assumption, for 
achieving estimations of class-conditionals, is the cyclical monotonicity of the class-condi-
tional distributions in the latent space. However, unfortunately, we do not have any method 
for checking whether this assumption holds after training the representation on the source 
domain, especially as it supposed the knowledge of the class in the target domain. Hence, it 
would be interesting to enforce this assumption to hold, for instance by defining a regulari-
zation term based on the notion of cyclical monotonicity.

Furthermore, at the present time, we have considered simple mean-based approach for 
matching distributions, it is worth investigating whether higher-order moments are useful 
for improving the matching. Our algorithm relies mostly on our ability to estimate label 
proportion, we would be interested on in-depth theoretical analysis label proportion esti-
mation and their convergence and convergence rate guarantees.
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