
Vol.:(0123456789)

Machine Learning (2022) 111:2011–2036
https://doi.org/10.1007/s10994-021-06099-z

1 3

Stream‑based active learning for sliding windows
under the influence of verification latency

Tuan Pham1 · Daniel Kottke1 · Georg Krempl2 · Bernhard Sick1

Received: 31 January 2021 / Revised: 28 July 2021 / Accepted: 8 October 2021 /
Published online: 18 November 2021
© The Author(s) 2021

Abstract
Stream-based active learning (AL) strategies minimize the labeling effort by querying
labels that improve the classifier’s performance the most. So far, these strategies neglect the
fact that an oracle or expert requires time to provide a queried label. We show that existing
AL methods deteriorate or even fail under the influence of such verification latency. The
problem with these methods is that they estimate a label’s utility on the currently available
labeled data. However, when this label would arrive, some of the current data may have
gotten outdated and new labels have arrived. In this article, we propose to simulate the
available data at the time when the label would arrive. Therefore, our method Forgetting
and Simulating (FS) forgets outdated information and simulates the delayed labels to get
more realistic utility estimates. We assume to know the label’s arrival date a priori and the
classifier’s training data to be bounded by a sliding window. Our extensive experiments
show that FS improves stream-based AL strategies in settings with both, constant and vari-
able verification latency.

Keywords  Classification · Active learning · Evolving data streams · Concept drift ·
Verification latency · Label delay

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 *	 Tuan Pham
	 tuan.pham@uni-kassel.de

	 Daniel Kottke
	 daniel.kottke@uni-kassel.de

	 Georg Krempl
	 g.m.krempl@uu.nl

	 Bernhard Sick
	 bsick@uni-kassel.de

1	 Universität Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany
2	 Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06099-z&domain=pdf

2012	 Machine Learning (2022) 111:2011–2036

1 3

1  Introduction

This article addresses data stream classification in non-stationary environments, where
instances appear successively and are initially unlabeled.

To learn a classifier, we need labels for at least some of these instances. Therefore,
we can select some instances to be passed to an oracle for labeling, e.g., a human expert
or a computationally intensive simulation. Such a label acquisition induces some sort
of cost, which we (for now) assume to be equal across all instances. Hence, we define
a labeling budget as the fraction of instances that can be labeled, e.g., 8% of instances
in the stream. The rest remains unlabeled. Algorithms from the field of stream-based
active learning (AL) aim to maximize the classifier’s performance under the given
budget restrictions by selecting only the most informative instances for labeling. Similar
to Zliobaite et al. (2014), we follow the common assumption that the AL strategy needs
to decide immediately at the moment an instance arrives whether or not to acquire its
label.

Imagine the following example: We want to train a classifier on a stream of posts
from social media to find out if they mention a company’s name positively or negatively.
Using stream-based AL methods, we only select the most useful posts for labeling.
However, when we select an instance for labeling, it is impossible for the expert to pro-
vide the label immediately as time is needed to read the post first. Sometimes the expert
might even be occupied with other work, such as previous labeling requests, which
delays the appearance of the label further. So far, all existing AL strategies assume that
labels are immediately available. This is unrealistic and problematic as new instances
might appear during an ongoing labeling process. This means that subsequent active
learning decisions, i.e., whether to request these new instances’ labels as well, might
need to be taken while previous label requests are still being processed. This problem
occurs even more often when we consider fast data streams or applications with high
labeling costs, as these are often correlated with annotation time. Furthermore, even
relaxing the commonly formulated requirement to decide a label request immediately
upon an instance’s arrival would not help: If we were to allow labels to be requested
later, it would simply mean that the processing of these labels by the oracle would then
be delayed as well. As a consequence, we would delay subsequent label requests even
more, and therefore accumulate an increasing backlog in the labeling process.

While this problem has not been considered in active learning literature so far, it has
been studied in the context of passive learning on non-stationary data streams. Denoted
as label delay by Kuncheva (2008) and verification latency by Marrs et al. (2010), sev-
eral approaches for adapting classifiers when labels arrive with delay have been proposed.
Nevertheless, none of them addresses the effect this problem has on the active selection of
labels, in particular on estimating the utility of requested labels that arrive with delay.

In this article, we therefore examine the influence of verification latency for stream-
based AL algorithms and propose strategies to solve the accompanying problems. To
understand the effects of verification latency, we handle the non-stationarity in data streams
(due to concept drift or shift) using blind adaptation in the form of a sliding window with
length w. The sliding window restricts the training data for the classifier to instances that
appear within the window [t − w;t] . Although advanced change detection methods can
react faster to change (Gama et al. 2014), they might induce an unintentional bias and is,
therefore, subject to future work. The advantage of blind adaptation is its simplicity and
predictability which helps the general understanding of the effects for active learning.

2013Machine Learning (2022) 111:2011–2036	

1 3

To visualize our main ideas, we compare the current approach and our solutions in
Fig. 1.

State-of-the-art stream-based AL methods quantify the utility of the current instance xn
(violet) at time tx

n
 based on the available information that is contained in the sliding window

of the current classifier (gray interval). Thereby, the following two problems occur: (a) If
the new instance xn (violet) is selected for acquisition, it could not be added before its label
yn becomes available, which is at time tyn . Nevertheless, in the state-of-the-art approach,
the utility is quantified using the information from the current sliding window at time tx

n
 .

Thereby, one would consider older labels that would already have been removed when the
new instance-label-pair would appear (at time tyn ). This is a problem. For example, if xn is
similar to one of the old instances, the AL strategy sees no need to acquire xn , as long as
the old instances are still included for utility estimation. Nevertheless, their information
will have been lost at tyn , and yn would not have been requested to replace them. Hence,
we propose to forget the soon-to-be outdated instances when quantifying an instance’s
utility (see Fig. 1II-a). (b) State-of-the-art algorithms tend to acquire labels from similar
instances under the influence of verification latency. Imagine that now, in contrast to (a),
the instance with the delayed label (black ‘?’) is very similar to the new instance xn (violet).
If we ignore the information about delayed labels, we will also have a high utility for xn .
Thus, it is likely that redundant labels are acquired. In order to address this, we propose to
simulate the delayed labels and include them when quantifying the utilities (see Fig. 1II-
b). The proposed methods are integrated into an active learning python framework, called
scikit-activeml1 (Kottke et al. 2021a).

In this article, we answer the following research question:

“How must we change AL methods such that they still work for tasks with veri-
fication latency?”

To this end, we make the following contributions, which we evaluate within the given
hypotheses:

Fig. 1   We propose to assess the utility of acquiring a label at the time when the label would arrive. There-
fore, we need to a forget outdated instances and b simulate labels that are not yet available but will be then
(Color figure online)

1  https://​github.​com/​scikit-​activ​eml/​scikit-​activ​eml.

https://github.com/scikit-activeml/scikit-activeml

2014	 Machine Learning (2022) 111:2011–2036

1 3

–	 We show that verification latency impairs the performance of traditional AL methods
(see Hypothesis 1).

–	 We propose two general wrapper strategies for stream-based AL algorithms that imple-
ment the idea of forgetting obsolete data (F) and simulating upcoming labels (S).

–	 We evaluate our strategies on multiple synthetic and real datasets for various constant
(see Hypothesis 2) but also variable label delays (see Hypothesis 4) and show their
effectiveness.

–	 We show that combining forgetting (F) and simulating (S) performs better compared to
using only one wrapper F or S (see Hypothesis 3).

The remainder of this article is structured as follows: We start with a detailed description
of related work. Then, we describe our approaches and evaluate them based on the four
hypotheses. Finally, we conclude our work and motivate future work in the field of stream-
based AL with verification latency.

2 � Related work

The problem addressed by the approach in this publication has relations to several branches
of research in literature: First, to data stream mining in general. Second, to change detec-
tion, to change and drift mining approaches for handling drift in presence of verification
latency, and to active machine learning for handling costly labels in particular. We will first
review these branches separately, before discussing the state-of-the-art at their intersection.

2.1 � Data stream mining

As noted in Babcock et al. (2002), in contrast to conventional (pool-based) data mining,
the characteristic of data stream mining is that instances therein arrive sequentially over
time, either individually (i.e., are processed instance-wise) or in batches. Thus, the num-
ber of instances is potentially unbounded and grows continuously, from only a single or
a few instances at the beginning. The first main challenge in data stream mining is there-
fore keeping the computational time and space complexities of processing an additional
instance constant, i.e., independent of the number of previously processed instances. This
is typically done by discarding or archiving already processed instances. Complementary
to the challenge of complexity, a second major and common challenge is non-stationarity,
as data generating distributions change over time. This phenomenon, denoted as concept
drift in Schlimmer and Granger (1986), as concept shift in Klinkenberg and Renz (1998),
or as population drift in Kelly et al. (1999), requires adaptation techniques. An exhaus-
tive review of such techniques is given for example in Gama et al. (2014). The taxonomy
proposed therein distinguishes techniques by three criteria: The first distinction is based on
the learning mode of an approach, which might always retrain a new model from scratch,
or might incrementally keep updating the same model. The second distinction is whether
the adaptation is initiated in an informed manner, i.e., upon the detection of change, or so-
called blindly, i.e., by adapting continuously. The third distinction is whether a single model
or an ensemble is maintained and managed. Following this taxonomy, our approaches pro-
posed below are characterized as incremental streaming approaches that manage a single
model. As will be explained in the next subsection, due to verification latency we rely on
continuous blind adaptation, achieved by forgetting the oldest instances.

2015Machine Learning (2022) 111:2011–2036	

1 3

2.2 � Verification latency

The vast majority of data stream mining approaches assume that the actual label of an
instance becomes available before proceeding to the classification of the next instance.
Kuncheva (2008) and Marrs et al. (2010) were among the first publications to challenge
this assumption. Kuncheva (2008) coined the term label delay, and Marrs et al. (2010)
the term verification latency, respectively, for scenarios where the actual label to verify
a prediction becomes available only with considerable delay. A first approach address-
ing this challenge, although for static streams, was instance-based learning proposed
in Kuncheva and Sánchez (2008). This nearest neighbor-based, error-driven approach
incorporates instances into a reference set if they are misclassified. However, the delay
in labeling leads to a delay in identifying misclassifications as well. Thus, the authors
propose conditional labeling, where for a yet unlabeled instance the labels of its two
nearest labeled neighbors in the reference set are compared against each other, and a
match indicates a correct prediction. The authors discuss different strategies to handle
delayed labeling in the reference set, ranging from ignoring to using unlabeled data.
They report inconclusive results when comparing these strategies. Subsequently, the
first approaches to address verification latency in non-stationary, evolving streams were
proposed by Krempl and Hofer (2011) and Krempl (2011): Since no recent, labeled
data is available, such approaches require assumptions about the type of drift present
in the data stream. Formalizing these assumptions allows formulating drift models that
describe the transitions between distributions over time. Similarly to viewing the prob-
lem as an unsupervised domain adaptation task between chronologically ordered source
and target domains, these drift models allow to anticipate or extrapolate distributional
changes or classification model adaptations. In Krempl and Hofer (2011), this is done
by using a mixture of labeled Gaussian clusters and tracking their movement within
the feature space. In contrast, the APT-algorithm proposed in Krempl (2011) is non-
parametric, and maps labeled instances from the source domain to the target domain
by formulating this as an assignment problem and solving it for minimizing the overall
distance. In Hofer and Krempl (2013), an approach for updating the class prior prob-
abilities from unlabeled data is proposed. Most recently, Krempl et al. (2019) propose a
non-parametric approach for extrapolating density changes over time. Thus, it comple-
ments the previously proposed techniques for updating the class prior with techniques
that enable to extrapolate the evolution of the class-conditional feature distributions.

Rather than explicitly modeling a drifting distribution, Dyer et al. (2014) propose a
series of geometry-based approaches for Compacted Object Sample Extraction (COM-
POSE). These approaches maintain a compacted geometric representation of each class
and adapt these representations by using unlabeled data in a semi-supervised fashion.
Recent extensions of COMPOSE include a faster variant proposed by Umer (2017),
and a variant for handling scenarios with class-imbalance proposed in Frederickson and
Polikar (2018).

Recent publications have further developed the taxonomy of verification latency.
Plasse and Adams (2016) propose a distinction based on the cause of verification
latency. Therein, one type is delay mechanisms that cause latencies independently of
the data. An example is a constant delay that occurs due to the physical movement of
objects to a testing facility. Another type is lag magnitudes that are dependent on the
data. For example, in a fraud detection scenario, the time needed to analyze cases might
vary with their difficulty. The framework proposed in Plasse and Adams (2016) uses a

2016	 Machine Learning (2022) 111:2011–2036

1 3

weighting approach to limit the impact of verification latency. This weighting approach
allows adjusting the influence of instances on the classifier according to the latency.
Another categorization is provided by considering the extent of verification latency.
Souza et al. (2018) use this to distinguish three different types of latencies. One extreme
is null latency, which corresponds to no latency at all. The other is categorized as
extreme verification latency, where latency is assumed to be infinitely high. Thus, after
the initial training has been completed, no further labels will arrive in a data stream.
Between these two extremes lies the so-called intermediate latency, which we will focus
on in this article. Here, the verification latency is finite and may or may not be known
beforehand.

Finally, aspects of evaluation under verification latency have also been studied. In Souza
et al. (2018), an extension of the Kappa Statistic is proposed to overcome shortcomings of
conventional stream mining evaluation techniques. In Grzenda et al. (2019), the monitoring
of each instance’s prediction over time during the verification latency is suggested. A com-
parative study of selected approaches for extreme verification latency has been published in
Umer and Polikar (2020).

While the approaches discussed above address adaptivity, a related question is that of
change detection in the classes’ posterior distribution in presence of verification latency:
Large latency results in the absence of recent labels, which impairs the use of supervised
change detection. Following the early works of Kuncheva (2008) on unsupervised, ensem-
ble-based feature change detection, and the study by Žliobaité (2010) on the possibility of
unsupervised detection of posterior changes, unsupervised change detection has recently
gained attention. An example is Hammoodi et al. (2016), which addresses the detection of
drift in features for real-time feature selection. A similar approach is proposed by dos Reis
et al. (2016). Therein, a comparison of the training data for the classifier against the most
recent data using an incremental version of the Kolmogorov-Smirnov test is proposed. This
determines for each feature separately whether a change has happened. Finally, the prob-
lem of fault detection under verification latency has been addressed in Razavi-Far et al.
(2019). Nevertheless, as for adaptation itself, using detected changes in unlabeled data to
infer drift of the posterior distribution again requires making strong assumptions about the
mechanism underlying the distributional changes. We acknowledge that this might have
potential in some applications, and thus might be worth exploring in the future. For the
sake of the versatility of the approaches in this paper, however, we avoid such assump-
tions, and instead use labels as they arrive for continuous (i.e., blind) adaptation. Concept
changes are not the only changes that might occur within a data stream. Depending on the
application, changes in the number of features might occur. So far, this has been addressed
for pool-based AL (Pham et al. 2020). For this article, we focus on concept changes, how-
ever, changes in number of features in an active learning scenarios with verification latency
might be worth investigating in the future.

2.3 � Active learning in data streams

In the conventional, passive supervised machine learning setting, an algorithm processes
all labeled instances that are present in a training set or that arrive in a data stream. In
contrast, active learning approaches aim to actively develop and test new hypotheses (Set-
tles 2012, pages 3–4). Typically, this is done by interacting with their environment (i.e., a
data providing oracle) and thereby controlling the acquisition of new data, as described in
Cohn (1993). For example, an active classifier might use the feature vectors given for all

2017Machine Learning (2022) 111:2011–2036	

1 3

instances to determine the one instance that promises to be the most insightful, to query its
label from an oracle, and to add it to its training set. Several techniques have been proposed
in literature, as surveyed for example in Settles (2012) or Kumar and Gupta (2020). Most
prominent is Uncertainty Sampling, proposed by Lewis and Gale (1994), where instances
closest to the decision boundary or with the highest uncertainty in their posterior estimates
are selected. Another is Version Space Partitioning proposed by Cohn (2010), where the
instance with a maximal disagreement between hypotheses in the current version space is
selected, or Query by Committee, where the instance with maximal disagreement within
an ensemble of classifiers is selected. In Loss Minimization, a classifier’s performance is
directly optimized, such as in Expected Error Reduction by Roy and McCallum (2001).
Related to the former is another decision-theoretic strategy, Probabilistic Active Learning
by Krempl et al. (2015b), that computes the expected gain in classification performance
from labeling additional instances.

From the active learning scenarios considered in the literature, our work focuses on so-
called stream-based selective sampling as reviewed in Settles (2012) and Zliobaite et al.
(2014): herein, instances arrive sequentially on a data stream, and whether an instance’s
label is acquired has to be decided ad hoc and irrevocably, since instances are forgotten and
not accessible after processing. In particular in non-stationary data streams, this poses spe-
cific challenges: In a stationary setting, as a classification model converges further towards
the optimal decision boundary, focusing on exploitation by sampling instances closer to the
expected decision boundary is considered beneficial for an active learning strategy, as dis-
cussed in Bondu et al. (2010) and Loy et al. (2012). In contrast, if drift might occur at any
time and anywhere, then even a previously already optimal classification model might have
become obsolete. To address this, continuous exploration is required. To this end, Zliobaite
et al. (2014) propose to continuously and randomly sample a few instances, such that there
are representatives of all relevant areas of the feature space. Their Variable Uncertainty
approach adjusts only a threshold parameter, such that the most uncertain instances over
time are selected. While this approach does not use randomization for exploration, it is
extended to Random Variable Uncertainty, by multiplying the adjusted threshold parame-
ter with a factor that is randomly sampled from a normal distribution with mean 1. Finally,
for the Split approach, they extend Variable Uncertainty further by combining it also with
change detection, which is solely applied on the randomly sampled instances. Similar to
Zliobaite et al. (2014), the density-based active learning (DBAL) approach proposed in
Ienco et al. (2014) also uses uncertainty sampling with randomization for exploration but
combines it with density weighting. In addition to the spatial aspect of ensuring both, the
exploitation of already available labels, and the exploration of the whole feature space,
Kottke et al. (2015) point out the need for budget management, i.e., to also consider the
temporal aspect of when to acquire labels on evolving data streams. For the latter, con-
sider an unlabeled instance at a promising spatial location. Whether to acquire such an
instance now depends on the lifetime of this and similar instances. That is, on how long an
instance will contribute significantly to improving the model’s performance, and whether
an instance at an even more promising spatial location might arrive later, such that saving
budget now would pay off then. To achieve this, adaptive filtering techniques are proposed
in Kottke et al. (2015). Therein, Probabilistic Active Learning is used to calculate the spa-
tial utility of instances within a sliding window. Then, a Balanced Incremental Quantile
Filter (BIQF) is used to select the instances with the highest spatio-temporal utility within
the sliding window, such that a given labeling budget is never exceeded.

In addition to techniques for (temporal) budget management, there exist several approaches
for streams where processing instances in chunks is possible. Examples are Zhu et al. (2007),

2018	 Machine Learning (2022) 111:2011–2036

1 3

which uses Query by Committee, or clustering-based approaches such as in Ienco et al. (2013)
and Krempl et al. (2015a). Nevertheless, since we aim for an approach that is capable of
instance-wise processing, we will not elaborate on these chunk-wise processing approaches
further, and rather focus on instance-wise processing approaches with budget management.

2.4 � Active learning in evolving data streams in presence of verification latency

Summarizing, several data stream mining approaches have addressed either the problem of
verification latency or the problem of actively selecting labels. However, no approach has yet
addressed the combination of actively selecting labels under verification latency. Nevertheless,
the detrimental impact of verification latency on some of the stream-based active learning
approaches, such as variable randomized uncertainty proposed in Zliobaite et al. (2014), has
been empirically evaluated in Parreira and Prati (2019). Their results indicate that the informa-
tiveness of instances becomes more uncertain as latency increases. In their conclusion, they
call for future work that develops active learning approaches that consider the effect of delayed
labels. Our paper addresses this by contributing a first active learning approach for verification
latency.

3 � Handling verification latency in stream‑based active learning

We assume to have a data stream as an ordered list of 4-tuple (tx
i
, xi, t

y

i
, yi) with

i ∈ {1,… ,N},N > 0 (Eq. (1)). Each data point consists of an instance xi , its timestamp tx
i
 ,

a label yi that would be returned by the oracle, and the timestamp that label would arrive at ty
i

when queried. Thus, ty
i
− tx

i
 represents the verification latency for xi.

To our knowledge, we are the first to provide methods to handle verification latency in an
AL scenario. Additionally, the stream is assumed to be infinitely long and changes over
time, i.e., abrupt and gradual concept change may occur. Hence, storing all data is infea-
sible. Instead, we use a sliding window Wn at time tx

n
 that allows us to reduce the amount

of stored data and deal with concept change by forgetting old instances. Wn has a constant
length of w ∈ ℝ

>0 , defined as a time span.

We model the AL process by introducing an acquisition vector Qn , that stores a boolean
value ai for each xi with i ∈ {1,… , n − 1} and tx

i
∈ Wn , whether the AL strategy queried

the label yi at tx
i
.

(1)S =
⟨
(tx
i
, xi, t

y

i
, yi)|i ∈ ℕ

>0

⟩

(2)xi ∈ ℝ
D yi ∈ Y = {1, 2,… ,C}

(3)tx
i
, t

y

i
∈ ℝ

≥0

(4)tx
j
< tx

k
for j < k ∈ ℕ

>0 ∧ tx
i
< t

y

i
for i ∈ ℕ

>0

(5)Wn = [tx
n
− w;tx

n
)

2019Machine Learning (2022) 111:2011–2036	

1 3

Thus, if ai is 1, the AL strategy decides at time tx
i
 to query the label yi for instance xi .

Hence, the label will be accessible at time ty
i
 . If ai is 0, the label will not be queried. Thus,

yi will remain unavailable even after ty
i
.

Considering the sliding window Wn and the acquisition vector Qn at tx
n
 , a valid training

instance xi with its label yi at time tx
n
 has to be present within Wn , i.e., tx

i
, t

y

i
∈ Wn , and yi has

been queried in the past, i.e., ai is 1, with 1 ≤ i < n . We exclude n as its label yn is not avail-
able yet. The classification model’s training data Ln is a set of triplets containing the data
point, its label, and the corresponding training weight, which ranges from 0 to 1 and will
be used by the classifier. We consider the training weight, as it will be a central part of one
of the proposed methods below. For simplicity, we assume this to be set to 1.

3.1 � The general AL cycle

For each instance xn , the AL strategy has to decide whether to query the instance or not. As
we focus on instance-wise processed evolving data streams, the AL strategies we address
come with budget management. We further focus on AL strategies that assess the utility un
for an instance xn . Based on the utility, the budget management assesses, whether the label
query fits into the budget. We propose to standardize the AL strategies by encapsulating
them in classes. Given an AL strategy al, al.UTILITY assesses the utility an instance’s label
would have. Furthermore, al.QUERY decides based on this utility whether the label should
be queried. We introduce GETUTILITY , that wraps around al.UTILITY , that will be used to
handle verification latency. For traditional AL strategies, GETUTILITY is defined as shown
in Algorithm 1.

Algorithm 1 Utility Without Verification Latency
1: function getUtility(al, (txn, xn, t

y
n), f, Ln)

2: return al.utility(xn, f, Ln)
3: end function

As underlying active stream-based sampling techniques we use the uncertainty sam-
pling-based Var-Uncertainty and Split approaches proposed by Zliobaite et al. (2014), and
the BIQF-approach proposed by Kottke et al. (2015), with its Balanced Incremental Quan-
tile Filter and Probabilistic Active Learning components. Thus, in the appendix, we also
provide the pseudocodes for computing the utility function based on Variable Uncertainty
in Algorithm 8, and of the corresponding query function in Algorithm 9. Likewise, the
pseudocodes for the utility function based on Split in Algorithm 10, as well as its query
function in Algorithm 11, and the pseudocodes for computing the utility value using
Probabilistic Active Learning in Algorithm 12 and for its corresponding query function in
Algorithm 13 are given in the appendix.

(6)Qn =
⟨
ai|∀i < n with tx

i
∈ Wn

⟩

(7)ai ∈ {0, 1}

(8)Ln =
⟨
(xi, yi, 1)|∀i < n with ai = 1 ∧ tx

i
, t

y

i
∈ Wn

⟩
.

2020	 Machine Learning (2022) 111:2011–2036

1 3

Algorithm 2 AL Framework
1: f ← initialize classifier
2: al ← initialize AL strategy
3: for all n ∈ {1, . . .} do
4: (txn, xn, t

y
n) ← retrieve from data stream S (Eq. (1))

5: Ln ← training dataset at time tn for acquisitions A (Eq. (8))
6: un ← getUtility(al, (txn, xn, t

y
n), f, Ln)

7: an ← al.query(un)
8: if an = 1 then
9: ask oracle for label of xn (label yn will be provided at tyn)
10: end if
11: end for

The framework we work in is given in Algorithm 2. First, the classifier f that will be
trained by the AL strategy and the AL strategy al itself are initialized (line 1 and 2). The
triplet (tx

n
, xn, t

y
n) is acquired from the data stream (line 4). Based on the current time tx

n
 , the

training data Ln needs to be adjusted, by moving the sliding window and incorporating
labels that are newly available, i.e., labels yi with ty

i
∈ [tx

n−1
, tx
n
) and ai = 1 (line 5). The util-

ity of xn is then assessed using al (line 6) and based on the utility, it is decided whether to
query yn (line 7). If the label is queried, i.e., an = 1 , then xn is given to the oracle, so that
the label is provided at tyn (line 8 to 10).

3.2 � Forgetting obsolete data (F)

For active learning, it is essential to assess the classifier’s uncertainty as accurately as pos-
sible. In case of verification latency, the current classifier ( f Ln) may provide different pre-
dictions from the classifier at time tyn . We denote the sliding window that would be used for
training at tyn as Dn.

Due to incomplete information about Dn , i.e., the incoming instances and labels after tx
n
 are

still unknown, we will estimate the information within Dn as good as possible. One prob-
lem is that Ln includes data that is not included within Dn (see the red area in Fig. 2). This
needs to be considered in AL. Using Ln for estimating the uncertainty might underestimate
the classifier’s uncertainty in areas with data that will be obsolete soon.

Thus, to obtain more accurate uncertainty estimations, we propose Forgetting Old Data
(F). Forgetting mechanisms are a standard technique in data stream mining (Gama et al.
2014), which we hereby introduce to AL scenarios with verification latency. F discards
data that would be unavailable by tyn . We denote the ordered list that contains these data as
On.

To be more precise, only data points (tx
i
, xi, t

y

i
, yi) with tx

i
, t

y

i
∈ Dn will be used to infer a

classifier that will be used to assess the utility un at tyn . In Fig. 2, state-of-the-art is com-
pared to F. The state-of-the-art strategies include all data in Wn for the utility assessment.
Hence, x2 and x3 are included for that example as well. However, those instances will be

(9)Dn = [ty
n
− w;ty

n
)

(10)On =
⟨
(xi, yi, 1)|∀i < n with ai = 1 ∧ tx

i
, t

y

i
∈ Wn ⧵Dn

⟩

2021Machine Learning (2022) 111:2011–2036	

1 3

unavailable to the classifier training, once y9 arrives which will lead to inaccurate utility
assessments. When using F, x2 and x3 will be excluded as both instances would be con-
tained in On (see Eq. (10)).

Algorithm 3 getUtility using F
1: function getUtilityF(al, (txn, xn, t

y
n), f, L)

2: On ← find obsolete data (Eq. (10))
3: return getUtility(al, (txn, xn, t

y
n), f, L \On)

4: end function

Algorithm 3 shows the corresponding pseudocode for F. First, On , the labeled data not
within Dn , has to be identified (line 2). Next, all data in On is omitted from Ln (line 3).
Additionally, the GETUTILITY function is defined in a recursive manner (line 3) so that it
can also be easily combined with the methods proposed in the following two sections.

3.3 � Simulating incoming labels with bagging (S.B)

F by itself only handles data that will be unavailable in the future ( Dn ), by forgetting them.
Hence, labels yi that have been queried but are not yet available ( tx

n
≤ t

y

i
< t

y
n ∧ ai = 1 ) are

still ignored by the active learning strategy. Not knowing that the labels of x6 and x7 in
Fig. 3 have already been queried, the AL strategy will probably select instance x9 , although
more labels will be available in that region soon. By simulating y6 and y7 as in Fig. 3, the
AL strategy would be aware of the incoming labels and react accordingly, e.g., not select-
ing x9 . We denote D+

n
 as the time span of Dn that is not covered by Wn . Hence, it covers the

data that will be observed in the future within Dn.

To incorporate still unavailable but already queried labels, we propose Simulating Incom-
ing Labels with Bagging (S.B) to estimate the utilities for labels in the future. We pro-
pose to estimate the utility of yn by employing a bagging approach by averaging K utility

(11)D
+
n
= Dn ⧵Wn = [tx

n
;ty
n
)

Fig. 2   The plots show the data within the sliding window that is used for assessing the acquisition of label
y
9
 at time tx

9
 . The left side shows state-of-the-art strategies. These use all data that is used to train the clas-

sifier. The right side shows the difference when combining stream-based AL strategies with the proposed
forgetting wrapper (F). As highlighted in the red area, instances that will be unavailable at ty

9
 , are excluded

as those will not be within the sliding window anymore (Color figure online)

2022	 Machine Learning (2022) 111:2011–2036

1 3

estimations. For each utility estimation, S.B samples a set of labels Bn,k with k ∈ {1,… ,K}
for data with ty

i
∈ D

+
n
 and Ai = 1 . The labels ŷi for each sample are distributed according to

the categorical distribution (Murphy 2012) with parameter pLn
(
⋅|xi

)
.

As the label of yi is not yet available, we need to estimate the probability for each class to
sample ŷi from the categorical distribution. Therefore, we use all available instance-label-
pairs ( Ln ) and a Bayesian approach to regularize the estimated probabilities using a conju-
gate prior � (Murphy 2012). Similarly to Chapelle (2005), we calculate the probabilities
using a kernel function k(⋅, ⋅) with k(x, x) = 1.

Choosing a uniform prior ( � = (1,… , 1) ), this estimate provides equal probabilities for all
classes if there are no labels near x. Contrary, the regularizing effect of the prior diminishes
with increasing label counts. This idea of using Bayesian probability estimation has also
been used in the area of AL in Kottke et al. (2021b) and Chapelle (2005). The performance
of the simulations in S and subsequently of the active learning depend on the correctness of
the probability estimation. In some applications, other estimation methods might be more
suitable.

We sketch S.B on the left side of Fig. 3. This approach focuses on labels that will
arrive within D+

n
 , i.e., y6 , y7 , and y8 . S.B simulates those labels by randomly sampling

the labels as shown in Eq. (12). Hence, the AL strategies will be aware of their own que-
ries, even though, the true labels y6 , y7 , and y8 are still unknown.

(12)
Bn,k =

⟨
(xi, ŷi, 1)|∀i < n with ai = 1 ∧ tx

i
∈ Wn ∧ t

y

i
∈ D

+
n

⟩

with ŷi ∼ Cat(pLn
(
⋅|xi

)
)

(13)pLn (y�x) =

�
∑

(x� ,y� ,w�)∈Ln

1y�=y ⋅ w
�
⋅ k(xi, x

�)

�
+ �y

�
∑

(x� ,y� ,w�)∈Ln

w�
⋅ k(x, x�)

�
+

C∑
i=1

�i

Fig. 3   The plots show the data that will be used to assess the utility for querying the label y
9
 at time tx

9
 .

The left side shows the behavior of S.B with k = 1 . The brown contour shows the still unlabeled instances
whose label will arrive between tx

9
 and ty

9
 . Each of these instances is assigned a randomly sampled label (see

Eq. (12)) in each iteration. The right side shows the behavior of S.F. Contrary to S.B, S.F assigns a fuzzy
label (see Eq. (15)) to the instances whose label will arrive between tx

9
 and ty

9
 (Color figure online)

2023Machine Learning (2022) 111:2011–2036	

1 3

Algorithm 4 getUtility using S.B
1: function getUtilitySB(al, (txn, xn, t

y
n), f, L)

2: u ← 0
3: for all k ∈ {1, . . . ,K} do
4: Bn,k ← sampling unknown labels (Eq. (12))
5: u ← u+ 1

K
getUtility(al, (txn, xn, t

y
n), f, L ∪Bn,k)

6: end for
7: return u
8: end function

S.B uses L ∪ Bn,k to estimate the training data available for the classifier at tyn . Algo-
rithm 4 shows the pseudocode for S.B. First, a variable u is initialized with 0 to store the
resulting utility (line 2). Next, the instances xi with ty

i
∈ D

+
n
 and ai = 1 are used to con-

struct Bn,k (line 4). L ∪ Bn,k is then used to estimate the utility (line 5). This is repeated
K-times (line 3 to 6) to obtain the average utility.

3.4 � Simulating incoming labels with fuzzy labeling (S.F)

The main idea of Simulating Incoming Labels with Fuzzy Labeling (S.F) is similar
to S.B. Queried labels yi with ty

i
∈ D

+
n
 , and ai = 1 should be included in the classifier

for which the utility is assessed. Instead of randomly sampling likely labeling realiza-
tions like S.B does multiple times, S.F exploits the classifiers’ ability to assign training
weights to the training instances (see Fig. 3). S.F relies on pLn

(
⋅|xi

)
 to estimate the labels

as accurately as possible. As each xi may belong to one of the classes ( y� ∈ {1,… ,C} ),
xi is added C-times to the training data, i.e., once for each class, with the respective
probability pLn

(
y′|xi

)
 as a training weight.

The right plot in Fig. 3 shows S.F. The labels that would have been simulated with S.B, are
now simulated using S.F. Hence, y6 , y7 , and y8 are each assigned a fuzzy label. Thus, S.F
makes the AL strategies aware of its own queries even though the queried labels are still
unavailable.

Algorithm 5 getUtility using S.F
1: function getUtilitySF(al, (txn, xn, t

y
n), f, L)

2: Fn ← create fuzzy label set (Eq. (15))
3: return getUtility(al, (txn, xn, t

y
n), f, L ∪ Fn)

4: end function

S.F uses L ∪ Bn,k to estimate the training data available for the classifier at tyn . Algo-
rithm 5 sketches S.F. First, Fn is constructed (line 2). Using L ∪ Fn as training data, the
utility is estimated (line 3).

(14)In =
⟨
i|∀i < n with ai = 1 ∧ tx

i
∈ Wn ∧ t

y

i
∈ D

+
n

⟩

(15)Fn =
⟨
(xi, ŷ, pi,ŷ)|∀(i, ŷ) ∈ (In × Y) with pi,ŷ = pLn

(
ŷ|xi

)⟩

2024	 Machine Learning (2022) 111:2011–2036

1 3

4 � Experimental evaluation

In this section, we first discuss the experimental design. Afterward, we present five differ-
ent hypotheses. For each, a short summary of the findings will be followed by a detailed
description of the experiments and a discussion of their results. The experiment framework
is available online2.

4.1 � Design of experiments

We perform all experiments within the framework sketched in Algorithm 2. For evaluation,
we use prequential evaluation over all instances of the data stream. Prequential evaluation
(Gama et al. 2009) describes an evaluation procedure, where the label of a new instance is
first predicted for evaluation purposes. Afterward, the instance is processed further, e.g., by
the AL strategy that queries labels.

To assess the robustness of the selection strategies to small changes, we introduce some
randomness to the data stream. Independently from using the whole stream for prequential
evaluation, we only pass 80% of the data (randomly chosen) to the active learning strategy.
We repeat this 10 times.

We evaluate our proposed method FS (forgetting and simulating) and its variants using
12 different datasets. D0–D2 are synthetically generated datasets where the instances are
distributed within Gaussian centroids that are assigned to a class. We use three different
datasets to reflect varying difficulty. Each of those datasets consists of 4000 instances with
two features and ten centroids per class. However, the number of classes differs. D0 only
has two classes, while D1 and D2 have 3 and 4 classes, respectively. An assumption of data
streams is that they may contain changes. We introduce such changes with the method pro-
posed by Shaker and Hüllermeier (2013). Hence, we generate two separate static datasets
with 2000 instances each using different random seeds. After that, we merge them with
the method mentioned above. D3–D7 are derived from benchmark datasets. Table 1 lists
the names and properties of these datasets. Similar to D0–D3, we construct a data stream
that includes a concept drift. To do so, we select a random feature. We then divide the
static dataset into two subsets using the median of the randomly selected feature. After-
ward, this feature is discarded, and the two subsets are shuffled and then merged using the
same method as used for D0–D3. The parameter Shaker and Hüllermeier (2013) denote
as w is set to 50 for controlling the rate of change. This rate of change leads to a window
of approximately 500 instances, where the gradual change happens. Lastly, D8–D11 are
benchmark data streams that are listed in Table 1 as well. For all data streams we use each
instance’s index within the data stream as its timestamp, i.e., tx

i
= i for xi with x0 being the

first instance. Hence, the training window and the verification latency does not need to be
rescaled individually for each dataset.

For our method FS, we choose a uniform prior for the probability estimation which is
described by a parameter of � = (1,… , 1)T for a Dirichlet distribution. To perform the
bagging in S.B, we set the number K to 3. For the classifier, we use the Parzen Window
Classifier as described in Chapelle (2005) using a Gaussian kernel and the mean-band-
width heuristic as proposed in Chaudhuri et al. (2017). The classifier is trained using a
sliding window spanning the last 500 instances, i.e., w = 500 . The verification latency in

2  https://​github.​com/​tpham​93/​al-​for-​sw-​verif​icati​on-​laten​cy.

https://github.com/tpham93/al-for-sw-verification-latency

2025Machine Learning (2022) 111:2011–2036	

1 3

our experiments is assumed to be constant for most of the experiments. The verification
latency we test are 50, 100, 150, 200, 250, and 300 instances. However, we also investigate
the influence of variable latency in the experiments for Hypothesis 4 where the latency is
modeled by a uniform distribution U(0, 300) . We test three different budgets, namely 2% ,
8% , and 32% of instances within the stream. As a selection of AL strategies, we use Var-
Uncertainty (Var_Uncer), and Split (Split) as proposed in Zliobaite et al. (2014). Addition-
ally, we test Probabilistic Active Learning with the Balanced Incremental Quantile Filter
as proposed in Kottke et al. (2015). We test the three proposed individual wrappers F, S.B,
S.F, and the two variations of SF, namely FS.B and FS.F, which are F combined with S.B
and S.F, respectively. As a baseline approach, we use Random Selection (Rand) that sam-
ples instances randomly according to the provided budget. The pseudocode on how the
traditional AL strategies are integrated into our framework is listed in the appendix.

All tested active learning strategies optimize the accuracy. Hence, we evaluate all tested
strategies using the average accuracy across the whole data stream. The achievable accu-
racy might differ across datasets. Hence, we aggregate performances across multiple data-
sets by using the average rank over all repetitions.

The lower the assigned rank, the better the strategy’s performance. The best performing
strategy is assigned rank 1. In the case of ties, the average of the ranks is assigned to the
strategies, e.g., two strategies that are tied as best performing strategies are assigned the
rank 1.5. These ranks are then averaged over the ten repetitions to obtain the average rank-
ing for the respective experiment configuration.

4.2 � Effect of verification latency in stream‑based AL

In this section, we investigate the effect of verification latency on the performance of tradi-
tional AL strategies.

Table 1   Properties for the data
streams used in the following
experiments

D0–D3 are synthetically generated data streams. D3–D7 are data
streams derived from static benchmark datasets. There, a feature is
excluded to derive a data stream that contains a concept shift (note
the “+1 split” in the features column). D8–D11 are benchmark data
streams

Dataset id Dataset name Instances Features Classes

D0 Synthetic 0 4000 2 2
D1 Synthetic 1 4000 2 3
D2 Synthetic 2 4000 2 4
D3 Phoneme (static) 5404 5 (+1 split) 2
D4 Mfeat-morphological 2000 6 (+1 split) 10
D5 Segment 2310 19 (+1 split) 7
D6 Kin8nm 8192 8 (+1 split) 2
D7 Space_ga 3107 6 (+1 split) 2
D8 Electricity 45312 9 2
D9 Luxembourg 1901 31 2
D10 NOAA weather 18159 8 2
D11 Rialto 82250 27 10

2026	 Machine Learning (2022) 111:2011–2036

1 3

Hypothesis 1  Existing AL strategies perform poorly under verification latency.

Findings: AL strategies that perform better than Random Selection in the state-of-the-
art (without any verification latency) are likely to perform worse under the influence of
verification latency without any adaptation.

Detailed Description: We compare the selected AL strategies, Var_Uncer, Split, PAL,
and Rand for different verification latencies. Figure 4 shows the average rank over all
datasets for each budget separately. The plots show that Rand performs the best with high
latency compared to the AL strategies.

The results of Var_Uncer and Split show that they only perform better than rand for
a budget of 2%. However, Split performs marginally better than Var_Uncer for 2% and
8% budget. For 32%, Split performs consistently better than Var_Uncer. The performance
of PAL decreases the most when incorporating verification latency. While it has the best
average rank for no verification latency, it performs worst with high latency. The results
suggest, that the performance of traditional AL strategies decreases when compared to
selecting instances randomly. Hence, AL provides less or no benefit, when this effect is not
mitigated. A reason for this observation might be, that the utility assessment assumes that
the label will be available immediately, which is not the case. Labels that will be obsolete
are considered, while recently queried but unavailable labels are ignored.

Furthermore, AL strategies that perform well when no verification latency is present,
seem to be impacted heavily under verification latency, as shown by PAL. In the detailed
discussion for Hypothesis 2, we show why this phenomenon occurs.

4.3 � FS improves label selection under verification latency

In this section, we investigate how FS can improve the performance of AL strategies under
the influence of verification latency. Additionally, we investigate which combinations of
the proposed wrappers for FS perform best.

Hypothesis 2  Combining traditional AL strategies with FS improves their performance.

Fig. 4   The average rank and its standard error for the denoted AL strategies and budgets over all tested veri-
fication latencies (Color figure online)

2027Machine Learning (2022) 111:2011–2036	

1 3

Findings: The AL strategies perform better when combined with FS. This improvement
is especially visible for Var_Uncer and PAL, but less for Split due to the randomization
within Split. FS.B performs slightly better than FS.F when combined with PAL. For Var_
Uncer and Split, FS.F performs better.

Detailed Description: Figure 5 extends Fig. 4 with additional strategies. Additionally to
the former strategies, Fig. 5 includes those strategies wrapped in FS.B and FS.F. All in all,
there are 10 strategies. Hence, the ranks now range from 1 to 10. The strategies wrapped in
FS perform better than the traditional strategies. FS.B and FS.F are marked with triangles
and rectangles, respectively. For PAL, FS.B performs better than FS.F. We assume that
having discrete labeling instead of a fuzzy label influences the classifier’s decision bound-
ary more. However, Var_Uncer and Split perform better when combined with FS.F. We
assume that F promotes exploration as information is removed and the classifier will be
less certain. The simulation approaches S.B and S.F, increase the certainty of the classifier
by increasing the number of training instances in the region of simulated labels.

Figure 6 shows the average ranks for a fixed verification latency of 200 and a budget
of 8% for all datasets individually. The variance of the ranks over all data sets is high.
The improvements for PAL are very high, except for D9, where all strategies seem to
perform equally. The improvement for Var_Uncer and Split is also noticeable, except for
D7 and D9. The average ranks over all datasets suggest that the traditional AL strategies
perform better when combined with FS.

The performance of PAL without any adaptation performs the worst under verifica-
tion latency, however, PAL combined with FS performs the best. To find an explanation
for this improvement of PAL, Fig. 7 shows its behavior with no latency and a latency
of 200 timesteps for a 1-dimensional dataset. Additionally, the latency of 200 timesteps
while wrapped in FS.B is depicted for comparison as well. Each line represents the life-
time of an instance at location x and time t. The color represents the class of these
instances. As for a latency of 200, we do not know the label for the first 200 timesteps.
Hence, the lines are plotted in black for the first 200 timesteps.

The black lines mark queried labels, which are still unknown due to the verifica-
tion latency. The colored lines mark queried and available labels. The queries for PAL

Fig. 5   The average rank and its standard error respective to the present verification latency for three differ-
ent budgets (Color figure online)

2028	 Machine Learning (2022) 111:2011–2036

1 3

without adaptation and a latency of 200 appear to be in short bursts, where PAL focuses
on different aspects of the feature space at a time.

The traditional PAL starts to query labels after the knowledge of a specific region
is pushed out of the sliding window. The verification latency leads to PAL being una-
ware of its past acquisitions that happened in the last 200 timesteps. Hence, PAL queries
instances until the first label arrives in that region after 200 timesteps. As this happens,
PAL will forget another region, which it compensates in the same fashion. Contrary,
when PAL is combined with FS, the forgetting of obsolete instances allows PAL to
acquire new labels earlier. Thus, they will be available in time, right after the old labels
will be forgotten. Additionally, by simulating the incoming labels, PAL knows that the
recently queried labels will be available later.

Fig. 6   The average rank of the tested AL strategies for each dataset for a budget of 8% and a verification
latency of 200 timesteps (Color figure online)

Fig. 7   These plots show the acquired instances and its labels over time for PAL. The y-axis represents the
1-dimensional feature space while the x-axis shows the time. The black lines from tx

i
 to ty

i
 show that an

instance xi has been acquired, while the following colored line from tx
i
 to tx

i
+ w denotes the available class

label. The red area depicts the area where the trained classifier deviates from the optimal decision boundary
(Color figure online)

2029Machine Learning (2022) 111:2011–2036	

1 3

Hypothesis 3  The combined wrappers FS.F and FS.B perform better than F, S.F, and S.B
alone.

Findings: The results show that Var_Uncer and Split perform best when wrapped
with FS.F in most cases. Contrary, PAL performs best when combined with FS.B.

Detailed Description: For this hypothesis, we combined the strategies not only with
FS but also F, S.B, and S.F alone, to see which kind of adaptation is more important.
Figure 8 shows the average rank of each strategy compared to its combinations with F,
S.B, S.F, FS.B, and FS.F. These ranks are averaged over all datasets and plotted sepa-
rately for each budget. We don’t use the same color for the same base AL strategies, as
that would reduce the distinguishability of the individual curves. Strategies using the
F wrapper are plotted as dashed lines, while the curves for S.B and S.F are marked
with triangle and square, respectively. Hence, the strategies combined with FS.B have
a dashed curve with triangle markers. All strategies wrapped with FS.B and FS.F per-
form consistently better or equal to the non-wrapped strategies consistently. As Split is
a randomized extension to Var_Uncer, both show similar behavior. The improvement
provided for both is higher in most cases compared to F and S.F alone, except for very
high latencies (i.e., 250 and 300) where F performs better. Split and Var_Uncer perform
better with F, as it increases exploration by discarding data. The results of FS.F are
comparable to F as S.F does not change the utility much. Fuzzy labels only influence
the classifier’s predictions marginally and the increase in number of labels is not con-
sidered by Split and Var_Uncer. The performance of PAL is improved by using F, S.F
and S.B. By using F, PAL is able to account for data that will be unavailable soon. The
simulation approaches S.F and S.B increases the number of labels for the areas, where
labels are simulated. This decreases the utility for subsequent assessed labels near the
simulated labels. With increasing budget, the difference between ranks becomes more
visible, because the estimates can be very unreliable for small budgets due to the small
number of labeled training instances. As the number of labels increases, the estimates
become more robust, so the positive impact of forgetting and simulating becomes more
noticeable.

4.4 � Handling of variable verification latency

In this section, we investigate the effect of variable verification latency instead of constant
verification latency as tested above.

Hypothesis 4  FS is not restricted to constant verification latencies but is able to mitigate
the effect of variable latencies.

Findings: Using FS, AL strategies are aware of the knowledge missing in the future,
as long as the delay until the labels become available is known. Hence, FS improves the
performance even when having variable verification latency instead of constant verifica-
tion latency.

Detailed Description: We investigate this hypothesis by assigning each instance an
individual verification latency. This latency is distributed according to U(0, 300) but
each instance’s latency stays constant across all repetitions. Figure 9 shows the results
for a budget of 8%, similarly to Fig. 6. The variable verification latency leads to a worse

2030	 Machine Learning (2022) 111:2011–2036

1 3

performing Random Selection when compared to the constant verification latency. The
average rank over all datasets, suggests that the wrappers improve the performance of
all AL strategies. When using Var_Uncer and Split in combination with FS.F, their per-
formances are improved so that they perform slightly better than random. PAL benefits
the most from the proposed approaches as both variants of the adapted PAL outperform
all other strategies. The results for this experiment match the observations of the previ-
ously conducted experiments.

Fig. 8   The average rank and its standard error respective to the present verification latency for three differ-
ent budgets. The plots are split among the base AL strategies Var_Uncer, Split and PAL with all combina-
tion for the wrapper strategies (Color figure online)

2031Machine Learning (2022) 111:2011–2036	

1 3

5 � Conclusion

In this article, we covered the problem of active learning under verification latency and
proposed a general adaptation strategy for AL algorithms to overcome the correspond-
ing challenges. We evaluated our work based on four hypotheses that show that verifica-
tion latency decreases traditional active learning performance. We also showed that this
decrease is mitigated by assessing the label’s utility differently compared to traditional AL
strategies. Hence, the assessment should be based on data that is available by the time the
label is accessible. We demonstrated that by forgetting obsolete data and simulating incom-
ing labels using Forgetting and Simulating (FS), traditional AL strategies assess a label’s
utility more accurately. We also showed that FS works under variable verification latency.
In summary, this work provides a framework to adapt stream-based AL approaches to sce-
narios with verification latency, which allows their use in a broader range of applications.

Further research may extend the tested datasets to other benchmark or real-world
datasets. In settings with variable verification latency, the lifetime of a label can be
incorporated into the utility assessment. The current F approach is reactionary in nature,
as it only reconsiders a region after obsolete labels are discarded. It may be preferable
to query new labels before old labels become obsolete. This proactive behavior can be
achieved by forgetting labels earlier. For this article, we researched the behavior using
a Parzen Window Classifier. However, technically the approach is not restricted to that
type of classifier. For instance, semi-supervised classifiers are a fitting choice and would
complement the active learning component well. So far we assumed that our classifier
is operating in a sliding window, but recent state-of-the-art methods use change detec-
tion algorithms to forget outdated data. This will be addressed in future work. However,
as we do not know when these instances might be forgotten due to change detection
algorithms, we need estimates for the most likely change point. Furthermore, FS may be
combined with a verification latency-aware classifier. These classifiers aim to improve
their estimates by tracking change in a data stream, for example. Finally, even though
we assume that each label’s arrival date is known, FS might be used in settings where
the individual verification latency is not known apriori but can be estimated.

Fig. 9   The performances for experiments with variable verification latencies with a budget of 8% (Color
figure online)

2032	 Machine Learning (2022) 111:2011–2036

1 3

Appendix A pseudocodes

In this section, we show how the tested AL strategies can be incorporated into the
framework that we specify in Algorithm 2. The methods proposed in Zliobaite et al.
(2014), i.e., Var-Uncertainty and Split, have to be restructured to separate the utility
assessment and the budget management. For PAL with BIQF, there is no restructuring
necessary, as it separates both already.

Random Selection The implementation for Random Selection is quite simple. Its util-
ity assessment consists of sampling a random variable uniformly distributed between 0
and 1 (line 2 and 3 in Algorithm 6). The query function simply compares this random
sample against the targeted budget to determine whether to sample the instance (line 2
to 6 in Algorithm 7).

Algorithm 6 Utility function for Random Selection
1: function utilityRandom(x, f, L)
2: urand ∼ U [0, 1]
3: return urand
4: end function

Algorithm 7 Query function for Random Selection
1: function queryRandom(u)
2: if u ≤ B then
3: return 1
4: else
5: return 0
6: end if
7: end function

Var-Uncertainty For our experiments, the utility assessment for Var-Uncertainty,
consists solely of the certainty assessment for each instance x (line 2 in Algorithm 8).
The query function for Var-Uncertainty is depicted in Algorithm 11. Each of the meth-
ods proposed in Zliobaite et al. (2014) compare the utility against a threshold. In the
case of Var-uncertainty, the threshold is adapted over time (line 4 and 7). Additionally,
there is a check, whether the targeted budget is exhausted already (line 2).

Algorithm 8 Utility function for Var-Uncertainty
1: function utilityVarUncertainty(x, f, L)
2: return max

y′∈{1,...,C}
fL(y′|x)

3: end function

2033Machine Learning (2022) 111:2011–2036	

1 3

Algorithm 9 Query function for Var-Uncertainty
1: function queryVarUncertainty(u)
2: if b̂ < B then
3: if u ≤ θ then
4: θ ← θ · (1− s)
5: return 1
6: else
7: θ ← θ · (1 + s)
8: return 0
9: end if
10: end if
11: return 0
12: end function

Split Split is structured very similarly to Var-Uncertainty, as the only difference is, that
Random Selection is used sometimes to increase the exploration. Hence, the utility assess-
ment in Algorithm 10 is equivalent to Algorithm 8. Algorithm 11 shows the query function
for Split. As in Algorithm 9, Split checks whether the budget is exhausted already (line 2).
Then, it is checked whether to use Random Selection or Var-Uncertainty (line 3) and the
results of those strategies are returned (line 4, 5, and 7).

Algorithm 10 Utility function for Split
1: function utilitySplit(x, f, L)
2: return max

y′∈{1,...,C}
fL(y′|x)

3: end function

Algorithm 11 Query function for Split
1: function querySplit(u)
2: if b̂ < B then
3: if u′ < v for u′ ∼ U [0, 1] then
4: urand ∼ U [0, 1]
5: return queryRandom(urand)
6: else
7: return queryVarUncertainty(u)
8: end if
9: end if
10: return 0
11: end function

PAL PAL for datastreams as proposed in Kottke et al. (2015), splits the approach
between a spatial utility and temporal utility assessment. For the spatial utility assessment,
we use McPAL, to be able to handle datasets with more than two classes. The spatial utility
assessment is done entirely in the utility function, i.e., Algorithm 12. To decide whether
the spatial utility, is sufficient to acquire the instance’s label, Kottke et al. use BIQF. Hence,
BIQF assesses the temporal utility based on the spatial utility. This is done in the query
function, i.e., Algorithm 13.

2034	 Machine Learning (2022) 111:2011–2036

1 3

Algorithm 12 Utility function for PAL
1: function utilityPAL(x, f, L)
2: return McPAL(x, f, L)
3: end function

Algorithm 13 Query function for PAL
1: function queryPAL(u)
2: return BIQF(u)
3: end function

Acknowledgements  We would like to thank our colleagues from the Intelligent Embedded Systems group,
in particular Lukas Rauch, Yujiang He, David Meier, and Alexander Benz. Furthermore, we thank the anon-
ymous reviewers for their helpful comments and suggestions.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream sys-
tems. In ACM SIGMOD-SIGACT-SIGART, ACM, New York, NY, USA, PODS 02, pp 1–16.

Bondu, A., Lemaire, V., & Boulle, M. (2010). Exploration vs. exploitation in active learning: A bayesian
approach. In IJCNN, IEEE, pp 1–7.

Chapelle, O. (2005). Active learning for parzen window classifier. In AISTATS, Max–Planck–Gesellschaft,
pp. 49–56.

Chaudhuri, A., Kakde, D., Sadek, C., Gonzalez, L., & Kong, S. (2017). The mean and median criteria for
kernel bandwidth selection for support vector data description. In ICDM Workshops, pp. 842–849.

Cohn, D. A. (1993). Neural network exploration using optimal experiment design. In J. D. Cowan, G.
Tesauro, & J. Alspector (Eds.), NIPS (pp. 679–686). Burlington: Morgan Kaufmann.

Cohn, D. (2010). Active learning. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning
(pp. 10–14). New York: Springer.

dos Reis, D. M., Flach, P., Matwin, S., & Batista, G. (2016). Fast unsupervised online drift detection using
incremental Kolmogorov–Smirnov test. In SIGKDD, ACM, New York, NY, USA, KDD 16, pp.
1545–1554.

Dyer, K. B., Capo, R., & Polikar, R. (2014). Compose: A semisupervised learning framework for initially
labeled nonstationary streaming data. TNNLS, 25(1), 12–26.

Frederickson, C., & Polikar, R. (2018). Resampling techniques for learning under extreme verification
latency with class imbalance. In IJCNN, IEEE, pp. 1–8.

Gama, J., Sebastião, R., & Rodrigues, P. P. (2009). Issues in evaluation of stream learning algorithms. In
SIGKDD, Association for Computing Machinery, pp. 329–338.

http://creativecommons.org/licenses/by/4.0/

2035Machine Learning (2022) 111:2011–2036	

1 3

Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adap-
tation. CSUR, 46(4), 1–44.

Grzenda, M., Gomes, H. M., & Bifet, A. (2019). Delayed labelling evaluation for data streams. Data Mining
and Knowledge Discovery.

Hammoodi, M., Stahl, F., & Tennant, M. (2016). Towards online concept drift detection with feature selec-
tion for data stream classification. In ECAI, Frontiers in Artificial Intelligence and Applications, vol
285, pp. 1549–1550.

Hofer, V., & Krempl, G. (2013). Drift mining in data: A framework for addressing drift in classification.
CSDA, 57(1), 377–391.

Ienco, D., Bifet, A., Zliobaite, I., & Pfahringer, B. (2013). Clustering based active learning for evolving data
streams. In J. Fürnkranz, E. Hüllermeier, & T. Higuchi (Eds.), Discovery Science. Lecture Notes in
Artificial Intelligence, (Vol. 8140, pp. 79–93). Springer.

Ienco, D., Pfahringer, B., & Zliobaitė, I. (2014). High density-focused uncertainty sampling for active learn-
ing over evolving stream data. In SIGKDD BigMine, pp. 133–148.

Kelly, M. G., Hand, D. J., & Adams, N. M. (1999). The impact of changing populations on classifier perfor-
mance. In SIGKDD, pp. 367–371.

Klinkenberg, R., & Renz, I. (1998). Adaptive information filtering: Learning in the presence of concept
drifts. In Workshop Notes of the AAAI-98/ICML-98 workshop Learning for Text Categorization,
AAAI Press, pp. 33–40.

Kottke, D., Herde, M., Minh, T. P., Benz, A., Mergard, P., Roghman, A., Sandrock, C., & Sick, B. (2021a).
scikit-activeml: A library and toolbox for active learning algorithms. Preprints, 2021030194.

Kottke, D., Krempl, G., & Spiliopoulou, M. (2015). Probabilistic active learning in datastreams. In É.
Fromont, T. D. Bie, & M. van Leeuwen (Eds.), IDA. Lecture Notes in Computer Science, (Vol. 9385,
pp. 145–157). Springer.

Kottke, D., Herde, M., Sandrock, C., Huseljic, D., Krempl, G., & Sick, B. (2021b). Toward optimal proba-
bilistic active learning using a Bayesian approach. Machine Learning, 110, 1199–1231.

Krempl, G. (2011). The algorithm apt to classify in concurrence of latency and drift. In IDA, Springer, pp.
222–233.

Krempl, G., & Hofer, V. (2011). Classification in presence of drift and latency. In M. Spiliopoulou, H.
Wang, D. Cook, J. Pei, W. Wang, O. Zaïane, & X. Wu (Eds.), ICDM Workshops. IEEE.

Krempl, G., Lang, D., & Hofer, V. (2019). Temporal density extrapolation using a dynamic basis approach.
Data Mining and Knowledge Discovery,33(5), 1323–1356. Special Issue of the ECML/PKDD 2019
Journal Track.

Krempl, G., Ha, T. C., & Spiliopoulou, M. (2015a). Clustering-based optimised probabilistic active learn-
ing (COPAL). In N. Japkowicz & S. Matwin (Eds.), Discovery Science (Vol. 9356, pp. 101–115). New
York: Springer.

Krempl, G., Kottke, D., & Lemaire, V. (2015b). Optimised probabilistic active learning (OPAL) for fast,
non-myopic, cost-sensitive active classification. Machine Learning, 100, 2.

Kumar, P., & Gupta, A. (2020). Active learning query strategies for classification, regression, and cluster-
ing: A survey. JCST, 35(4), 913–945.

Kuncheva, L. I. (2008). Classifier ensembles for detecting concept change in streaming data: Overview and
perspectives. In O. Okun & G. Valentini (Eds.), SUEMA. Studies in Computational Intelligence, (Vol.
245, pp. 5–10). Springer.

Kuncheva, L. I., & Sánchez, J. S. (2008). Nearest neighbour classifiers for streaming data with delayed
labelling. In ICDM, pp. 869–874.

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers. In SIGIR, Springer,
New York, NY, USA, SIGIR 94, pp. 3–12.

Loy, C. C., Hospedales, T. M., Xiang, T., & Gong, S. (2012). Stream-based joint exploration-exploitation
active learning. In CVPR, IEEE pp. 1560–1567.

Marrs, G., Hickey, R., & Black, M. (2010). The impact of latency on online classification learning with con-
cept drift. In Y. Bi & M. A. Williams (Eds.), KSEM. Lecture Notes in Computer Science, (Vol. 6291,
pp. 459–469). Springer.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge: MIT Press.
Parreira, P., & Prati, R. (2019). Aprendizagem ativa em fluxo de dados com latência intermediária. In

ENIAC, SBC, pp. 365–376
Pham, M. T., Kottke, D., Tsarenko, A., Gruhl, C., & Sick, B. (2020). Improving self-adaptation for multi-

sensor activity recognition with active learning. In IJCNN.
Plasse, J., & Adams, N. (2016). Handling delayed labels in temporally evolving data streams. In IEEE Big-

Data, pp. 2416–2424.

2036	 Machine Learning (2022) 111:2011–2036

1 3

Razavi-Far, R., Hallaji, E., Saif, M., & Ditzler, G. (2019). A novelty detector and extreme verification
latency model for nonstationary environments. IEEE TIE, 66(1), 561–570.

Roy, N., & McCallum, A. (2001). Toward optimal active learning through sampling estimation of error
reduction. ICML (pp. 441–448). San Francisco, CA, USA: Morgan Kaufmann.

Schlimmer, J. C., & Granger, R. H. (1986). Beyond incremental processing: Tracking concept drift. In
AAAI, pp. 502–507.

Settles, B. (2012). Active Learning. No. 18 in Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan and Claypool Publishers.

Shaker, A., & Hüllermeier, E. (2013). Recovery analysis for adaptive learning from non-stationary data
streams. Advances in Intelligent Systems and Computing, 226, 289–298.

Souza, V., Pinho, T., & Batista, G. (2018). Evaluating stream classifiers with delayed labels information. In
BRACIS, pp. 408–413.

Umer, M. (2017). Learning extreme verification latency quickly with importance weighting: Fast compose
and level_iw. PhD thesis, Rowan University.

Umer, M., & Polikar, R. (2020). Comparative analysis of extreme verification latency learning algorithms.
arXiv:​2011.​14917.

Zhu, X., Zhang, P., Lin, X., & Shi, Y. (2007). Active learning from data streams. In ICDM, IEEE Computer
Society, Washington, DC, USA, ICDM 07, pp. 757–762.

Žliobaité, I. (2010). Change with delayed labeling: When is it detectable? In ICDM Workshops, pp.
843–850.

Zliobaite, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active learning with drifting streaming data.
TNNLS, 25, 27–39.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2011.14917

	Stream-based active learning for sliding windows under the influence of verification latency
	Abstract
	1 Introduction
	2 Related work
	2.1 Data stream mining
	2.2 Verification latency
	2.3 Active learning in data streams
	2.4 Active learning in evolving data streams in presence of verification latency

	3 Handling verification latency in stream-based active learning
	3.1 The general AL cycle
	3.2 Forgetting obsolete data (F)
	3.3 Simulating incoming labels with bagging (S.B)
	3.4 Simulating incoming labels with fuzzy labeling (S.F)

	4 Experimental evaluation
	4.1 Design of experiments
	4.2 Effect of verification latency in stream-based AL
	4.3 FS improves label selection under verification latency
	4.4 Handling of variable verification latency

	5 Conclusion
	Acknowledgements
	References

