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Abstract
Stream-based active learning (AL) strategies minimize the labeling effort by querying 
labels that improve the classifier’s performance the most. So far, these strategies neglect the 
fact that an oracle or expert requires time to provide a queried label. We show that existing 
AL methods deteriorate or even fail under the influence of such verification latency. The 
problem with these methods is that they estimate a label’s utility on the currently available 
labeled data. However, when this label would arrive, some of the current data may have 
gotten outdated and new labels have arrived. In this article, we propose to simulate the 
available data at the time when the label would arrive. Therefore, our method Forgetting 
and Simulating (FS) forgets outdated information and simulates the delayed labels to get 
more realistic utility estimates. We assume to know the label’s arrival date a priori and the 
classifier’s training data to be bounded by a sliding window. Our extensive experiments 
show that FS improves stream-based AL strategies in settings with both, constant and vari-
able verification latency.
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1  Introduction

This article addresses data stream classification in non-stationary environments, where 
instances appear successively and are initially unlabeled.

To learn a classifier, we need labels for at least some of these instances. Therefore, 
we can select some instances to be passed to an oracle for labeling, e.g., a human expert 
or a computationally intensive simulation. Such a label acquisition induces some sort 
of cost, which we (for now) assume to be equal across all instances. Hence, we define 
a labeling budget as the fraction of instances that can be labeled, e.g., 8% of instances 
in the stream. The rest remains unlabeled. Algorithms from the field of stream-based 
active learning (AL) aim to maximize the classifier’s performance under the given 
budget restrictions by selecting only the most informative instances for labeling. Similar 
to Zliobaite et al. (2014), we follow the common assumption that the AL strategy needs 
to decide immediately at the moment an instance arrives whether or not to acquire its 
label.

Imagine the following example: We want to train a classifier on a stream of posts 
from social media to find out if they mention a company’s name positively or negatively. 
Using stream-based AL methods, we only select the most useful posts for labeling. 
However, when we select an instance for labeling, it is impossible for the expert to pro-
vide the label immediately as time is needed to read the post first. Sometimes the expert 
might even be occupied with other work, such as previous labeling requests, which 
delays the appearance of the label further. So far, all existing AL strategies assume that 
labels are immediately available. This is unrealistic and problematic as new instances 
might appear during an ongoing labeling process. This means that subsequent active 
learning decisions, i.e., whether to request these new instances’ labels as well, might 
need to be taken while previous label requests are still being processed. This problem 
occurs even more often when we consider fast data streams or applications with high 
labeling costs, as these are often correlated with annotation time. Furthermore, even 
relaxing the commonly formulated requirement to decide a label request immediately 
upon an instance’s arrival would not help: If we were to allow labels to be requested 
later, it would simply mean that the processing of these labels by the oracle would then 
be delayed as well. As a consequence, we would delay subsequent label requests even 
more, and therefore accumulate an increasing backlog in the labeling process.

While this problem has not been considered in active learning literature so far, it has 
been studied in the context of passive learning on non-stationary data streams. Denoted 
as label delay by Kuncheva (2008) and verification latency by Marrs et  al. (2010), sev-
eral approaches for adapting classifiers when labels arrive with delay have been proposed. 
Nevertheless, none of them addresses the effect this problem has on the active selection of 
labels, in particular on estimating the utility of requested labels that arrive with delay.

In this article, we therefore examine the influence of verification latency for stream-
based AL algorithms and propose strategies to solve the accompanying problems. To 
understand the effects of verification latency, we handle the non-stationarity in data streams 
(due to concept drift or shift) using blind adaptation in the form of a sliding window with 
length w. The sliding window restricts the training data for the classifier to instances that 
appear within the window [t − w;t] . Although advanced change detection methods can 
react faster to change (Gama et al. 2014), they might induce an unintentional bias and is, 
therefore, subject to future work. The advantage of blind adaptation is its simplicity and 
predictability which helps the general understanding of the effects for active learning.
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To visualize our main ideas, we compare the current approach and our solutions in 
Fig. 1.

State-of-the-art stream-based AL methods quantify the utility of the current instance xn 
(violet) at time tx

n
 based on the available information that is contained in the sliding window 

of the current classifier (gray interval). Thereby, the following two problems occur: (a) If 
the new instance xn (violet) is selected for acquisition, it could not be added before its label 
yn becomes available, which is at time tyn . Nevertheless, in the state-of-the-art approach, 
the utility is quantified using the information from the current sliding window at time tx

n
 . 

Thereby, one would consider older labels that would already have been removed when the 
new instance-label-pair would appear (at time tyn ). This is a problem. For example, if xn is 
similar to one of the old instances, the AL strategy sees no need to acquire xn , as long as 
the old instances are still included for utility estimation. Nevertheless, their information 
will have been lost at tyn , and yn would not have been requested to replace them. Hence, 
we propose to forget the soon-to-be outdated instances when quantifying an instance’s 
utility (see Fig. 1II-a). (b) State-of-the-art algorithms tend to acquire labels from similar 
instances under the influence of verification latency. Imagine that now, in contrast to (a), 
the instance with the delayed label (black ‘?’) is very similar to the new instance xn (violet). 
If we ignore the information about delayed labels, we will also have a high utility for xn . 
Thus, it is likely that redundant labels are acquired. In order to address this, we propose to 
simulate the delayed labels and include them when quantifying the utilities (see Fig. 1II-
b). The proposed methods are integrated into an active learning python framework, called 
scikit-activeml1 (Kottke et al. 2021a).

In this article, we answer the following research question:

“How must we change AL methods such that they still work for tasks with veri-
fication latency?”

To this end, we make the following contributions, which we evaluate within the given 
hypotheses:

Fig. 1   We propose to assess the utility of acquiring a label at the time when the label would arrive. There-
fore, we need to a forget outdated instances and b simulate labels that are not yet available but will be then 
(Color figure online)

1  https://​github.​com/​scikit-​activ​eml/​scikit-​activ​eml.

https://github.com/scikit-activeml/scikit-activeml
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–	 We show that verification latency impairs the performance of traditional AL methods 
(see Hypothesis 1).

–	 We propose two general wrapper strategies for stream-based AL algorithms that imple-
ment the idea of forgetting obsolete data (F) and simulating upcoming labels (S).

–	 We evaluate our strategies on multiple synthetic and real datasets for various constant 
(see Hypothesis 2) but also variable label delays (see Hypothesis 4) and show their 
effectiveness.

–	 We show that combining forgetting (F) and simulating (S) performs better compared to 
using only one wrapper F or S (see Hypothesis 3).

The remainder of this article is structured as follows: We start with a detailed description 
of related work. Then, we describe our approaches and evaluate them based on the four 
hypotheses. Finally, we conclude our work and motivate future work in the field of stream-
based AL with verification latency.

2 � Related work

The problem addressed by the approach in this publication has relations to several branches 
of research in literature: First, to data stream mining in general. Second, to change detec-
tion, to change and drift mining approaches for handling drift in presence of verification 
latency, and to active machine learning for handling costly labels in particular. We will first 
review these branches separately, before discussing the state-of-the-art at their intersection.

2.1 � Data stream mining

As noted in Babcock et al. (2002), in contrast to conventional (pool-based) data mining, 
the characteristic of data stream mining is that instances therein arrive sequentially over 
time, either individually (i.e., are processed instance-wise) or in batches. Thus, the num-
ber of instances is potentially unbounded and grows continuously, from only a single or 
a few instances at the beginning. The first main challenge in data stream mining is there-
fore keeping the computational time and space complexities of processing an additional 
instance constant, i.e., independent of the number of previously processed instances. This 
is typically done by discarding or archiving already processed instances. Complementary 
to the challenge of complexity, a second major and common challenge is non-stationarity, 
as data generating distributions change over time. This phenomenon, denoted as concept 
drift in Schlimmer and Granger (1986), as concept shift in Klinkenberg and Renz (1998), 
or as population drift in Kelly et  al. (1999), requires adaptation techniques. An exhaus-
tive review of such techniques is given for example in Gama et al. (2014). The taxonomy 
proposed therein distinguishes techniques by three criteria: The first distinction is based on 
the learning mode of an approach, which might always retrain a new model from scratch, 
or might incrementally keep updating the same model. The second distinction is whether 
the adaptation is initiated in an informed manner, i.e., upon the detection of change, or so-
called blindly, i.e., by adapting continuously. The third distinction is whether a single model 
or an ensemble is maintained and managed. Following this taxonomy, our approaches pro-
posed below are characterized as incremental streaming approaches that manage a single 
model. As will be explained in the next subsection, due to verification latency we rely on 
continuous blind adaptation, achieved by forgetting the oldest instances.
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2.2 � Verification latency

The vast majority of data stream mining approaches assume that the actual label of an 
instance becomes available before proceeding to the classification of the next instance. 
Kuncheva (2008) and Marrs et al. (2010) were among the first publications to challenge 
this assumption. Kuncheva (2008) coined the term label delay, and Marrs et al. (2010) 
the term verification latency, respectively, for scenarios where the actual label to verify 
a prediction becomes available only with considerable delay. A first approach address-
ing this challenge, although for static streams, was instance-based learning proposed 
in Kuncheva and Sánchez (2008). This nearest neighbor-based, error-driven approach 
incorporates instances into a reference set if they are misclassified. However, the delay 
in labeling leads to a delay in identifying misclassifications as well. Thus, the authors 
propose conditional labeling, where for a yet unlabeled instance the labels of its two 
nearest labeled neighbors in the reference set are compared against each other, and a 
match indicates a correct prediction. The authors discuss different strategies to handle 
delayed labeling in the reference set, ranging from ignoring to using unlabeled data. 
They report inconclusive results when comparing these strategies. Subsequently, the 
first approaches to address verification latency in non-stationary, evolving streams were 
proposed by Krempl and Hofer (2011) and Krempl (2011): Since no recent, labeled 
data is available, such approaches require assumptions about the type of drift present 
in the data stream. Formalizing these assumptions allows formulating drift models that 
describe the transitions between distributions over time. Similarly to viewing the prob-
lem as an unsupervised domain adaptation task between chronologically ordered source 
and target domains, these drift models allow to anticipate or extrapolate distributional 
changes or classification model adaptations. In Krempl and Hofer (2011), this is done 
by using a mixture of labeled Gaussian clusters and tracking their movement within 
the feature space. In contrast, the APT-algorithm proposed in Krempl (2011) is non-
parametric, and maps labeled instances from the source domain to the target domain 
by formulating this as an assignment problem and solving it for minimizing the overall 
distance. In Hofer and Krempl (2013), an approach for updating the class prior prob-
abilities from unlabeled data is proposed. Most recently, Krempl et al. (2019) propose a 
non-parametric approach for extrapolating density changes over time. Thus, it comple-
ments the previously proposed techniques for updating the class prior with techniques 
that enable to extrapolate the evolution of the class-conditional feature distributions.

Rather than explicitly modeling a drifting distribution, Dyer et al. (2014) propose a 
series of geometry-based approaches for Compacted Object Sample Extraction (COM-
POSE). These approaches maintain a compacted geometric representation of each class 
and adapt these representations by using unlabeled data in a semi-supervised fashion. 
Recent extensions of COMPOSE include a faster variant proposed by Umer (2017), 
and a variant for handling scenarios with class-imbalance proposed in Frederickson and 
Polikar (2018).

Recent publications have further developed the taxonomy of verification latency. 
Plasse and Adams (2016) propose a distinction based on the cause of verification 
latency. Therein, one type is  delay mechanisms that cause latencies independently of 
the data. An example is a constant delay that occurs due to the physical movement of 
objects to a testing facility. Another type is lag magnitudes that are dependent on the 
data. For example, in a fraud detection scenario, the time needed to analyze cases might 
vary with their difficulty. The framework proposed in Plasse and Adams (2016) uses a 
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weighting approach to limit the impact of verification latency. This weighting approach 
allows adjusting the influence of instances on the classifier according to the latency. 
Another categorization is provided by considering the extent of verification latency. 
Souza et al. (2018) use this to distinguish three different types of latencies. One extreme 
is null latency, which corresponds to no latency at all. The other is categorized as 
extreme verification latency, where latency is assumed to be infinitely high. Thus, after 
the initial training has been completed, no further labels will arrive in a data stream. 
Between these two extremes lies the so-called intermediate latency, which we will focus 
on in this article. Here, the verification latency is finite and may or may not be known 
beforehand.

Finally, aspects of evaluation under verification latency have also been studied. In Souza 
et al. (2018), an extension of the Kappa Statistic is proposed to overcome shortcomings of 
conventional stream mining evaluation techniques. In Grzenda et al. (2019), the monitoring 
of each instance’s prediction over time during the verification latency is suggested. A com-
parative study of selected approaches for extreme verification latency has been published in 
Umer and Polikar (2020).

While the approaches discussed above address adaptivity, a related question is that of 
change detection in the classes’ posterior distribution in presence of verification latency: 
Large latency results in the absence of recent labels, which impairs the use of supervised 
change detection. Following the early works of Kuncheva (2008) on unsupervised, ensem-
ble-based feature change detection, and the study by Žliobaité (2010) on the possibility of 
unsupervised detection of posterior changes, unsupervised change detection has recently 
gained attention. An example is Hammoodi et al. (2016), which addresses the detection of 
drift in features for real-time feature selection. A similar approach is proposed by dos Reis 
et al. (2016). Therein, a comparison of the training data for the classifier against the most 
recent data using an incremental version of the Kolmogorov-Smirnov test is proposed. This 
determines for each feature separately whether a change has happened. Finally, the prob-
lem of fault detection under verification latency has been addressed in Razavi-Far et  al. 
(2019). Nevertheless, as for adaptation itself, using detected changes in unlabeled data to 
infer drift of the posterior distribution again requires making strong assumptions about the 
mechanism underlying the distributional changes. We acknowledge that this might have 
potential in some applications, and thus might be worth exploring in the future. For the 
sake of the versatility of the approaches in this paper, however, we avoid such assump-
tions, and instead use labels as they arrive for continuous (i.e., blind) adaptation. Concept 
changes are not the only changes that might occur within a data stream. Depending on the 
application, changes in the number of features might occur. So far, this has been addressed 
for pool-based AL (Pham et al. 2020). For this article, we focus on concept changes, how-
ever, changes in number of features in an active learning scenarios with verification latency 
might be worth investigating in the future.

2.3 � Active learning in data streams

In the conventional, passive supervised machine learning setting, an algorithm processes 
all labeled instances that are present in a training set or that arrive in a data stream. In 
contrast, active learning approaches aim to actively develop and test new hypotheses (Set-
tles 2012, pages 3–4). Typically, this is done by interacting with their environment (i.e., a 
data providing oracle) and thereby controlling the acquisition of new data, as described in 
Cohn (1993). For example, an active classifier might use the feature vectors given for all 
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instances to determine the one instance that promises to be the most insightful, to query its 
label from an oracle, and to add it to its training set. Several techniques have been proposed 
in literature, as surveyed for example in Settles (2012) or Kumar and Gupta (2020). Most 
prominent is Uncertainty Sampling, proposed by Lewis and Gale (1994), where instances 
closest to the decision boundary or with the highest uncertainty in their posterior estimates 
are selected. Another is Version Space Partitioning proposed by Cohn (2010), where the 
instance with a maximal disagreement between hypotheses in the current version space is 
selected, or Query by Committee, where the instance with maximal disagreement within 
an ensemble of classifiers is selected. In Loss Minimization, a classifier’s performance is 
directly optimized, such as in Expected Error Reduction by Roy and McCallum (2001). 
Related to the former is another decision-theoretic strategy, Probabilistic Active Learning 
by Krempl et  al. (2015b), that computes the expected gain in classification performance 
from labeling additional instances.

From the active learning scenarios considered in the literature, our work focuses on so-
called stream-based selective sampling as reviewed in Settles (2012) and Zliobaite et al. 
(2014): herein, instances arrive sequentially on a data stream, and whether an instance’s 
label is acquired has to be decided ad hoc and irrevocably, since instances are forgotten and 
not accessible after processing. In particular in non-stationary data streams, this poses spe-
cific challenges: In a stationary setting, as a classification model converges further towards 
the optimal decision boundary, focusing on exploitation by sampling instances closer to the 
expected decision boundary is considered beneficial for an active learning strategy, as dis-
cussed in Bondu et al. (2010) and Loy et al. (2012). In contrast, if drift might occur at any 
time and anywhere, then even a previously already optimal classification model might have 
become obsolete. To address this, continuous exploration is required. To this end, Zliobaite 
et al. (2014) propose to continuously and randomly sample a few instances, such that there 
are representatives of all relevant areas of the feature space. Their Variable Uncertainty 
approach adjusts only a threshold parameter, such that the most uncertain instances over 
time are selected. While this approach does not use randomization for exploration, it is 
extended to Random Variable Uncertainty, by multiplying the adjusted threshold parame-
ter with a factor that is randomly sampled from a normal distribution with mean 1. Finally, 
for the Split approach, they extend Variable Uncertainty further by combining it also with 
change detection, which is solely applied on the randomly sampled instances. Similar to 
Zliobaite et  al. (2014), the density-based active learning (DBAL) approach proposed in 
Ienco et al. (2014) also uses uncertainty sampling with randomization for exploration but 
combines it with density weighting. In addition to the spatial aspect of ensuring both, the 
exploitation of already available labels, and the exploration of the whole feature space, 
Kottke et al. (2015) point out the need for budget management, i.e., to also consider the 
temporal aspect of when to acquire labels on evolving data streams. For the latter, con-
sider an unlabeled instance at a promising spatial location. Whether to acquire such an 
instance now depends on the lifetime of this and similar instances. That is, on how long an 
instance will contribute significantly to improving the model’s performance, and whether 
an instance at an even more promising spatial location might arrive later, such that saving 
budget now would pay off then. To achieve this, adaptive filtering techniques are proposed 
in Kottke et al. (2015). Therein, Probabilistic Active Learning is used to calculate the spa-
tial utility of instances within a sliding window. Then, a Balanced Incremental Quantile 
Filter (BIQF) is used to select the instances with the highest spatio-temporal utility within 
the sliding window, such that a given labeling budget is never exceeded.

In addition to techniques for (temporal) budget management, there exist several approaches 
for streams where processing instances in chunks is possible. Examples are Zhu et al. (2007), 
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which uses Query by Committee, or clustering-based approaches such as in Ienco et al. (2013) 
and Krempl et  al. (2015a). Nevertheless, since we aim for an approach that is capable of 
instance-wise processing, we will not elaborate on these chunk-wise processing approaches 
further, and rather focus on instance-wise processing approaches with budget management.

2.4 � Active learning in evolving data streams in presence of verification latency

Summarizing, several data stream mining approaches have addressed either the problem of 
verification latency or the problem of actively selecting labels. However, no approach has yet 
addressed the combination of actively selecting labels under verification latency. Nevertheless, 
the detrimental impact of verification latency on some of the stream-based active learning 
approaches, such as variable randomized uncertainty proposed in Zliobaite et al. (2014), has 
been empirically evaluated in Parreira and Prati (2019). Their results indicate that the informa-
tiveness of instances becomes more uncertain as latency increases. In their conclusion, they 
call for future work that develops active learning approaches that consider the effect of delayed 
labels. Our paper addresses this by contributing a first active learning approach for verification 
latency.

3 � Handling verification latency in stream‑based active learning

We assume to have a data stream as an ordered list of 4-tuple (tx
i
, xi, t

y

i
, yi) with 

i ∈ {1,… ,N},N > 0 (Eq. (1)). Each data point consists of an instance xi , its timestamp tx
i
 , 

a label yi that would be returned by the oracle, and the timestamp that label would arrive at ty
i
 

when queried. Thus, ty
i
− tx

i
 represents the verification latency for xi.

To our knowledge, we are the first to provide methods to handle verification latency in an 
AL scenario. Additionally, the stream is assumed to be infinitely long and changes over 
time, i.e., abrupt and gradual concept change may occur. Hence, storing all data is infea-
sible. Instead, we use a sliding window Wn at time tx

n
 that allows us to reduce the amount 

of stored data and deal with concept change by forgetting old instances. Wn has a constant 
length of w ∈ ℝ

>0 , defined as a time span.

We model the AL process by introducing an acquisition vector Qn , that stores a boolean 
value ai for each xi with i ∈ {1,… , n − 1} and tx

i
∈ Wn , whether the AL strategy queried 

the label yi at tx
i
.

(1)S =
⟨
(tx
i
, xi, t

y

i
, yi)|i ∈ ℕ

>0

⟩

(2)xi ∈ ℝ
D yi ∈ Y = {1, 2,… ,C}

(3)tx
i
, t

y

i
∈ ℝ

≥0

(4)tx
j
< tx

k
for j < k ∈ ℕ

>0 ∧ tx
i
< t

y

i
for i ∈ ℕ

>0

(5)Wn = [tx
n
− w;tx

n
)
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Thus, if ai is 1, the AL strategy decides at time tx
i
 to query the label yi for instance xi . 

Hence, the label will be accessible at time ty
i
 . If ai is 0, the label will not be queried. Thus, 

yi will remain unavailable even after ty
i
.

Considering the sliding window Wn and the acquisition vector Qn at tx
n
 , a valid training 

instance xi with its label yi at time tx
n
 has to be present within Wn , i.e., tx

i
, t

y

i
∈ Wn , and yi has 

been queried in the past, i.e., ai is 1, with 1 ≤ i < n . We exclude n as its label yn is not avail-
able yet. The classification model’s training data Ln is a set of triplets containing the data 
point, its label, and the corresponding training weight, which ranges from 0 to 1 and will 
be used by the classifier. We consider the training weight, as it will be a central part of one 
of the proposed methods below. For simplicity, we assume this to be set to 1.

3.1 � The general AL cycle

For each instance xn , the AL strategy has to decide whether to query the instance or not. As 
we focus on instance-wise processed evolving data streams, the AL strategies we address 
come with budget management. We further focus on AL strategies that assess the utility un 
for an instance xn . Based on the utility, the budget management assesses, whether the label 
query fits into the budget. We propose to standardize the AL strategies by encapsulating 
them in classes. Given an AL strategy al, al.UTILITY assesses the utility an instance’s label 
would have. Furthermore, al.QUERY decides based on this utility whether the label should 
be queried. We introduce GETUTILITY , that wraps around al.UTILITY , that will be used to 
handle verification latency. For traditional AL strategies, GETUTILITY is defined as shown 
in Algorithm 1.

Algorithm 1 Utility Without Verification Latency
1: function getUtility(al, (txn, xn, t

y
n), f, Ln)

2: return al.utility(xn, f, Ln)
3: end function

As underlying active stream-based sampling techniques we use the uncertainty sam-
pling-based Var-Uncertainty and Split approaches proposed by Zliobaite et al. (2014), and 
the BIQF-approach proposed by Kottke et al. (2015), with its Balanced Incremental Quan-
tile Filter and Probabilistic Active Learning components. Thus, in the appendix, we also 
provide the pseudocodes for computing the utility function based on Variable Uncertainty 
in Algorithm  8, and of the corresponding query function in Algorithm  9. Likewise, the 
pseudocodes for the utility function based on Split in Algorithm 10, as well as its query 
function in Algorithm  11, and the pseudocodes for computing the utility value using 
Probabilistic Active Learning in Algorithm 12 and for its corresponding query function in 
Algorithm 13 are given in the appendix.

(6)Qn =
⟨
ai|∀i < n with tx

i
∈ Wn

⟩

(7)ai ∈ {0, 1}

(8)Ln =
⟨
(xi, yi, 1)|∀i < n with ai = 1 ∧ tx

i
, t

y

i
∈ Wn

⟩
.
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Algorithm 2 AL Framework
1: f ← initialize classifier
2: al ← initialize AL strategy
3: for all n ∈ {1, . . .} do
4: (txn, xn, t

y
n) ← retrieve from data stream S (Eq. (1))

5: Ln ← training dataset at time tn for acquisitions A (Eq. (8))
6: un ← getUtility(al, (txn, xn, t

y
n), f, Ln)

7: an ← al.query(un)
8: if an = 1 then
9: ask oracle for label of xn (label yn will be provided at tyn)
10: end if
11: end for

The framework we work in is given in Algorithm 2. First, the classifier f that will be 
trained by the AL strategy and the AL strategy al itself are initialized (line 1 and 2). The 
triplet (tx

n
, xn, t

y
n) is acquired from the data stream (line 4). Based on the current time tx

n
 , the 

training data Ln needs to be adjusted, by moving the sliding window and incorporating 
labels that are newly available, i.e., labels yi with ty

i
∈ [tx

n−1
, tx
n
) and ai = 1 (line 5). The util-

ity of xn is then assessed using al (line 6) and based on the utility, it is decided whether to 
query yn (line 7). If the label is queried, i.e., an = 1 , then xn is given to the oracle, so that 
the label is provided at tyn (line 8 to 10).

3.2 � Forgetting obsolete data (F)

For active learning, it is essential to assess the classifier’s uncertainty as accurately as pos-
sible. In case of verification latency, the current classifier ( f Ln ) may provide different pre-
dictions from the classifier at time tyn . We denote the sliding window that would be used for 
training at tyn as Dn.

Due to incomplete information about Dn , i.e., the incoming instances and labels after tx
n
 are 

still unknown, we will estimate the information within Dn as good as possible. One prob-
lem is that Ln includes data that is not included within Dn (see the red area in Fig. 2). This 
needs to be considered in AL. Using Ln for estimating the uncertainty might underestimate 
the classifier’s uncertainty in areas with data that will be obsolete soon.

Thus, to obtain more accurate uncertainty estimations, we propose Forgetting Old Data 
(F). Forgetting mechanisms are a standard technique in data stream mining (Gama et al. 
2014), which we hereby introduce to AL scenarios with verification latency. F discards 
data that would be unavailable by tyn . We denote the ordered list that contains these data as 
On.

To be more precise, only data points (tx
i
, xi, t

y

i
, yi) with tx

i
, t

y

i
∈ Dn will be used to infer a 

classifier that will be used to assess the utility un at tyn . In Fig. 2, state-of-the-art is com-
pared to F. The state-of-the-art strategies include all data in Wn for the utility assessment. 
Hence, x2 and x3 are included for that example as well. However, those instances will be 

(9)Dn = [ty
n
− w;ty

n
)

(10)On =
⟨
(xi, yi, 1)|∀i < n with ai = 1 ∧ tx

i
, t

y

i
∈ Wn ⧵Dn

⟩
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unavailable to the classifier training, once y9 arrives which will lead to inaccurate utility 
assessments. When using F, x2 and x3 will be excluded as both instances would be con-
tained in On (see Eq. (10)).

Algorithm 3 getUtility using F
1: function getUtilityF(al, (txn, xn, t

y
n), f, L)

2: On ← find obsolete data (Eq. (10))
3: return getUtility(al, (txn, xn, t

y
n), f, L \On)

4: end function

Algorithm 3 shows the corresponding pseudocode for F. First, On , the labeled data not 
within Dn , has to be identified (line 2). Next, all data in On is omitted from Ln (line 3). 
Additionally, the GETUTILITY function is defined in a recursive manner (line 3) so that it 
can also be easily combined with the methods proposed in the following two sections.

3.3 � Simulating incoming labels with bagging (S.B)

F by itself only handles data that will be unavailable in the future ( Dn ), by forgetting them. 
Hence, labels yi that have been queried but are not yet available ( tx

n
≤ t

y

i
< t

y
n ∧ ai = 1 ) are 

still ignored by the active learning strategy. Not knowing that the labels of x6 and x7 in 
Fig. 3 have already been queried, the AL strategy will probably select instance x9 , although 
more labels will be available in that region soon. By simulating y6 and y7 as in Fig. 3, the 
AL strategy would be aware of the incoming labels and react accordingly, e.g., not select-
ing x9 . We denote D+

n
 as the time span of Dn that is not covered by Wn . Hence, it covers the 

data that will be observed in the future within Dn.

To incorporate still unavailable but already queried labels, we propose Simulating Incom-
ing Labels with Bagging (S.B) to estimate the utilities for labels in the future. We pro-
pose to estimate the utility of yn by employing a bagging approach by averaging K utility 

(11)D
+
n
= Dn ⧵Wn = [tx

n
;ty
n
)

Fig. 2   The plots show the data within the sliding window that is used for assessing the acquisition of label 
y
9
 at time tx

9
 . The left side shows state-of-the-art strategies. These use all data that is used to train the clas-

sifier. The right side shows the difference when combining stream-based AL strategies with the proposed 
forgetting wrapper (F). As highlighted in the red area, instances that will be unavailable at ty

9
 , are excluded 

as those will not be within the sliding window anymore (Color figure online)
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estimations. For each utility estimation, S.B samples a set of labels Bn,k with k ∈ {1,… ,K} 
for data with ty

i
∈ D

+
n
 and Ai = 1 . The labels ŷi for each sample are distributed according to 

the categorical distribution (Murphy 2012) with parameter pLn
(
⋅|xi

)
.

As the label of yi is not yet available, we need to estimate the probability for each class to 
sample ŷi from the categorical distribution. Therefore, we use all available instance-label-
pairs ( Ln ) and a Bayesian approach to regularize the estimated probabilities using a conju-
gate prior � (Murphy 2012). Similarly to Chapelle (2005), we calculate the probabilities 
using a kernel function k(⋅, ⋅) with k(x, x) = 1.

Choosing a uniform prior ( � = (1,… , 1) ), this estimate provides equal probabilities for all 
classes if there are no labels near x. Contrary, the regularizing effect of the prior diminishes 
with increasing label counts. This idea of using Bayesian probability estimation has also 
been used in the area of AL in Kottke et al. (2021b) and Chapelle (2005). The performance 
of the simulations in S and subsequently of the active learning depend on the correctness of 
the probability estimation. In some applications, other estimation methods might be more 
suitable.

We sketch S.B on the left side of Fig. 3. This approach focuses on labels that will 
arrive within D+

n
 , i.e., y6 , y7 , and y8 . S.B simulates those labels by randomly sampling 

the labels as shown in Eq. (12). Hence, the AL strategies will be aware of their own que-
ries, even though, the true labels y6 , y7 , and y8 are still unknown.

(12)
Bn,k =

⟨
(xi, ŷi, 1)|∀i < n with ai = 1 ∧ tx

i
∈ Wn ∧ t

y

i
∈ D

+
n

⟩

with ŷi ∼ Cat(pLn
(
⋅|xi

)
)

(13)pLn (y�x) =

�
∑

(x� ,y� ,w�)∈Ln

1y�=y ⋅ w
�
⋅ k(xi, x

�)

�
+ �y

�
∑

(x� ,y� ,w�)∈Ln

w�
⋅ k(x, x�)

�
+

C∑
i=1

�i

Fig. 3   The plots show the data that will be used to assess the utility for querying the label y
9
 at time tx

9
 . 

The left side shows the behavior of S.B with k = 1 . The brown contour shows the still unlabeled instances 
whose label will arrive between tx

9
 and ty

9
 . Each of these instances is assigned a randomly sampled label (see 

Eq. (12)) in each iteration. The right side shows the behavior of S.F. Contrary to S.B, S.F assigns a fuzzy 
label (see Eq. (15)) to the instances whose label will arrive between tx

9
 and ty

9
 (Color figure online)
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Algorithm 4 getUtility using S.B
1: function getUtilitySB(al, (txn, xn, t

y
n), f, L)

2: u ← 0
3: for all k ∈ {1, . . . ,K} do
4: Bn,k ← sampling unknown labels (Eq. (12))
5: u ← u+ 1

K
getUtility(al, (txn, xn, t

y
n), f, L ∪Bn,k)

6: end for
7: return u
8: end function

S.B uses L ∪ Bn,k to estimate the training data available for the classifier at tyn . Algo-
rithm 4 shows the pseudocode for S.B. First, a variable u is initialized with 0 to store the 
resulting utility (line 2). Next, the instances xi with ty

i
∈ D

+
n
 and ai = 1 are used to con-

struct Bn,k (line 4). L ∪ Bn,k is then used to estimate the utility (line 5). This is repeated 
K-times (line 3 to 6) to obtain the average utility.

3.4 � Simulating incoming labels with fuzzy labeling (S.F)

The main idea of Simulating Incoming Labels with Fuzzy Labeling (S.F) is similar 
to S.B. Queried labels yi with ty

i
∈ D

+
n
 , and ai = 1 should be included in the classifier 

for which the utility is assessed. Instead of randomly sampling likely labeling realiza-
tions like S.B does multiple times, S.F exploits the classifiers’ ability to assign training 
weights to the training instances (see Fig. 3). S.F relies on pLn

(
⋅|xi

)
 to estimate the labels 

as accurately as possible. As each xi may belong to one of the classes ( y� ∈ {1,… ,C} ), 
xi is added C-times to the training data, i.e., once for each class, with the respective 
probability pLn

(
y′|xi

)
 as a training weight.

The right plot in Fig. 3 shows S.F. The labels that would have been simulated with S.B, are 
now simulated using S.F. Hence, y6 , y7 , and y8 are each assigned a fuzzy label. Thus, S.F 
makes the AL strategies aware of its own queries even though the queried labels are still 
unavailable.

Algorithm 5 getUtility using S.F
1: function getUtilitySF(al, (txn, xn, t

y
n), f, L)

2: Fn ← create fuzzy label set (Eq. (15))
3: return getUtility(al, (txn, xn, t

y
n), f, L ∪ Fn)

4: end function

S.F uses L ∪ Bn,k to estimate the training data available for the classifier at tyn . Algo-
rithm 5 sketches S.F. First, Fn is constructed (line 2). Using L ∪ Fn as training data, the 
utility is estimated (line 3).

(14)In =
⟨
i|∀i < n with ai = 1 ∧ tx

i
∈ Wn ∧ t

y

i
∈ D

+
n

⟩

(15)Fn =
⟨
(xi, ŷ, pi,ŷ)|∀(i, ŷ) ∈ (In × Y) with pi,ŷ = pLn

(
ŷ|xi

)⟩
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4 � Experimental evaluation

In this section, we first discuss the experimental design. Afterward, we present five differ-
ent hypotheses. For each, a short summary of the findings will be followed by a detailed 
description of the experiments and a discussion of their results. The experiment framework 
is available online2.

4.1 � Design of experiments

We perform all experiments within the framework sketched in Algorithm 2. For evaluation, 
we use prequential evaluation over all instances of the data stream. Prequential evaluation 
(Gama et al. 2009) describes an evaluation procedure, where the label of a new instance is 
first predicted for evaluation purposes. Afterward, the instance is processed further, e.g., by 
the AL strategy that queries labels.

To assess the robustness of the selection strategies to small changes, we introduce some 
randomness to the data stream. Independently from using the whole stream for prequential 
evaluation, we only pass 80% of the data (randomly chosen) to the active learning strategy. 
We repeat this 10 times.

We evaluate our proposed method FS (forgetting and simulating) and its variants using 
12 different datasets. D0–D2 are synthetically generated datasets where the instances are 
distributed within Gaussian centroids that are assigned to a class. We use three different 
datasets to reflect varying difficulty. Each of those datasets consists of 4000 instances with 
two features and ten centroids per class. However, the number of classes differs. D0 only 
has two classes, while D1 and D2 have 3 and 4 classes, respectively. An assumption of data 
streams is that they may contain changes. We introduce such changes with the method pro-
posed by Shaker and Hüllermeier (2013). Hence, we generate two separate static datasets 
with 2000 instances each using different random seeds. After that, we merge them with 
the method mentioned above. D3–D7 are derived from benchmark datasets. Table 1 lists 
the names and properties of these datasets. Similar to D0–D3, we construct a data stream 
that includes a concept drift. To do so, we select a random feature. We then divide the 
static dataset into two subsets using the median of the randomly selected feature. After-
ward, this feature is discarded, and the two subsets are shuffled and then merged using the 
same method as used for D0–D3. The parameter Shaker and Hüllermeier (2013) denote 
as w is set to 50 for controlling the rate of change. This rate of change leads to a window 
of approximately 500 instances, where the gradual change happens. Lastly, D8–D11 are 
benchmark data streams that are listed in Table 1 as well. For all data streams we use each 
instance’s index within the data stream as its timestamp, i.e., tx

i
= i for xi with x0 being the 

first instance. Hence, the training window and the verification latency does not need to be 
rescaled individually for each dataset.

For our method FS, we choose a uniform prior for the probability estimation which is 
described by a parameter of � = (1,… , 1)T for a Dirichlet distribution. To perform the 
bagging in S.B, we set the number K to 3. For the classifier, we use the Parzen Window 
Classifier as described in Chapelle (2005) using a Gaussian kernel and the mean-band-
width heuristic as proposed in Chaudhuri et  al. (2017). The classifier is trained using a 
sliding window spanning the last 500 instances, i.e., w = 500 . The verification latency in 

2  https://​github.​com/​tpham​93/​al-​for-​sw-​verif​icati​on-​laten​cy.

https://github.com/tpham93/al-for-sw-verification-latency
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our experiments is assumed to be constant for most of the experiments. The verification 
latency we test are 50, 100, 150, 200, 250, and 300 instances. However, we also investigate 
the influence of variable latency in the experiments for Hypothesis 4 where the latency is 
modeled by a uniform distribution U(0, 300) . We test three different budgets, namely 2% , 
8% , and 32% of instances within the stream. As a selection of AL strategies, we use Var-
Uncertainty (Var_Uncer), and Split (Split) as proposed in Zliobaite et al. (2014). Addition-
ally, we test Probabilistic Active Learning with the Balanced Incremental Quantile Filter 
as proposed in Kottke et al. (2015). We test the three proposed individual wrappers F, S.B, 
S.F, and the two variations of SF, namely FS.B and FS.F, which are F combined with S.B 
and S.F, respectively. As a baseline approach, we use Random Selection (Rand) that sam-
ples instances randomly according to the provided budget. The pseudocode on how the 
traditional AL strategies are integrated into our framework is listed in the appendix.

All tested active learning strategies optimize the accuracy. Hence, we evaluate all tested 
strategies using the average accuracy across the whole data stream. The achievable accu-
racy might differ across datasets. Hence, we aggregate performances across multiple data-
sets by using the average rank over all repetitions.

The lower the assigned rank, the better the strategy’s performance. The best performing 
strategy is assigned rank 1. In the case of ties, the average of the ranks is assigned to the 
strategies, e.g., two strategies that are tied as best performing strategies are assigned the 
rank 1.5. These ranks are then averaged over the ten repetitions to obtain the average rank-
ing for the respective experiment configuration.

4.2 � Effect of verification latency in stream‑based AL

In this section, we investigate the effect of verification latency on the performance of tradi-
tional AL strategies.

Table 1   Properties for the data 
streams used in the following 
experiments

D0–D3 are synthetically generated data streams. D3–D7 are data 
streams derived from static benchmark datasets. There, a feature is 
excluded to derive a data stream that contains a concept shift (note 
the “+1 split” in the features column). D8–D11 are benchmark data 
streams

Dataset id Dataset name Instances Features Classes

D0 Synthetic 0 4000 2 2
D1 Synthetic 1 4000 2 3
D2 Synthetic 2 4000 2 4
D3 Phoneme (static) 5404 5 (+1 split) 2
D4 Mfeat-morphological 2000 6 (+1 split) 10
D5 Segment 2310 19 (+1 split) 7
D6 Kin8nm 8192 8 (+1 split) 2
D7 Space_ga 3107 6 (+1 split) 2
D8 Electricity 45312 9 2
D9 Luxembourg 1901 31 2
D10 NOAA weather 18159 8 2
D11 Rialto 82250 27 10



2026	 Machine Learning (2022) 111:2011–2036

1 3

Hypothesis 1  Existing AL strategies perform poorly under verification latency.

Findings: AL strategies that perform better than Random Selection in the state-of-the-
art (without any verification latency) are likely to perform worse under the influence of 
verification latency without any adaptation.

Detailed Description: We compare the selected AL strategies, Var_Uncer, Split, PAL, 
and Rand for different verification latencies. Figure  4 shows the average rank over all 
datasets for each budget separately. The plots show that Rand performs the best with high 
latency compared to the AL strategies.

The results of Var_Uncer and Split show that they only perform better than rand for 
a budget of 2%. However, Split performs marginally better than Var_Uncer for 2% and 
8% budget. For 32%, Split performs consistently better than Var_Uncer. The performance 
of PAL decreases the most when incorporating verification latency. While it has the best 
average rank for no verification latency, it performs worst with high latency. The results 
suggest, that the performance of traditional AL strategies decreases when compared to 
selecting instances randomly. Hence, AL provides less or no benefit, when this effect is not 
mitigated. A reason for this observation might be, that the utility assessment assumes that 
the label will be available immediately, which is not the case. Labels that will be obsolete 
are considered, while recently queried but unavailable labels are ignored.

Furthermore, AL strategies that perform well when no verification latency is present, 
seem to be impacted heavily under verification latency, as shown by PAL. In the detailed 
discussion for Hypothesis 2, we show why this phenomenon occurs.

4.3 � FS improves label selection under verification latency

In this section, we investigate how FS can improve the performance of AL strategies under 
the influence of verification latency. Additionally, we investigate which combinations of 
the proposed wrappers for FS perform best.

Hypothesis 2  Combining traditional AL strategies with FS improves their performance.

Fig. 4   The average rank and its standard error for the denoted AL strategies and budgets over all tested veri-
fication latencies (Color figure online)
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Findings: The AL strategies perform better when combined with FS. This improvement 
is especially visible for Var_Uncer and PAL, but less for Split due to the randomization 
within Split. FS.B performs slightly better than FS.F when combined with PAL. For Var_
Uncer and Split, FS.F performs better.

Detailed Description: Figure 5 extends Fig. 4 with additional strategies. Additionally to 
the former strategies, Fig. 5 includes those strategies wrapped in FS.B and FS.F. All in all, 
there are 10 strategies. Hence, the ranks now range from 1 to 10. The strategies wrapped in 
FS perform better than the traditional strategies. FS.B and FS.F are marked with triangles 
and rectangles, respectively. For PAL, FS.B performs better than FS.F. We assume that 
having discrete labeling instead of a fuzzy label influences the classifier’s decision bound-
ary more. However, Var_Uncer and Split perform better when combined with FS.F. We 
assume that F promotes exploration as information is removed and the classifier will be 
less certain. The simulation approaches S.B and S.F, increase the certainty of the classifier 
by increasing the number of training instances in the region of simulated labels.

Figure 6 shows the average ranks for a fixed verification latency of 200 and a budget 
of 8% for all datasets individually. The variance of the ranks over all data sets is high. 
The improvements for PAL are very high, except for D9, where all strategies seem to 
perform equally. The improvement for Var_Uncer and Split is also noticeable, except for 
D7 and D9. The average ranks over all datasets suggest that the traditional AL strategies 
perform better when combined with FS.

The performance of PAL without any adaptation performs the worst under verifica-
tion latency, however, PAL combined with FS performs the best. To find an explanation 
for this improvement of PAL, Fig. 7 shows its behavior with no latency and a latency 
of 200 timesteps for a 1-dimensional dataset. Additionally, the latency of 200 timesteps 
while wrapped in FS.B is depicted for comparison as well. Each line represents the life-
time of an instance at location x and time t. The color represents the class of these 
instances. As for a latency of 200, we do not know the label for the first 200 timesteps. 
Hence, the lines are plotted in black for the first 200 timesteps.

The black lines mark queried labels, which are still unknown due to the verifica-
tion latency. The colored lines mark queried and available labels. The queries for PAL 

Fig. 5   The average rank and its standard error respective to the present verification latency for three differ-
ent budgets (Color figure online)
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without adaptation and a latency of 200 appear to be in short bursts, where PAL focuses 
on different aspects of the feature space at a time.

The traditional PAL starts to query labels after the knowledge of a specific region 
is pushed out of the sliding window. The verification latency leads to PAL being una-
ware of its past acquisitions that happened in the last 200 timesteps. Hence, PAL queries 
instances until the first label arrives in that region after 200 timesteps. As this happens, 
PAL will forget another region, which it compensates in the same fashion. Contrary, 
when PAL is combined with FS, the forgetting of obsolete instances allows PAL to 
acquire new labels earlier. Thus, they will be available in time, right after the old labels 
will be forgotten. Additionally, by simulating the incoming labels, PAL knows that the 
recently queried labels will be available later.

Fig. 6   The average rank of the tested AL strategies for each dataset for a budget of 8% and a verification 
latency of 200 timesteps (Color figure online)

Fig. 7   These plots show the acquired instances and its labels over time for PAL. The y-axis represents the 
1-dimensional feature space while the x-axis shows the time. The black lines from tx

i
 to ty

i
 show that an 

instance xi has been acquired, while the following colored line from tx
i
 to tx

i
+ w denotes the available class 

label. The red area depicts the area where the trained classifier deviates from the optimal decision boundary  
(Color figure online)
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Hypothesis 3  The combined wrappers FS.F and FS.B perform better than F, S.F, and S.B 
alone.

Findings: The results show that Var_Uncer and Split perform best when wrapped 
with FS.F in most cases. Contrary, PAL performs best when combined with FS.B.

Detailed Description: For this hypothesis, we combined the strategies not only with 
FS but also F, S.B, and S.F alone, to see which kind of adaptation is more important. 
Figure 8 shows the average rank of each strategy compared to its combinations with F, 
S.B, S.F, FS.B, and FS.F. These ranks are averaged over all datasets and plotted sepa-
rately for each budget. We don’t use the same color for the same base AL strategies, as 
that would reduce the distinguishability of the individual curves. Strategies using the 
F wrapper are plotted as dashed lines, while the curves for S.B and S.F are marked 
with triangle and square, respectively. Hence, the strategies combined with FS.B have 
a dashed curve with triangle markers. All strategies wrapped with FS.B and FS.F per-
form consistently better or equal to the non-wrapped strategies consistently. As Split is 
a randomized extension to Var_Uncer, both show similar behavior. The improvement 
provided for both is higher in most cases compared to F and S.F alone, except for very 
high latencies (i.e., 250 and 300) where F performs better. Split and Var_Uncer perform 
better with F, as it increases exploration by discarding data. The results of FS.F are 
comparable to F as S.F does not change the utility much. Fuzzy labels only influence 
the classifier’s predictions marginally and the increase in number of labels is not con-
sidered by Split and Var_Uncer. The performance of PAL is improved by using F, S.F 
and S.B. By using F, PAL is able to account for data that will be unavailable soon. The 
simulation approaches S.F and S.B increases the number of labels for the areas, where 
labels are simulated. This decreases the utility for subsequent assessed labels near the 
simulated labels. With increasing budget, the difference between ranks becomes more 
visible, because the estimates can be very unreliable for small budgets due to the small 
number of labeled training instances. As the number of labels increases, the estimates 
become more robust, so the positive impact of forgetting and simulating becomes more 
noticeable.

4.4 � Handling of variable verification latency

In this section, we investigate the effect of variable verification latency instead of constant 
verification latency as tested above.

Hypothesis 4  FS is not restricted to constant verification latencies but is able to mitigate 
the effect of variable latencies.

Findings: Using FS, AL strategies are aware of the knowledge missing in the future, 
as long as the delay until the labels become available is known. Hence, FS improves the 
performance even when having variable verification latency instead of constant verifica-
tion latency.

Detailed Description: We investigate this hypothesis by assigning each instance an 
individual verification latency. This latency is distributed according to U(0, 300) but 
each instance’s latency stays constant across all repetitions. Figure 9 shows the results 
for a budget of 8%, similarly to Fig. 6. The variable verification latency leads to a worse 
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performing Random Selection when compared to the constant verification latency. The 
average rank over all datasets, suggests that the wrappers improve the performance of 
all AL strategies. When using Var_Uncer and Split in combination with FS.F, their per-
formances are improved so that they perform slightly better than random. PAL benefits 
the most from the proposed approaches as both variants of the adapted PAL outperform 
all other strategies. The results for this experiment match the observations of the previ-
ously conducted experiments.

Fig. 8   The average rank and its standard error respective to the present verification latency for three differ-
ent budgets. The plots are split among the base AL strategies Var_Uncer, Split and PAL with all combina-
tion for the wrapper strategies (Color figure online)
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5 � Conclusion

In this article, we covered the problem of active learning under verification latency and 
proposed a general adaptation strategy for AL algorithms to overcome the correspond-
ing challenges. We evaluated our work based on four hypotheses that show that verifica-
tion latency decreases traditional active learning performance. We also showed that this 
decrease is mitigated by assessing the label’s utility differently compared to traditional AL 
strategies. Hence, the assessment should be based on data that is available by the time the 
label is accessible. We demonstrated that by forgetting obsolete data and simulating incom-
ing labels using Forgetting and Simulating (FS), traditional AL strategies assess a label’s 
utility more accurately. We also showed that FS works under variable verification latency. 
In summary, this work provides a framework to adapt stream-based AL approaches to sce-
narios with verification latency, which allows their use in a broader range of applications.

Further research may extend the tested datasets to other benchmark or real-world 
datasets. In settings with variable verification latency, the lifetime of a label can be 
incorporated into the utility assessment. The current F approach is reactionary in nature, 
as it only reconsiders a region after obsolete labels are discarded. It may be preferable 
to query new labels before old labels become obsolete. This proactive behavior can be 
achieved by forgetting labels earlier. For this article, we researched the behavior using 
a Parzen Window Classifier. However, technically the approach is not restricted to that 
type of classifier. For instance, semi-supervised classifiers are a fitting choice and would 
complement the active learning component well. So far we assumed that our classifier 
is operating in a sliding window, but recent state-of-the-art methods use change detec-
tion algorithms to forget outdated data. This will be addressed in future work. However, 
as we do not know when these instances might be forgotten due to change detection 
algorithms, we need estimates for the most likely change point. Furthermore, FS may be 
combined with a verification latency-aware classifier. These classifiers aim to improve 
their estimates by tracking change in a data stream, for example. Finally, even though 
we assume that each label’s arrival date is known, FS might be used in settings where 
the individual verification latency is not known apriori but can be estimated.

Fig. 9   The performances for experiments with variable verification latencies with a budget of 8% (Color 
figure online)
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Appendix A pseudocodes

In this section, we show how the tested AL strategies can be incorporated into the 
framework that we specify in Algorithm  2. The methods proposed in Zliobaite et  al. 
(2014), i.e., Var-Uncertainty and Split, have to be restructured to separate the utility 
assessment and the budget management. For PAL with BIQF, there is no restructuring 
necessary, as it separates both already.

Random Selection The implementation for Random Selection is quite simple. Its util-
ity assessment consists of sampling a random variable uniformly distributed between 0 
and 1 (line 2 and 3 in Algorithm 6). The query function simply compares this random 
sample against the targeted budget to determine whether to sample the instance (line 2 
to 6 in Algorithm 7).

Algorithm 6 Utility function for Random Selection
1: function utilityRandom(x, f, L)
2: urand ∼ U [0, 1]
3: return urand
4: end function

Algorithm 7 Query function for Random Selection
1: function queryRandom(u)
2: if u ≤ B then
3: return 1
4: else
5: return 0
6: end if
7: end function

Var-Uncertainty For our experiments, the utility assessment for Var-Uncertainty, 
consists solely of the certainty assessment for each instance x (line 2 in Algorithm 8). 
The query function for Var-Uncertainty is depicted in Algorithm 11. Each of the meth-
ods proposed in Zliobaite et  al. (2014) compare the utility against a threshold. In the 
case of Var-uncertainty, the threshold is adapted over time (line 4 and 7). Additionally, 
there is a check, whether the targeted budget is exhausted already (line 2).

Algorithm 8 Utility function for Var-Uncertainty
1: function utilityVarUncertainty(x, f, L)
2: return max

y′∈{1,...,C}
fL(y′|x)

3: end function
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Algorithm 9 Query function for Var-Uncertainty
1: function queryVarUncertainty(u)
2: if b̂ < B then
3: if u ≤ θ then
4: θ ← θ · (1− s)
5: return 1
6: else
7: θ ← θ · (1 + s)
8: return 0
9: end if
10: end if
11: return 0
12: end function

Split Split is structured very similarly to Var-Uncertainty, as the only difference is, that 
Random Selection is used sometimes to increase the exploration. Hence, the utility assess-
ment in Algorithm 10 is equivalent to Algorithm 8. Algorithm 11 shows the query function 
for Split. As in Algorithm 9, Split checks whether the budget is exhausted already (line 2). 
Then, it is checked whether to use Random Selection or Var-Uncertainty (line 3) and the 
results of those strategies are returned (line 4, 5, and 7).

Algorithm 10 Utility function for Split
1: function utilitySplit(x, f, L)
2: return max

y′∈{1,...,C}
fL(y′|x)

3: end function

Algorithm 11 Query function for Split
1: function querySplit(u)
2: if b̂ < B then
3: if u′ < v for u′ ∼ U [0, 1] then
4: urand ∼ U [0, 1]
5: return queryRandom(urand)
6: else
7: return queryVarUncertainty(u)
8: end if
9: end if
10: return 0
11: end function

PAL PAL for datastreams as proposed in Kottke et  al. (2015), splits the approach 
between a spatial utility and temporal utility assessment. For the spatial utility assessment, 
we use McPAL, to be able to handle datasets with more than two classes. The spatial utility 
assessment is done entirely in the utility function, i.e., Algorithm 12. To decide whether 
the spatial utility, is sufficient to acquire the instance’s label, Kottke et al. use BIQF. Hence, 
BIQF assesses the temporal utility based on the spatial utility. This is done in the query 
function, i.e., Algorithm 13.
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Algorithm 12 Utility function for PAL
1: function utilityPAL(x, f, L)
2: return McPAL(x, f, L)
3: end function

Algorithm 13 Query function for PAL
1: function queryPAL(u)
2: return BIQF(u)
3: end function
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