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Abstract
Gaussian process regression is a flexible regression scheme but suffers from its high com-
putational complexity regarding the inversion of a matrix with the same size as the train-
ing dataset. Aggregation method is one of the approximation techniques for reducing the 
complexity. In this paper, we propose a novel aggregation method, Nested Aggregation of 
Experts using Inducing Points (NAE-IP), which is an extension of a conventional method 
and enables dimensionality reduction by making use of the idea of linear sketching. There 
are some options for selecting inducing points in the proposed method. The options can 
introduce test points of interest as inducing points, albeit at the cost of slightly higher com-
putational complexity. The other options exploiting less informative inducing points can 
yield a significant reduction of the computational complexity. The proposed NAE-IP is the-
oretically guaranteed to have consistency under certain conditions. Results of our compu-
tational experiments using synthetic and real data show that the proposed method achieves 
lower prediction error and even lower computing time than conventional methods.

Keywords  Gaussian process regression · Aggregation methods · Linear sketching · Big 
data · Scalability

1  Introduction

Gaussian process regression (GPR or full GPR) (Rasmussen and Williams 2006) is a non-
parametric regression model that assumes a Gaussian process prior on regression func-
tions. Its application includes geostatistics (Cressie 1993; Stein 1999), data visualization 
(Lawrence 2005), reinforcement learning (Deisenroth et  al. 2015), multi-task learning 
(Ashton and Sollich 2012), distributed learning (Tavassolipour et al. 2020), to mention a 
few. Despite its advantage of allowing nonlinear regression, its computational complexity 
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and required memory can be a serious problem in the cases where the number N of training 
data is large. Full GPR (which we mean the GPR with no approximation) includes inver-
sion of an N × N matrix, so that it takes O(N3) time complexity1 (via conventional methods 
like Gauss-Jordan elimination and LU decomposition) for training. This would restrict the 
applicability of full GPR to problems with N ≲ 104.

In order to circumvent the limitation, various approximation methods have been pro-
posed. These can be divided in two main categories, global and local approximations (Liu 
et  al. 2020). The global approximations replace the global representation of the N × N 
matrix with small-sized matrices, typically by using some training points or virtual points, 
called inducing points or pseudo datapoints  (Snelson and Ghahramani 2005; Quiñonero-
Candela and Rasmussen 2005; Wilson and Nickisch 2015; Bauer et  al. 2016). The idea 
is categorically termed sparse GP approximation. Sparse GP using m inducing points can 
reduce time complexity to O(Nm2) . Locations of the inducing points can furthermore be 
optimized via stochastic variational inference (Hensman et al. 2013). However, the sparse 
GP methods are not suitable when the underlying function has quick-varying features 
because in such cases they require a large number of inducing points to achieve good per-
formance, yielding high complexity (Bui and Turner 2014). On the other hand, the local 
approximations split training data into a number of sub-datasets, assign an “expert” to 
each of them, and summarize local predictions made by these experts to arrive at the final 
prediction. The procedure enables us to capture such quick-varying features. One of the 
state-of-the-art local approximations is the aggregation method, which includes product-
of-experts (PoE) (Hinton 2002), generalized PoE (GPoE) (Cao and Fleet 2014), Bayes-
ian committee machine (BCM) (Tresp 2000), robust BCM (RBCM) (Deisenroth and Ng 
2015), generalized RBCM (GRBCM) (Liu et al. 2018), query-aware BCM (QBCM) (He 
et  al. 2019), and nested pointwise aggregation of experts (NPAE) (Rullière et  al. 2018). 
Different aggregation methods summarize the local predictions of the experts by using dif-
ferent schemes. The time complexity of the aggregation methods except for NPAE with 
sub-dataset size n0 is reduced to O(Nn2

0
) +O(CNn0) , where C is independent of N and var-

ies depending on the method.
An important theoretical property for the aggregation methods is consistency, which 

means that the aggregated prediction converges to the value of the true underlying func-
tion when N approaches infinity. The aggregation methods without consistency do not nec-
essarily yield good predictions even in large-sample situations. NPAE and GRBCM are 
proven to have consistency under appropriate conditions (Bachoc et  al. 2017, 2021; Liu 
et al. 2018). Furthermore, NPAE usually achieves better predictive performance than other 
methods by using richer information but at the same time requires higher computational 
complexity.

In this paper, we propose a novel aggregation method inspired by NPAE. We first gen-
eralize the prediction of NPAE by using the idea of low-dimensional projection known as 
sketching (Liberty 2013; Woodruff 2014) of the training samples, and then extend it to more 
informative versions by introducing inducing points. With its higher flexibility this method 
is expected to achieve a better trade-off between predictive performance and computational 
complexity. We name the proposed method Nested Aggregation of Experts using Inducing 
Points (NAE-IP). The Gaussian process approximation via sketching has also been consid-
ered by Calandriello et al. (2019) but their construction is based on matrix sketching and falls 

1  In what follows we consider time complexity under the assumption that arithmetic with matrix elements 
has complexity O(1).
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within the category of sparse GP methods. On the other hand, the dimensionality reduction in 
NAE-IP is different from that of sparse GP in that NAE-IP exploits linear sketching of signals, 
extending NPAE. Furthermore, NAE-IP, similarly to NPAE, allows parallelization of some 
part of processing by employing a block-diagonal sketching matrix. NAE-IP is expected to be 
advantageous in two alternative fronts: one is that it prioritizes predictive performance at the 
cost of an increase of computational complexity, and another is that it uses a less informative 
set of inducing points while allowing reduction of the computational complexity. Furthermore, 
we prove that NAE-IP has consistency under certain conditions. Simulation results show that 
the proposed method achieves lower prediction errors than conventional aggregation methods, 
while keeping less computing time than the original NPAE.

In the rest of the paper, we use the following notations. Boldface indicates vector or matrix. 
Superscripts (⋅)T and (⋅)−T denote the transpose and the inverse of the transpose, respectively. 
0 , O , and I stand for the zero vector, zero matrix, and identity matrix, respectively. ‖ ⋅ ‖ rep-
resents �2-norm. N(m,�) is Gaussian distribution with mean m and covariance � . Cov[x, y] 
means the covariance matrix of random vectors x and y . kerA ∶= {x ∶ Ax = �} is the kernel 
(null space) of the matrix A . det [⋅] and Tr[⋅] stand for the determinant and trace operator, 
respectively. [⋅]ab , [⋅]a , and [⋅][a][b] denote the (a, b)th element of the matrix, the ath row of the 
matrix or ath element of the vector, and the (a, b)th block of the block matrix, respectively. 
diag[⋅] is the diagonal matrix composed of the elements in the square brackets.

2 � Gaussian process regression and aggregation methods

2.1 � Full GPR

Consider the full GPR on a region Q ⊂ ℝ
D . Given a training dataset with N samples, 

D = {(xn, zn) ∈ Q ×ℝ}n=1,…,N , the regression model is

where the regression function f is assumed to follow a Gaussian process (GP), and where 
the residual error �n is assumed to be a white Gaussian noise with mean 0 and variance �2 , 
that is, one has [�1,… , �N]

T ∼ N(�, �2I) . The mean function of the GP can be assumed to 
be 0 without loss of generality. The covariance function k(⋅, ⋅) of the GP represents proper-
ties of the regression function. Commonly used covariance functions are the squared expo-
nential (SE) function:

and the Matérn-(� + 1∕2 ) function:

where r =
√
(x − x�)TL−1(x − x�) is the Mahalanobis distance between x and x′ and covari-

ance matrix L = diag[�1,… ,�D] , where � ∈ ℕ
+ is a model parameter for the  Matérn 

function, and where 𝜎2
f
> 0 and �d > 0 (d = 1,… ,D) are hyperparameters. The hyperpa-

rameters of these models are thus � = {�2
f
, {�d}d=1,…,D, �

2} , the values of which may be 
determined via maximizing the log-marginal likelihood

(1)zn = f (xn) + �n,

(2)k(x, x�) = �2
f
exp

(
−
r2

2

)
,

(3)k(x, x�) = �2
f
exp

�
−
√
2� + 1r

�
�!

(2�)!

��
��=0

(� + ��)!

��!(� − ��)!

�
2
√
2� + 1r

��−��

,
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where X = [x1,⋯ , xN]
T ∈ ℝ

N×D , z = [z1,⋯ , zN]
T ∈ ℝ

N , and where the covariance matrix 
K(X,X�) is such that [K(X,X�)]nn� = k(([X]n)

T, ([X�]n� )
T).

Assume that we wish to estimate the values of f at NT test points {x∗
t
}t=1,…,NT

 . All the 
test points and the corresponding outputs are summarized as X∗ = [x∗

1
,⋯ , x∗

NT
]T ∈ ℝ

NT×D 
and z∗ = [z∗

1
,… , z∗

NT
]T ∈ ℝ

NT , respectively. The values of the regression function corre-
sponding to X and X∗ are summarized as f = [f (x1),⋯ , f (xN)]

T ∈ ℝ
N and 

f ∗ = [f (x∗
1
),⋯ , f (x∗

NT
)]T ∈ ℝ

NT , respectively. On the assumption that the prior of f is GP, 
the joint distribution of z and f ∗ is given by

The predictive distribution of f ∗ given D is obtained as 
p(f ∗|X∗,D) = N

(
�full(X

∗),�full(X
∗)
)
 , where

The prediction of z∗ is similarly obtained as p(z∗|X∗,D) = N
(
�full(X

∗),�full(X
∗) + �2I

)
 . 

The matrix inversion in Eqs.  (6) and  (7) has O(N3) time complexity and O(N2) mem-
ory consumption, so that various approximations have been proposed to circumvent the 
complexity.

2.2 � Aggregation methods

2.2.1 � Problem settings and training

In this subsection, we introduce the common settings among the aggregation meth-
ods. The whole training dataset is first divided into p subsets, Di = (Xi, zi) (i = 1,… , p) , 
where each subset has n(i) data points, namely, Xi ∈ ℝ

n(i)×D and zi ∈ ℝ
n(i) . Sub-mod-

els that make predictions using the sub-datasets are referred to as “experts”. Each 
expert Mi makes own predictions by using its own sub-dataset Di . The local prediction 
pi(z

∗|x∗,Di) = N
(
�i(x

∗), �2
i
(x∗)

)
 at a test point x∗

t
∶= x∗ (t = 1,… ,NT ) is obtained by 

applying full GPR to the sub-dataset Di , as

respectively, where K∗i = K(x∗,Xi) , Ki∗ = KT
∗i

 , and Kij = K(Xi,Xj) for i, j = 1,… , p . 
Aggregation methods described in the subsequent sections integrate the experts’ predic-
tions and yield the final prediction in different manners.

For learning hyperparameters � , it is reasonable under these settings to introduce a 
factorized training process (Deisenroth and Ng 2015). In the process, the exact marginal 

(4)log p(z|X,�) = −
1

2

(
zT(K(X,X) + �2I)−1z + log det

[
K(X,X) + �2I

])
,

(5)p

([
z

f ∗

])
= N

(
0,

[
K(X,X) + �2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
.

(6)�full(X
∗) = K(X∗,X)(K(X,X) + �2I)−1z,

(7)�full(X
∗) = K(X∗,X∗) − K(X∗,X)(K(X,X) + �2I)−1K(X,X∗).

(8)�i(x
∗) = K∗i

(
Kii + �2I

)−1
zi,

(9)�2
i
(x∗) = k(x∗, x∗) − K∗i

(
Kii + �2I

)−1
Ki∗ + �2,



1675Machine Learning (2022) 111:1671–1694	

1 3

likelihood (Eq. (4)) is approximated by assuming independence of the marginal likelihoods 
of the experts, i.e.,

where the experts share the same hyperparameters � . The computational complexity for 
the training process can be reduced compared with full GPR thanks to the independence 
assumption.

2.2.2 � Predictions that ignore some covariance of experts

PoE (Hinton 2002), GPoE (Cao and Fleet 2014), BCM (Tresp 2000), and RBCM (Deisen-
roth and Ng 2015) are aggregation methods that ignore covariance between experts. The 
original PoE and GPoE assume independence of experts {Mi}i=1,…,p . BCM and RBCM 
assume conditional independence of the experts given the value f (x∗) of the regression 
function at a test point x∗ . The aggregated prediction p

(
z∗|x∗, {�i(x

∗), �2
i
(x∗)}i=1,…,p

)
 with 

mean �poe∕bcm(x
∗) and variance �2

poe∕bcm
(x∗) can be collectively formulated as

where �2
∗∗

= k(x∗, x∗) + �2 , and where �i1 and �i2 are the weights assigned to expert Mi . 
The choices of the weights recommended in the respective papers, as well as constraints, of 
those aggregation methods are summarized in Table 1.

Two extensions of RBCM, called GRBCM (Liu et  al. 2018) and QBCM (He et  al. 
2019), are recently proposed. These methods assume existence of an informative “global 
expert” Mg ∶= M1 , and that every expert can access, in addition to the sub-dataset 
assigned to it, the sub-dataset Dg = D1 assigned to the global expert. Therefore, these 
methods take account of covariances between the global expert and other experts, but 
ignore covariance between non-global experts, and assume conditional independence 
Di ⟂ Dj | z∗,Dg for i, j = 2,… , p and i ≠ j . Each expert Mi (i = 2,… , p) possesses sub-
dataset D+i = Dg ∪Di and makes own predictions with mean �+i(x

∗) and variance �2
+i
(x∗) . 

The global expert also makes prediction with mean �g(x
∗) and variance �2

g
(x∗) by using 

(10)p(z|X,�) ≈

p∏
i=1

pi(zi|Xi,�),

(11)�poe∕bcm(x
∗) = �2

poe∕bcm
(x∗)

p∑
i=1

�i1�
−2
i
(x∗)�i(x

∗),

(12)�−2
poe∕bcm

(x∗) =

p∑
i=1

�i1�
−2
i
(x∗) +

(
1 −

p∑
i=1

�i2

)
�−2
∗∗
,

Table 1   Recommended weight 
choice for aggregation methods

The choice marked †  means that it lacks theoretical justification

Method �
i1

�
i2

Constraint

PoE 1 1/p
GPoE 1/p† 1/p ∑p

i=1
�i1 = 1

BCM 1 �i1

RBCM log �2
∗∗
−log �2

i

2
† �i1
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only the global sub-dataset Dg . The aggregated predictions are given by the following 
mean �grbcm∕qbcm(x

∗) and variance �2
grbcm∕qbcm

(x∗),

where the experts’ weights {�i}i=2,…,p are chosen in the same manner as RBCM. For 
GRBCM, the global sub-dataset Dg is randomly selected from the entire training samples, 
and for QBCM, Dg is selected as the sub-dataset with its centroid closest to the test point.

2.2.3 � NPAE: prediction that uses covariance between all experts

NPAE (Rullière et al. 2018) for GPR is also one of the aggregation methods but it yields 
“consistent” prediction by taking account of covariance between experts, at the cost of 
computational complexity. The consistency is discussed in the next subsection. In NPAE, 
the aggregated prediction is obtained as follows:

where �∗ = [�1(x
∗),… ,�p(x

∗)]T ∈ ℝ
p , kA∗ = Cov[�∗, z

∗] ∈ ℝ
p , and 

KA∗ = Cov[�∗,�∗] ∈ ℝ
p×p . This formulation means that NPAE uses the covariance 

between all experts, that is, uses richer information than those aggregation methods 
described in Sect. 2.2.2.

Note that the original NPAE is restricted to test-point-wise processing and requires 
p × p matrix construction and its inversion K−1

A∗
 for each test point, so that its computational 

complexity is higher than other aggregation methods. Rullière et al. (2018) have also pro-
posed additional complexity reduction of NPAE by considering hierarchical organization 
of the experts, in which case the subsequent prediction becomes different from Eqs. (15) 
and (16).

2.2.4 � Consistency

Consistency is one of the important properties for the aggregation methods, which means 
that the aggregated prediction converges to the value of the true underlying function when 
the number N of training points approaches infinity. It should be noted that the definition 
of consistency in this paper is such that an aggregation method for a finite number of test 
points is said to be consistent if the aggregated predictions provided by the method con-
verges to the values of the true underlying function at those test points in probability, as 
N → ∞ . In particular, the definition is different from, and much weaker than, the consist-
ency in functional spaces (van der Vaart and van Zanten 2011): Consistency of a method 

(13)

�grbcm∕qbcm(x
∗) = �2

grbcm∕qbcm
(x∗)

⋅

[
p∑
i=2

�i�
−2
+i
(x∗)�+i(x

∗) +

(
1 −

p∑
i=2

�i

)
�−2
g
(x∗)�g(x

∗)

]
,

(14)�−2
grbcm∕qbcm

(x∗) =

p∑
i=2

�i�
−2
+i
(x∗) +

(
1 −

p∑
i=2

�i

)
�−2
g
(x∗),

(15)�npae(x
∗) = kT

A∗
K−1

A∗
�∗,

(16)�2
npae

(x∗) = k(x∗, x∗) − kT
A∗
K−1

A∗
kA∗ + �2,
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in the above definition does not necessarily imply that the posterior on the functional space 
provided by the method converges to the Dirac measure at the true underlying function in 
the limit N → ∞.

NPAE in Sect. 2.2.3 is proven to be consistent in the noiseless case ( �2 = 0 ) (Bachoc 
et al. 2017) and the noisy case ( �2 ≠ 0 ) (Bachoc et al. 2021). For the latter case, NPAE 
is consistent when the placement of all input points is not too irregular on Q or when 
the training data is divided by typical clustering algorithms, e.g., k-means. Consistency 
including noisy observations is also discussed in Liu et al. (2018), where they have con-
cluded that GRBCM is consistent as long as the input points in the global sub-dataset are 
randomly selected on Q . Bachoc et  al. (2017, 2021) have also proven that, under some 
assumptions on the kernel2, there are cases where consistency of PoE, GPoE, BCM, and 
RBCM does not hold depending on the distribution of the input points.

3 � NAE using inducing points

3.1 � Reformulation of NPAE via sketching

In this subsection, we represent the predictions by NPAE (Eqs. (15) and (16)) in an alter-
native formulation, with the aim of extending it to a generalized method. As mentioned in 
Sect. 1, the high computational complexity of full GPR arises primarily from the necessity 
of inverting the Gram matrix (K(X,X) + �2I) with size equal to the number N of train-
ing samples. Consequently, all the existing approximation schemes include some ideas of 
reducing the size of the matrix to be inverted, and accordingly, when evaluating the con-
ditional mean in these schemes one projects z to a low-dimensional subspace determined 
by the matrix of reduced size. In this paper, rather than considering a reduced-size matrix 
to be inverted, we focus on the latter projection procedure. More specifically, we consider 
a linear sketch u = Az ∈ ℝ

Nu of z , where Nu is the dimension of the linear sketch u , and 
where A ∈ ℝ

Nu×N is a sketching matrix, and study the problem of estimating the function 
values at test points not on the basis of z but on the basis of its sketch u . As detailed in the 
following, this approach has advantages in that it provides a novel interpretation of NPAE 
as well as its extensions, and that it allows us to provide a full characterization of the opti-
mal sketching matrix.

In what follows we assume, without loss of generality, that the rows of the sketching 
matrix A are linearly independent, as adding linearly dependent rows does not add any use-
ful information of z to its linear sketch u . The joint probability of {u, z∗} is

The conditional distribution of z∗ given u is calculated as

where

(17)
[
u

z∗

]
= N

([
0

0

]
,

[
A
(
K(X,X) + �2I

)
AT AK(X,X∗)

K(X∗,X)AT K(X∗,X∗) + �2I

])
.

(18)z∗|u ∼ N
(
�A(X

∗),�A(X
∗)
)
,

2  Many stationary kernels including the Matérn kernel satisfy the assumption, but the SE kernel does not.



1678	 Machine Learning (2022) 111:1671–1694

1 3

The matrix to be inverted in the above formulae is of size Nu × Nu , implying that the time 
complexity can be significantly reduced by taking Nu ≪ N . It should be noted that this 
reduction is different from that of sparse GP methods and that in Calandriello et al. (2019), 
where the matrix to be inverted is K(X,Xu)K(Xu,Xu)

−1K(Xu,X) ( Xu ∈ ℝ
Nu×D is the set 

of inducing points) with size N × N and the reduction is granted via Woodbury matrix 
identity.

For sketching matrix A with a general structure, the following proposition holds.

Proposition 1  Assume row independence of the sketching matrix A . The conditional distri-
bution of z∗ given the linear sketch u = Az depends on A only through its kernel kerA.

Proof  Under the row independence, the size of the sketching matrix A is Nu × N with 
Nu = N − dim kerA . For two matrices A,B ∈ ℝ

Nu×N , kerA = kerB holds if and only if A 
and B are row equivalent, that is, there exists an invertible matrix T ∈ ℝ

Nu×Nu satisfying 
B = TA . The conditional distribution of z∗ given a linear sketch u� = Bz with B = TA is the 
same as that given the linear sketch u = Az , as can be confirmed by the fact that replacing 
A with B = TA in Eqs. (19) and (20) with z fixed keeps �A(X

∗) and �A(X
∗) invariant. 	

� ◻

One expects that the conditional mean with sketching given in Eq.  (19) would give a 
good approximation of the conditional mean in the full GPR. Goodness of this approxima-
tion may be measured via the mean squared error E = E[‖�A(X

∗) − �full(X
∗)‖2) between 

the conditional means with and without sketching. It is evaluated as

The next proposition provides a full characterization of the optimal sketching matrix in the 
sense of minimizing E.

Proposition 2  For a given dimension Nu of the linear sketching u = Az ∈ ℝ
Nu of z , the 

optimal sketching matrix A ∈ ℝ
Nu×N in the sense of minimizing the mean squared error 

E is such that the Nu row vectors of A span the subspace spanned by the eigenvectors of 
(K(X,X) + �2I)−1K(X,X∗)K(X∗,X) corresponding to its Nu largest eigenvalues.

Proof  Since the first term on the right-hand side of Eq. (21) is independent of A , the opti-
mal sketching matrix A minimizing the mean squared error E is the matrix that maximizes

(19)�A(X
∗) = K(X∗,X)AT

(
A(K(X,X) + �2I)AT

)−1
u,

(20)
�A(X

∗) = K(X∗,X∗) + �2I

− K(X∗,X)AT
(
A(K(X,X) + �2I)AT

)−1
AK(X,X∗).

(21)
E = Tr

[
K(X∗,X)(K(X,X) + �2I)−1K(X,X∗)

]

− Tr

[
K(X∗,X)AT

(
A(K(X,X) + �2I)AT

)−1

AK(X,X∗)

]
.

J(A) =
1

2
Tr

[
K(X∗,X)AT

(
A(K(X,X) + �2I)AT

)−1

AK(X,X∗)

]
.
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The matrix C = K(X,X) + �2I is symmetric and positive definite, so that it is diagonalized 
by an orthogonal matrix V as C = VT�V , where � is a diagonal matrix with the diagonal 
elements consisting of the eigenvalues of C . Letting C1∕2 = VT�1∕2V and A� = TAC1∕2 , 
where T is an invertible matrix corresponding to the Gram-Schmidt orthogonalization 
applied to the row vectors of AC1∕2 such that A�(A�)T = I holds, one has

The cost function J(A) can then be written as

Therefore, the optimal sketching matrix is such that the Nu row vectors of A� = TAC1∕2 
span the subspace spanned by the eigenvectors of C−1∕2K(X,X∗)K(X∗,X)C−1∕2 corre-
sponding to its Nu largest eigenvalues. This coincides with the statement of the proposi-
tion. 	�  ◻

Let �1 ≥ �2 ≥ … ≥ �N ≥ 0 be the eigenvalues of (K(X,X) + �2I)−1K(X,X∗)K(X∗,X) . 
Then, the mean squared error with the optimal sketching matrix is given by

Since rankK(X,X∗) = rankK(X∗,X) ≤ min{N,NT} , one has �i = 0 for i > min{N,NT} . 
Therefore, in order to make the mean squared error E smaller, it would make no sense 
to take Nu > NT if there is no restriction in the choice of the sketching matrix A , because 
Nu > NT allows us to make E = 0 with the optimal choice of A.

The approach of optimizing the sketching matrix with a general structure, however, 
would require inversion of K(X,X) + �2I and/or solving a (generalized) eigenvalue prob-
lem with a large full-rank matrix, so that its computational complexity should be high.

We next consider block-structured sketching, in which one assumes A to have the fol-
lowing block structure:

where Ai ∈ ℝ
n
(i)
u ×n(i) with 

∑p

i=1
n(i)
u
= Nu and 

∑p

i=1
n(i) = N . This block-structured sketching 

allows us to perform a certain fraction of the calculations in a distributed manner, with p 
computing agents (i.e., experts). The prediction in Eq. (18) exactly coincides with that of 
NPAE when n(i)

u
= 1 and Ai is chosen as

for all experts. In this case, AK(X,X∗) and A
(
K(X,X) + �2I

)
AT in Eq. (17) are replaced 

as kA∗ and KA∗ , respectively. Thanks to this formulation, we can regard the choice of Ai in 
NPAE as a dimensionality reduction from the size n(i) of the sub-dataset Di to n(i)

u
= 1.

ACAT = AVT�VAT = AC1∕2
(
AC1∕2

)T
= T−1A�(A�)TT−T = T−1T−T.

J(A) =
1

2
Tr
[
K(X∗,X)C−1∕2(A�)TA�C−1∕2K(X,X∗)

]

=
1

2
Tr
[
A�C−1∕2K(X,X∗)K(X∗,X)C−1∕2(A�)T

]
.

E =

N∑
i=Nu+1

�i.

A =

⎡⎢⎢⎢⎣

A1 O ⋯ O

O A2 ⋯ O

⋮ ⋮ ⋱ ⋮

O O ⋯ Ap

⎤⎥⎥⎥⎦
,

(22)Ai = K∗i

(
Kii + �2I

)−1
,
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3.2 � NAE‑IP

The choice of the matrix Ai in Eqs.  (19) and (20) is not limited to that of NPAE 
(Eq. (22)). Furthermore, Ai does not even have to be dependent on X∗ . We then propose 
a novel aggregation method on the basis of Eq. (18) and name it Nested Aggregation of 
Experts using Inducing Points (NAE-IP), which is not limited to be “pointwise,” that is, 
it allows simultaneous prediction on multiple test points. In the proposed method, we 
select the following choice for Ai:

where K𝜂i i
= K(X̄i,Xi) ∈ ℝ

n
(i)
u ×n(i) and Ki�i

= KT
�i i

 for a collection X̄i ∈ ℝ
n
(i)
u ×D of n(i)

u
 induc-

ing points. It should be noticed that Eq.  (23) is the same as Eq.  (22) except that the test 
points X∗ in the latter is replaced by the collection X̄i of inducing points. In other words, 
we consider the projection from the size n(i) of the sub-dataset Di to the number n(i)

u
 of 

inducing points.
We show the prediction scheme using Eq. (23) in a way that follows NPAE. Assume 

that each expert Mi has a set of inducing points X̄i in addition to its own sub-dataset 
Di . There is no constraint on the choice of the inducing points but their total number Nu 
is assumed to be less than N for achieving dimensionality reduction. First, each expert 
defines an estimator �̄i on the basis of its observation zi as

Second, the estimators are concatenated to form a random vector �̄ = [�̄T
1
,… , �̄T

p
]T ∈ ℝ

Nu . 
The covariances involving �̄ and z∗ are calculated as

Finally, the predictive mean �̄A and covariance �̄A of NAE-IP are derived as

These formulae correspond to �A(X
∗) and �A(X

∗) in Eq.  (18), respectively, when the 
choice of Eq. (23) for Ai is employed.

(23)Ai = K�i i

(
Kii + �2I

)−1
,

(24)�̄i = K𝜂i i

(
Kii + 𝜎2I

)−1
zi = Aizi ∈ ℝ

n
(i)
u , i = 1,… , p.

(25)k̄A = Cov[�̄, z∗] =

⎡⎢⎢⎣

A1K1∗

⋮

ApKp∗

⎤⎥⎥⎦
∈ ℝ

Nu×NT ,

(26)

K̄A = Cov[�̄, �̄] =
[[
K̄A

]
[i][j]

]
i,j=1,…,p

∈ ℝ
Nu×Nu ,

[
K̄A

]
[i][j]

=

{
K𝜂i i

(
Kii + 𝜎2I

)−1
Ki𝜂i

if i = j,

AiKijA
T
j

if i ≠ j.

(27)�̄A(X
∗) = k̄

T

A
K̄

−1

A
�̄,

(28)�̄A(X
∗) = K(X∗,X∗) − k̄

T

A
K̄

−1

A
k̄A + 𝜎2I.
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The following proposition holds and is used for proving the consistency of NAE-IP 
discussed later.

Proposition 3  �̄A(X
∗) in Eq. (27) is the best linear unbiased estimator of f ∗ on the basis of 

�̄ , where the coefficient matrix � = [�T
1
…�T

p
]T of �̄A(X

∗) = �T�̄ =
∑p

i=1
�T
i
�̄i is given by 

K̄
−1

A
k̄A . The mean squared error v(X∗) = E

�‖f ∗ − �̄A(X
∗)‖2� of the estimator �̄A(X

∗) of f ∗ 
is given by Tr

[
K(X∗,X∗) − k̄

T

A
K̄

−1

A
k̄A

]
.

Proof  Using Eqs. (27) and (28), the mean squared error of an estimator �T�̄ of f ∗ , with �̄ 
defined above, is written as

The value of �̂ minimizing it is found by differentiation: −2k̄T
A
+ 2�̂

T
K̄A = � , which leads 

to �̂ = K̄
−1

A
k̄A and �̄A(X

∗) = �̂
T
�̄ . Then, v(X∗) = Tr

[
K(X∗,X∗) − 2�̂

T
k̄A + �̂

T
K̄A�̂

]
 and 

the statement follows. 	�  ◻

One may perform prediction on the NT test points in a pointwise manner, repeating pre-
dition on a single point NT times, or all at once, predicting for the NT test points simultane-
ously. In view of the computational complexity to be discussed later, we consider a more 
general framework in which the NT test points are partitioned into S subsets X∗

1
,… ,X∗

S
 

with 
⋃S

s=1
X∗
s
= X∗ and Xs ∩ Xs� = � for s ≠ s′ , and the prediction is performed on each of 

these subsets separately. Assume now that the prediction is to be made on the target subset 
X∗
s
 of n(s)t  test points. Then, there are 5 possible options of inducing points X̄i for expert i in 

NAE-IP: 

1.	 X̄i = X∗
s
 : Use the test points themselves as the inducing points. In this case n(i)

u
= n

(s)
t  . 

[Blockwise Test points (BT)]
2.	 X̄i = {x ∈ X∗

e
| X∗

e
⊂ X∗,X∗

e
≠ X∗

s
} : Use a part of test points, X∗

e
 , which is not equal to 

the target subset X∗
s
 . We can set n(i)

u
 arbitrarily while satisfying n(i)

u
< NT . [Blockwise 

Test points and Other Test points (BT+OT), Arbitrary Test points (AT)]
3.	 X̄i = {x ∈ (Xo ∪ X∗

s
) | Xo ∩ X∗ = �,Xo ≠ �} : Use both the target subset of test points, 

X∗
s
 , and non-test points. We can set n(i)

u
 arbitrarily while satisfying n(i)

u
> n

(s)
t  . [Blockwise 

Test points and Non-Test points (BT+NT)]
4.	 X̄i = {x ∈ Xo | Xo ∩ X∗ = �,Xo ≠ �} : Use only non-test points as the inducing points. 

We can set n(i)
u

 arbitrarily. [Non-Test points (NT)]
5.	 X̄i = {x ∈ (Xo ∪ X∗

e
) | Xo ∩ X∗ = �,X∗

e
⊂ X∗,X∗

e
≠ X∗

s
,Xo ≠ �} : Use both a part of test 

points, X∗
e
 , which is not equal to the target subset X∗

s
 , and non-test points. We can set n(i)

u
 

arbitrarily.

Option 1 is an extension of the original NPAE (Rullière et al. 2018) to multiple dimensions. 
As option 2, we can consider two natural choices, one that completely includes test points 
themselves (BT+OT) and another that partially or never includes them (AT). BT+OT and 
BT+NT use higher-dimensional sketching at each expert by incorporating auxiliary points 

E
�‖f ∗ − �T�̄‖2� = Tr

�
K(X∗,X∗) − 2�Tk̄A + �TK̄A�

�
.



1682	 Machine Learning (2022) 111:1671–1694

1 3

as its inducing points. Extension of sketching dimensions employed in these options is 
expected to improve prediction accuracy, at the expense of increased computational com-
plexity. The idea of BT, BT+OT, and BT+NT are known as transduction (Quiñonero-Can-
dela and Rasmussen 2005) that uses the test points of interest for prediction. The transduc-
tion could be beneficial because the test points should have some information about the 
corresponding outputs. A drawback with these options is that the covariance matrix K̄A 
depends on all or some test points in the target subset X∗

s
 , so that one has to construct it, 

as well as to perform matrix inversion, for every target subset. On the other hand, AT and 
NT require the construction of K̄A only once for all the target subsets of test points, as long 
as the inducing points are fixed. It brings about a significant reduction of the complexity. 
Option 5 might not yield a better prediction than BT+OT or BT+NT. Therefore we focus 
on BT, BT+OT, AT, BT+NT, and NT in the rest of this paper and expect an improvement 
of the predictive performance by using the extended dimensions n(i)

u
≥ n

(s)
t .

3.3 � Summary of proposed algorithm

In this subsection, we summarize the procedure of the proposed NAE-IP. Definitions of 
symbols used for NAE-IP are summarized in Table 2. We write the covariance matrix as 
K�(⋅, ⋅) in order to make explicit its dependence on the hyperparameters � of the covariance 
function.

The whole training dataset is divided into p subsets by using some clustering algorithms 
or at random. Each sub-dataset (Xi, zi) is assigned to an expert. To learn hyperparameters, 
we adopt the factorized training process  (Deisenroth and Ng 2015). We first specify an 
option from BT, BT+OT, BT+NT, AT, or NT and construct inducing points {X̄i}

p

i=1
 by 

Algorithm 1. We then perform NAE-IP as shown in Algorithm 2. 

Table 2   Definitions
k(x, x�) Covariance function (e.g., SE function (Eq. (2)) or 

Matérn-(� + 1∕2) function (Eq. (3))
� Set of hyperparameters included in covariance function
�2 Noise variance
� = {�, �2} Set of hyperparameters
K�(Xi,Xj) Covariance matrix whose (m, l)th element is 

k(([Xi]m)
T, ([Xj]l)

T) with hyperparameters �
{Xi, zi} Sub-dataset of ith expert
X̄i

Inducing points of ith expert
n(i)
u

Number of inducing points of ith expert
p Number of experts
X
∗ Test data points

X
∗
s

sth subset of test data points

n
(s)
t

Number of test data points in sth subset

S Number of subsets of test data points
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3.4 � Consistency of NAE‑IP

We study consistency of NAE-IP in the noisy case by extending the proof of consist-
ency of NPAE in Bachoc et al. (2021). The following assumption is necessary only for 
NAE-IP.

Assumption 4  For a test point x∗ ∈ Q , estimation of f (x∗) is done by including the test 
point x∗ as an inducing point of all experts.

For N ∈ ℕ , let pN be the number of experts, which may depend on N, and let 
X1,… ,XpN

 be the sub-datasets, where Xi ( i = 1,… , pN ), being a subset of X , is the 
sub-dataset assigned to expert i. We also require the following assumption on the 
sub-datasets.

Assumption 5  There exists a sequence {jN(x∗)}N∈ℕ of indices jN(x
∗) ∈ {1,… , pN} 

depending on a given test point x∗ such that, for any 𝜌 > 0 , the number of the input points 
in XjN (x

∗) lying within the �-ball B𝜌(x
∗) = {x ∈ Q ∶ ‖x − x∗‖ < 𝜌} centered at x∗ goes to 

infinity as N → ∞.

Under these assumptions, Proposition 6 below establishes consistency of NAE-IP at a 
fixed test point x∗ ∈ Q.

Proposition 6  Let Q be a compact nonempty subset of ℝD . Let f be a Gaussian process on 
Q with mean zero and continuous covariance function k. Let {xNn}1≤n≤N,N∈ℕ be a triangu-
lar array of input points, all of which lie in Q . For N ∈ ℕ , let X = [xN1,… , xNN]

T , and let 
�̄1,… , �̄pN

 be the collection of pN experts’ estimates defined in Eq. (24) on the basis of 
respective sub-datasets (X1, z1),… , (XpN

, zpN ) of training points. Assume that each row of 
X is a row of at least one Xi . For a test point x∗ ∈ Q , assume further that X1,… ,XpN

 sat-
isfy Assumption 5. For such a test point x∗ , under Assumption 4 we have

where 𝜇̄A(x
∗) is as in Eq. (27).

Proof  By Assumption 4, expert jN(x∗) has the test point x∗ as its inducing point, that is, x∗ 
is a component of X̄jN (x

∗) . Let aj(x∗) be the index of the test point x∗ in X̄jN (x
∗).

With these notations, since 𝜇̄A(x
∗) is a linear combination of the elements of �̄ with 

minimal square prediction errors from Proposition  3, its square prediction error is not 
larger than that of any single element of �̄ . We hence have

From Assumption 5, for any fixed 𝜌 > 0 , the number � of input points lying within B�(x
∗) 

goes to infinity as N → ∞ . Let x
j
(1)

N
(x∗),… , x

j
(�)

N
(x∗) and z

j
(1)

N
(x∗),… , z

j
(�)

N
(x∗) be such input points 

and the corresponding observations, respectively. Since 
[�̄jN (x

∗)(x
∗)]aj(x∗) = K∗jN (x

∗)

(
KjN (x

∗)jN (x
∗) + 𝜎2I

)−1
zjN (x∗) is also a linear combination of the 

elements of zjN (x∗) with minimal square prediction errors, we have, similarly as above,

(29)lim
N→∞

E
[(
f (x∗) − 𝜇̄A(x

∗)
)2]

= 0.

(30)E
[(
f (x∗) − 𝜇̄A(x

∗)
)2]

≤ E

[(
f (x∗) − [�̄jN (x

∗)(x
∗)]aj(x∗)

)2
]
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From the independence of the noise process and Cauchy-Schwarz inequality, the right-
hand side can further be bounded as

The second term on the rightmost side of Eq. (32) converges to zero as � → ∞ because �2 is 
finite. From the continuity of k as in Bachoc et al. (2021, Appendix E), one has

The fact that the limit supremum of a nonnegative sequence converges to 0 implies that the 
limit also converges. We therefore obtain the statement of the proposition. 	�  ◻

Note that Proposition  6 proves convergence of 𝜇̄A(x
∗) to f (x∗) in the mean square 

sense, which in turn implies convergence in probability, hence establishing the desired 
consistency.

Options BT, BT+OT, and BT+NT satisfy Assumption  4 from their definitions. 
Options AT and NT can also include the test point as an inducing point of all experts 
under the additional assumptions.

Corollary 7  Under the conditions of Proposition 6, NAE-IP-BT, BT+OT, and BT+NT have 
consistency.

Corollary 8  Under the conditions of Proposition  6 and the assumption that 
n(i)
u
→ NT (i = 1,… , pN) as N → ∞ , NAE-IP-AT has consistency.

Corollary 9  Under the conditions of Proposition  6 and the assumption that 
n(i)
u
→ ∞ (i = 1,… , pN) as N → ∞ , NAE-IP-NT has consistency.

Proof  In NAE-IP-NT, let {x�iu(i) }1≤u(i)≤n(i)u ,1≤i≤p
 be an array of inducing points. For 

each x∗ ∈ Q and for i = 1,… , p , there exists at least one inducing point such that 

(31)E

��
f (x∗) − [�̄jN (x

∗)(x
∗)]aj(x∗)

�2
�
≤ E

⎡
⎢⎢⎣

�
f (x∗) −

1

𝜄

𝜄�
a=1

z
j
(a)

N
(x∗)

�2⎤
⎥⎥⎦
.

(32)

E

⎡⎢⎢⎣

�
f (x∗) −

1

�

��
a=1

z
j
(a)

N
(x∗)

�2⎤
⎥⎥⎦
= E

⎡
⎢⎢⎣

�
f (x∗) −

1

�

��
a=1

�
f
�
x
j
(a)

N
(x∗)

�
+ �

j
(a)

N
(x∗)

��2⎤
⎥⎥⎦

= E

⎡⎢⎢⎣

�
1

�

��
a=1

�
f (x∗) − f

�
x
j
(a)

N
(x∗)

���2⎤⎥⎥⎦
+ E

⎡⎢⎢⎣

�
1

�

��
a=1

�
j
(a)

N
(x∗)

�2⎤⎥⎥⎦
≤

�
max
a=1,…,�

E

��
f (x∗) − f

�
x
j
(a)

N
(x∗)

��2
��

+
�2

�

(33)

lim sup
N→∞

E

⎡
⎢⎢⎣

�
f (x∗) −

1

�

��
a=1

z
j
(a)

N
(x∗)

�2⎤
⎥⎥⎦
≤ sup

�∈B�(x
∗)

E
�
(f (x∗) − f (�))2

�

= sup
�∈B�(x

∗)

�
k(x∗, x∗) + k(�, �) − 2k(x∗, �)

�

�→0
→ 0.
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lim
n
(i)
u →∞ minu(i) ‖x�iu(i) − x∗‖ = 0 and then the estimation of f (x∗) satisfies Assumption 4. 	

� ◻

Assumption 5 holds in typical division of the training data into sub-datasets (Bachoc 
et  al. 2021). When we adopt clustering algorithms such as k-means for the division, the 
condition holds under the assumption mini=1,…,pN

n(i) → ∞ as N → ∞ . In the case where 
the input points are distributed with strictly positive density on Q , it also holds under the 
assumption that the number pN of experts is o(N) as N → ∞.

3.5 � Time complexity

The complexity in time is one of the main interests of approximated Gaussian process 
regression. We show the complexity of the conventional aggregation methods and our 
methods proposed in this paper in Table 3 under a sufficiently large N, where, for simplic-
ity, we consider the case of equal dimensions n(i)

u
= nu and equally divided sub-datasets 

n(i) = N∕p among the experts, and of equally divided partitions n(s)t = NT∕S = nt . GRBCM 
and QBCM require slightly higher complexity than PoE, GPoE, BCM, and RBCM because 
each expert uses the modified sub-dataset D+i . As mentioned in Sect. 2.2.3, the complexity 
of NPAE is higher than these methods but keeps lower than that of full GPR when NT < N . 
Rullière et al. (2018) reported the complexity as O

(
N3

p2

)
+O

(
NTN

2
)
 which is the same as 

NAE-IP-BT, but the frequency for memory access can be reduced by a factor of nt in the 
proposed methods. NAE-IP-BT+OT and NAE-IP-BT+NT require higher complexity than 
the original NPAE by considering nu dimensions. On the other hand, the complexity of 
NAE-IP-AT and NAE-IP-NT can be lower than that of not only the original NPAE but also 
the other methods, depending on the choice of nu.

In the following, we briefly describe a proof sketch of the complexity of NAE-IP. 
The main factors that affect the complexity are calculation of the inverse 

(
Kii + �2I

)−1 in 
Eq. (24), which is to be performed by every expert, and the construction of K̄A in Eq. (26). 
The former takes O((n(i))3) at p experts, thus resulting in O(p(n(i))3) = O(N3∕p2) . Next, 
each block of K̄A includes the product of nu × n(i) matrix and n(i) × n(i) matrix, and there 
are p2 blocks in K̄A , so that these amount to O(p2nu(n

(i))2) = O(nuN
2) computation. The 

construction of K̄A is repeated S = NT∕nt times for BT, BT+OT, and BT+NT, resulting in 
O(NTN

2) for BT and O(NTnuN
2∕nt) for the others, whereas it is performed only once for 

AT and NT, resulting in O(nuN
2).

Table 3   Time complexity of 
aggregation methods under 
sufficiently large N, where �, � , 
and � are constants larger than 1

Method Time complexity

(G)PoE/(R)BCM O
(

N3

p2

)
+O

(
NTN

2

p

)

GRBCM O
(

�N3

p2

)
+O

(
�NTN

2

p

)

QBCM O
(

��N3

p2

)
+O

(
�NTN

2

p

)

(original) NPAE O
(

N3

p2

)
+O

(
NTN

2
)

NAE-IP-BT O
(

N3

p2

)
+O

(
NTN

2
)

NAE-IP-BT+OT/BT+NT O
(

N3

p2

)
+O

(
NTnuN

2

nt

)

NAE-IP-AT/NT O
(

N3

p2

)
+O

(
nuN

2
)
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4 � Numerical experiments

4.1 � Datasets and settings

We evaluated the predictive performance and the computing time of NAE-IP in compari-
son with conventional methods. All the results were obtained by using GPML MATLAB 
Code3 (Rasmussen and Williams 2006). We measured total CPU time on a linux computer 
with two CPUs (Intel Xeon Gold 5222, 4 cores, 3.8 GHz base clock) and 768 GB RAM. 
The datasets used in the numerical experiments are summarized below.

–	 1-D Synthetic data: Synthetic data generated by zn = sinc(xn) + �n, n = 1,… ,N , where 
the training points lie in the interval [−4, 4] uniformly, where NT test points are uni-
formly chosen in [−5, 5] , and where [�1,… , �N]

T ∼ N(�, 0.04I).
–	 8-D KIN8NM dataset4 (Vanschoren et al. 2013): The data related to the forward dynam-

ics of an 8-link robot arm. There are 8,192 samples in total. We randomly split them 
into 7,373 samples for training and 819 samples for testing.

–	 21-D SARCOS dataset5 (Rasmussen and Williams 2006): The data related to the 
inverse dynamics problem of robot arms. There are 44,484 training samples and 4,449 
test samples.

–	 26-D POL dataset6: Pole telecom dataset. There are 10,000 training samples and 5,000 
test samples.

For each experimental condition, we performed 10 trials or more, each consisting of train-
ing and prediction procedures. We have used two performance measures, mean squared 
error (MSE):

and mean standardized log loss (MSLL):

where 𝜇̂(xt,i), 𝜎̂2(xt,i), z(xt,i) are the predictive mean, variance, and true value at the test 
point xt,i , respectively. MSLL is the mean of pointwise negative log losses of the Gaussian 
models with mean 𝜇̂(xt,i) and variance 𝜎̂2(xt,i) given data {z(xt,i)} , and takes into account 
uncertainty of the predictions via the posterior variances. The lower MSE and MSLL 
imply the better prediction.

For the proposed methods, we have assumed equal dimensions n(i)
u
= nu among all 

experts and almost equally divided partitions n(s)t = nt of the test points. Other test points 
for NAE-IP-OT and arbitrary test points for NAE-IP-AT have been chosen randomly from 
the remaining test points and from the entire test points, respectively.

(34)MSE =
1

NT

NT∑
i=1

(𝜇̂(xt,i) − z(xt,i))
2,

(35)MSLL =
1

NT

NT∑
i=1

(
1

2
log (2𝜋𝜎̂2(xt,i)) +

(𝜇̂(xt,i) − z(xt,i))
2

2𝜎̂2(xt,i)

)
,

3  http://​www.​gauss​ianpr​ocess.​org/​gpml/​code/​matlab/​doc/.
4  https://​www.​openml.​org/d/​189.
5  http://​www.​gauss​ianpr​ocess.​org/​gpml/​data/.
6  https://​cims.​nyu.​edu/​~andre​wgw/​patte​rn/.

http://www.gaussianprocess.org/gpml/code/matlab/doc/
https://www.openml.org/d/189
http://www.gaussianprocess.org/gpml/data/
https://cims.nyu.edu/%7eandrewgw/pattern/
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4.2 � Synthetic data

For the synthetic data, the training data were divided into sub-datasets by k-means. The 
SE function (Eq. (2)) was employed as the covariance function of GP. The non-test points 
of each expert in NAE-IP-BT+NT and NAE-IP-NT were generated from the multivari-
ate Gaussian distribution with the same mean and covariance as those of the sub-dataset 
assigned to that expert.

First, we investigate the influence on NAE-IP’s performance of the dimension nu and 
the number of test points nt processed at once. Figures 1, 2 and 3 show the performance 
measures and computing time versus nt when N = 104,NT = 100 , and p = 20 . We set the 
dimension nu to be 1.2 × nt, 1.5 × nt, 2 × nt , and 4 × nt . When nt ≤ 20 , the larger nt and 
nu showed the better predictive performance, and the performance became stable in most 
cases. The higher dimensions required the more computing time, and the computing time 
of BT, BT+OT, and BT+NT decreased as nt increased. On the other hand, the computing 
time of AT and NT was kept small regardless of nt . Note that, depending on the value of p 
or NT , the larger nt (≤ nu in this paper) does not always yield the shorter computing time 
because the complexity required for evaluating the inversion K−1

A∗
 is O(n3

u
p3) and it could be 

higher than that of other factors.
Second, we compare the predictive performance and computing time of NAE-IP with 

those of conventional aggregation methods, PoE, GPoE, BCM, RBCM, GRBCM, QBCM, 
and the original NPAE in 30 trials. We evaluated the cases N = 104, 5 × 104, and 105 
with NT = N × 10−2 and p = N∕500 , and chose (nt, nu) = (50, 75) for NAE-IP except for 
NAE-IP-BT. Fig. 4a–c shows the performance measures versus N. Figure 4d summarizes 
the results of statistical significance testing for a difference between the best-performing 
method and each of the other 11 methods. We first checked the normality of data via the 
one-sample two-sided Kolmogorov-Smirnov test ( P < 0.05 ), and then employed paired 
t-test with Bonferroni multiple testing correction ( P < 0.05∕11 ) for the statistical signifi-
cance testing. The results for the cases of N = 5 × 104 and 105 reveal that the MSE of the 

(a) (b) (c)

(d) (e)

Fig. 1   MSE versus the number n
t
 of test points
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proposed NAE-IP was equal to or better than the other methods and the MSLL was the 
lowest among the methods. This indicates that NAE-IP can obtain not only better predic-
tive means but also smaller predictive variances. Moreover, NAE-IP took less time than 
the original NPAE. This might be ascribed to difference in memory access patterns. Espe-
cially for NAE-IP-BT, NAE-IP-AT, and NAE-IP-NT, the computing time was shorter than 
QBCM. Figure 5 shows examples with the predictive means and 95% confidence intervals 
in the case of N = 104 , nt = 20 , and nu = 30 except for NAE-IP-BT. Note that we omitted 

(a) (b) (c)

(d) (e)

Fig. 2   MSLL versus the number n
t
 of test points

(a) (b) (c)

(d) (e)

Fig. 3   Computing time versus the number n
t
 of test points
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the results of PoE, GPoE, BCM, and RBCM from Figs.  4 and 5 because the difference 
between those and the other methods were significant and those showed the comparable 
computing time with GRBCM.

4.3 � Real data

For SARCOS and POL datasets, the training data were divided respectively by constrained 
k-means (Bradley et  al. 2000), which can avoid generating weak sub-models by setting 
the minimum size of clusters. We set the minimum size to 300 for SARCOS dataset and 
200 for POL dataset. For KIN8NM dataset, the training data were divided by k-means. 
The Matérn-5/2 function (Eq.  (3)) was employed as the covariance function of GP. For 
NAE-IP-BT+NT and NAE-IP-NT, we employed the optimization of each expert’s non-test 
points by Hensman et al. (2013) under fully independent training conditional assumption 

(a) (b)

(c)
(d)

Fig. 4   a–c Performance measures versus the number N of training data. d Significance of differences in 
performance. The methods with ⋆ mean that performance of the methods is the best. The results with † 
mean that differences between each of those and the method with ⋆ are statistically significant (paired t-test 
with Bonferroni multiple testing correction, P < 0.05∕11 ). The results with ◦ mean that the null hypothesis 
is not rejected

Fig. 5   Examples of predictive distribution with the means and 95% confidence intervals in case of 
N = 10

4
, n

t
= 20 . The dimension of NAE-IP except for NAE-IP-BT is n

u
= 1.5 × n

t
= 30 . The outside of 

vertical lines shows extrapolation

▸
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(Snelson and Ghahramani 2005; Quiñonero-Candela and Rasmussen 2005). We used the 
assumption only in the optimization of inducing points, and not in the predictions. The 
mini-batch size and the number of epochs were set to 100 and 10, respectively. It should 
be noted that the computational complexity of the optimization is O((n(i)

u
)3) , so that we can 

ignore the complexity as long as we set n(i)
u

 to be smaller than n(i).
We compare the predictive performance of NAE-IP with that of the conventional 

methods in 10 trials by using the real datasets. We set (p, nt) = (8, 20) for KIN8NM 
dataset, (72,  20) for SARCOS dataset, and (25,  50) for POL dataset. The dimension 
nu for NAE-IP except for NAE-IP-BT was set to nu = 1.5 × nt . Table 4 summarizes the 
performance measures of the aggregation methods and the results of statistical signifi-
cance testing for a difference between the best-performing method and each of the other 
11 methods (Wilcoxon signed rank test with Bonferroni multiple testing correction, 
P < 0.05∕11 ). For KIN8NM and POL, the extension of sketching dimensions in NAE-
IP-BT+NT or NAE-IP-BT+OT improved the performance compared with that of NAE-
IP-BT, and those methods achieved better performance than the other methods. On the 
other hand, for SARCOS, the performance of the conventional methods was the best. 
The fact that the performance of NAE-IP-AT and NAE-IP-NT was worse might reflect 
the lack of consistency of these methods under the setting of the dimension nu.

5 � Conclusion

We have introduced the idea of linear sketching into approximate Gaussian process 
regression and have proposed NAE-IP (Nested Aggregation of Experts using Inducing 
Points) with five options for the choice of the inducing points. The proposed method 

Table 4   Results of the aggregation methods on KIN8NM, SARCOS, and POL datasets

The methods with ⋆ mean that performance of the methods is the best. The unmarked results mean that 
differences between each of those and the method with ⋆ are statistically significant (Wilcoxon signed rank 
test with Bonferroni multiple testing correction, P < 0.05∕11 ). The results with ◦ mean that the null hypoth-
esis is not rejected

KIN8NM SARCOS POL

Method MSE MSLL MSE MSLL MSE MSLL

PoE 0.00799 −0.0635 27.1 10.4 116. 11.2
GPoE 0.00799 −0.933 27.1 3.18 116. 3.64
BCM 0.00731 −0.393 3.82 2.73 52.5 3.55
RBCM 0.00625 −0.301 2.24 2.86 22.1 3.19
GRBCM 0.00595 −1.15 1.51 �.��⋆ 19.5 2.67
QBCM 0.00574 −1.16 1.73 1.73 15.2 2.58
NPAE 0.00540 −1.19 �.��⋆ 1.68 13.0 2.57
NAE-IP-BT �.�����◦ −�.��◦ 1.44 1.68 12.3 2.56
NAE-IP-BT+OT �.�����⋆ −�.��⋆ 1.44 1.68 ��.�◦ �.��◦

NAE-IP-BT+NT �.�����◦ −1.20 1.44 1.68 ��.�⋆ �.��⋆

NAE-IP-AT 0.0178 −0.650 34.4 2.90 54.0 3.27
NAE-IP-NT 0.0141 −0.756 30.2 2.71 26.7 2.85
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inherits consistency under the conditions on the number of inducing points depending 
on the option. We conducted numerical experiments with synthetic and real datasets. 
The experimental results show that NAE-IP with the options that include test points as 
the inducing points achieves a lowest prediction error than the conventional methods. 
Moreover, the computing time of NAE-IP has been shorter than that of the approxima-
tion methods: QBCM and the original NPAE. Future work includes the optimization 
of a block-structured sketching matrix that projects observations to a low-dimensional 
subspace.
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