
Vol.:(0123456789)

Machine Learning (2022) 111:1551–1595
https://doi.org/10.1007/s10994-021-06109-0

1 3

A stochastic approach to handle resource constraints
as knapsack problems in ensemble pruning

András Hajdu1 · György Terdik1 · Attila Tiba1 · Henrietta Tomán1

Received: 22 November 2019 / Revised: 18 September 2021 / Accepted: 20 October 2021 /
Published online: 18 November 2021
© The Author(s) 2021

Abstract
Ensemble-based methods are highly popular approaches that increase the accuracy of a
decision by aggregating the opinions of individual voters. The common point is to maxi-
mize accuracy; however, a natural limitation occurs if incremental costs are also assigned
to the individual voters. Consequently, we investigate creating ensembles under an addi-
tional constraint on the total cost of the members. This task can be formulated as a knap-
sack problem, where the energy is the ensemble accuracy formed by some aggregation
rules. However, the generally applied aggregation rules lead to a nonseparable energy
function, which takes the common solution tools—such as dynamic programming—out
of action. We introduce a novel stochastic approach that considers the energy as the joint
probability function of the member accuracies. This type of knowledge can be efficiently
incorporated in a stochastic search process as a stopping rule, since we have the informa-
tion on the expected accuracy or, alternatively, the probability of finding more accurate
ensembles. Experimental analyses of the created ensembles of pattern classifiers and object
detectors confirm the efficiency of our approach over other pruning ones. Moreover, we
propose a novel stochastic search method that better fits the energy, which can be incorpo-
rated in other stochastic strategies as well.

Keywords Ensemble creation · Majority voting · Knapsack problems · Stochastic selection

Editor: Joao Gama.

 * Attila Tiba
 tiba.attila@inf.unideb.hu

 András Hajdu
 hajdu.andras@inf.unideb.hu

 György Terdik
 terdik.gyorgy@inf.unideb.hu

 Henrietta Tomán
 toman.henrietta@inf.unideb.hu

1 Faculty of Informatics, University of Debrecen, POB 400, Debrecen 4002, Hungary

http://orcid.org/0000-0003-3383-0134
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06109-0&domain=pdf

1552 Machine Learning (2022) 111:1551–1595

1 3

1 Introduction

Ensemble-based systems are rather popular in several application fields and are employed
to increase the decision accuracy of individual approaches. We also encounter such
approaches for pattern recognition purposes (Lam and Suen 1997), using models based
on, e.g., neural networks (Cho and Kim 1995; Hansen and Salamon 1990), decision trees
(Kong and Dietterich 1995) or other principles (Ho et al. 1994; Huang and Suen 1995;
Xu et al. 1992). In the most recent results, we can recognize this approach in the design
of state-of-the-art convolutional neural networks (such as GoogLeNet, incorporating the
Inception module Szegedy et al. 2015) or the direct combination of them (Harangi et al.
2018). In our practice, we also routinely consider ensemble-based approaches to aggregate
the outputs of pattern classifiers (Antal and Hajdu 2014) or detector algorithms (Antal and
Hajdu 2012), usually by some majority voting-based rule. During these efforts, we have
also faced perhaps the most negative property of creating ensembles, that is, the increasing
demand on resources. This type of cost may occur as the execution/training time and the
working hours needed to create the ensemble components, etc., according to the character-
istics of the given problem. Thus, in addition to the primary aim of the composition of the
most accurate ensemble, a natural constraint emerges as a cost limitation for that endeavor.

The current literature mostly refers to the selection of an efficient ensemble from a pool
of possible members as ensemble pruning (Zhou 2012). Even if no resource constraints
are applied, a subset of possible ensemble members may lead to better performance than
selecting all the members. Moreover, the best strategy is to compose an ensemble having
such good performing members which also have diverse behavior. To realize this approach,
ensemble pruning methods can be categorized in the following three main groups: order-
ing-, clustering-, and optimization-based pruning. Ordering-based pruning ranks the indi-
vidual members according to some criterion, and the most highly ranked ones are put into
the final ensemble. Clustering-based pruning aims to identify representative prototype
individual members to compose the ensemble, while the optimization-based approach sets
up an objective function and forms a subset of members by minimizing or maximizing
it. Beyond the clustering-based approaches, but still as a stochastic one we can mention
(Hernández-Lobato et al. 2009), as an instance-based pruning method, where the mem-
bers are selected for each instance separately. Double-pruning can also be executed based
on Hernández-Lobato et al. (2009) as proposed in Soto et al. (2010), which approach has
similar motivation to ensemble distilling (a.k.a. compression) to reduce the size of the
ensemble/learning model (Bucilu et al. 2006; Hinton et al. 2015). There are efforts to com-
plement the basic ensemble pruning models to consider possible resource constraints like
training/test execution times or memory/storage space (Bucilu et al. 2006; Hinton et al.
2015) as well. To reach this aim a popular approach is to apply multi-objective evolution-
ary algorithms, like NSGA-II (Deb et al. 2002). NSGA-II is an elitist algorithm that pro-
vides fast nondominated sorting and considers density estimation and crowded-comparison
to maintain diversity. These positive properties can be exploited in ensemble pruning like
in Mousavi and Eftekhari (2015). As the best fits to our single-objective setup we have
implemented a general purpose genetic algorithm from Goldberg (1989) (chapters 2–3),
and a boosting-based pruning one from Martinez-Munoz and Suarez (2007). In our com-
parative analyses we will refer to them as Genetic and Pruning, respectively.

In this work, we analyze a single-constraint task on the resources to compose the most
accurate ensemble regarding the energy formed by majority voting as the aggregation rule
like in Hernández-Lobato et al. (2009). The constraint we consider corresponds to the

1553Machine Learning (2022) 111:1551–1595

1 3

training time; however, any other type of resources could be considered. We introduce a
novel, theoretically well-founded stochastic approach that considers the energy as the joint
probability function of the member accuracies. As our main contribution, we show that
this type of knowledge can be efficiently incorporated in any stochastic search process as
a stopping rule, since we have the information on the expected accuracy or, alternatively,
the probability of finding more accurate ensembles. Our empirical analyses also show that
including the stochastic estimation as a stopping rule saves a large amount of search time to
build accurate ensembles.

We formulate the resource constraint as a knapsack problem, which provides the oppor-
tunity of a precise constraint prescription instead of a simple good price/value expecta-
tion considered e.g. in Bucilu et al. (2006), Hernández-Lobato et al. (2009), Hinton et al.
(2015) to have small, but relatively accurate ensembles. Basically, we follow an ordering-
based approach combined with stochastic sampling to compose the ensembles; however,
additionally as a novel contribution we suggest a new heuristics for that. Namely, besides
its individual accuracy and cost, we calculate such a usefulness value for each possible
member during the selection process that reflects its direct behavior according to the objec-
tive function, which is based on the majority voting rule in our case. As we will see, our
novel stochastic search method is proven to be very competitive with simulated annealing
(SA) (Du and Swamy 2016), and the pruning methods (Goldberg 1989; Martinez-Munoz
and Suarez 2007). Also, the proposed heuristic can be successfully inserted into these
general stochastic search strategies. Our approach was first proposed in our former work
(Hajdu et al. 2016) with limited empirical evaluations; however, only heuristic results were
achieved there without being able to take advantage of the theoretical model presented
here.

The rest of the paper is organized as follows. In Sect. 2, we introduce the basic concepts
and notation to formulate our constrained enesemble pruning task as a knapsack problem,
where majority voting is applied for the aggregation of member opinions. Section 3 ana-
lyzes the maximum accuracy of the common deterministic ensemble creation strategies in
the case of limited total cost. Though the cost may relate to any resource demand, in our
scenarios it describes the training times of the classifiers that are considered as possible
ensemble members. Existing stochastic approaches are described in Sect. 4 with some pre-
liminary simulation results. Moreover, we introduce a novel stochastic search algorithm
that determines the expected usefulness of possible members in a way that adapts to the
characteristics of the energy function better than other stochastic search methods, e.g., SA.
The stochastic estimation of the ensemble energy from the individual accuracies of the
components is presented in Sect. 5.1 Our experimental analyses are enclosed in Sect. 6,
including the investigation of the possible creation of ensembles from participating meth-
ods of Kaggle challenges and binary classification problems in UCI databases.2 We also
present how the proposed model is expected to be generalized to multiclass classification
tasks with a demonstrative example on our original motivating object detection problem.
Finally, in Sect. 7, we discuss generalization possibilities and several issues regarding our
approach that can be tuned towards special application fields.

1 Our code is available at https:// codeo cean. com/ capsu le/ 39443 36.
2 Our data is available at https:// ieee- datap ort. org/ docum ents/ binary- class ifiers- outpu ts- ensem ble- creat ion.

https://codeocean.com/capsule/3944336
https://ieee-dataport.org/documents/binary-classifiers-outputs-ensemble-creation

1554 Machine Learning (2022) 111:1551–1595

1 3

2 Basic concepts and notation

Let us consider a pool D = {D1,… ,Dn} containing possible ensemble members, where
each member Di (i = 1,… , n) is characterized by a pair (pi, ti) describing its individual
accuracy pi ∈ [0, 1] and cost ti ∈ ℝ>0 . The individual accuracies are supposed to be known,
e.g., by determining them on some test data and by an appropriate performance metric.
In this work, we will focus on the majority voting-based aggregation principle, where the
possible ensemble members Di (i = 1,… , n) are classifiers (see Kuncheva 2004). In Hajdu
et al. (2013), we have dealt with the classic case in which the individual classifiers make
true/false (binary) decisions. In this model, a classifier Di with accuracy pi is considered
as a Bernoulli distributed random variable �i , that is, P(�i = 1) = pi , P(�i = 0) = 1 − pi
(i = 1,… , n) , where �i = 1 means the correct classification by Di . In this case, we obtain
that the accuracy of an ensemble D� = {Di1

,… ,Di
�
} ⊆ D of |D�| = � members can be

calculated as

where L = {i1,… , i
�
} ⊆ N = {1,… , n} is the index set of D′ . As an important practical

issue, notice that (1) is valid only for independent members to calculate the ensemble accu-
racy. The dependency of the members can be discovered further by, e.g., using different
kinds of diversity measures (Hajdu et al. 2013).

Regarding ensemble-based systems, the standard task is to devise the most accurate
ensemble from D for the given energy function. In this paper, we add a natural constraint
of a bounded total cost to this optimization problem. That is, we have to maximize (1)
under the cost constraint

where the total allowed cost T ∈ ℝ>0 is a predefined constant. Consequently, we must focus
on those subsets L ⊆ N with cardinalities |L| = � ∈ {1,… , n} for which (2) is fulfilled.
Let L0 denote that index set of cardinality ||L0

|| = �0 , where the global maximum ensemble
accuracy is reached. The following lemma states that one can reach L0 calculating q

�(L)
for odd values of � only, which results in more efficient computation, since not all the pos-
sible subsets should be checked.

Lemma 1 If

then �0 is odd.

Proof See Appendix 1 for the proof. ◻

The optimization task defined by the energy function (1) and the constraint (2) can be
interpreted as a typical knapsack problem (Martello and Toth 1990). Such problems are
known to be NP-hard; however, if the energy function is linear and/or separable for the pi

(1)q
�
(L) =

��
k=⌊ �

2
⌋+1

⎛⎜⎜⎜⎝

�
I⊆L
�I�=k

�
i∈I

pi

�
j∈L⧵I

�
1 − pj

�⎞⎟⎟⎟⎠
,

(2)
∑
i∈L

ti ≤ T ,

(3)max
(
q
�(L) | L ⊆ N

)
= q

�0

(
L0

)
,

1555Machine Learning (2022) 111:1551–1595

1 3

-s, then a very efficient algorithmic solution can be given based on dynamic programming.
However, if the energy lacks these properties, the currently available theoretical foundation
is rather poor. As some specific examples, we were able to locate investigations of an expo-
nential-type energy function (Klastorin 1990), and a remarkably restricted family of non-
linear and nonseparable ones (Sharkey et al. 2011). In Klastorin (1990), an approach based
on calculus was made by representing the energy function by its Taylor series. Unfortu-
nately, it has been revealed that dynamic programming can be applied efficiently only to
at most the quadratic member of the series; thus, the remaining higher-order members had
to be omitted. This compulsion suggests a large error term if this technique is attempted to
be considered generally. Thus, to the best of our knowledge, there is a lack of theoretical
instructions/general recommendations to solve knapsack problems in the case of complex
energy functions. As our energy (1) is also nonlinear and nonseparable, we were highly
motivated to develop a well-founded framework for efficient ensemble creation.

As our main contribution, in this paper, we propose a novel stochastic technique to solve
knapsack problems with complex energy functions. Though the model is worked out in
detail for (1) settled on the majority voting rule, it can be applied also to other energy
functions. Our approach is based on the stochastic properties of the energy q� in (1), pro-
viding that we have some preliminary knowledge on which distribution its parameters pi
(i = 1,… , n) are coming from. We put a special focus on beta distributions that fit practi-
cal problems very well. In other words, we estimate the distribution of q

�
 in terms of its

mean and variance. This information can be efficiently incorporated as a stopping rule in
stochastic search algorithms, as we demonstrate it e.g. for SA. The main idea here is to be
able to stop building ensembles when we can expect that better ones can be found by low
probability only.

As a common empirical approach to find the optimal ensemble, the usefulness pi∕ti
(i = 1,… , n) of the possible members are calculated. Then, as deterministic greedy meth-
ods, the ensemble is composed of forward/backward selection strategies (see, e.g., Kurz
et al. 2013). Since the deterministic methods are less efficient—e.g., the greedy one is
proven to have 50% accuracy for the simplest knapsack energy

∑n

i=1
pi—popular stochastic

search algorithms are considered instead, such as SA. As a further contribution, we intro-
duce a novel stochastic search strategy, where the usefulness of the components is defined
in a slightly more complex way to better fit the investigated energy; the stopping rule can
be successfully applied in this approach as well. For the sake of completeness, we will start
our theoretical investigation regarding the accuracy of the existing deterministic methods
when a cost limitation is also applied.

3 Deterministic selection strategies

In this section, we address deterministic selection strategies to build an ensemble that has
maximal system accuracy q

�0
(L0) , applying the cost limitation. However, since we have 2n

different subsets of elements of a pool of cardinality n, this selection task is known to be
NP-hard. To overcome this issue, several selection approaches have been proposed. The
common point of these strategies is that in general, they do not assume any knowledge on
the proper determination of the classification performance q

�
(L) ; rather, they require only

the ability to evaluate it. Moreover, to the best of our knowledge, strategies that consider
the capability of individual feature accuracies to be modeled by drawing them from a prob-
ability distribution, as in our approach, have not yet been proposed.

1556 Machine Learning (2022) 111:1551–1595

1 3

Based on the above discussion, it seems to be natural to ascertain how the widely applied
selection strategies work in our setup. The main difference in our case, in contrast to the gen-
eral recommendations, is that now we can properly formulate the performance evaluation
using the exact functional knowledge of q

�
 . That is, we can characterize the behavior of the

strategy with a strict analysis instead of the empirical tests generally applied.
We start our investigation with greedy selection approaches by discussing them via the for-

ward selection strategy. Here, the most accurate item is selected and put in a subset S first.
Then, from the remaining n − 1 items, the component that maximizes the classification accu-
racy of the extended ensemble is moved to S. This procedure is then iteratively repeated;
however, if the performance cannot be increased by adding a new component, then S is not
extended and the selection stops. The first issue we address is to determine the largest possible
error this strategy can lead to in our scenario.

Proposition 1 The simple greedy forward selection strategy to build an ensemble that
applies the majority voting-based rule has a maximum error rate 1/2.

Proof For the proof, see Appendix 2. ◻

As seen from the proof, the error rate of 1/2 holds for the forward strategy independent of
the time constraint. As a quantitative example, let p1 = 0.510 and p2 = p3 = p4 = p5 = 0.505 .
With this setup, where Ik = {1,… , k} , we have q1(I1) = p1 = 0.5100 , q3(I3) = 0.5100 , and
q5(I5) = 0.5112 , which shows that the greedy forward selection strategy is stuck at the single
element ensemble, though a more accurate larger one could be found.

In addition to forward selection, its inverse variant, the backward selection strategy, is also
popular. It puts all the components into an ensemble first, and in every selection step, leaves
the worst one out to gain maximum ensemble accuracy. As a major difference from the for-
ward strategy, backward selection is efficient in our case if the time constraint is irrelevant.
Namely, either the removal of the worst items will lead to an increase in q

�
 defined in (1), or

the selection can be stopped without the risk of missing a more accurate ensemble.
However, if the time constraint applies, the same maximum error rate can be proved.

Proposition 2 The simple greedy backward selection strategy considering the individual
accuracy values to build an ensemble that applies the majority voting-based rule has a
maximum error rate of 1/2.

Proof Proposition 2 is proved in Appendix 3. ◻

Propositions 1 and 2 have shown the worst-case scenarios for the forward and back-
ward selection strategies. However, the greedy approach was applied only regarding
the accuracy values of the members, and their execution times were omitted. To con-
sider both the accuracies and execution times of the algorithms in the ensemble pool
D = {D1 = (p1, t1),D2 = (p2, t2),… ,Dn = (pn, tn)} , we consider their usefulness in the
selection strategies, defined as

which is a generally used definition to show the price-to-value ratio of an object. The com-
position of ensembles based on similar usefulness measures has also been efficient, e.g., in
sensor networks (Kurz et al. 2013).

(4)ui = pi∕ti, i = 1,… , n,

1557Machine Learning (2022) 111:1551–1595

1 3

After the introduction of the usefulness (4), the first natural question to clarify is to
investigate whether the validity of the error rate of the deterministic greedy forward and
backward selection strategies operating with the usefulness measure holds. Through the
following two statements, we will see that the 1/2 error rates remain valid for both greedy
selection approaches.

Corollary 1 Proposition 1 remains valid when the forward feature selection strategy oper-
ates on the usefulness. Namely, as a worst-case scenario, let t1 = t2 = ⋯ = tn = T∕n be
the execution times in the example of the proof of Proposition 1 while keeping the same
p1, p2,… , pn values. Then, the selection strategy operates completely in the same way on
the ui = pi∕ti values (i = 1,… , n) as on the pi ones, since the ti values are equal. That is,
the error rate is 1/2 in the same way.

Proposition 3 The simple greedy backward selection strategy considering the individual
usefulness (4) to build an ensemble that applies the majority voting-based rule has a maxi-
mum error rate of 1/2.

Proof The proof is provided in Appendix 4. ◻

We note the analogy between forward and backward selection strategies and approxima-
tion algorithms, which find approximate solutions to optimization problems, in particular
NP-hard ones. With this respect the most common expectation is to have provable guaran-
tees on the distance of the returned solution to the optimal one (Williamson and Shmoys
2011). With Propositions 1, 2, 3 and Corollary 1 we exactly address this expectation by
giving the worst-case scenarios for these selection strategies. A wider theoretical charac-
terization (regarding e.g. the expected error) would need exhaustive knowledge about the
specific member accuracies and cost values. However, in the later chapters we will present
many empirical results for these greedy approaches in several scenarios. These results also
suggest that a deeper error analysis is expected to be interesting from mainly a theoretical
point of view, because other existing and the proposed approaches show remarkably better
performance.

The main problem with the above deterministic procedures is that they leave no oppor-
tunity to find better performing ensembles. Thus, we move on now to the more dynamic
stochastic strategies. Keep in mind that since in our model the distribution of q will be
estimated, in any of the selection strategies we can exploit this knowledge as a stopping
rule. Namely, even for the deterministic approaches, we can check whether the accuracy of
the extracted ensemble is already attractive or whether we should continue and search for a
better one.

4 Stochastic search algorithms

As the deterministic selection strategies may have poor performance, we investigate sto-
chastic algorithms to address our optimization problem. Such randomized algorithms,
where randomization only affects the order of the internal executions, produce the same
result on a given input, which can cause the same problem we have found for the determin-
istic ones. In case of Monte Carlo (MC) algorithms (Tempo and Ishii 2007), the result of
the simulations might change, but they produce the correct result with a certain probability.

1558 Machine Learning (2022) 111:1551–1595

1 3

The accuracy of the MC approach depends on the number of simulations N; the larger N is,
the more accurate the algorithm will be. It is important to know how many simulations are
required to achieve the desired accuracy. The error of the estimate of the probability failure
is found to be u1−�∕2

√
(1 − Pf)∕NPf , where u1−�∕2 is the 1 − �∕2 quantile of the standard

normal distribution, and Pf is the true value of the probability of failure.
Simulated annealing (SA), as a variant of the Metropolis algorithm, is composed of

two main stochastic processes: generation and acceptance of solutions. SA is a general-
purpose, serial search algorithm, whose solutions are close to the global extremum for an
energy function within a polynomial upper bound for the computational time and are inde-
pendent of the initial conditions.

To compare the MC method with SA for solving a knapsack problem, we applied simu-
lations for that scenario in which the deterministic approaches failed to find the most accu-
rate ensemble, that is, when D1 = (1 − �,T) , and D2 = D3 = … = Dn = (1∕2 + �, T∕n)
with 0 < 𝛽 < 1∕2, 0 < 𝜀 < 1∕2 . For this setup, we obtained that the precision of the MC
method was only 11% , while SA found the most accurate ensemble in 96% of the simula-
tions. Beyond SA, other pruning methods cited in the introduction are naturally based on
stochastic methods.

Now, we introduce a novel search strategy that takes better advantage of our stochastic
approach than, e.g., SA. This strategy builds ensembles using a randomized search tech-
nique and introduces a concept of usefulness for member selection, which better adapts to
the ensemble energy than the classic one (4). Namely, in our proposed approach, the selec-
tion of the items for the ensemble is based on the efficiency of the members determined in
the following way: for the i-th item with accuracy pi and execution time ti , the system accu-
racy q(pi, ti) of the ensemble containing the maximal number of i-th items

characterizes the efficiency (usefulness) of the i-th item, instead of (4).
A greedy algorithm for an optimization problem always chooses the item that seems to

be the most useful at that moment. In our selection method, a discrete random variable
depending on the efficiency values of the remaining items is applied in each step to deter-
mine the probability of choosing an item from the remaining set to add to the ensemble.
Namely, in the k-th selection step, if the items i1,… , ik−1 are already in the ensemble, then
the efficiency values q(k−1)(pi, ti) of the remaining items are updated to the maximum time
of Tk = T −

∑k−1

j=1
tij , where q(0)(pi, ti) = q(pi, ti) and T0 = T .

The i-th item is selected as the next member of the ensemble with the following
probability:

where i, j ∈ N�{i1,… , ik−1} . This discrete random variable reflects that the more efficient
the item is, the more probable it is to be selected for the ensemble in the next step.

As a new contribution, we have incorporated these probabilities based on the newly intro-
duced member efficiencies first to SA characterizing the acceptance probabilities by them.
Same considerations apply to any other stochastic search methods. Besides SA and the genetic

(5)q(pi, ti) =

⌊T∕ti⌋�
k=⌊T∕ti⌋∕2+1

� ⌊T∕ti⌋
k

�
pi

k(1 − pi)
⌊T∕ti⌋−k

(6)
(Pens)

(k)

i
=

q(k−1)(pi, ti)∑
j

q(k−1)(pj, tj)
,

1559Machine Learning (2022) 111:1551–1595

1 3

algorithm (Goldberg 1989), these novel stochastic methods (denoted by SA+ and Genetic+)
will be compared with our proposed method in the experimental analyses.

If ti > Tk for all i ∈ N�{i1,… , ik−1} , then our stochastic process ends for the given search
step since there is not enough remaining time for any items. Then, we restart the process to
extract another ensemble in the next search step. As a formal description of our proposed
stochastic search method SHErLoCk, see Algorithm 1; notice that we evaluate the accuracy
of ensembles with odd cardinalities only as in Lemma 1. A very important issue regarding
both our approach and other search methods (e.g. SA) is the exact definition of the number of
search steps, that is, a meaningful STOP parameter—and also an escaping MAXSTEP one—
for Algorithm 1. In our preliminary work (Hajdu et al. 2016), we have already tested the effi-
ciency of our approach; however, we tested it empirically with an ad hoc stopping rule. Now,
in the forthcoming sections, we present how the proper derivation of the stopping parameters
(STOP and MAXSTEP) can be derived.

1560 Machine Learning (2022) 111:1551–1595

1 3

5 Stochastic estimation of ensemble energy

We need to examine and characterize the behavior of q
�
 in (1) to exploit these results to

find and apply the proper stopping criteria in stochastic search methods.
Let p ∈ [0, 1] be a random variable with mean �p and variance �2

p
 , where pi

(i = 1, 2,… , n) are independent and identically distributed according to p, i.e., a sample.
Furthermore, let �q

�
 and �2

q
�

 denote the mean and variance of the ensemble accuracy q
�
 ,

respectively. In this case, it is seen that �p ≤ 1 and a simple calculation shows that

The mean �q
�
 is monotonic in � , except for the case �p = 1∕2 . Moreover, we get 0, 1/2 or 1

for the limit of �q
�
 if � → ∞ in case 𝜇p < 1∕2 , �p = 1∕2 , 𝜇p > 1∕2 , respectively. As a

demonstrative example, see Fig. 1 regarding the three possible accuracy limits (0, 1/2 or 1)
described in (43) with respective Beta(�p, �p) distributions for p. The parameters of the beta
distribution (�p, �p) can be chosen arbitrarily to fulfil the condition 𝜇p < 1∕2 , �p = 1∕2 ,
𝜇p > 1∕2 , respectively. Furthermore, the variance �2

q
�

 can be expressed by the mean �p and
variance �2

p
 , where its limit lim

�→∞ �2
q
�

= 0 , if �p ≠ 1∕2 and sT = �2
p
+ �2

p
≠ 1∕2 and 1,

otherwise. For the exact formula for �2
q
�

 and for the proof of these statements, see Lemma 2
in Appendix 5. Notice that the condition � → ∞ naturally assumes the same for the pool
size with n → ∞.

Now, to devise a stochastic model, we start with checking the possible distributions
of the member accuracy values pi to estimate the ensemble accuracy. Then, we extend
our model regarding this estimation by incorporating time information as well. Notice
that the estimation of the ensemble accuracy will be exploited to derive a stopping rule
for the ensemble selection process.

(7)�q
�
=

��
k=⌊ �

2
⌋+1

�
�

k

�
�k
p

�
1 − �p

��−k
.

Fig. 1 Different sample Beta(�p, �p) distributions (a) and the convergence of ensemble accuracies for mem-
ber accuracies coming from them (b)

1561Machine Learning (2022) 111:1551–1595

1 3

5.1 Estimation of the distribution of member accuracies

Among the various possibilities, we have found that the beta distribution is a very good
choice to analyze the distribution of member accuracies. The main reason is that beta con-
centrates on the interval [0, 1], that is, it can exactly capture the domain for the smallest/
largest accuracy. Moreover, the beta distribution is able to provide density functions of
various shapes that often appear in practice. Thus, to start the formal description, let the
variate p be distributed as Beta

(
�p, �p

)
 with density

where B
(
�p, �p

)
= �

(
�p
)
�
(
�p
)
∕�

(
�p + �p

)
 . In this case,

and �p ∈ (1∕2, 1) if and only if 𝛼p > 𝛽p . If �p = �p , then �p = 1∕2 . In the case of 𝛼p > 𝛽p ,
the mode is also greater than 1/2.

The mode is infinite if 𝛽p < 1 ; therefore, we exclude this situation and we assume from
now on that

The variance of p is

Since �q
�
 , and �2

q
�

 depend on �p , and �2
p
 according to (7) and (44) respectively, one can cal-

culate both of them explicitly. The convergence of �q
�
 to 1 is fast if �p is close to 1, i.e.,

𝛽p ≪ 𝛼p ; for instance, if �p = 17 , �p = 5 . Simulations show that the speed of the conver-
gence of �2

q
�

 is exponential; hence, the usual square-root law does not provide the Central
Limit Theorem for q

�
.

In practice, we perform a beta fit on the pi ’s (i = 1,… , n) . If a fit is found at least at the
confidence level 0.95, we take the parameters �p, �p provided by the fit and calculate �p, �

2
p

by (9) and (11), respectively. If the beta fit is rejected, then �p and �2
p
 are estimated from

the pi ’s as the empirical mean and variance:

To simplify our further notation we do not indicate whether the mean and variance have
been estimated from the fitted distribution or empirically.

5.2 Adding time constraints to the model

Now, we turn to the case when together with the item accuracy pi , we consider its running
time ti as well. The common distribution of a random time is exponential, so let � be an

(8)b
(
x;�p, �p

)
=

x�p−1(1 − x)�p−1

B
(
�p, �p

) ,

(9)�p = �p∕
(
�p + �p

)
,

(10)1 < 𝛽p < 𝛼p.

(11)�2
p
=

�p�p(
�p + �p

)2(
�p + �p + 1

) .

(12)�p =
1

n

n∑
i=1

pi, �2

p
=

1

n − 1

n∑
i=1

(pi − �p)
2
.

1562 Machine Learning (2022) 111:1551–1595

1 3

exponential distribution with density � exp (−�t) . If p is distributed as Beta
(
�p, �p

)
 , then with

setting � = 1 − p for a given p, the distribution of � becomes Beta
(
�p, �p

)
.

This is a reasonable behavior of time because it is quite natural to assume that more accu-
rate components require more resources such as a larger amount of computation times. On
the other hand, the selection procedure becomes trivial, if, e.g., the time and accuracy are
inversely proportional, since then the most accurate member is also the fastest one; therefore,
it should be selected first by following this strategy for the remaining members until reaching
the time limit. For some other possible simple accuracy–time relations, see our preliminary
work (Hajdu et al. 2016).

For a given time constraint T, consider the random number �T such that

We provide an estimation for the expected size of the composed ensemble �̂T =
⌈
T

�p−1

�p+�p−1

⌉

in Lemma 3 (see Appendix 6) and we incorporate this information into our stochastic char-
acterization of q

�
 . Till this point, we have assumed that p is distributed as beta to calculate

�̂T by Lemma 3. If this is not the case, we consider the following simple and obvious calcu-
lation for the approximate number of � under the time constraint T:

another alternative to derive �̂T in this case is discussed in Sect. 7. In either way it is
derived, the value �̂T will be used in the stopping rule in our ensemble selection procedure;
the proper details will be given next.

5.3 Stopping rule for ensemble selection

The procedure of finding
(
L0,�0

)
 is a selection task that is NP-hard. We propose an algorithm

such that we stop the selection when the value of q
�(L) is sufficiently close to the possible

maximum, which is not known. To be able to do so, we must give a proper stochastic charac-
terization of q

�
 by also settling on the calculation of �q

�
 and �2

q
�

 via Lemma 2. First, notice that
the values of q

�
are in (0, 1) ; indeed, it is positive and

For the case when pi ’s are beta distributed, the product of independent beta variates can
be close to beta again (see Tang and Gupta 1984). We have also performed MC simula-
tion and found that beta distributions fit q

�
 particularly well, compared to, e.g., the gamma,

normal, Weibull, and extreme-valued distributions. Specifically, though the beta behavior
of q

�
 was naturally more stable for beta distributed pi’s, the usual behavior of q

�
 was also

the same for non-beta pi’s.

(13)
�T∑
j=0

�j ≤ T .

(14)�̂T =

⌈
nT

/ n∑
i=1

ti

⌉
=
⌈
T∕t

⌉
;

(15)
q
�
=

��
k=⌊ �

2
⌋+1

�
I ⊆ N

�I� = k

�
i∈I

pi

�
j∈N�I

�
1 − pj

�
<
�
j

�
pj +

�
1 − pj

��
= 1.

1563Machine Learning (2022) 111:1551–1595

1 3

Thus, to provide a description of the stochastic behavior of q, we consider the fol-
lowing strategy. With a primary assumption on the Beta(�q, �q) distribution of q

�
 , we

calculate �q and �q as

If time information is provided for the pool items, we calculate �̂T by Lemma 3, and as a
simpler notation, we will write �̂ from now on. If time information is not available, we will
set �̂ = n.

Next, we decide whether q
�
 should be considered as beta with requiring 1 < 𝛽q < 𝛼q

to be fulfilled to have a mode that is larger than 1/2 and finite. If this condition does not
hold, we reject the beta behavior of q

�
 , and based on simulations, we characterize it as a

normal distribution and stop the search if

where �0.9 is the 0.9 quantile of the standard normal distribution. Otherwise, when q
�
 is

considered beta, we calculate the mode � of Beta(�q , �q) for q
�
 as

and the Pearson’s first skewness coefficient as

Then, we use Table 1 to select the appropriate probability value �q
�̂

 ; the entries are deter-
mined by simulation in the case of 2 ≤ 𝛽q < 𝛼q .

We stop the selection when the ensemble accuracy reaches the value of the inverse
cumulative distribution F−1

�q ,�q
(�q

�̂

) of Beta(�q, �q) in the given probability, that is, when

In either via (17) or (20), an estimation for the ensemble accuracy is gained; we obtain a
STOP value to stop the stochastic search. However, there is some chance that STOP is not
exceeded, though in our experiments it has never occurred. Thus, to avoid an infinite loop,
we consider a maximum allowed step number MAXSTEP as an escaping stopping rule.
Namely, to obtain MAXSTEP, we apply Stirling’s approximation

(16)�q =

(
1 − �q

�2
q

−
1

�q

)
�2

q
, �q = �q

(
1

�q

− 1

)
.

(17)q
�
≥ �0.9�q

�̂

∕

√
�̂ + �q

�̂

= STOP ,

(18)� =
�q − 1

�q + �q − 2
,

(19)� =
1 − �

�q
�̂

.

(20)q
�
≥ F−1

�q ,�q
(�q

�̂

) = STOP .

Table 1 Probability values
�
q
�̂

 for stopping thresholds for
different skewness coefficients �

� �q
�̂

� ≤ 1 0.6
1 < 𝛾 ≤ 2.5 0.8
2.5 < 𝛾 ≤ 3.5 0.9
3.5 < 𝛾 0.95

1564 Machine Learning (2022) 111:1551–1595

1 3

assuming that �̂∕n → 0 . This is a reasonable approach since �̂ is calculated according to
Lemma 3 or (14). The formal description of our proposed ensemble selection method is
enclosed in Algorithm 2.

Notice that neither Algorithm 1 nor Algorithm 2 considers freely adjustable parameters
beyond the input (pi, ti) pairs and the total allowed time T. The derivation of all estimated
distribution parameters and the stopping related ones are properly referred to in the bod-
ies of the algorithms. If no time condition is provided then any preferred unconstrained
algorithm (e.g. the SA, Genetic Goldberg 1989 or Pruning Martinez-Munoz and Suarez
2007 one) can be used as handled by line 17 in Algorithm 2. Similarly, the output (line
19) of Algorithm 2 is the composed ensemble found by either our proposed method or any
other preferred one again. Either time condition is provided or not, all the ensemble creator
approaches can take advantage of the calculated stopping parameter STOP.

Before providing our detailed empirical results in Sect. 6, in Table 2 we summarize
our findings for Algorithm 2 on simulations. Namely, in two respective demonstrative tests
with i = 1,… , 30 and i = 1,… , 100 , we have generated the pi ’s to come from the same

(21)MAXSTEP =

(
n

�̂

)
∼ n�̂∕�̂!,

1565Machine Learning (2022) 111:1551–1595

1 3

example Beta(17, 5) as before and the execution times ti from conditional exponential dis-
tributions with parameters � = 1 − pi . The time constraint T was set in seconds to 30% of
the total time

∑30

i=1
ti for the first, and 20% of

∑100

i=1
ti for the second test. Both tests were

repeated 100 times, and we have taken the averages of the obtained precisions. The param-
eters of the beta distribution for the simulations can be chosen arbitrarily to fulfil the con-
dition 1 < 𝛽p < 𝛼p derived in Sect. 5.1. As our primary aim, we have checked whether the
stopping rule of the stochastic search indeed led to a reasonable computational gain. For
the sake of completeness, in Table 2 we have also shown the results for these simulated
pairs (pi, ti) regarding letting the search continue in the long run (stopped by MAXSTEP),
though in each of our tests, the STOP value has been exceeded much earlier. Secondarily,
we have compared SA with our selection method SHErLoCk given in Algorithm 1.

For Table 2, we can conclude that applying our stopping rule by using STOP saved con-
siderable computational time compared with the exhaustive search that culminated by stop-
ping it with MAXSTEP with a negligible drop in accuracy. Moreover, our approach has
found efficient ensembles quicker than SA. These impressions have also been confirmed by
the empirical evaluations on real data described in the next section.

6 Empirical analysis

In this section, we demonstrate the efficiency of our models through an exhaustive exper-
imental test on publicly available data. Our first experiment considers the possibility of
organizing competing approaches with different accuracies into an ensemble. In this sce-
nario, accuracy values correspond to final scores of participants of Kaggle3 challenges
without cost/time information provided. Our second setup for ensemble creation considers
machine learning-based binary classifiers as possible members; the performance evalua-
tion is performed on several UCI Machine Learning Repository (Dheeru and Karra Tani-
skidou 2017) datasets with the training times considered as costs.

6.1 Kaggle challenges

Kaggle is an open online platform for predictive modeling and analytics competitions with
the aim of solving real-world machine learning problems provided by companies or users.
The main idea behind this crowd-sourcing approach is that a countless number of differ-
ent strategies might exist to solve a specific task, and it is not possible to know beforehand

Table 2 Result of Algorithm 2
on simulations

Search Ensemble accuracy Comp. time (secs)

method MAXSTEP STOP MAXSTEP STOP

SHErLoCk (n=30) 99.56% 99.39% 60.03 0.08
SA (n=30) 98.97% 98.91% 87.40 0.30
SHErLoCk (n=100) 99.66% 99.61% 294.58 1.54
SA (n=100) 99.38% 99.37% 638.39 1.58

3 www. kaggle. com.

http://www.kaggle.com

1566 Machine Learning (2022) 111:1551–1595

1 3

which one is the most effective. Though primarily only the scores of the participating algo-
rithms can be gathered from the Kaggle site, as a possible future direction, we are curious
regarding whether creating ensembles from the various strategies could lead to an improve-
ment regarding the desired task.

Not all the Kaggle competitions are suitable to test our models since in the current con-
tent, we focus on majority voting-based ensemble creation. Consequently, we have col-
lected only such competitions and corresponding scores where majority voting-based
aggregation could take place. More precisely, we have restricted our focus only to such
competition metrics based on which majority voting can be realized. Such metrics include
quadratic weighted kappa, area under the ROC curve (AUC), log loss, normalized Gini
coefficient. For concrete competitions where these metrics were applied, we analyze the
following ones: Diabetic Retinopathy Detection,4 DonorsChoose.org Application Screen-
ing,5 Statoil/C-CORE Iceberg Classifier Challenge,6 WSDM - KKBox’s Churn Prediction
Challenge,7 and Porto Seguro’s Safe Driver Prediction.8

For our analytics, on the one hand it is interesting to observe the distribution of the final
score of the competitors, which is often affected by the volume of the prize money offered
to the winner. Moreover, accuracy measurement is usually scaled to the interval [0, 1], with
0 for the worst and 1 for the perfect performance, which allows us to test our results regard-
ing the beta distributions. As a drawback of Kaggle data, access to the resource constraints
corresponding to the competing algorithms (e.g., training/execution times) is rather lim-
ited; such data are provided for only a few competitions, primarily in terms of execution
time interval.

Thus, to summarize our experimental setup, we interpret the competing solutions of a
Kaggle challenge as the pool {D1,D2,… ,Dn} , where the score of Di is used for the accu-
racy term pi ∈ [0, 1] in our model. Then, we apply a beta fit for each investigated challenge
to determine whether a beta distribution fits the corresponding scores or not. If the test
is rejected, we can still use the estimation for the joint behavior q using (12) and (14). If
the beta test is accepted, we can also apply our corresponding results using (9), (11), and
Lemma 3. Notice that reliably fitting a model for the scores of the competitors might lead

Table 3 Ensemble accuracies on the Kaggle datasets found by simulated annealing (SA)

Dataset Ensemble accuracy Computational time
(secs)

Name MAXSTEP STOP MAXSTEP STOP

Diabetic Retinopathy Detection 94.34% 93.19% 194.12 1.31
DonorsChoose.org Application Screening 94.78% 91.96% 206.89 1.67
Statoil/C-CORE Iceberg Classifier Challenge 88.42% 87.76% 191.91 2.23
WSDM - KKBox’s Churn Prediction Challenge 96.96% 96.32% 203.88 1.45
Porto Seguro’s Safe Driver Prediction 92.99% 89.98% 214.28 1.95

4 www. kaggle. com/c/ diabe tic- retin opathy- detec tion.
5 www. kaggle. com/c/ donor schoo se- appli cation- scree ning.
6 www. kaggle. com/c/ stato il- icebe rg- class ifier- chall enge.
7 www. kaggle. com/c/ kkbox- churn- predi ction- chall enge.
8 www. kaggle. com/c/ porto- seguro- safe- driver- predi ction/ data.

http://www.kaggle.com/c/diabetic-retinopathy-detection
http://www.kaggle.com/c/donorschoose-application-screening
http://www.kaggle.com/c/statoil-iceberg-classifier-challenge
http://www.kaggle.com/c/kkbox-churn-prediction-challenge
http://www.kaggle.com/c/porto-seguro-safe-driver-prediction/data

1567Machine Learning (2022) 111:1551–1595

1 3

to a better insight of the true behavior of the data of the given field, also for the established
expectations there.

As observed from Table 3, SA was able to stop much earlier with a slight loss in accu-
racy using the suggested stopping rule (STOP) in finding the optimal ensemble. Our
approach SHErLoCk given in Algorithm 1 has been excluded from this analysis since no
cost information was available. Though for the lack of cost information our stochastics-
based results can be applied only partially to Kaggle challenges with distribution fitting
and suggesting stopping criterion accordingly, we were highly motivated to include this
platform as well. Kaggle collects a huge number of different approaches—sometimes also
with available implementations—for the same task, so is an excellent platform to create
ensembles. Moreover, several accuracy measures considered in these challenges are just
completely suitable for stochastic analysis, just like in our approach. If resource infor-
mation is also provided in the future for the submitted solutions, then our corresponding
results also become applicable.

6.2 Binary classification problems

The UCI Machine Learning Repository (Dheeru and Karra Taniskidou 2017) is a popu-
lar platform to test the performances of machine learning-based approaches, primarily for
classification purposes. A large number of datasets are made publicly available here among
which our models can be tested on binary classification ones. That is, in this experiment,
the members D1,D2,… ,Dn of a pool for ensemble creation are interpreted as binary clas-
sifiers, whose outputs can be aggregated by the majority voting rule. Using the ground
truth supplied with the datasets, the accuracy term pi ∈ [0, 1] stands for the individual clas-
sification accuracy of Di.

The number of commonly applied classifiers is relatively low; therefore to increase
the cardinality of the pool, we have also considered a synthetic approach in a similar way
to Cavalcanti et al. (2016). Namely, we have trained the same base classifier on different
training datasets, by which we can synthesize several "different" classifiers. Naturally, this
method is able to provide more independent classifiers only if the base classifier is unsta-
ble, i.e., minor changes in the training set can lead to major changes in the classifier output;
such an unstable classifier is, for example, the perceptron one.

To summarize our experimental setup for UCI binary classification problems, we have
considered base classifiers perceptron (Freund and Schapire 1999), decision tree (Quin-
lan 1986), Levenberg–Marquardt feedforward neural network (Suratgar et al. 2005), ran-
dom neural network (Timotheou 2010), and discriminative restricted Boltzmann machine
classifier (Larochelle and Bengio 2008) for the UCI datasets MAGIC Gamma Telescope,
HIGGS, EEG Eye State, Musk (Version 2), Spambase, Breast Cancer Wisconsin, Mush-
room, Gisette and Adult; datasets of large cardinalities were selected to be able to train
synthetic variants of base classifiers on different subsets. To check our models for different
numbers of possible ensemble members, the respective pool sizes were set to n = 30 and
n = 100 ; the necessary number of classifiers has been reached via synthesizing the base
classifiers with training them on different subsets of the training part of the given data-
sets. In contrast to the Kaggle challenges, in these experiments we were able to retrieve
meaningful cost information to devise a knapsack scenario. Namely, for a classifier Di , its
training time was adjusted as its cost ti in our model. Notice that for even the same classi-
fier, it was possible to obtain different ti values with training its synthetic variants on data-
sets of different sizes. Using this time information, for the estimated size �̂ of the optimal

1568 Machine Learning (2022) 111:1551–1595

1 3

ensemble, we could use Lemma 3 for n = 30 , while (14) for the case n = 100 . This is one
of the reasons why we set the different pool sizes to n = 30 and n = 100 . Another point is
to get sufficiently large search spaces to show the efficiency of our proposed method. To
choose a pool size greater than 100 is rather unrealistic and results in a very time-demand-
ing problem.

We compare the performance of the proposed search strategy (SHErLoCk) with SA,
SA+, Genetic (Goldberg 1989), Genetic+, Pruning (Martinez-Munoz and Suarez 2007)
on binary classification problems of UCI datasets using an ensemble pool of n = 30 and
n = 100 classifiers, respectively. As clearly visible from Tables 4 and 5, our stochastic
search strategy SHErLoCk described in Algorithm 1 was reasonably faster than the other
ones and slightly dominant in ensemble accuracy found by the different approaches pre-
sented in the tables, as well. Moreover, it can be observed again that applying the stop-
ping rule with the threshold STOP led to an enormous computational advantage for either
search strategies with only a small drop in accuracy. For the sake of completeness, we have
also included the forward and backward selection techniques. As it can be observed from
the tables, these deterministic techniques are naturally quicker than the others; however,
their accuracies are reasonably low as well. Notice that, as deterministic techniques it is
meaningless to limit the search time for them with either MAXSTEP or STOP. Moreover,
as for their 50% worst-case accuracy proved in Sect. 2 we can see a better performance in
our experiments.

As for evaluating the accuracy of the ensembles of the trained classifiers, we have fol-
lowed the following protocol. The individual classifiers have been trained according to the
common guidelines with splitting all the datasets to training, cross-validation, and testing
parts. Then the individual accuracies pi have been determined as their performances on the
test set (30% randomly selected parts of the datasets) since these figures are available only
for the test sets regarding the Kaggle competitors. The ensemble accuracies gained by all
the methods are calculated by aggregating the outputs of the trained classifiers on the test
part of the publicly available datasets by applying the classic majority voting rule without
any further training processes. This is the reason why we have presented the experimental
results (ensemble accuracies and computational times) for the test parts for Kaggle and
UCI, as well. The official splitting is available only for the Kaggle datasets, but not for
the UCI ones. Thus, for possible future comparability, we give the results for the whole
UCI datasets in Tables 7 and 8 in Appendix 7, as well. We have found a small drop or a
small rise regarding each ensemble creator method’s performance on the whole dataset,
so the trends shown in Tables 4 and 5 are not affected. The computational times are natu-
rally the same for both evaluation protocols. For further comparison of the performance
of the proposed search strategy (SHErLoCk) with SA, SA+, Genetic, Genetic+, Pruning,
Bayesian signed-rank tests (Benavoli et al. 2017) were applied. The results of the tests
for training time as cost on UCI test sets using an ensemble pool of n = 30 and n = 100
classifiers are enclosed in Tables 9 and 10 in Appendix 7, respectively. The signed-rank
test returns three probability values from which we consider P(practical equivalence) and
P(Algorithm1 > Algorithm2) describing the equivalence of the two compared algorithms
and the dominance of Algorithm1 over Algorithm2, respectively. The results show that the
accuracy of the two compared classifiers are practically different in each case (the largest
value for equivalence was 0.0132) and the proposed algorithm SHErLoCk outperformed
the other search strategies with high probability in most of the cases.

We have also checked how the ensemble accuracies found by the different approaches
increased regarding the elapsed time during the search. Notice that, the accuracies

1569Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
4

 C
om

pa
rin

g
th

e
pr

op
os

ed
 s

ea
rc

h
str

at
eg

y
(S

H
Er

Lo
C

k)
 w

ith
 o

th
er

 s
el

ec
tio

n
m

et
ho

ds
 r

eg
ar

di
ng

 e
ns

em
bl

e
ac

cu
ra

cy
 a

nd
 c

om
pu

ta
tio

na
l t

im
e

on
 b

in
ar

y
cl

as
si

fic
at

io
n

pr
ob

le
m

s o
f t

he
 U

C
I t

es
t s

ub
se

ts
 u

si
ng

 a
n

en
se

m
bl

e
po

ol
 o

f n
=
3
0
 c

la
ss

ifi
er

s a
nd

 tr
ai

ni
ng

 ti
m

e
as

 c
os

t

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

M
et

ho
d

En
se

m
bl

e
ac

cu
ra

cy
M

A
X

ST
EP

SH
Er

Lo
C

k
93

.1
1%

96
.8

1%
75

.3
3%

96
.0

2%
98

.1
9%

98
.3

7%
99

.5
2%

93
.2

2%
88

.0
3%

SA
+

93
.5

6%
95

.9
8%

75
.0

3%
96

.0
2%

98
.2

3%
96

.9
1%

99
.1

7%
92

.7
2%

86
.1

9%
SA

93
.0

8%
96

.0
9%

74
.3

3%
95

.9
9%

98
.2

3%
96

.9
0%

98
.3

6%
93

.2
2%

86
.9

2%
G

en
et

ic
+

92
.9

7%
94

.2
3%

75
.3

9%
96

.1
2%

97
.1

9%
96

.6
3%

99
.0

3%
92

.0
1%

87
.5

1%
G

en
et

ic
93

.0
8%

95
.8

8%
75

.7
7%

96
.3

5%
98

.4
8%

95
.7

3%
99

.0
9%

92
.4

9%
87

.1
8%

Pr
un

in
g

92
.0

3%
96

.2
1%

74
.6

8%
95

.0
1%

98
.2

6%
96

.0
8%

98
.7

9%
91

.0
6%

86
.7

2%
ST

O
P

SH
Er

Lo
C

k
92

.4
7%

95
.0

4%
75

.4
1%

94
.0

4%
99

.3
3%

96
.8

1%
98

.4
7%

92
.2

4%
86

.8
8%

SA
+

92
.4

3%
95

.5
1%

75
.1

4%
94

.4
3%

98
.5

9%
96

.4
5%

99
.1

8%
92

.2
4%

86
.8

8%
SA

92
.3

5%
94

.8
2%

74
.3

9%
93

.7
8%

99
.0

4%
96

.8
4%

98
.0

0%
92

.1
7%

86
.6

4%
G

en
et

ic
+

92
.4

1%
94

.7
6%

74
.8

9%
95

.1
6%

98
.9

8%
95

.7
4%

97
.7

1%
92

.0
7%

86
.8

1%
G

en
et

ic
92

.8
4%

95
.2

2%
73

.7
0%

94
.5

3%
99

.0
3%

96
.4

3%
97

.9
9%

91
.9

5%
85

.9
3%

Pr
un

in
g

91
.8

8%
94

.7
6%

72
.9

1%
95

.3
9%

97
.5

6%
96

.0
8%

97
.5

1%
92

.1
7%

86
.4

2%
D

ET
Fo

rw
ar

d
88

.1
1%

94
.7

8%
72

.2
2%

94
.1

7%
97

.0
8%

95
.1

2%
98

.5
4%

90
.2

1%
82

.2
7%

B
ac

kw
ar

d
88

.8
7%

94
.7

8%
71

.5
2%

94
.1

7%
97

.0
8%

95
.0

7%
98

.5
4%

90
.2

1%
81

.4
9%

1570 Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

C
om

pu
ta

tio
na

l t
im

e
(s

ec
s)

M
A

X
ST

EP
SH

Er
Lo

C
k

46
.4

7
37

.9
0

49
.4

6
30

.2
0

48
.8

9
32

.1
9

37
.0

6
51

.4
5

34
.7

3

SA
+

12
1.

9
10

0.
98

12
8.

90
14

5.
57

10
8.

21
10

1.
73

10
6.

13
13

2.
43

96
.5

1

SA
79

.0
6

80
.1

2
93

.4
7

71
.3

9
67

.2
6

77
.2

5
60

.1
9

95
.9

8
72

.2
8

G
en

et
ic

+
63

.4
2

68
.0

3
59

.5
7

61
.0

7
74

.0
2

69
.0

9
89

.6
7

67
.0

3
69

.0
8

G
en

et
ic

46
.0

8
48

.9
2

53
.2

2
58

.1
6

51
.2

3
48

.5
6

57
.9

9
64

.4
2

49
.1

8

Pr
un

in
g

12
5.

84
10

7.
08

11
5.

42
12

9.
45

93
.0

6
90

.9
8

10
3.

54
13

7.
08

15
1.

08

ST
O

P
SH

Er
Lo

C
k

0.
98

0.
39

0.
93

0.
38

0.
92

0.
74

0.
39

0.
43

0.
28

SA
+

8.
41

4.
67

6.
73

8.
47

7.
33

5.
09

8.
79

5.
88

6.
11

SA
8.

78
6.

92
4.

56
7.

93
8.

59
9.

48
6.

95
5.

89
7.

99

G
en

et
ic

+
5.

53
5.

96
6.

45
9.

97
5.

15
7.

56
6.

93
7.

91
5.

69

G
en

et
ic

6.
78

6.
23

6.
49

10
.9

8
8.

52
10

.4
3

6.
02

5.
62

8.
43

Pr
un

in
g

13
.6

1
12

.2
1

14
.9

1
18

.8
5

11
.0

7
12

.9
8

14
.0

3
13

.5
7

12
.0

9

D
ET

Fo
rw

ar
d

0.
28

0.
19

0.
41

0.
29

0.
28

0.
38

0.
46

0.
49

0.
73

B
ac

kw
ar

d
0.

21
0.

37
0.

43
0.

42
0.

31
0.

84
0.

35
0.

25
0.

23

1571Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
5

 C
om

pa
rin

g
th

e
pr

op
os

ed
 s

ea
rc

h
str

at
eg

y
(S

H
Er

Lo
C

k)
 w

ith
 o

th
er

 s
el

ec
tio

n
m

et
ho

ds
 r

eg
ar

di
ng

 e
ns

em
bl

e
ac

cu
ra

cy
 a

nd
 c

om
pu

ta
tio

na
l t

im
e

on
 b

in
ar

y
cl

as
si

fic
at

io
n

pr
ob

le
m

s o
f U

C
I t

es
t s

ub
se

ts
 u

si
ng

 a
n

en
se

m
bl

e
po

ol
 o

f n
=
1
0
0
 c

la
ss

ifi
er

s a
nd

 tr
ai

ni
ng

 ti
m

e
as

 c
os

t

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

M
et

ho
d

En
se

m
bl

e
ac

cu
ra

cy
M

A
X

ST
EP

SH
Er

Lo
C

k
95

.0
6%

97
.1

8%
76

.6
6%

95
.8

5%
99

.0
0%

99
.0

6%
99

.9
8%

93
.8

6%
87

.9
4%

SA
+

94
.9

3%
96

.4
5%

76
.0

8%
96

.0
1%

99
.0

8%
98

.1
3%

99
.9

6%
93

.2
2%

87
.2

9%
SA

95
.0

9%
96

.8
9%

76
.1

3%
95

.9
1%

98
.8

3%
98

.8
1%

99
.6

4%
92

.8
8%

87
.0

4%
G

en
et

ic
+

95
.0

9%
96

.4
9%

76
.4

8%
96

.1
5%

99
.0

7%
98

.8
7%

99
.8

0%
93

.2
8%

88
.2

9%
G

en
et

ic
95

.9
1%

97
.0

2%
76

.2
7%

96
.3

9%
99

.1
6%

98
.5

1%
99

.6
4%

92
.9

7%
87

.9
3%

Pr
un

in
g

94
.7

6%
95

.9
9%

75
.3

9%
95

.3
4%

98
.9

5%
98

.0
9%

99
.2

7%
92

.6
6%

86
.9

5%
ST

O
P

SH
Er

Lo
C

k
94

.2
7%

95
.7

1%
75

.8
9%

94
.7

9%
99

.4
2%

98
.2

5%
99

.6
3%

93
.0

2%
87

.1
8%

SA
+

93
.9

1%
95

.7
4%

76
.2

7%
95

.1
9%

99
.5

8%
97

.1
9%

99
.1

7%
93

.2
1%

86
.6

1%
SA

94
.1

1%
95

.8
9%

76
.2

7%
95

.2
3%

99
.6

0%
97

.2
8%

99
.5

2%
92

.4
9%

86
.7

7%
G

en
et

ic
+

94
.2

7%
95

.5
9%

75
.6

9%
95

.0
8%

99
.3

4%
97

.9
3%

99
.7

1%
93

.0
5%

86
.6

3%
G

en
et

ic
93

.9
1%

95
.9

9%
76

.0
4%

95
.4

6%
99

.2
6%

98
.0

8%
99

.6
3%

92
.9

3%
86

.9
0%

Pr
un

in
g

93
.7

2%
95

.8
0%

75
.6

3%
94

.0
7%

99
.0

9%
97

.8
2%

99
.0

4%
92

.7
1%

86
.5

9%
D

ET
Fo

rw
ar

d
90

.6
8%

95
.0

2%
74

.1
3%

93
.0

1%
98

.4
2%

95
.6

1%
98

.9
2%

90
.9

2%
85

.3
6%

B
ac

kw
ar

d
90

.8
2%

95
.0

2%
74

.1
9%

93
.0

1%
98

.4
2%

95
.0

8%
98

.9
1%

90
.9

2%
85

.8
3%

1572 Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
5

 (c
on

tin
ue

d)

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

C
om

pu
ta

tio
na

l t
im

e
(s

ec
s)

M
A

X
ST

EP
SH

Er
Lo

C
k

19
4.

12
20

6.
89

19
1.

91
20

3.
88

21
4.

28
20

1.
03

18
6.

67
15

9.
32

17
8.

01

SA
+

34
9.

62
29

0.
89

39
0.

82
27

8.
56

25
3.

59
37

5.
71

31
3.

56
30

1.
25

31
1.

87

SA
25

1.
02

29
1.

13
26

9.
22

27
8.

39
26

9.
59

22
8.

44
28

6.
23

25
9.

92
25

8.
62

G
en

et
ic

+
30

5.
26

29
8.

34
28

9.
37

30
1.

26
32

4.
12

25
6.

67
28

9.
44

33
8.

98
38

1.
55

G
en

et
ic

22
6.

05
30

1.
36

19
7.

57
23

9.
79

22
3.

19
26

7.
24

21
0.

63
23

1.
92

29
0.

67

Pr
un

in
g

35
4.

23
30

1.
21

40
9.

22
35

4.
59

35
6.

18
32

1.
82

40
2.

34
44

1.
23

45
5.

63

ST
O

P
SH

Er
Lo

C
k

2.
32

3.
41

2.
11

2.
08

1.
56

2.
33

2.
49

1.
73

2.
45

SA
+

13
.3

1
14

.6
7

12
.2

3
12

.4
5

14
.9

5
13

.9
7

12
.8

8
10

.1
2

14
.8

1

SA
13

.3
9

12
.5

8
16

.1
4

15
.5

5
12

.0
4

16
.9

4
11

.7
6

12
.3

5
13

.5
5

G
en

et
ic

+
12

.5
6

12
.6

1
15

.9
5

13
.3

7
13

.4
9

16
.6

8
14

.8
8

13
.1

4
12

.5
9

G
en

et
ic

13
.5

3
13

.5
8

12
.8

8
15

.4
7

11
.5

1
13

.6
7

12
.0

2
11

.2
7

12
.2

8

Pr
un

in
g

19
.4

1
11

.7
8

17
.3

2
36

.3
6

21
.6

9
31

.5
5

22
.9

2
15

.3
4

19
.5

3

D
ET

Fo
rw

ar
d

0.
59

0.
72

0.
81

0.
92

0.
69

0.
89

0.
93

0.
96

0.
94

B
ac

kw
ar

d
0.

71
0.

78
0.

99
0.

85
0.

76
0.

88
0.

95
0.

81
0.

99

1573Machine Learning (2022) 111:1551–1595

1 3

indeed have a monotonously increasing trend, since at each search step we store the
best performing ensemble for all the approaches till the stopping condition is met. Our
findings are depicted in Fig. 2 (for n = 30) according to SHErLoCk, SA+, Genetic+ as
best performing algorithms with indicating also the time points with dashed lines when
the respective methods were stopped. For this demonstrative analysis we have selected
the two datasets EEG/Gisette requiring the largest/smallest computational times. For
each of the analyzed approaches we can see sudden jumps coming from their stochastic
behaviours.

6.3 Optic disc detection

The majority voting rule can be applied in a problem to aggregate the outputs of single
object detectors in the spatial domain (Hajdu et al. 2013); the votes of the members
are given in terms of single pixels as candidates for the centroid of the desired object.
In this extension, the shape of the desired object defines a geometric constraint, which
should be met by the votes that can be aggregated. In Hajdu et al. (2013), our practical
example relates to the detection of a disc-like anatomical component, namely the optic
disc (OD) in retinal images. Here, the votes are required to fall inside a disc of diameter
dOD to vote together. As more false regions are possible to be formed, the correct deci-
sion can be made even if the true votes are not in the majority, as in Fig. 3. The geomet-
ric restriction transforms (1) to the following form:

Fig. 2 The change of ensemble accuracy regarding the elapsed search time of the best performing
approaches on the datasets EEG (a), and Gisette (b)

Fig. 3 Successful OD detec-
tion with the same number of
correct/false ensemble member
responses

1574 Machine Learning (2022) 111:1551–1595

1 3

In (22), the terms p
�,k describe the probability that a correct decision is made by suppos-

ing that we have k correct votes out of � . For the terms p
�,k (k = 0, 1,… ,�) , in general, we

have that 0 ≤ p
𝓁,0 ≤ p

𝓁,1 ≤ ⋯ ≤ p
𝓁,𝓁 ≤ 1.

In our experiments, the pool consists of eight OD detector algorithms with the follow-
ing accuracy and running time values: {(pi, ti)}8i=1 = {(0.220, 31), (0.304, 38), (0.319, 34), }

{(0.643, 69), (0.754, 11), (0.765, 7), (0.958, 21), (0.976, 90)} with
∑8

i=1
ti = 301 secs. As we

have mentioned earlier we can consider any resource type regarding the parameters ti .
For instance, we have considered the running times of the member algorithms here since
some of them are not machine learning based ones. We can apply our theoretical foun-
dation with some slight modifications to solve the same kind of knapsack problem for
the variant (22), transforming the model to reflect the multiplication with the terms p

�,k.
We have empirically derived the values p8,k = {0, 0.11, 0.70, 0.93, 0.99, 1.00, 1.00, 1.00, 1.00}

for (22) in our task. To adopt our approach by following the logic of Algorithm 2, we
need to determine a STOP value for the search based on �p and �p (calculated by (12)),
and �̂ (calculated by (14)). However, since now the energy function is transformed by
the terms p

�,k in (22), we must borrow the corresponding theoretical results from Tiba
et al. (2019) to derive the mean �q

�̂

 instead of (7) proposed in Algorithm 2. Accord-
ingly, we had to find a continuous function F that fit to the values p

�,k , which was
evaluated by regression and resulted in F(x) = b∕(b + xa∕(1 − x)a) with a = −3.43 and

(22)q
�
(L) =

��
k=0

p
�,k

⎛⎜⎜⎜⎝

�
I⊆L
�I�=k

�
i∈I

pi

�
j∈L⧵I

�
1 − pj

�⎞⎟⎟⎟⎠
.

Fig. 4 Determining the con-
strained majority voting prob-
abilities p

�,k for our OD detector
ensemble

Table 6 Comparing SA with
the proposed search strategy
SHErLoCk on the OD detection
problem

Search method Ensemble accuracy Comp. time (secs)
STOP STOP

SHErLoCk 99.45% 0.07
SA 99.43% 0.16

1575Machine Learning (2022) 111:1551–1595

1 3

b = 101.7 , as also plotted in Fig. 4. Now, by using Theorem 1 from Tiba et al. (2019),
we have gained �q

�̂

= F(�p).
For our experiment to search for the best ensemble, we have set the time constraint to

be 80% of the total running time, with T = 4(
∑8

i=1
ti)∕5 . For this setup, we could estimate

�̂ = 7 and �q
�̂

= 0.969 for the expected ensemble size and mean accuracy, respectively.
Then, these values have been considered for Algorithm 2 to demonstrate the performance
of our stochastic search method SHErLoCk with SA. As shown in Table 6, our search strat-
egy outperformed SA also for the object detection problem both in accuracy and compu-
tational time. Because of the smallness of this setup, we have omitted a full experimental
evaluation.

7 Discussion

For the approximate number �̂T of the ensemble size, we have considered (14) when the
member accuracy p is not a beta distribution. As an alternative notice that it is known that
for a given � , T and an independent exponential distributed �j , �T is distributed as Pois-
son with parameter �T . We can use Lemma 3 and conclude that for a starting size of the
ensemble, one may choose �̂T such that the remaining possible values are beyond the 5%
error. It follows that we apply formula either

where m0.05 is the upper quantile of the Poisson distribution with parameter T∕
∑n

i=1
pi , or

use the normal approximation to the Poisson distribution

which provides us the inequality

In our experiments we have used (14) instead of (25) to obtain �̂T , since the latter provided
slightly too large estimated size values. However, for other scenarios, it might be worth-
while to try (25) as well.

As some additional arguments, we call attention to the following issues regarding those
elements of our approach that might need special care or can be adjusted differently in
other scenarios:

– We have assumed independent member accuracy behavior, providing solid estimation
power in our tests. However, in the case of strong member dependencies, deeper discov-
ery of the joint behavior might be needed.

– Stirling’s approximation considered in (21) may provide values that are too small for the
parameter MAXSTEP in the case of small pools. Since this is an escape parameter, a suf-
ficiently large value should be selected in such cases instead. Note that on the datasets we

(23)P
(
�T > m0.05

)
= 0.05,

(24)
�T − T∕

∑n

i=1
pi − 0.5�

T∕
∑n

i=1
ti

> 1.64,

(25)�T >
T∑n

i=1
ti
+ 0.5 + 1.64

�
T∑n

i=1
ti
= ��T .

1576 Machine Learning (2022) 111:1551–1595

1 3

examined, we found that it is not worth going above 15 000 iterations, because the ensem-
bles’ accuracies improved only slightly with higher step counts.

– The constraint we consider first in the knapsack problem corresponds to the training time;
however, any other type of resources could be studied. For instance, we have examined
the testing time as cost on the UCI dataset, as well. Tables 11 and 12 show the results
(ensemble accuracy and computational time) of the proposed search strategy (SHErLoCk)
compared with other selection methods using an ensemble pool of n = 30 and n = 100
classifiers, respectively. Similar conclusions can be drawn regarding the comparison of the
performances of the methods that we have found for the training time.

– The time profile � = 1 − p in Sect. 5.2 is suited to our data; however, any other relation-
ship between the member accuracy and time can be considered. In case other non-time-
based resources are examined in the constraint, the exponential distribution can be changed
accordingly. Nevertheless, the similar derivation of the estimation of the ensemble accu-
racy might be slightly more laborious depending on the selected distribution.

– In (17), we have used a one-tailed (left-side) hypothesis since q
�
 was close to 1. However,

if it is not that close to 1, a two-tailed hypothesis can be meaningful as well. Furthermore,
if �q is even smaller (say 0.7), then we can search above this mean by considering a right-
side hypothesis.

Natural generalizations of the presented results regard multiple objectives and multiclass clas-
sification. Within our framework, multiple constraints lead to a multiply-constrained knapsack
problem, which can be handled e.g. with merging the constraints into a single one (Pisinger
1995) to make our approach directly applicable. As for multiclass classification, notice that
our motivating example given in Sect. 6.3 has already some similarities regarding multiclass
problems, since the geometric constraint intuitively describes such a type of task. To realize
the classic setup, we have to consider multinomial distribution instead of the binomial one to
handle majority voting in the corresponding classification problem. These changes are quite
obvious; however, since they raise serious theoretical challenges over the techniques we used
in this work, they need a dedicated future research beyond the current scope. Similarly, a com-
plexity analysis of our approach is a natural issue; however, its stochastic nature makes this
derivation really hard like in Dzahini (2020).

Appendix 1: Proof of Lemma 1

Proof Consider a subset K when K = {1, 2,… , 2�} (otherwise we can renumerate pi). We
have

where

(26)

q2�(K) =

2�∑
k=�+1

∑
I ⊆ K

|I| = k

∏
i∈I

pi

∏
j∈K�I

(
1 − pj

)

=

2�∑
k=�+1

∑
I ⊆ K

|I| = k

Q2�,k(K, I),

1577Machine Learning (2022) 111:1551–1595

1 3

that is, we consider a subset K ⊆ N with |K| = 2� , and Q2�,k(K, I) is calculated for an
index set I ⊆ K with |I| = k . Now, choose an index a from the set N∖K , i.e., a > 2� , and
obtain

The term Q2�,k(K, I)pa = Q2�+1,k+1({K, a}, {I, a}) and Q2�,k(K, I)
(
1 − pa

)
= Q2�+1,k({K, a}, I) ;

therefore,

since q2�+1(K) includes some extra additional terms, say Q2�+1,k({K, a}, I) , where I con-
tains a. Regarding that n is odd in the series of q

�(K) , there will be an element with odd �
following an element of even � and the lemma is proved for odd n. For the case when n is
even, we consider the qn(N) and qn−1(L) , where L = {1, 2,… , 2� − 1} . Set n = 2� ; then,

with N = {1, 2,… , 2�} and put

notice that the number of terms is equal in both sums. If k = 2� , then

otherwise,

hence for k < 2�,

(27)Q2�,k(K, I) =
∏
i∈I

pi

∏
j∈K�I

(
1 − pj

)
,

(28)Q2�,k(K, I) = Q2�,k(K, I)pa + Q2�,k(K, I)
(
1 − pa

)
.

(29)

q2�(K) =

2��
k=�+1

�

I ⊆ K

�I� = k

Q2�,k(K, I) =

2��
k=�+1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�

I ⊆ K

�I� = k

Q2�+1,k+1({K, a}, {I, a}) +
�

I ⊆ K

�I� = k

Q2�+1,k({K, a}, I)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

<

2��
k=�+1

�

I ⊆ K

�I� = k

Q2�+1,k(K, I) = q2�+1(K, a),

(30)
q2�(N) =

2�∑
k=�+1

∑
I ⊆ N

|I| = k

Q2�,k(N, I)

(31)
q2�−1(L) =

2�−1∑
k=�

∑
I ⊆ L

|I| = k

Q2�−1,k(L, I),

(32)Q2�,2�(N,N) = p2�Q2�−1,2�−1(L,L),

(33)Q2�,k(N, I) =

{
p2�Q2�−1,k−1(L, I�2�) if 2� ∈ I(
1 − p2�

)
Q2�−1,k(L, I) if 2� ∉ I

,

1578 Machine Learning (2022) 111:1551–1595

1 3

We start summing up q(N, 2�) from 2� ; then, using (32) and (34), we obtain for the first
two terms

If we continue summing up one by one, then induction leads to

since p2� < 1 . ◻

Appendix 2: Proof of Proposition 1

Proof We prove the statement with an example describing the worst-case scenario for the
greedy selection strategy. Let D = {D1 = (p1, t1),D2 = (p2, t2),… ,Dn = (pn, tn)} be the
pool, where the index set is denoted by In = {1, 2,… , n} . Let us suppose that

n∑
i=1

ti ≤ T ,

that is, the time constraint should not be of concern. Let p1 = 1∕2 + � , where 0 < 𝜀 ≤ 1∕2 ,
and p2 = p3 = ⋯ = pn = 1∕2 + � with 0 < 𝛼 < 𝜀 , where the proper selection of � will be
given below.

The greedy strategy will move D1 to S as the most accurate item in its first step. Next,
we try to extend S by adding more members. Since we require odd members, we try to
add 2 items in every selection step. Since all the remaining n − 1 features have the same
behavior, we can check whether S should be extended via comparing the performance of
S1 = {D1} and S3 = {D1,D2,D3} . For the performance of the ensemble S1 , we trivially

(34)

∑
I ⊆ N

|I| = k

Q2�,k(N, I) = p2�

∑
I ⊆ L

|I| = k − 1

Q2�−1,k−1(L, I) +
(
1 − p2�

) ∑
I ⊆ L

|I| = k

Q2�−1,k(L, I).

(35)

2�∑
k=2�−1

∑
I ⊆ N

|I| = 2� − 1

Q2�,k(N, I) = p2�Q2�−1,2�−1(L,L)

+ p2�

∑
I ⊆ L

|I| = 2� − 2

Q2�−1,2�−2(L, I) +
(
1 − p2�

)
Q2�−1,2�−1(L,L)

= Q2�−1,2�−1(L,L) + p2�

∑
I ⊆ L

|I| = 2� − 2

Q2�−1,2�−2(L, I).

(36)

q2�(N) =

2�−1∑
k=�+1

∑
I ⊆ L

|I| = k

Q2�−1,k−1(L, I)

+ p2�

∑
I ⊆ L

|I| = �

Q2�−1,�(L, I) < q2�−1(L),

1579Machine Learning (2022) 111:1551–1595

1 3

have q1(I1) = p1 = 1∕2 + � , where I1 = {1} , while for S3 we can apply (1) for the 3-mem-
ber ensemble, with I3 = {1, 2, 3} to calculate q3(I3):

after the appropriate substitutions and simplifications. Now, if we adjust � to have
q1(I1) = q3(I3) , then via solving the equation

we obtain

That is, with a selection of � given in (39), the ensemble S1 = {D1} is not going to be
extended since it does not lead to improvement. Thus, the strategy stops after the first step
with an ensemble accuracy 1∕2 + �.

On the other hand, with a sufficiently large n, a very accurate ensemble could be
achieved. More precisely, it can be easily seen that qn(In) is strictly monotonically increas-
ing with

Now, by letting � → 0 , we can see that for the ensemble accuracy found with this strategy

while an ensemble of lim
n→∞

qn(In) = 1 could also be found. Hence, the proposition follows.
 ◻

Appendix 3: Proof of Proposition 2

Proof We prove the statement with a similar example to that given in the proof of Proposition
1 in Appendix 1 to describe the worst-case scenario. Let
D = {D1 = (p1, t1),D2 = (p2, t2),… ,Dn = (pn, tn)} be the pool and T be the time constraint.
Put p1 = 1∕2 + � , where 0 < 𝜀 ≤ 1∕2 , t1 = T , and p2 = p3 = ⋯ = pm = 1∕2 + � ,
t2 = t3 = ⋯ = tn = T∕(n − 1) with 0 < 𝛼 < 𝜀 . If � is properly selected, then
q1(I1) = p1 < qn−1(In⧵I1) . However, because of the time constraint, we must remove ele-
ments during the selection procedure, since initially

n∑
i=1

ti = 2T > T . For this requirement, the

greedy approach in the first step will remove any two elements from D2,… ,Dn by decreasing
the time with 2T∕(n − 1) . This selection will go on until only D1 remains in the ensemble.
With a proper selection of � , we have lim

n→∞
qn−1(In⧵I1) = 1 and by letting � → 0 , the proposi-

tion follows. ◻

(37)

q3(I3) = p1p2(1 − p3) + p2p3(1 − p1) + p1p3(1 − p2) + p1p2p3 =
1

2
+

�

2
+ � − 2�2�

(38)
1

2
+ � =

1

2
+

�

2
+ � − 2�2�

(39)� =
1 −

√
1 − 4�2

4�
.

(40)lim
n→∞

qn(In) = 1.

(41)lim
�→0

q1(S1) = 1∕2,

1580 Machine Learning (2022) 111:1551–1595

1 3

Appendix 4: Proof of Proposition 3

Proof Similar to the proof of Proposition 2, we provide an example for the worst-case sce-
nario. Let D1 = (1, T) , and D2 = D3 = D4 = (1∕2 + �, T∕3) with 0 < 𝜀 < 1∕2 . Now, since

the backward strategy will remove the less useful component D1 first to maintain the time
constraint and will keep the remaining ensemble {D2,D3,D4} as the most accurate one,

which also fits the time constraint with
4∑
i=2

ti = T . By letting � → 0 , we have

lim�→0 q3(I4⧵I1) = 1∕2 . Moreover, notice that the most accurate ensemble would have
been {D1} with q1(I1) = 1 by meeting the time constraint as well. Thus, the statement fol-
lows. ◻

Appendix 5: Lemma 2

Lemma 2 Let p ∈ [0, 1] be a random variable with mean �p and variance �2
p
 . Consider the

accuracy (1), where pi , i = 1, 2,… , n are i.i.d. random variables distributed as p. Then,

1.

lim
�→∞

�q
�
=

⎧⎪⎨⎪⎩

0, if �p ∉ [1∕2, 1),

1∕2, if �p = 1∕2,

1, if �p ∈ (1∕2, 1).

 Moreover, for odd � : if �p ∈ (1∕2, 1) , then �q
�
 is increasing, and if �p ∈ (0, 1∕2) , then

�q
�
 is decreasing.

2. The variance of q
�
 is expressed by

 where �(�,m, k) = �k
�
−m≤�−k , sT = �2

p
+ �2

p
 , s

F
= �2

p
+
(
1 − �

p

)2 , s
TF

= �
p

(
1 − �

p

)
− �2

p
 ,

and k
�
=
⌊
�

2

⌋
+ 1.

3. If �p ≠ 1∕2 , 𝜇p

(
1 − 𝜇p

)
− 𝜎2

p
> 0, and sT ≠ 1∕2 , then

 If sT = 1∕2 , then the limit (45) is 1.

Proof The first part of the lemma corresponds to Theorem 1 in Lam and Suen (1997). For
the rest, let us denote the product of probabilities by

(42)u1 =
1

T
<

3∕2 + 3𝜀

T
= u2 = u3 = u4,

(43)

(44)�2

q
�

=

�∑
k=k

�

k∑
m=1

�−k∑

h = k
�
− m

�(�,m, k)

(
�

k

)(
k

m

)(
� − k

h

)
sm
T
sk−m+h
TF

s�−k−h
F

−
(
�q

�

)2

,

(45)lim
�→∞

�2
q
�

= 0.

1581Machine Learning (2022) 111:1551–1595

1 3

for simplifying the treatment below. The formula (44) follows from expressing the variance
in terms of covariance

Now, we rewrite this expression into a more appropriate form. First, the notation is intro-
duced, where Ik

T
and Ik

F
 for a partition of indices N = {1,… ,�} , such that N = Ik

T
∪ Ik

F

where Ik
T
 denotes indices of those members voting true with accuracy p. Similarly, Ik

F
 con-

tains indices of false votes. Observe Ik
F
= N�Ik

T
 . We have |||IkT

||| = k and |||IkF
||| = � − k . In the

case of two partitions Ik
T
∪ Ik

F
 and Jj

T
∪ J

j

F
 , let the number of the common elements of Ik

T

and Jj
T
 be |||IkT ∩ J

j

T

||| = nk.j ; similarly, |||IkF ∩ J
j

F

||| = mk.j . According to this setup

Observe Ik
F
= N�Ik

T
 when we apply the notation for the product. Now, we consider the

covariance

The first term contains three types of products:

The pool constitutes independent variables; therefore,

since the sum of the second term gives the
(
Eq

�

)2 , indeed

(46)�(I) =
∏
i∈I

pi

∏
j∈N�I

(
1 − pj

)
,

(47)
*Var

(
q
�

)
=

�∑
k,j=k

�

∑
I, J ⊆ N

|I| = k, |J| = j

*Cov(𝛱(I),𝛱(J)).

(48)*Var
(
q
�

)
=

�∑
k,j=k

�

∑
Ik
T
,J

j

T

*Cov
(
�
(
Ik
T

)
,�

(
Jk
T

))
.

(49)
*Cov

(
�
(
Ik
T

)
,�

(
Jk
T

))
= *E�

(
Ik
T

)
�
(
Jk
T

)
− *E�

(
Ik
T

)
*E�

(
Jk
T

)

= *E�
(
Ik
T

)
�
(
Jk
T

)
− �k+j(1 − �)2�−k−j.

(50)*Ep2 = sT = �2
p
+ �2

p
,

(51)*E(1 − p)2 = sF = �2
p
+
(
1 − �p

)2
,

(52)*Ep(1 − p) = sTF = �p

(
1 − �p

)
− �2

p
.

(53)
*Var

(
q
�

)
=

�∑
k,j=k

�

∑
Ik ,Jj

(
�2
p
+ �2

p

)nk.j
(
�2
p
+
(
1 − �p

)2)mk.j

(
�p

(
1 − �p

)
− �2

p

)�−nk.j−mk.j

−
(
Eq

�

)2
.

(54)

�∑
k,j=k

�

(
�

k

)(
�

j

)
�k+j
p

(
1 − �p

)2�−k−j
=

(
�∑

k=k
�

(
�

k

)
�k
p

(
1 − �p

)�−k
)2

=
(
Eq

�

)2
.

1582 Machine Learning (2022) 111:1551–1595

1 3

We simplify (53), collecting similar terms and obtain (44). Before we prove the limit (45),
let us observe

i.e., the set
{
sT , sTF , sF , sTF

}
 constitutes a probability distribution for sTF > 0 ; in other

words, 𝜇2
p
+ 𝜎2

p
< 𝜇p . If it is so, we rewrite (44) in the form of a multinomial distribution.

The coefficients in (44) are actually multinomial coefficients. The rest of the proof is based
on the approximation of the binomial distribution by the normal distribution. It is not com-
plicated but slightly lengthy; we make it available to the interested readers on request.
 ◻

Appendix 6: Lemma 3

Lemma 3 Let � be an exponential distribution with density � exp (−�t) under the condition
that the parameter � is distributed as Beta

(
�p, �p

)
 , where 2 < 𝛽p < 𝛼p .

1. Then, the expected time for the sum of n variables is

 with variance

 This implies that the estimated number of ensemble members up to time T is
�̂T =

⌈
T

�p−1

�p+�p−1

⌉
.

2. If the interarrival times �j correspond to a given T and � generated from Beta
(
�p, �p

)
 ,

then

3. If each component of pair
(
�j, �j

)
 are independent copies of � and �j corresponds to �j ,

then

(55)sT + sTF = �p,

(56)sF + sTF = 1 − �p,

(57)sT + sF + 2sTF = 1.

(58)
n∑

k=0

E�k = n

(
1 +

�p

�p − 1

)

(59)Var

(
n∑

k=0

�k

)
= n

(
1 +

�p

�p − 2

)
.

(60)E(�T) =
�p

�p + �p
T .

1583Machine Learning (2022) 111:1551–1595

1 3

In both cases 2) and 3), �T is distributed as Poisson with parameter T∕E�1 , which implies
that Var

(
�T

)
= E(�T) and the estimation of �T is

Proof We show only the first statement; the rest of the lemma is well known. If � ∈ (0, 1) is
distributed as Beta

(
�p, �p

)
 , then 1 − � is distributed as beta

(
�p, �p

)
 . The expected value of

time is calculated in two steps; first, we take the conditional expectation, namely,

where we assumed that 1 < 𝛽p < 𝛼p . Suppose 2 < 𝛽p < 𝛼p to calculate the variance in a
similar manner

 ◻

Appendix 7: Comparing search strategies on the whole UCI datasets

See Tables 7, 8, 9 and 10.

(61)E(�T) = T
�p − 1

�p + �p − 1
.

(62)�̂T = T∕�.

(63)

E� = EE(�|�) =
1

∫
0

∞

∫
0

t� exp (−�t)dtb
(
�;�p, �p

)
d� =

�
(
�p − 1

)

�
(
�p + �p − 1

) �
(
�p + �p

)

�
(
�p
) = 1 +

�p

�p − 1
,

(64)Var(�) = EE
(
(� − E(�|�))2|||�

)
= ∫

1

0

1

�2
b
(
�;�p, �p

)
d� = 1 +

�p

�p − 2
.

1584 Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
7

 C
om

pa
rin

g
th

e
pr

op
os

ed
 s

ea
rc

h
str

at
eg

y
(S

H
Er

Lo
C

k)
 w

ith
 o

th
er

 s
el

ec
tio

n
m

et
ho

ds
 r

eg
ar

di
ng

 e
ns

em
bl

e
ac

cu
ra

cy
 a

nd
 c

om
pu

ta
tio

na
l t

im
e

on
 b

in
ar

y
cl

as
si

fic
at

io
n

pr
ob

le
m

s o
f U

C
I d

at
as

et
s u

si
ng

 a
n

en
se

m
bl

e
po

ol
 o

f n
=
3
0
 c

la
ss

ifi
er

s a
nd

 tr
ai

ni
ng

 ti
m

e
as

 c
os

t

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

M
et

ho
d

En
se

m
bl

e
ac

cu
ra

cy
M

A
X

ST
EP

SH
Er

Lo
C

k
93

.8
7%

97
.2

6%
76

.1
9%

96
.3

0%
99

.2
9%

98
.0

8%
99

.9
0%

93
.8

9%
86

.9
2%

SA
+

93
.3

4%
96

.6
8%

76
.2

3%
96

.6
1%

99
.2

5%
97

.0
1%

99
.5

3%
93

.0
2%

86
.1

0%
SA

93
.1

6%
96

.6
8%

76
.2

6%
96

.0
9%

98
.0

4%
97

.3
9%

98
.5

8%
93

.0
5%

85
.5

7%
G

en
et

ic
+

93
.8

6%
97

.1
2%

75
.3

9%
96

.0
7%

98
.9

9%
97

.7
4%

99
.4

3%
93

.1
4%

87
.0

5%
G

en
et

ic
93

.8
7%

96
.6

8%
76

.1
2%

96
.1

9%
99

.2
7%

97
.2

3%
99

.5
3%

93
.3

9%
86

.9
1%

Pr
un

in
g

92
.8

3%
96

.0
6%

75
.5

1%
95

.3
3%

98
.0

6%
97

.5
8%

98
.2

4%
92

.3
7%

85
.3

7%
ST

O
P

SH
Er

Lo
C

k
92

.2
9%

95
.4

7%
74

.6
3%

95
.4

3%
99

.0
2%

97
.5

3%
98

.5
8%

93
.0

3%
85

.6
7%

SA
+

92
.6

7%
95

.9
5%

74
.0

9%
95

.0
2%

98
.0

6%
96

.7
5%

98
.6

8%
92

.4
8%

85
.0

3%
SA

92
.1

3%
95

.9
8%

74
.2

3%
95

.3
1%

98
.0

1%
96

.9
8%

98
.4

4%
93

.0
1%

85
.0

6%
G

en
et

ic
+

92
.0

4%
95

.3
1%

74
.0

7%
95

.1
6%

98
.8

4%
96

.2
2%

98
.3

5%
92

.9
6%

85
.3

8%
G

en
et

ic
92

.0
4%

95
.1

1%
74

.5
8%

95
.1

1%
98

.5
1%

96
.2

0%
98

.7
9%

93
.0

5%
85

.6
7%

Pr
un

in
g

92
.0

7%
95

.1
2%

73
.8

5%
95

.0
1%

98
.0

3%
96

.5
7%

98
.3

9%
90

.1
3%

84
.8

4%
D

ET
Fo

rw
ar

d
90

.4
1%

93
.8

2%
70

.4
2%

94
.9

6%
95

.1
4%

96
.2

2%
98

.0
8%

91
.3

8%
83

.4
9%

B
ac

kw
ar

d
90

.1
9%

93
.8

2%
68

.7
6%

94
.9

6%
95

.1
4%

95
.9

8%
98

.0
8%

91
.3

8%
82

.9
8%

1585Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
7

 (c
on

tin
ue

d)

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

C
om

pu
ta

tio
na

l t
im

e
(s

ec
s)

M
A

X
ST

EP
SH

Er
Lo

C
k

46
.4

7
37

.9
0

49
.4

6
30

.2
0

48
.8

9
32

.1
9

37
.0

6
51

.4
5

34
.7

3

SA
+

12
1.

9
10

0.
98

12
8.

90
14

5.
57

10
8.

21
10

1.
73

10
6.

13
13

2.
43

96
.5

1

SA
79

.0
6

80
.1

2
93

.4
7

71
.3

9
67

.2
6

77
.2

5
60

.1
9

95
.9

8
72

.2
8

G
en

et
ic

+
63

.4
2

68
.0

3
59

.5
7

61
.0

7
74

.0
2

69
.0

9
89

.6
7

67
.0

3
69

.0
8

G
en

et
ic

46
.0

8
48

.9
2

53
.2

2
58

.1
6

51
.2

3
48

.5
6

57
.9

9
64

.4
2

49
.1

8

Pr
un

in
g

12
5.

84
10

7.
08

11
5.

42
12

9.
45

93
.0

6
90

.9
8

10
3.

54
13

7.
08

15
1.

08

ST
O

P
SH

Er
Lo

C
k

0.
98

0.
39

0.
93

0.
38

0.
92

0.
74

0.
39

0.
43

0.
28

SA
+

8.
41

4.
67

6.
73

8.
47

7.
33

5.
09

8.
79

5.
88

6.
11

SA
8.

78
6.

92
4.

56
7.

93
8.

59
9.

48
6.

95
5.

89
7.

99

G
en

et
ic

+
5.

53
5.

96
6.

45
9.

97
5.

15
7.

56
6.

93
7.

91
5.

69

G
en

et
ic

6.
78

6.
23

6.
49

10
.9

8
8.

52
10

.4
3

6.
02

5.
62

8.
43

Pr
un

in
g

13
.6

1
12

.2
1

14
.9

1
18

.8
5

11
.0

7
12

.9
8

14
.0

3
13

.5
7

12
.0

9

D
ET

Fo
rw

ar
d

0.
28

0.
19

0.
41

0.
29

0.
28

0.
38

0.
46

0.
49

0.
73

B
ac

kw
ar

d
0.

21
0.

37
0.

43
0.

42
0.

31
0.

84
0.

35
0.

25
0.

23

1586 Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
8

 C
om

pa
rin

g
th

e
pr

op
os

ed
 s

ea
rc

h
str

at
eg

y
(S

H
Er

Lo
C

k)
 w

ith
 o

th
er

 s
el

ec
tio

n
m

et
ho

ds
 r

eg
ar

di
ng

 e
ns

em
bl

e
ac

cu
ra

cy
 a

nd
 c

om
pu

ta
tio

na
l t

im
e

on
 b

in
ar

y
cl

as
si

fic
at

io
n

pr
ob

le
m

s o
f U

C
I d

at
as

et
s u

si
ng

 a
n

en
se

m
bl

e
po

ol
 o

f n
=
1
0
0
 c

la
ss

ifi
er

s a
nd

 tr
ai

ni
ng

 ti
m

e
as

 c
os

t

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

M
et

ho
d

En
se

m
bl

e
ac

cu
ra

cy
M

A
X

ST
EP

SH
Er

Lo
C

k
94

.6
6%

97
.8

8%
77

.1
6%

96
.9

8%
99

.4
9%

98
.9

7%
99

.9
9%

94
.1

6%
87

.8
8%

SA
+

94
.5

7%
97

.7
9%

76
.8

8%
96

.9
8%

99
.3

8%
98

.9
5%

99
.9

9%
94

.0
3%

86
.9

2%
SA

94
.6

3%
97

.7
5%

76
.6

4%
96

.1
1%

99
.4

3%
97

.9
8%

99
.9

3%
93

.9
4%

86
.2

3%
G

en
et

ic
+

94
.9

5%
97

.3
9%

76
.4

1%
96

.0
9%

99
.4

3%
98

.5
6%

99
.8

9%
93

.7
2%

88
.1

5%
G

en
et

ic
94

.7
9%

97
.6

5%
76

.8
4%

96
.2

2%
99

.0
8%

98
.5

7%
99

.9
1%

93
.7

4%
87

.1
9%

Pr
un

in
g

93
.8

8%
97

.1
9%

76
.6

3%
95

.2
3%

98
.7

1%
98

.6
6%

98
.9

4%
93

.0
3%

85
.7

9%
ST

O
P

SH
Er

Lo
C

k
94

.0
4%

96
.8

8%
76

.7
3%

95
.6

4%
99

.2
8%

97
.6

1%
99

.2
9%

93
.1

9%
86

.9
9%

SA
+

94
.1

9%
96

.9
6%

76
.0

2%
95

.3
2%

99
.1

8%
96

.9
1%

98
.9

7%
93

.1
9%

86
.0

1%
SA

94
.1

7%
96

.9
9%

76
.0

2%
96

.0
9%

99
.2

1%
97

.3
1%

99
.0

3%
93

.4
4%

86
.0

2%
G

en
et

ic
+

93
.9

1%
96

.9
1%

76
.2

9%
95

.9
6%

98
.9

7%
98

.1
1%

99
.0

7%
93

.4
1%

86
.4

9%
G

en
et

ic
94

.0
1%

96
.4

6%
76

.5
2%

95
.8

8%
98

.8
8%

97
.7

7%
99

.9
0%

93
.2

3%
86

.0
9%

Pr
un

in
g

93
.5

3%
96

.3
8%

75
.5

6%
95

.1
9%

98
.2

4%
97

.1
2%

98
.2

9%
93

.0
1%

85
.7

5%
D

ET
Fo

rw
ar

d
92

.1
1%

94
.9

2%
73

.2
9%

95
.1

4%
97

.9
2%

96
.6

9%
99

.3
1%

92
.9

8%
85

.0
8%

B
ac

kw
ar

d
93

.9
2%

94
.9

2%
75

.1
1%

95
.2

3%
97

.9
2%

96
.7

8%
99

.3
1%

92
.9

5%
84

.8
3%

1587Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
8

 (c
on

tin
ue

d)

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

C
om

pu
ta

tio
na

l t
im

e
(s

ec
s)

M
A

X
ST

EP
SH

Er
Lo

C
k

19
4.

12
20

6.
89

19
1.

91
20

3.
88

21
4.

28
20

1.
03

18
6.

67
15

9.
32

17
8.

01

SA
+

34
9.

62
29

0.
89

39
0.

82
27

8.
56

25
3.

59
37

5.
71

31
3.

56
30

1.
25

31
1.

87

SA
25

1.
02

29
1.

13
26

9.
22

27
8.

39
26

9.
59

22
8.

44
28

6.
23

25
9.

92
25

8.
62

G
en

et
ic

+
30

5.
26

29
8.

34
28

9.
37

30
1.

26
32

4.
12

25
6.

67
28

9.
44

33
8.

98
38

1.
55

G
en

et
ic

22
6.

05
30

1.
36

19
7.

57
23

9.
79

22
3.

19
26

7.
24

21
0.

63
23

1.
92

29
0.

67

Pr
un

in
g

35
4.

23
30

1.
21

40
9.

22
35

4.
59

35
6.

18
32

1.
82

40
2.

34
44

1.
23

45
5.

63

ST
O

P
SH

Er
Lo

C
k

2.
32

3.
41

2.
11

2.
08

1.
56

2.
33

2.
49

1.
73

2.
45

SA
+

13
.3

1
14

.6
7

12
.2

3
12

.4
5

14
.9

5
13

.9
7

12
.8

8
10

.1
2

14
.8

1

SA
13

.3
9

12
.5

8
16

.1
4

15
.5

5
12

.0
4

16
.9

4
11

.7
6

12
.3

5
13

.5
5

G
en

et
ic

+
12

.5
6

12
.6

1
15

.9
5

13
.3

7
13

.4
9

16
.6

8
14

.8
8

13
.1

4
12

.5
9

G
en

et
ic

13
.5

3
13

.5
8

12
.8

8
15

.4
7

11
.5

1
13

.6
7

12
.0

2
11

.2
7

12
.2

8

Pr
un

in
g

19
.4

1
11

.7
8

17
.3

2
36

.3
6

21
.6

9
31

.5
5

22
.9

2
15

.3
4

19
.5

3

D
ET

Fo
rw

ar
d

0.
59

0.
72

0.
81

0.
92

0.
69

0.
89

0.
93

0.
96

0.
94

B
ac

kw
ar

d
0.

71
0.

78
0.

99
0.

85
0.

76
0.

88
0.

95
0.

81
0.

99

1588 Machine Learning (2022) 111:1551–1595

1 3

Appendix 8: Comparing search strategies on the UCI test dataset using
testing time

See Tables 11 and 12.

Table 9 Bayesian signed-rank
test on the UCI test sets (n = 30)
for training and testing times as
cost

Algorithm P(SHErLoCk > Algorithm)

MAXSTEP STOP

Training time Testing time Training time Testing
time

SA+ 0.9800 0.3408 0.5113 0.6287
SA 0.9983 0.9929 0.8748 0.8727
GA+ 0.9982 0.6908 0.9485 0.4987
GA 0.9553 0.8814 0.9112 0.9418
Pruning 0.9999 0.9346 0.9779 0.4005

Table 10 Bayesian signed-
rank test on the UCI test sets
(n = 100) for training and testing
times as cost

Algorithm P(SHErLoCk > Algorithm)

MAXSTEP STOP

Training time Testing time Training time Testing
time

SA+ 0.9898 0.5854 0.7378 0.7592
SA 0.9983 0.9647 0.6888 0.3361
GA+ 0.7826 0.8720 0.7246 0.5074
GA 0.7355 0.8271 0.4535 0.6399
Pruning 1.0000 0.9657 0.9998 0.8097

1589Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
11

C

om
pa

rin
g

th
e

pr
op

os
ed

 s
ea

rc
h

str
at

eg
y

(S
H

Er
Lo

C
k)

 w
ith

 o
th

er
 s

el
ec

tio
n

m
et

ho
ds

 r
eg

ar
di

ng
 e

ns
em

bl
e

ac
cu

ra
cy

 a
nd

 c
om

pu
ta

tio
na

l t
im

e
on

 b
in

ar
y

cl
as

si
fic

at
io

n
pr

ob
le

m
s o

f t
he

 U
C

I t
es

t s
ub

se
ts

 u
si

ng
 a

n
en

se
m

bl
e

po
ol

 o
f n

=
3
0
 c

la
ss

ifi
er

s a
nd

 te
sti

ng
 ti

m
e

as
 c

os
t

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

M
et

ho
d

En
se

m
bl

e
ac

cu
ra

cy
M

A
X

ST
EP

SH
Er

Lo
C

k
93

.7
2%

96
.8

8%
75

.2
8%

96
.3

3%
97

.7
7%

98
.4

9%
99

.5
4%

94
.1

3%
88

.2
0%

SA
+

93
.9

9%
96

.8
0%

75
.4

6%
96

.5
5%

98
.3

8%
98

.3
1%

99
.2

1%
94

.0
4%

88
.1

1%
SA

93
.5

1%
96

.1
9%

75
.0

3%
96

.0
7%

98
.3

3%
97

.8
0%

98
.5

6%
93

.9
9%

87
.0

2%
G

en
et

ic
+

93
.5

7%
96

.3
5%

75
.5

9%
96

.1
9%

97
.9

1%
98

.5
9%

99
.4

4%
92

.5
1%

88
.3

9%
G

en
et

ic
93

.8
8%

96
.8

9%
75

.0
7%

96
.0

5%
98

.1
6%

98
.5

7%
99

.2
5%

92
.3

3%
87

.0
4%

Pr
un

in
g

93
.5

1%
95

.4
8%

75
.1

7%
96

.9
1%

98
.5

5%
98

.4
2%

99
.0

3%
93

.1
1%

87
.3

2%
ST

O
P

SH
Er

Lo
C

k
92

.3
3%

94
.5

4%
75

.2
1%

94
.5

4%
99

.0
1%

96
.5

3%
97

.9
2%

91
.8

4%
85

.0
8%

SA
+

92
.3

0%
95

.1
0%

74
.9

6%
94

.0
1%

98
.9

9%
96

.3
2%

98
.1

8%
91

.4
8%

85
.5

1%
SA

91
.7

8%
94

.2
3%

74
.9

9%
93

.8
0%

98
.4

2%
96

.8
2%

98
.1

1%
92

.0
2%

85
.4

2%
G

en
et

ic
+

91
.9

1%
94

.1
7%

75
.2

9%
94

.3
9%

99
.1

8%
96

.0
4%

97
.9

1%
92

.5
7%

85
.9

9%
G

en
et

ic
92

.0
9%

94
.0

2%
75

.8
9%

93
.9

1%
98

.0
9%

96
.3

3%
98

.0
9%

91
.9

1%
84

.3
6%

Pr
un

in
g

92
.8

8%
94

.1
6%

75
.6

6%
94

.3
3%

98
.7

7%
96

.2
2%

98
.0

1%
92

.2
3%

84
.9

9%
D

ET
Fo

rw
ar

d
88

.5
1%

95
.0

1%
73

.3
3%

94
.7

7%
98

.1
1%

96
.0

0%
98

.6
5%

91
.2

9%
82

.5
9%

B
ac

kw
ar

d
89

.3
9%

94
.9

2%
73

.4
5%

94
.6

8%
98

.1
1%

96
.0

0%
98

.4
9%

90
.9

8%
82

.5
9%

1590 Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
11

 (
co

nt
in

ue
d)

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

C
om

pu
ta

tio
na

l t
im

e
(s

ec
s)

M
A

X
ST

EP
SH

Er
Lo

C
k

36
.4

7
32

.4
5

38
.4

6
33

.8
9

34
.2

1
30

.5
9

34
.8

9
39

.0
3

36
.7

9

SA
+

89
.9

69
.5

6
88

.3
5

82
.1

3
89

.4
6

71
.9

3
66

.0
9

89
.3

1
69

.3
9

SA
82

.7
8

76
.2

6
73

.8
9

78
.3

3
69

.2
8

75
.9

5
69

.8
8

75
.0

8
75

.7
4

G
en

et
ic

+
67

.9
2

55
.9

8
50

.5
2

60
.9

8
61

.9
7

60
.0

0
58

.3
1

61
.9

3
57

.9
9

G
en

et
ic

49
.9

7
44

.4
8

50
.9

5
58

.1
1

53
.8

8
53

.6
2

49
.4

6
54

.0
2

49
.9

3

Pr
un

in
g

12
0.

12
12

1.
09

10
1.

02
96

.2
8

96
.8

6
93

.6
7

11
3.

10
96

.9
8

94
.6

38

ST
O

P
SH

Er
Lo

C
k

0.
38

0.
29

0.
56

0.
36

0.
72

0.
52

0.
29

0.
36

0.
41

8

SA
+

4.
55

4.
11

3.
83

4.
19

4.
03

3.
89

3.
56

3.
08

3.
97

SA
3.

81
2.

47
3.

69
3.

13
2.

79
3.

01
4.

51
3.

03
2.

38

G
en

et
ic

+
2.

38
2.

34
3.

13
2.

99
1.

55
2.

16
3.

16
2.

11
3.

10

G
en

et
ic

3.
55

2.
46

3.
77

4.
08

2.
81

4.
93

3.
91

2.
98

3.
27

Pr
un

in
g

13
.3

9
11

.3
3

14
.3

9
14

.2
3

10
.3

3
14

.1
5

13
.3

9
13

.2
9

10
.3

6

D
ET

Fo
rw

ar
d

0.
23

0.
24

0.
32

0.
24

0.
32

0.
34

0.
36

0.
31

0.
33

B
ac

kw
ar

d
0.

37
0.

33
0.

34
0.

52
0.

29
0.

42
0.

34
0.

29
0.

21

1591Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
12

C

om
pa

rin
g

th
e

pr
op

os
ed

 s
ea

rc
h

str
at

eg
y

(S
H

Er
Lo

C
k)

 w
ith

 o
th

er
 s

el
ec

tio
n

m
et

ho
ds

 r
eg

ar
di

ng
 e

ns
em

bl
e

ac
cu

ra
cy

 a
nd

 c
om

pu
ta

tio
na

l t
im

e
on

 b
in

ar
y

cl
as

si
fic

at
io

n
pr

ob
le

m
s o

f U
C

I t
es

t s
ub

se
ts

 u
si

ng
 a

n
en

se
m

bl
e

po
ol

 o
f n

=
1
0
0
 c

la
ss

ifi
er

s a
nd

 te
sti

ng
 ti

m
e

as
 c

os
t

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

M
et

ho
d

En
se

m
bl

e
ac

cu
ra

cy
M

A
X

ST
EP

SH
Er

Lo
C

k
95

.9
8%

97
.6

8%
76

.5
8%

94
.9

1%
99

.1
7%

99
.0

5%
99

.9
9%

93
.7

2%
88

.4
9%

SA
+

95
.4

5%
97

.8
5%

76
.9

8%
95

.8
8%

99
.2

8%
98

.6
3%

99
.9

9%
93

.5
4%

87
.8

1%
SA

95
.3

7%
97

.4
4%

76
.0

8%
95

.7
7%

98
.8

8%
98

.5
1%

99
.9

0%
93

.0
6%

87
.3

6%
G

en
et

ic
+

95
.9

9%
96

.8
7%

76
.4

6%
95

.6
8%

99
.2

5%
98

.6
3%

99
.9

9%
93

.8
8%

88
.1

3
%

G
en

et
ic

95
.8

3%
96

.7
5%

76
.6

9
%

96
.4

4%
99

.3
1%

99
.0

2%
99

.9
3%

93
.7

2%
88

.5
1%

Pr
un

in
g

95
.8

1%
97

.0
0

%
76

.0
9

%
95

.5
3

%
99

.3
3

%
98

.4
1

%
99

.7
9%

93
.6

1%
87

.3
2

%
ST

O
P

SH
Er

Lo
C

k
93

.8
8

%
95

.4
9

%
75

.9
3%

94
.6

6%
98

.4
9%

98
.4

7%
99

.0
1%

93
.7

4%
86

.5
5%

SA
+

93
.3

1
%

95
.6

6
%

76
.1

9%
95

.1
3%

98
.2

2%
97

.8
6%

99
.0

3%
93

.5
5%

86
.4

1%
SA

93
.7

2%
95

.9
1%

76
.0

3%
95

.2
9%

98
.4

4%
97

.9
0

%
99

.0
3

%
93

.4
3%

86
.8

7%
G

en
et

ic
+

93
.8

4%
95

.9
3%

75
.9

9%
95

.1
8%

98
.0

2%
97

.9
8

%
99

.4
1

%
93

.9
2%

86
.0

1%
G

en
et

ic
93

.2
2%

95
.6

9%
76

.2
5

%
95

.4
8%

98
.0

0%
98

.1
1%

99
.4

2%
92

.7
4%

86
.8

8%
Pr

un
in

g
93

.3
1%

95
.7

0%
75

.7
4%

94
.7

9%
99

.1
2%

97
.8

9%
99

.0
3%

92
.7

6%
86

.3
6%

D
ET

Fo
rw

ar
d

93
.1

2%
95

.1
7%

75
.9

9%
93

.6
7%

98
.0

9%
96

.3
1%

99
.8

3%
92

.4
9%

87
.0

7%
B

ac
kw

ar
d

93
.1

2%
95

.9
8%

75
.9

9%
93

.3
3%

98
.8

1%
96

.3
1%

99
.7

0%
93

.3
2%

87
.0

7%

1592 Machine Learning (2022) 111:1551–1595

1 3

Ta
bl

e
12

 (
co

nt
in

ue
d)

D
at

as
et

 (s
iz

e)
M

A
G

IC
Sp

am
ba

se
H

IG
G

S
EE

G
M

us
k

B
re

as
t

M
us

hr
oo

m
G

is
et

te
A

du
lt

(1
9,

02
0)

(4
60

1)
(2

0,
00

0)
(1

4,
98

0)
(6

59
8)

(6
99

)
(8

12
4)

(1
3,

50
0)

(4
8,

84
2)

C
om

pu
ta

tio
na

l t
im

e
(s

ec
s)

M
A

X
ST

EP
SH

Er
Lo

C
k

29
1.

01
21

1.
22

29
1.

32
27

9.
22

20
2.

25
18

9.
33

18
7.

34
24

2.
67

16
4.

78

SA
+

29
9.

01
34

0.
23

31
0.

82
29

8.
56

29
3.

23
31

9.
34

28
3.

00
24

1.
22

30
5.

11

SA
29

4.
23

27
1.

45
28

9.
49

29
1.

02
23

9.
87

28
2.

42
29

9.
93

30
6.

39
27

4.
73

G
en

et
ic

+
27

5.
21

24
3.

89
23

2.
51

24
0.

89
23

1.
92

28
1.

55
31

2.
19

23
9.

49
27

1.
97

G
en

et
ic

26
1.

33
29

6.
34

24
8.

33
26

3.
71

22
8.

37
28

4.
83

27
3.

57
29

9.
72

25
4.

75

Pr
un

in
g

33
4.

13
32

3.
89

36
4.

79
32

8.
53

36
6.

92
34

2.
22

31
7.

04
24

9.
23

31
1.

18

ST
O

P
SH

Er
Lo

C
k

3.
21

3.
34

3.
09

3.
13

2.
64

2.
92

3.
09

2.
39

2.
75

SA
+

17
.0

7
15

.3
2

16
.4

9
14

.5
3

14
.6

2
15

.0
1

14
.9

0
16

.3
6

17
.4

2

SA
16

.7
6

14
.5

3
16

.6
6

13
.9

4
13

.0
0

13
.0

4
14

.4
1

14
.2

5
12

.4
9

G
en

et
ic

+
16

.2
1

15
.3

4
15

.1
4

15
.7

0
14

.3
4

15
.4

2
14

.3
6

14
.9

5
16

.0
1

G
en

et
ic

10
.2

1
14

.0
9

13
.2

8
13

.1
2

10
.8

7
13

.3
8

11
.7

9
13

.4
7

12
.5

2

Pr
un

in
g

18
.0

1
16

.2
1

16
.8

9
22

.3
1

20
.1

0
19

.6
3

22
.9

1
19

.3
2

16
.4

1

D
ET

Fo
rw

ar
d

1.
01

1.
45

1.
33

1.
28

0.
99

1.
32

1.
66

2.
09

2.
33

B
ac

kw
ar

d
1.

42
1.

41
1.

05
1.

58
1.

06
1.

11
1.

32
0.

94
1.

61

1593Machine Learning (2022) 111:1551–1595

1 3

Acknowledgements This work was supported by the project EFOP-3.6.2-16-2017-00015 supported by the
European Union, co-financed by the European Social Fund.

The research was also supported by the ÚNKP-20-4-I New National Excellence Program of the Minis-
try for Innovation and Technology from the Source of the National Research, Development and Innovation
Fund.

Funding Open access funding provided by University of Debrecen.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Antal, B., & Hajdu, A. (2012). An ensemble-based system for microaneurysm detection and diabetic retin-
opathy grading. IEEE Transactions on Biomedical Engineering, 59(6), 1720–1726. https:// doi. org/ 10.
1109/ TBME. 2012. 21931 26.

Antal, B., & Hajdu, A. (2014). An ensemble-based system for automatic screening of diabetic retinopathy.
Knowledge-Based Systems, 60, 20–27. https:// doi. org/ 10. 1016/j. knosys. 2013. 12. 023.

Benavoli, A., et al. (2017). Time for a change: A tutorial for comparing multiple classifiers through Bayes-
ian analysis. The Journal of Machine Learning Research, 18(1), 2653–2688.

Bucilu, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the 12th
ACM SIGKDD international conference on knowledge discovery and data mining, KDD’06 (pp. 535–
541). Association for Computing Machinery, New York, NY, USA https:// doi. org/ 10. 1145/ 11504 02.
11504 64

Cavalcanti, G. D., Oliveira, L. S., Moura, T. J., & Carvalho, G. V. (2016). Combining diversity measures
for ensemble pruning. Pattern Recognition Letters, 74, 38–45. https:// doi. org/ 10. 1016/j. patrec. 2016.
01. 029.

Cho, S. B., & Kim, J. H. (1995). Combining multiple neural networks by fuzzy integral for robust classifica-
tion. IEEE Transactions on Systems, Man, and Cybernetics, 25(2), 380–384. https:// doi. org/ 10. 1109/
21. 364825.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algo-
rithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Dheeru, D., & Karra Taniskidou, E. (2017) UCI machine learning repository.
Du, K., & Swamy, M. (2016). Search and optimization by metaheuristics: Techniques and algorithms

inspired by nature. Springer
Dzahini, K. (2020). Expected complexity analysis of stochastic direct-search. Les Cahiers du GERAD.

GERAD HEC Montréal. https:// books. google. hu/ books? id= PKuvz QEACA AJ
Freund, Y., & Schapire, R. E. (1999). Large margin classification using the perceptron algorithm.

Machine Learning, 37, 277–296.
Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Addison-Wesley.
Hajdu, A., Hajdu, L., Jónás, A., Kovács, L., & Tomán, H. (2013). Generalizing the majority voting

scheme to spatially constrained voting. IEEE Transactions on Image Processing, 22(11), 4182–
4194. https:// doi. org/ 10. 1109/ TIP. 2013. 22711 16.

Hajdu, A., Hajdu, L., Kovács, L., & Tomán, H. (2013). Diversity measures for majority voting in the
spatial domain. In J.S. Pan, M.M. Polycarpou, M. Woźniak, A.C.P.L.F. de Carvalho, H. Quintián,
E. Corchado (Eds.), Hybrid artificial intelligent systems (pp. 314–323). Springer Berlin Heidelberg.

Hajdu, A., Tomán, H., Kovács, L., & Hajdu, L. (2016). Composing ensembles by a stochastic approach
under execution time constraint. In 2016 23rd international conference on pattern recognition
(ICPR) (pp. 222–227). https:// doi. org/ 10. 1109/ ICPR. 2016. 78996 37

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TBME.2012.2193126
https://doi.org/10.1109/TBME.2012.2193126
https://doi.org/10.1016/j.knosys.2013.12.023
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1016/j.patrec.2016.01.029
https://doi.org/10.1016/j.patrec.2016.01.029
https://doi.org/10.1109/21.364825
https://doi.org/10.1109/21.364825
https://books.google.hu/books?id=PKuvzQEACAAJ
https://doi.org/10.1109/TIP.2013.2271116
https://doi.org/10.1109/ICPR.2016.7899637

1594 Machine Learning (2022) 111:1551–1595

1 3

Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10), 993–1001. https:// doi. org/ 10. 1109/ 34. 58871.

Harangi, B., Baran, A., & Hajdu, A. (2018). Classification of skin lesions using an ensemble of deep
neural networks. In 40th annual international conference of the IEEE engineering in medicine and
biology society, EMBC 2018, Honolulu, HI, USA, July 18–21, 2018 (pp. 2575–2578).

Hernández-Lobato, D., Martinez-Munoz, G., & Suarez, A. (2009). Statistical instance-based pruning in
ensembles of independent classifiers. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 31(2), 364–369.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
Ho, T. K., Hull, J. J., & Srihari, S. N. (1994). Decision combination in multiple classifier systems. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 16(1), 66–75. https:// doi. org/ 10. 1109/
34. 273716.

Huang, Y. S., & Suen, C. Y. (1995). A method of combining multiple experts for the recognition of
unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 17(1), 90–94. https:// doi. org/ 10. 1109/ 34. 368145.

Klastorin, T. (1990). On a discrete nonlinear and nonseparable knapsack problem. Operations Research
Letters, 9(4), 233–237. https:// doi. org/ 10. 1016/ 0167- 6377(90) 90067-F.

Kong, E. B., & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and variance. In
A. Prieditis & S. Russell (Eds.), Machine learning proceedings 1995 (pp. 313–321). Morgan Kauf-
mann. https:// doi. org/ 10. 1016/ B978-1- 55860- 377-6. 50046-3

Kuncheva, L. I. (2004). Combining pattern classifiers: Methods and algorithms. Wiley-Interscience.
Kurz, M., Hölzl, G., & Ferscha, A. (2013). Enabling dynamic sensor configuration and cooperation in

opportunistic activity recognition systems. International Journal of Distributed Sensor Networks,
9(6), 652385. https:// doi. org/ 10. 1155/ 2013/ 652385.

Lam, L., & Suen, S. Y. (1997). Application of majority voting to pattern recognition: An analysis of its
behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics, 27(5), 553–568.
https:// doi. org/ 10. 1109/ 3468. 618255.

Larochelle, H., & Bengio, Y. (2008). Classification using discriminative restricted Boltzmann machines.
In Proceedings of the 25th international conference on machine learning (ICML) (pp. 536–543).

Martello, S., & Toth, P. (1990). Knapsack problems: Algorithms and computer implementations. Wiley.
Martinez-Munoz, G., & Suarez, A. (2007). Using boosting to prune bagging ensembles. Pattern Recog-

nition Letters, 28, 156–165. https:// doi. org/ 10. 1016/j. patrec. 2006. 06. 018.
Mousavi, R., & Eftekhari, M. (2015). A new ensemble learning methodology based on hybridization of

classifier ensemble selection approaches. Applied Soft Computing, 37, 652–666. https:// doi. org/ 10.
1016/j. asoc. 2015. 09. 009.

Pisinger, D. (1995). Algorithms for knapsack problems.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
Sharkey, T. C., Romeijn, H. E., & Geunes, J. (2011). A class of nonlinear nonseparable continuous knap-

sack and multiple-choice knapsack problems. Mathematical Programming, 126(1), 69–96. https://
doi. org/ 10. 1007/ s10107- 009- 0274-9.

Soto, V., Martínez-Muñoz, G., Hernández-Lobato, D., & Suárez, A. (2010). A double pruning algorithm
for classification ensembles. In N. El Gayar, J. Kittler, & F. Roli (Eds.), Multiple classifier systems
(pp. 104–113). Springer Berlin Heidelberg.

Suratgar, A. A., Tavakoli, M. B., & Hoseinabadi, A. (2005). Modified Levenberg–Marquardt method for
neural networks training (pp. 24–48). World Academy of Science, Engineering and Technology.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich,
A. (2015). Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (pp. 1–9).

Tang, J., & Gupta, A. K. (1984). On the distribution of the product of independent beta random variables.
Statistics & Probability Letters, 2(3), 165–168.

Tempo, R., & Ishii, H. (2007). Monte Carlo and Las Vegas randomized algorithms for systems and control*:
An introduction. European Journal of Control, 13(2), 189–203. https:// doi. org/ 10. 3166/ ejc. 13. 189- 203.

Tiba, A., Hajdu, A., Terdik, G., & Toman, H. (2019). Optimizing majority voting based systems under a
resource constraint for multiclass problems. eprint arXiv: 1904. 04360

Timotheou, S. (2010). The random neural network: A survey. The Computer Journal, 53, 251–267.
Williamson, D. P., & Shmoys, D. B. (2011). The design of approximation algorithms (1st ed.). Cambridge

University Press.
Xu, L., Krzyzak, A., & Suen, C. Y. (1992). Methods of combining multiple classifiers and their applications

to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics, 22(3), 418–435.
https:// doi. org/ 10. 1109/ 21. 155943.

https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.273716
https://doi.org/10.1109/34.273716
https://doi.org/10.1109/34.368145
https://doi.org/10.1016/0167-6377(90)90067-F
https://doi.org/10.1016/B978-1-55860-377-6.50046-3
https://doi.org/10.1155/2013/652385
https://doi.org/10.1109/3468.618255
https://doi.org/10.1016/j.patrec.2006.06.018
https://doi.org/10.1016/j.asoc.2015.09.009
https://doi.org/10.1016/j.asoc.2015.09.009
https://doi.org/10.1007/s10107-009-0274-9
https://doi.org/10.1007/s10107-009-0274-9
https://doi.org/10.3166/ejc.13.189-203
http://arxiv.org/abs/1904.04360
https://doi.org/10.1109/21.155943

1595Machine Learning (2022) 111:1551–1595

1 3

Zhou, Z. H. (2012). Ensemble methods: Foundations and algorithms (1st ed.). Chapman & Hall/CRC.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	A stochastic approach to handle resource constraints as knapsack problems in ensemble pruning
	Abstract
	1 Introduction
	2 Basic concepts and notation
	3 Deterministic selection strategies
	4 Stochastic search algorithms
	5 Stochastic estimation of ensemble energy
	5.1 Estimation of the distribution of member accuracies
	5.2 Adding time constraints to the model
	5.3 Stopping rule for ensemble selection

	6 Empirical analysis
	6.1 Kaggle challenges
	6.2 Binary classification problems
	6.3 Optic disc detection

	7 Discussion
	Acknowledgements
	References

