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Abstract
Co-clustering aims at simultaneously partitioning both dimensions of a data matrix. It has 
demonstrated better performances than one-sided clustering for high-dimensional data. 
The Latent Block Model (LBM) is a probabilistic model for co-clustering based on mix-
ture models that has proven useful for a broad class of data. In this paper, we propose to 
leverage prior knowledge in the form of pairwise semi-supervision in both row and column 
space to improve the clustering performances of the algorithms derived from this model. 
We present a general probabilistic framework for incorporating must link and cannot link 
relationships in the LBM based on Hidden Markov Random Fields. We instantiate this 
framework on a model for count data and present two inference algorithms based on Vari-
ational and Classification EM. Extensive experiments on simulated data and on real-world 
attributed networks confirm the interest of our approach and demonstrate the effectiveness 
of our algorithms.

Keywords  Co-clustering · Latent Block Model · Semi-supervised Learning · Hidden 
Markov Random Fields

1  Introduction

Co-clustering, referred to by a variety of different names, aims at simultaneously parti-
tioning both dimensions of a data matrix (Madeira & Oliveira, 2004; Van Mechelen et al., 
2004; Govaert & Nadif, 2013). It has demonstrated better performances than one-sided 
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clustering for high-dimensional data (Banerjee et al., 2004; Deodhar & Ghosh, 2010; Yu 
et  al., 2019; Bock, 2020; Affeldt et  al., 2021). There are different approaches dedicated 
to co-clustering. Among these, the Latent Block Model (LBM) (Govaert & Nadif, 2005, 
2018) is a probabilistic model devoted to co-clustering that allows to model data of dif-
ferent types using the appropriate mixture distribution  (Govaert & Nadif, 2013; Ailem 
et al., 2017), to derive efficient co-clustering algorithms based on variants of the EM algo-
rithm (Dempster et al., 1977) and to do model selection in order to determine the appropri-
ate number of row and column clusters.

Semi-supervised (or constrained) clustering  (Pensa & Boulicaut, 2008; Basu et  al., 
2008) has allowed clustering algorithms to better recover the clusters of a dataset with par-
tial supervision on the set of data points. Co-clustering algorithms can benefit from side 
information in both row and column space (Song et al., 2010; Salah & Nadif, 2017; Salah 
et al., 2018; Affeldt et al., 2021). However, the existing semi-supervised approaches have 
not been presented to the probabilistic setting of the LBM.

In this paper, we propose a general model, namely HLBM, to incorporate side infor-
mation in the form of pairwise constraints between the rows and the columns of a data 
matrix in the LBM. This semi-supervision is formulated in a probabilistic setup using Hid-
den Markov Random Fields (HMRF). We instantiate this model for count data with a Pois-
son distribution and propose two algorithms based on Classification EM and Variational 
EM. We analyze the behavior of these algorithms when varying the trade-off between the 
semi-supervision and the data likelihood on data simulated with the model. We apply our 
algorithm on real-world attributed networks and compare its clustering performances to 
existing algorithms.

2 � Related work

In the domain of unsupervised image segmentation, Ambroise and Govaert (1998) propose 
to introduce similarity constraints between the data points in EM by optimizing a penalized 
variational criterion for one-sided clustering and investigate the convergence properties of 
their algorithm. Celeux et al. (2003) present three algorithms for clustering with mixture 
models and HMRF: mean, mode and simulated field EM and compare their algorithms to 
the iterated conditional modes algorithm (ICM) (Besag, 1986) that maximizes the pseudo-
likelihood using a Maximum A Posteriori classification rule. The authors report the good 
performances of mean and simulated field EM algorithms compared with ICM.

Wagstaff et al. (2001) propose to add Must Link (ML) and Cannot Link (CL) constraints 
to the k-means algorithm. These constraints can not be violated and are not presented in 
a probabilistic context. Basu et  al. (2004) presents a probabilistic framework that uses a 
HMRF to include ML and CL relationships and propose an algorithm based on ICM. This 
algorithm is compared with Belief Propagation and linear programming relaxation of the 
objective function in  (Bilenko & Basu, 2004), where the authors present empirical evi-
dence that ICM gives similar results as these more complex algorithms when the number 
of constraints is great enough. Lange et al. (2005) experimentally show that their algorithm 
based on deterministic annealing with mean-field variational inference generally gives bet-
ter clustering performances than the ICM-based algorithm of Basu et al. (2004) even with 
a great number of constraints. Tang et al. (2009) considers ML and CL relationships in the 
context of graph clustering with matrix factorization by adding penalty terms computed 
with the Euclidean distance between the learned factors.
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Pensa and Boulicaut (2008) present a constrained co-clustering algorithm based on a 
metric approach that includes ML, CL as well as interval constraints. These introduced 
constraints cannot be violated like in Wagstaff et  al. (2001). The interval constraint is 
defined based on an ordering on the set of rows (or columns) and define an interval con-
straint on the set of row (or column) clusters such that the obtained one-sided clusters are 
intervals w.r.t. the given ordering. Kilic et al. (2016) propose a semi-supervised co-clus-
tering algorithm in a "fuzzy" context in which the supervision is expressed by using fixed 
labels during inference for data points whose cluster is known. This approach is also used 
in Nam et al. (2020) in the context of the LBM. Yan et al. (2013) introduce "fuzzy" ML 
and CL relationships in their metric-based approach for co-clustering. The additive penalty 
terms introduced by the constraints in their objective functions (without justification) can 
be seen as a special case of ours where all relationships have the same weight.

Another approach to incorporating constraints in an unsupervised setting is based on 
manifold learning with Laplacian regularization. It consists in building a k-nearest neigh-
bors graph that describes the intrinsic geometry of the data. It has been proposed in Zhu 
and Lafferty (2005) and He et al. (2011) on Gaussian mixture models, but the E or M steps 
can not be expressed in closed form, requiring gradient methods or heuristics. This has 
been applied in Salah and Nadif (2017) on von-Mises Fisher mixture models, in the context 
of item recommendation, to incorporate constraints from a social network that connects the 
users.

As we focus on the co-clustering task, the closest work to ours is the CITTC model 
of Song et al. (2010), where the authors propose a constrained version of the information 
theoretic co-clustering (ITCC) model of Dhillon et al. (2003) by using two HMRFs. How-
ever, Govaert and Nadif (2018) proved that ITCC with the Kullback-Leibler divergence as 
the chosen Bregman divergence is equivalent to the Poisson LBM with equal mixture pro-
portions. This hypothesis of equal mixture proportions makes it difficult for the algorithm 
to recover unbalanced clusters. Moreover, on an algorithmic point of view, ITCC does not 
benefit from reduced intermediate matrices (see Sect. 4.1). As presented in Appendix 1, 
CITTC can be seen as a particular case of our model.

3 � The proposed model

The data is represented by a matrix X = (xij) of size n × d , where the xij are assumed to be 
sampled from a given parametric distribution of density � . The value of each entry of the 
data matrix depends on the latent row and columns partitions and on the model parameters.

3.1 � Definition of the model

3.1.1 � Sampling the latent variables in the HMRF

The partition of the set of rows in g clusters is represented by the latent classification matrix 
Z = (zik) , with 

∑g

k=1
zik = 1 , where zik = 1 if row i belongs to row cluster k and zik = 0 oth-

erwise. Alternatively, we write zi ∈ {1,… , g} to be the cluster index of i. Similarly, the 
partition of the set of columns in m clusters is represented by the classification matrix 
W = (wj�) , where wj� = 1 or wj = � if column j belongs to column cluster � . Denoting by 
Z and W the set of possible partitions of the rows and columns of X into respectively g and 
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m clusters, the latent space of the model is Z ×W . Let � be the vector of parameters of the 
model. The classification matrices of the rows and the columns are a priori independent:

In the following, the semi-supervision over the set of rows (resp. columns) is expressed 
using pairwise and symmetric relationships between the latent classification vectors zi 
(resp. wj ). Let �r (resp. �c ) be the set of rows (resp. columns) that are in a semi-supervi-
sion relationship. We write Nr(i) ⊂ 𝛶r to be the set of neighbors of row i, where i ∉ Nr(i) 
and define a Markov Random Field (MRF) on �r , where for i ∈ �r , the random variable 
zi is dependent on a set of neighboring random variables {zi� | i� ∈ Nr(i)} . With MRF, the 
graph of conditional independence is undirected, that is i� ∈ Nr(i) ⟺ i ∈ Nr(i

�) . The 
Hammersley-Clifford theorem implies that the joint distribution of the MRF can be rep-
resented as a product of factors, one per maximal clique of the graph. In the following, we 
restrict the model to be a pairwise MRF, that is, the parameterization of the joint distribu-
tion is restricted to the edges of the graph, rather than the maximal cliques. For i ∈ �r and 
i� ∈ Nr(i) , we define the edge potential functions � r

ii′
 depending on the latent classification 

matrix Z and the potential parameter �r . For the other nodes, i ∉ �r , we let the latent vari-
ables be independent random variables following a categorical distribution of parameter � , 
where 

∑
k �k = 1 , as in a classical LBM (Govaert & Nadif, 2008). Thus, the joint distribu-

tion over Z is given by:

where �r is the partition function of the HMRF on the rows. We can show that �r only 
depends on �r (see Appendix 1). We define a similar HMRF on �c for the columns, with 
potentials �c

jj′
 , mixture proportions � and partition function �c(�

c).
In the following, we consider two types of relationships: ML and CL relationships1 and 

define the edge potential in the MRF so that nodes in a ML relationship are more likely 
to be in the same cluster and nodes in a CL relationship are more likely to be in different 
clusters. In order to define the potential functions, we consider a given symmetric weight 
matrix �r = (�r

ii�
) , where �r

ii′
≥ 0 corresponds to the weight of the ML or CL relationship 

between row i and row i′:

where Mr (resp. Cr ) denotes the set of undirected edges representing a ML (resp. CL) 
relationship and 1(.) returns 1 if its argument is true and 0 otherwise. In the same way, 
we define the edge potential for the set of columns �c

jj�
(wj,wj� ;�

c) , with parameter matrix 
�c = (�c

jj�
) . This defines a distribution on the latent space.

p(Z,W;�) = p(Z;�)p(W;�).

(1)p(Z;�) = �r(�
r)−1 exp

(∑
i∉�r

log �zi +
1

2

∑
i∈�r

∑
i�∈Nr(i)

log� r
ii�
(zi, zi� ;�

r)
)
,

log� r
ii�
(zi, zi� ;�

r) =

{
−�r

ii�
1(zi� ≠ zi) (i, i�) ∈ M

r

−�r
ii�
1(zi� = zi) (i, i�) ∈ C

r.

1  Note that, in our context, the semi-supervision is introduced in a probabilistic setting. Thus, the relation-
ships could be called Should Link and Should not Link. However, we keep the names ML and CL for con-
sistency with the existing literature (e.g. Basu et al. (2004))
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3.1.2 � Sampling the observed variables

The univariate random variables xij are conditionally independent given Z and W 
and follow a probability distribution of density function � and parameter � = (�ijk�) : 
xij|(zik = 1,wj� = 1) ∼ �(.;�ijk�). Note that the general definition with parameter �ijk� 
includes the more classical parameterization �ijk� = �k� and is not intended for practical use 
as such. The graphical model is depicted in Fig. 1. Thus,

3.1.3 � Complete data log‑likelihood

The vector of parameters of the model is � = {�, �, �, �r, �c} . Using  (1) and  (2), the 
complete data log-likelihood is given by:

(2)p(X|Z,W;�) =
∏
ij

�(xij;�ijziwj
) =

∏
ijk�

�(xij;�ijk�)
zikwj� .

log p(X,Z,W;�) = log p(Z;�) + log p(W;�) + log p(X|Z,W;�)

=
∑
i∉�r

∑
k

zik log �k +
∑
j∉�c

∑
�

wj� log ��

−
∑

(i,i�)∈Mr

�r
ii�
1(zi� ≠ zi) −

∑
(i,i�)∈Cr

�r
ii�
1(zi� = zi)

−
∑

(j,j�)∈Mc

�c
jj�
1(wj� ≠ wj) −

∑
(j,j�)∈Cc

�c
jj�
1(wj� = wj)

+
∑
ijk�

zikwj� log�(xij;�ijk�) − log
(
�r(�

r)�c(�
c)
)
.

Xzi wj

zi1zi2

zi3

wj1 wj2

wj3 wj4. . . . . .

α β

Ξr Ξc

d− |Υc|n− |Υr|

|Υr| |Υc|

n× d

Fig. 1   Graphical model of the HLBM, where � is the parameter of the mixture distribution, � = (�1,… , �g) 
and � = (�1,… , �m) are the mixture proportions, �r and �c are the parameter matrices of the potentials of 
the HMRF
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In this semi-supervised setup, � can be decomposed as � = {�L,�F} , where 
�L = {�, �, �} is to be learned and �F = {�r, �c} is fixed since it is given as input of the 
algorithms. In the following, we define Sr = (sr

ii�
) such that:

where 𝜆r > 0 is a scaling factor for all the weights. The model is not identifiable for �r and 
S
r , but this is not a problem since these parameters are fixed. Thereby, the log-potential 

can be simply written up to a constant as log� r
ii�
(zi, zi� ;�r,S

r) = �rs
r
ii�

∑
k zikzi�k . Similarly, 

we can define Sc = (sc
jj�
) with scaling factor �c for the weights on the column space. Since 

�r (resp. �c ) only depends only on �r (resp. �c ) (see Appendix 1), the complete data log-
likelihood is then reduced, up to a constant, to:

3.1.4 � Including an external field in the HMRF

In the proposed model, the rows or columns in the HMRFs do not contribute to the mixture 
proportions of the model. As proposed in (Celeux et al. 2002), we can address this problem 
by setting all nodes in the MRFs and defining mixture-like parameters � as an external 
field, using node potentials. Thus, we can define the following variant of the model, where 
�r = {1,… , n} and the joint distribution writes:

The specificity of this model is that the nodes that are in a semi-supervision relationship 
also contribute to the mixture-like parameter � . It must however be noted that the normali-
zation constant �r now depends on � , �r and Sr.

3.2 � Inference with the EM algorithm

In order to use the model in a clustering setting, we want to jointly infer the latent varia-
bles Z,W and to learn the model parameters. In the following, we develop two approaches, 
based respectively on Classification EM  (Celeux & Govaert, 1992) and on Variational 
EM (Govaert & Nadif, 2005).

3.2.1 � Classification EM approach

In the Classification EM (CEM) approach  (Govaert & Nadif, 2008), we maximize 
log p(X,Z,W;�) by alternating the maximization w.r.t. Z , � , W and � . However, here, the 
maximization w.r.t. a classification matrix, e.g. Z is not tractable because of the dependencies 

sr
ii�
=

⎧
⎪⎨⎪⎩

�−1
r
�r
ii�

(i, i�) ∈ M
r

−�−1
r
�r
ii�

(i, i�) ∈ C
r

0 otherwise,

(3)

log p(X,Z,W;�) =
∑
i∉�r

∑
k

zik log �k +
∑
j∉�c

∑
�

wj� log ��

+
�r

2

∑
ii�k

sr
ii�
zikzi�k +

�c

2

∑
jj��

sc
jj�
wj�wj�� +

∑
ijk�

zikwj� log�(xij;�ijk�) + C.

log p(Z;�) = − log�r(�, �r, S
r) +

∑
ik

zik log �k +
�r

2

∑
ii�k

sr
ii�
zikzi�k.
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introduced in the HMRF. Thus, we use ICM, a coordinate ascent algorithm where we maxi-
mize log p(X,Z,W;�) w.r.t. zi ∈ {1,… , g} , keeping (zi� )i�≠i fixed. For i ∈ �r , the classifica-
tion E-step is given by: zi = argmax zi

log p(X, zi, (zi� )i�≠i,W;�) . Thus, we can show that the 
CE-step is:

The M-step is given by � = argmax � log p(X,Z,W;�) and depends on the class-condi-
tional densities.

3.2.2 � Variational EM approach

A variational approximation of the posterior distribution can be used as in (Govaert & Nadif, 
2005). Let Q be a probability over the latent space Z ×W , parameterized by �Z = (z̃ik) and 
�W = (w̃j�) , such that

and where 
∑

k z̃ik = 1 . We can show that Q(zik = 1) = z̃ik . The objective function F(Z̃, W̃,�) 
of the Variational EM algorithm is:

The objective of this approach is to obtain Z̃, W̃,� = argmax
Z̃,W̃,�

F(Z̃, W̃,�) , which can 
be reached by alternating the maximization of F wrt. Z̃ , � , W̃ , and � . Contrary to the clas-
sical LBM (Govaert & Nadif, 2008), the maximization of F(Z̃, W̃,�) wrt. Z̃ can not be 
decomposed for each row i ∈ �r because of the dependencies introduced in the HMRF. 
However, we can apply coordinate ascent on f (z̃1,… , z̃n) = F(�Z, �W,�) , by maximizing 
over z̃i = (z̃i1,… , z̃ig)

⊤ and keeping fixed (z̃i� )i�≠i such that the Lagrangian of each optimiza-
tion problem is (see Appendix 1):

Thus, the VE-step is given by the following fixed-point:

Note that we can deduce easily and in the same way the expression of w̃j� . On the other 
hand, in the general formulation of Celeux et  al. (2003), the proposed VE-steps corre-
sponds to a mean field approximation followed by a regular E-step. The M-step is given by 
� = argmax �F(Z̃, W̃,�) and depends on the class-conditional densities.

zi = argmax k

(
�r

∑
i�

sr
ii�
zi�k +

∑
j�

wj� log�(xij;�ijk�)
)
.

Q(Z,W;�Z, �W) = Q(Z;�Z)Q(W; �W) =
∏
ik

z̃
zik
ik

∏
j�

w̃
wj�

j�
,

F(Z̃, W̃,�) = �Q

(
log p(X,Z,W;�)

)
+ H(Q).

L𝜇 =
𝜆r

2

∑
i�

sr
i�i

∑
k

z̃i�kz̃ik +
𝜆r

2

∑
i�

sr
ii�

∑
k

z̃ikz̃i�k

+
∑
k

z̃ik

∑
j�

w̃j� log𝜙(xij;𝜖ijk�) −
∑
k

z̃ik log z̃ik − 𝜇(1 −
∑
k

z̃ik).

z̃ik ∝

�
exp

�
𝜆r

∑
i� s

r
ii�
z̃i�k

�∏
j� 𝜙(xij;𝜖ijk�)

w̃j� i ∈ 𝛶r

𝛼k
∏

j� 𝜙(xij;𝜖ijk�)
w̃j� i ∉ 𝛶r.
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3.2.3 � With an external field

For a model with an external field, the E-steps for a row i are:

The new potential function includes the mixture parameters as a node potential, which 
makes the partition function dependent on the mixture parameters � and � . Thus, the 
M-step for the mixture parameters has no closed form. We propose to ignore this depend-
ence for the M step. Experimentally, we did not observe any significant difference between 
the two versions of the model in terms of clustering performance, but this model offers 
easier computations. Consequently, we used this model in the rest of the paper.

3.3 � The proposed algorithm

3.3.1 � Iteration of the fixed point in the VE‑step

The proposed E-step corresponds to a fixed point equation of the form f (Z̃) = Z̃ . This 
is similar to the E-step of the Neighborhood EM algorithm of Ambroise and Govaert 
(1998) in the case of one-sided mixture models, where only ML relationships are con-
sidered. The authors prove that, for 𝜆r < (maxi

∑
i� �srii� �)−1 , f is a contraction mapping 

and the corresponding fixed-point is the maximum of the objective criterion for the 
E-step. In our experiments, we observed that a single iteration of this fixed-point seems 
to suffice, which is also suggested in  (Celeux et  al., 2003). Contrary to  (Ambroise & 
Govaert, 1998), we observed that this sufficient condition on �r was too restrictive in 
our case and could not lead to enough regularization (see Sect. 5).

3.3.2 � Parallel updates

For efficiency reasons, we use parallel updates in the E-step for the VEM and CEM 
algorithms in our implementation. This procedure trades the convergence properties of 
the ICM algorithm (for CEM) or the fixed-point iteration (for VEM) for the benefit of 
parallel computations.

For VEM, as suggested in  (Hinton et  al., 2005), we use damping for the parallel 
updates in the VE-step in order to avoid oscillations. Let z̃(c+1∕2)

ik
 be the variational prob-

ability obtained after one iteration of the fixed point in the E-step and let � ∈ (0, 1) . 
The damped VE-step is given by: z̃(c+1)

ik
= (1 − 𝜂)z̃

(c+1∕2)

ik
+ 𝜂z̃

(c)

ik
 . For CEM, we propose 

to use sequential updates after a given number of iterations if convergence has not been 
reached yet. The order of the updates is randomly selected at each E-step. Note that this 
choice of parallel updates does not allow the use of stochastic variants of EM based 
on variational inference as explained in  (Celeux et  al., 2003) for the simulated field 
algorithm.

�
z̃ik ∝ 𝛼k exp

�
𝜆r

∑
i� s

r
ii�
z̃i�k

�∏
j� 𝜙(xij;𝜖ijk�)

w̃j� VE-step

zi = argmax k

�
log 𝛼k + 𝜆r

∑
i� s

r
ii
zi�k +

∑
j� wj� log𝜙(xij;𝜖ijk�)

�
CE-step.
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3.4 � Connection to other models

The proposed algorithms can be presented in connection to graph convolutional Neu-
ral Networks, where the constraints matrices are seen as the graph adjacency matrix, 
and to Laplacian regularization where the ML constraints can be viewed as a k-nearest 
neighbors graph describing the manifold on which the data lies. We here detail these 
connections.

3.4.1 � Graph convolutional Neural Networks

Let 𝛬�W
(c)

ik
=
∏

j� 𝜙(xij;𝜖
(c)

ijk�
)
w̃
(c)

j�  (resp. 𝛬�Z
(c)

j�
=
∏

ik 𝜙(xij;𝜖
(c)

ijk�
)z̃

(c)

ik  ) and A(c) (resp. B(c) ) be the 
n × g (resp. d × m ) matrix such that each row of the matrix is �(c) (resp. � (c) ). The unnor-
malized variational probabilities at iteration c of the VEM algorithm can be written:

This can be compared to the graph convolutional neural networks (GCN) of Kipf and 
Welling (2016a), in a supervised context, where the (c + 1) th hidden layer H(c+1) is given 
by H(c+1) = ReLU(S̃H(c)�(c)) , where S̃ = D

−
1

2 SID
−

1

2 with SI = S + I , D is the diagonal 
degree matrix of SI , S is the adjacency matrix of the attributed graph, H(0) = X contains 
the attributes of the graph, and �(c) is the weight matrix of layer c. The node features are 
propagated through the nodes neighbors and at layer c, each node i has a latent representa-
tion h(c)

i
 which aggregates the features of the nodes c steps away in the adjacency matrix 

S . In our model, we do not propagate the nodes features through the nodes neighbors (in 
the observed graph) but we instead propagate the posterior probabilities through the nodes 
neighbors (in the HMRF). At iteration c of EM, each node has aggregated the posterior 
probabilities of nodes c steps away in the HMRF. For our model, the nodes features are 
modeled in the generative part of the E-step: A⊙�

�W
(c)

 and the nodes aggregate their 
neighbors posterior probability with the kernel Sr (or Sc ), that is not learned contrary to 
GCNs (which requires a set of labeled data).

3.4.2 � Laplacian regularization

A straightforward extension of Zhu and Lafferty (2005), He et al. (2011) and (Salah and 
Nadif 2017) in a semi-supervised context for the LBM is, given weighted adjacency matrices 
( Sr for the rows and Sc for the columns) that represent the ML relationships between the data 
points, to consider that two rows in a ML relationship have to lie close in the latent space. 
To this end, one can optimize a penalized log-likelihood log p(X,Z,W;�) − �rRr − �cRc , 
where the penalty for rows is Rr =

1

2

∑
ii�

∑
k s

r
ii�
(z̃ik − z̃i�k)

2 = Tr (�Z
⊤
L
r�Z) , where Lr 

is the Laplacian matrix associated to the adjacency matrix Sr . As mentioned in  (Zhu & 
Lafferty, 2005), Rr may seem to be a prior for the latent variables of the model in the 
form p(Z;�) ∝ Tr (�Z

⊤
L
r�Z) +

∑
ik zik log 𝛼k , but it actually depends on the posterior prob-

abilities and is thus best thought of as a discriminative component in the objective func-
tion. In our model, HLBM, the semi-supervision is expressed in a generative way with the 

⎧⎪⎨⎪⎩

�Z
(c+1)

u
= A

(c) ⊙ exp
�
𝜆rS

r�Z
(c)
�
⊙�

�W
(c)

�W
(c+1)

u
= B

(c) ⊙ exp
�
𝜆cS

c �W
(c)
�
⊙�

�Z
(c+1)

.
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HMRFs, but EM algorithms for the two models can be compared. In the CEM approach 
for the Laplacian regularization, we optimize the regularized complete data log-likelihood 
over the latent classification matrices and we can then consider z̃ik = zik ∈ {0, 1} . Thus, 
Rr =

1

2

∑
ii� s

r
ii�
1(zi� ≠ zi) . It can then be shown that the corresponding algorithm is equiva-

lent to the algorithm of HLBM for CEM. In the VEM approach, due to the non-linear-
ities in the latent variables introduced by the Laplacian regularization term, there is no 
closed form for the variational E-step. The solution proposed in (He et al., 2011; Salah & 
Nadif, 2017) is to maximize the variational objective and minimize the regularization term 
sequentially. This strategy, unfortunately, did not yield convincing results for our model.

4 � Co‑clustering of count data with the Poisson HLBM

With the appropriate mixture distribution, the proposed model can be applied on differ-
ent types of data, as in classical mixture models: gaussian distributions can be chosen to 
model microarray data or multinomial distributions for categorical data. In the following, 
we develop the proposed model for count data with a mixture of Poisson distributions, as 
in (Govaert & Nadif, 2018). This model has the advantage of being suited to high-dimen-
sional text data (Ailem et al., 2017).

4.1 � Algorithm for the Poisson HLBM

The data distribution, conditionally on the clusters is xij|zikwj� = 1 ∼ �(.,�i�j�k�), where 
� is the probability mass function of a Poisson distribution. The model is parameterized by 
� = {�, �, �, �, �, �r, �c} . For identifiability, following  (Govaert & Nadif, 2018), we 
impose the following constraint: for M > 0,

It can then be shown that �(xi.) = �i and �(x.j) = �j , and the marginals �i and �j can then be 
replaced by xi. =

∑
j xij and x.j =

∑
i xij . Thereby, we define respectively the row, column 

and block reduced matrices XZ̃ = (xZ̃
kj
) , XW̃ = (xW̃

i�
) and XZ̃W̃ = (xZ̃W̃

k�
) such that X�Z = �Z

⊤
X , 

X
W̃ = XW̃ and X�Z �W = �Z

⊤
X �W . The matrices Z̃ and W̃ contain the variational probabilities, 

as defined in Sect. 3.2. Equivalent reduced matrices XZ , XW and XZW can be defined in a 
CEM setup. We can show that the VE and CE-steps are respectively:

Since the constraints matrices are sparse, these updates are efficient. The M-step in a VEM 
setting leads to: 𝛼k =

∑
i z̃ik

n
=

z̃.k

n
, 𝛽

�
=

∑
j w̃j�

d
=

w̃.�

d
, 𝛾k� =

x
�Z �W
k�

x
�Z
k.
x
�W
.�

. The M-step for CEM is 

similar, with hard assignments. Following  (Govaert & Nadif, 2008), we propose the fol-
lowing algorithm for the Poisson HLBM VEM (PHLBMVEM) (see Algorithm 1). Note that 
the row and column M-step for � can benefit from the reduced matrix XZ or XW computed 
for its corresponding E-step. The algorithm for CEM is similar, but considers hard assign-
ment matrices, does not apply damping and switches to a sequential E-step after a given 
number of iterations.

� ∈ {�|�. = �. = M,∀k
∑
�

�
�
�k� = M−1,∀�

∑
k

�k�k� = M−1}.

�
z̃ik ∝ 𝛼k exp

�
𝜆r

∑
i� s

r
ii�
z̃i�k +

∑
�
x
�W
i�
log 𝛾k�

�
VE-step

zi = argmax k

�
log 𝛼k + 𝜆r

∑
i� s

r
ii
zi�k +

∑
�
xW
i�
log 𝛾k�

�
CE-step
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4.1.1 � Initialization

We can use the constraints matrices Sr and Sc to provide a better initialization of the row 
and column partitions. We build a stochastic matrix Mr = S

r+
I
�r+ , where Sr+

I
= S

r+ + I , 
S
r+ contains only the non-negative values of Sr , and �r+ is the inverse of the diagonal 

degree matrix of Sr+
I

 . This corresponds to averaging the features of neighboring nodes. We 
apply a clustering algorithm, namely skmeans for a Poisson model (see Sect. 4), on the 
rows of Mr

X to get an initial partition for Z . We apply the same procedure for the columns, 
using Sc and apply a clustering algorithm on the columns of XMc . The obtained matrix has 
values (Mr

X)ij = xij +
1

sr+
i.

∑
i� s

r+
ii�
xi�j , where the dot indicates the sum over a given index 

( si. =
∑

i� sii� ). This method also has the advantage of reducing the sparsity of the data 
matrix used for initialization and thus provides a better partition.

4.2 � Algorithmic complexity

The proposed algorithms can benefit from the sparse structure of X , Sr and Sc . The com-
putations in the E-steps and M-steps are based on reduced matrices XZ = Z

⊤
X , XW = XW 

and XZW = Z
⊤
XW of respective sizes g × d , n × m and g × m . Let nit denote the number of 

iterations of the EM algorithm, nNZX and nNZSr denote respectively the number of non-zero 
values in X and Sr and Nmax

r
= maxi |Nr(i)|.

For an iteration of the VEM algorithm, the computational bottleneck is the 
row and column cluster assignments, which is O(gn(Nmax

r
+ m)) for the rows and 

O(md(Nmax
c

+ g)) for the columns, and the computation of the reduced matri-
ces is O(nNZX(g + m)) . The time complexity of the Poisson VEM algorithm is thus 
O
(
nit
(
nNZX(g + m) + gn(Nmax

r
+ m) + md(Nmax

c
+ g)

))
 . The Poisson CEM complexity is 

similar to VEM but the algorithm benefits from a faster convergence and sparse structures 
for the classification matrices that speed-up the computations.
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The space complexity of the Poisson VEM algorithm is related to the data matrix, 
the constraint matrix, the reduced matrices and the classification matrices. It is thus 
O(nNZX + nNZSr + nNZSc + nm + dg + nd + dm) . Sparse structures for CEM can reduce it to 
O(nNZX + nNZS + nm + dg + n + d).

5 � Experiments on simulated data

5.1 � Sampling and experiment plan

Here, we evaluate our algorithms in terms of co-clustering performance on simulated data. 
In a semi-supervised setting, the difficulty of the co-clustering problem will depend on both 
the data and the given constraints. In the following, we describe the procedures to sample 
different co-clustering problems from the model, to generate different constraints matrices 
from the true clusters and to evaluate the obtained partitions against the true clusters.

5.1.1 � Sampling the data

We can use the generative part of the model to sample simulated data. To this end, we do 
not include the HMRF to sample the data, and, given a vector of parameters � we can sam-
ple the complete data (X,Z,W) . The margins �i and �j are sampled from {1, … , 100} with 
a power law p(k) ∝ k

−
3

2 , resulting in skewed margins. The experiments are carried out with 
n = 100 rows, d = 200 columns, g = 3 row clusters and m = 4 column clusters and mixture 
proportions � and � with symmetric Dirichlet distribution of parameter � = 4 and for 

� = �0
⎛⎜⎜⎝

1 2 3 1

3 1 2 3

2 3 1 3

⎞⎟⎟⎠
 . where 𝛾0 > 0 controls the class overlap. In order to obtain 3 sets of 

parameters with increasing overlap {�+,�++,�+++} , we measure the linear separability 
of the clusters with Linear Discriminant Analysis, computed as the ratio between the inter-
cluster variance and the total variance of the data projected onto each of the factorial axes. 
Each of the ratios is in [0, 1] , a ratio of 1 meaning that the intra-cluster variance on the fac-
torial axis is null (i.e. the clusters are linearly separable), and a ratio of 0 meaning that the 
centers of gravity of each cluster are projected onto the same point on the factorial axis. 
Using this criterion, we define �0

+
= 2 × 10−2 , �0

++
= 2 × 10−3 and �0

+++
= 1 × 10−3.

5.1.2 � Sampling the constraints matrix

For each set of complete data, we can build row and column binary constraints matrices 
with some of the true classes, by setting sr

ii
= 1 if zi� = zi or sr

ii
= −1 if zi′ ≠ zi . To this end, 

we sample a fraction fS of all the 
(
n

2

)
 or 

(
d

2

)
 pairwise ML and CL constraints that can 

be formulated from the true clusters. It must be noted that the models will be influenced 
differently depending on which relationships are sampled and that CL relationships are 
sampled more often than ML relationships (with respective probabilities 1 −

∑
k �

2
k
 and ∑

k �
2
k
 for a relationship on the set of rows). Thus, for each set of complete data we sample 

50 row and column constraints matrices. We use an identical regularization parameter for 
rows and columns, � = �r = �c.
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In order to evaluate the sensibility of the models w.r.t. noise in the constraints matrix, 
we sample a fraction fnoise of the pairs (i, i�) and set snoise

ii�
= −sii� . For the other (i, i�) pairs, 

we set snoise
ii�

= sii� . Finally, given a set of ML and CL relationships, we can choose whether 
to apply transitive closure on these relationships as described in (Basu et al., 2004). This 
allows to test if the algorithm applies the transitive closure implicitly or if these supple-
mentary relationships convey new information.

5.1.3 � Measuring the information in the constraints matrices

For a given algorithm, the ML and CL relationships in a constraints matrix can convey 
more or less information on a clustering problem. They can be of limited use for an algo-
rithm which naturally recovers these constraints without supervision and they can be noisy 
and convey wrong information about the true clusters—and thus be contradictory with the 
data—so that some constraints are not satisfied after convergence of the algorithm with 
supervision.

For a partition P of the rows or columns of the data matrix, where Pi is the cluster of 
node i, and a constraints matrix S , we define the ratio (4), where unsat(Pi,Pi� , sii� ) equals 1 
if the constraint sii′ is not satisfied and 0 if the constraint is satisfied or if sii� = 0.

Depending on the nature of P , this criterion can have different meanings. If P is a par-
tition returned by the algorithm without regularization, R is the weighted proportion of 
constraints that are not already in the data. This criterion corresponds to a weighted version 
of the informativeness criterion of Davidson et al. (2006). If P is the true partition, R is 
a measure of noise in the constraints matrix and corresponds to a weighted version of the 
"spatial discordance" criterion of Miele et al. (2014). If P is the partition returned by the 
algorithm with regularization, R corresponds to the weighted proportion of constraints that 
have been violated by the algorithm after convergence. It can be noted that R is then pro-
portional to the log prior for the rows or columns, in a setup without mixture proportions. 
This last criterion can also be used as an heuristic to suggest appropriate values for the 
regularization parameters �r and �c.

5.1.4 � Experiment plan

We sample data from 3 sets of parameters with increasing overlap {�+,�++,�+++} . For 
each � , we sample 50 sets of complete data {X,Z,W} . For each set of complete data we 
initialize the row and column partitions Z(0) and W(0) by applying skmeans (50 initializa-
tions) on the sets of row and columns,2 and for each fS ∈ {0%, 1%, 2%, 3%, 4%, 5%} , we 
repeat the following procedure 20 times: sample the row and columns constraints matrices, 
then fit the model for each � ∈ {0, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104} . We report the 
classification results in terms of Co-clustering ARI (CARI) (Robert et al., 2021) between 
the true partitions and the partitions returned by our algorithm for each run of the algo-
rithm. This criterion is an extension of the Adjusted Rand Index (Hubert & Arabie, 1985) 

(4)R(S,P) =

∑
ii� �sii� �unsat(Pi,Pi� , sii� )∑

ii� �sii� �

2  We do not use the initialization described in 4.1.1 in order to focus on the model’s ability to benefit from 
the semi-supervision.
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in the context of co-clustering. The CARI index varies between 0 and 1, where 1 means 
a perfect match and 0 leads to all worst scenarios, including independence and is propor-
tional to the number of miss-classified cells in the data matrix. We identify a working point 
between two values of � in the log-scale and also report the CARI values in a linear scale 
between these two values. In our experiments, we use parallel E-steps with a damping coef-
ficient � = 0.7 in the case of VE-steps. We set the number of row and column cluster to 
their true value.

5.2 � Evaluation of the CEM and VEM algorithms in terms of co‑clustering

In Fig. 2, we compare, for a difficult clustering problem �+++ , the CARI values for the 
CEM and VEM algorithms in the absence of noise, as a function of fS and � , points with 
� = 0 being our baseline without regularization. First, we observe that the regularization is 
almost always beneficial to the clustering performances. Also, we note that VEM gives bet-
ter CARI values than CEM. We observe that the performances are sensitive to the choice 
of � . In our experimental setup, the optimal working point of our algorithms is located 
between 1 and 10, independently of the class overlap. For easier problems �+ and �++ , 
we observed, as expected, that the fraction of constraints fS required to reach CARI ∼ 1 
increases with the complexity of the clustering problem.

(a) (b) (c)

(d) (e) (f)

Fig. 2   Comparison of CARI values for CEM and VEM algorithms and for different values of the regulari-
zation parameter � . The results are presented for different fractions of ML and CL constraints sampled. The 
data is sampled with �+++ . First row: � in log-scale, second row: � in linear scale around a working point. 
From left to right: Increasing fraction fS of sampled relationships
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An interesting result is that the performances are more sensitive to the choice of � for 
lower constraint fractions. When there is more supervision, this phenomenon is less promi-
nent, and � can more freely be set anywhere above a threshold value. Also, surprisingly, 
the CARI difference between VEM and CEM does not seem to increase with the fraction 
of constraints sampled (i.e. the density of the edges in the HMRF). It should however be 
noted that the drawbacks of CEM in terms of classification performance are counterbal-
anced by its fast convergence and its use of sparse data structures.

In Fig. 3, we observe that, when noise is added to the constraint matrices Sr and Sc , the 
algorithm can still benefit from the regularization but the choice of � becomes more critical 
and too high values of � are detrimental to the clustering performances of the algorithm. 
As the fraction of true constraints increases, the algorithm becomes less dependent on the 
value of � . In Fig. 4, we observe that applying the transitive closure of the ML and CL 
relationships does not seem to increase the clustering performances of the algorithm, as 
mentioned in  (Lange et  al., 2005). Moreover, it decreases the sparsity of the constraints 
matrices and thus the performances of the computations. Also, it increases the weight of 

(a) (b) (c)

Fig. 3   Median CARI values for different values of noise in Sr and Sc . The results are presented for different 
fractions of ML and CL constraints sampled and for different values of the regularization parameter � . The 
data is sampled with �+++ . From left to right: Increasing fraction fS of sampled relationships

(a) (b) (c)

Fig. 4   Median CARI values with and without applying the transitive closure of the ML and CL relation-
ships. Error bars correspond to 1st and 3rd quartiles. The results are presented for different fractions of ML 
and CL constraints sampled and for different values of the regularization parameter � . The data is sampled 
with �+++ . From left to right: Increasing fraction fS of sampled relationships
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the discriminative component w.r.t. the generative component and thus the value of � must 
be changed accordingly (with a smaller value than without transitive closure). In practice, 
depending on which relationships are sampled, the constraints matrices after transitive clo-
sure will have different sparsity values and will consequently require different values of � , 
which is not convenient. Finally, the results presented in Fig. 4 suggest that the transitive 
closure of the relationships is applied implicitly in the algorithm.

Thus, the regularization parameters �r and �c—which correspond to a scaling factor of 
the weights of the ML and CL relationships—must be set, as a first approximation, accord-
ing to the confidence we have w.r.t. the given ML and CL relationships. The interval [0, 10] 
seems to be a suitable range for this parameter. It should however be noted that, even for 
ML and CL relationships sampled from the true clusters (i.e. without noise in Sr and Sc ), 
the algorithms remain sensitive—in a minor extent—to the choice of the regularization 
parameter, but are rarely affected negatively by the regularization. Finally, this dependency 
on the regularization parameters is reduced when the number of ML and CL constraints 
increases.

6 � Experiments on real world data: attributed network clustering

In the previous Section, we evaluated our algorithms, in a semi-supervised setting, in terms 
of co-clustering performances on data sampled from the model. Here, we compare our 
algorithms to other algorithms from the literature in terms of one-sided clustering on real 
world data. We focus on the task of Attributed Network Clustering, where the data is in the 
form (A,X) , where A is a graph adjacency matrix and X is a data matrix containing feature 
vector for each node in the network. We evaluate our algorithms on the task of clustering 
the nodes of these networks. Note that, several studies have demonstrated the importance 
of co-clustering even to obtain object clusters only (one-side clustering). Actually using 
co-clustering is often more effective than one-way clustering, especially when considering 
sparse high dimensional data.

6.1 � Experimental setup

We evaluate the one-sided row clustering performances of the VEM and CEM algorithms 
on datasets commonly used in the field of Attributed Network Embedding (ANE). These 
datasets are four citation networks: Cora, Citeseer, Wiki and Pubmed where A is a sparse 
graph adjacency matrix in which each node corresponds to a document and edges cor-
respond to citations, X is a data matrix containing a bag-of-words feature vector for each 

Table 1   Datasets characteristics

Normalization X Type A n d g nNZX(%) #Edges Balance (%)

Cora Binary Binary 2708 1433 7 98.73 5294 22
Citeseer Binary Binary 3312 3703 6 99.14 4732 35
Wiki tfidf Weighted 2405 4973 17 86.46 17981 2
Pubmed tfidf Binary 19717 500 3 89.98 44338 52
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node in the network. Although our model is not directly suited for this kind of task, we can 
see the adjacency matrix A as a ML constraint matrix Sr on the set of rows. This is less 
expressive than graph convolutions where the model can learn complex aggregations of a 
node’s neighbors features but this can still lead to satisfying results.

The datasets characteristics are reported on Table 1, where nNZX(%) corresponds to the 
percentage of sparsity of the data matrix X and the balance coefficient is defined as the 
ratio of the number of documents in the smallest class to the number of documents in the 
largest class. The attribute matrices of the datasets are high-dimensional. Thus, co-cluster-
ing is an appropriate approach for these datasets.

Note that here, on binary data, we use the Poisson HLBM instead of a Bernoulli HLBM. 
It leads to give better results since the margins � and � implicitly perform a normalization 
of the data. This is relevant for bag-of-words data since the number of words in a docu-
ment is not relevant in order to determine its cluster. Note also that the Poisson LBM is 
even used on Tf-idf normalized data (Wiki and Pubmed), which happens to give satisfying 
results.

6.2 � Model selection

To assess the number of row and column clusters g and m, we rely on the asymptotic inte-
grated classification likelihood (ICL) (Biernacki et al., 2000), as in (Brault et al., 2014). We 
here propose to use the ICL criterion of a model without HMRF. For a model Mgm with g 
row clusters and m column clusters, we compute ICL with (5), using Z̃ and W̃ , the matrices 
of variational posterior probabilities obtained with VEM.

We computed the ICL for each dataset with g ∈ {gTrue − 4,… , gTrue + 4} and 
m ∈ {4,… , 12} to determine both g and m. The results are presented in Appendix 1. Since 
the clustering problems are difficult, and even if the algorithm compares well to the lit-
erature, some classes that the algorithm can not distinguish are merged. This results in an 
underestimated number of row cluster.

In the following experiment (see Sect. 6.4), we set the number of row clusters to its true 
value, and determine an appropriate number of column clusters mICL using the ICL. We 
found respectively 6, 7, 4 and 5 column clusters for Cora, Citeseer, Wiki and Pubmed with 
the ICL criterion.

6.3 � Setting the hyper‑parameters

For all the datasets, we use our VEM algorithm with � = 0.7 . Based on our study on sim-
ulated data, we set �r = 3 and use a symmetric adjacency matrix A . As can be seen in 
Fig.  5a, the algorithm benefits from a positive value of � in terms of clustering perfor-
mance, and the choice of �r does not appear to be too critical in the range [1, 4], except for 
Pubmed which seems to require more regularization. In fact, we observe that our algorithm 
does not recover any meaningful structure with �r = 0 on Pubmed, probably due to a low 

(5)
ICL(g,m) = log p(X,Z,W|Mgm)

≈max
�

log p(X, Z̃, W̃|�,Mgm) −
g − 1

2
log n −

m − 1

2
log d −

gm

2
log(nd).
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class separability related to the relatively low dimension of the word vectors, but the addi-
tion of the adjacency matrix allows it to overcome this issue.

6.4 � Evaluation of the CEM and VEM algorithms in terms of clustering

We compare our algorithms (Poisson HLBM VEM: PHLBMVEM and Poisson HLBM CEM: 
PHLBMCEM) to the following deep learning algorithms: GAE  (Kipf & Welling, 2016b), 
VGAE (Kipf & Welling, 2016a), MGAE (Wang et al., 2017), ARGA​ and ARVGA (Pan et al., 
2018), AGC​ (Zhang et al., 2019) and DAEGC (Wang et al., 2019). All these algorithms are 
unsupervised, which enables a fair comparison. Further comparisons to weakly-supervised 
methods are presented in Appendix 1. As discussed in Sect. 2 and Appendix 1, the CITTC​ 
model of Song et al. (2010) is a special case of ours. Consequently, we do not compare 
our algorithms to CITTC​. We run our algorithms 20 times and report.3 Otherwise, results 
are reported from the original paper the results in terms of clustering accuracy (ACC) and 
Normalized Mutual Information (NMI) on Table 2.

We observe that our algorithms perform well compared with most of these more com-
plex algorithms. We also note that CEM performs comparably to VEM on this task. In 

(a)

(b)

Fig. 5   a Row clustering performances in terms of NMI for different values of �r on the datasets. b Discord-
ance criteria R(A,P) with P denoting, for each dataset: the true partition (True), the partition obtained with 
�r = 0 (LBM) and the partition obtained with �r = 3 (HLBM)

3  Algorithms or results marked by * are reported from (Zhang et al., 2019).
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comparison to the baseline deep-learning models, ours has the advantage of being inter-
pretable, parsimonious, to rely on a simple input parameter ( �r ) and to be able to perform 
model selection.

We can measure the information conveyed by the adjacency matrix, considered as a ML 
constraints matrix. In Fig. 5b, we observe, using the true clusters as reference, that approxi-
mately 70% of the edges of the adjacency matrices actually encode a true ML relation-
ship. We also find that an important fraction of the ML relationships of A are not already 
inferred by the algorithm with �r = 0 in the data (the LBM returns only one non-empty 
cluster on Pubmed, so all ML relationships are satisfied). Finally, we note that most of 
the ML constraints are satisfied after fitting the model with �r = 3 . The results are more 
nuanced on Wiki, where A encodes less true ML relationships and the partition learned 
with the HLBM only satisfies approximately 80% of the constraints of A . This is probably 
due to the high true number of row clusters g = 17 , that makes a random ML relationship 
less likely to be true.

7 � Conclusion

We have introduced a general probabilistic framework for co-clustering that incorporates 
ML and CL relationships in the LBM based on HMRF. We presented two efficient infer-
ence algorithms based on Variational and Classification EM that also benefit from the 
supervision in the initialization. We showed that we can establish connections between our 
algorithms and GCNs as well as manifold regularization. We instantiated this framework 
on a model for count data and presented detailed VEM and CEM algorithms for which we 
analyzed the time and space complexity. We have studied the behavior of these algorithms 
on simulated data when varying the tradeoff between the discriminative and the genera-
tive component of the model. Our algorithms have also demonstrated good clustering per-
formances in comparison with deep learning algorithms devoted to the task of attributed 
network clustering.

In future work, the model can be extended to represent more complex relationships in 
the latent space with a more general MRF. Stochastic variants of the EM algorithm based 

Table 2   Attributed network clustering metrics (mean std, higher is better)

Results in bold are correspond to the best performing method

Method Cora Citeseer Wiki Pubmed

ACC​ NMI ACC​ NMI ACC​ NMI ACC​ NMI

GAE(*) 53.25 40.69 41.26 18.34 17.33 11.93 64.08 22.97

VGAE(*) 55.95 38.85 44.38 22.71 28.67 30.28 65.48 25.09

ARGE 64.00 44.90 57.3 35.0 41.40(*) 39.50(*) 59.12(*) 23.17(*)

ARVGE 63.80 45.00 54.4 26.10 41.55(*) 40.01(*) 58.22(*) 20.62(*)

MGAE 63.43 45.57 63.56 39.75 50.14 47.97 43.88(*) 8.60(*)

DAEGC 70.04 52.8 67.20 39.70 N/A N/A 67.10 26.60

AGC​ 68.92 53.68 67.00 41.13 47.65 45.28 69.78 31.59

PHLBMCEM 68.6 ± 1.9 49.8 ± 0.9 66.2 ± 1.9 40.8 ± 1.4 53.3 ± 3.7 51.9 ± 1.3 67.4 ± 0.6 30.8 ± 0.9

PHLBMVEM 65.9 ± 2.6 49.7 ± 1.6 67.6± 1.2 42.1± 1.3 54.8± 2.4 52.2± 0.9 67.0 ± 1.6 30.9 ± 0.8
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on simulated field EM (Celeux et al., 2003) could also be investigated. Finally, the defini-
tion of column constraints in the context of clustering with pairwise semi-supervision, only 
available in the row space, is an important problem-specific research track.

Appendix

1. The partition function

We here compute the partition function �r(�
r) . Let Z be the set of partitions of n rows 

in g clusters. �r(�
r) must ensure that 

∑
Z∈Z p(Z;�) = 1 . Let Z�r

 be the set of row parti-
tions in g clusters for the rows for which we have prior knowledge and let Z

� r
 be the 

set of row partitions in g clusters for the rows for which we do not. Note that Z can be 
decomposed as Z�r

× Z
� r

 . Using the definition of the potentials in (1), we have:

since 
∑

Z
�∈Z

� r

∏
i∉�r

�z�
i
= 1 ; as it is the sum of the density of n − |�r| independent categor-

ical distributions on its support. Thereby, �r only depends on �r.

2. Connection to CITTC (Song et al., 2010)

The model of CITTC​ is based on ITTC​ with a Kullback-Leibler divergence, that con-
sists in maximizing the KL divergence between the empirical distribution on the set of 
word×documents and a distribution (on this same set) that factorizes using the latent 
variables. It has been shown in (Govaert & Nadif, 2018) that this model is equivalent to 
the LBM with equal mixture proportions and a Poisson mixture distribution.

Regarding the HMRF regularization of CITTC​, the weight matrices of the potentials 
are defined as:

where p
emp

i
 is the empirical multinomial distribution over the column space, with 

p
emp

i
(j) =

xij

xi.
 , and Dmax = max(i,i�) DKL(p

emp

i
||pemp

i�
) . The authors also propose to set �r = n

−
1

2 
and �c = d

−
1

2 . It could thus be seen as a special case of our model.

�r =
∑
Z∈Z

exp
(∑
i∉�r

log �zi +
1

2

∑
i∈�r

∑
i�∈Nr(i)

log� r
ii�
(zi, zi� ;�

r)
)

=
( ∑

Z
�∈Z

� r

∏
i∉�r

�z�
i

)
×
( ∑

Z
��∈Z�r

exp
(1
2

∑
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(z��

i
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))

=
∑
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exp
(1
2
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∑
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log� r
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r)
)
,

�r
ii�
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⎧⎪⎨⎪⎩

DKL(p
emp

i
��pemp

i�
) (i, i�) ∈ M

r�
Dmax − DKL(p

emp

i
��pemp

i�
)
�
(i, i�) ∈ C

r

0 otherwise
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However, this approach has several limitations. First, the Kullback-Leibler diver-
gence is not symmetric, which leads to unsymmetrical potentials, requiring less conven-
ient computations and making two different values for the penalty for the dissatisfaction 
of a given constraint. Second, the computation of the proposed potentials is not straight-
forward for sparse matrices. Finally, the model using these potentials is not generative 
anymore since sampling the latent variables now depends on the data matrix.

3. Objective function of the VEM algorithm

The objective function of the VEM algorithm given by F(Z̃, W̃,�) is a lower-bound of the 
log-likelihood of the model �(�):

where the third line is obtained using Jensen’s inequality. We first note that �Q(zik) = z̃ik . 
Then, since Q(Z,W;Z̃, W̃) = Q(Z;Z̃)Q(W;W̃) , we have H(Q) = H(Z̃) + H(W̃) . 
Finally, as the variational distribution considers independent latent variables, we have 
H(�Z) = −

∑
ik z̃ik log z̃ik . Thus, the objective function of the VEM algorithm takes the fol-

lowing form:

4. Model selection

The experiment on the ICL criterion for model selection are presented in Fig. 6. As an illus-
tration of the underestimation of the number of row clusters with the ICL, the clustering row 
confusion matrices obtained for Cora are presented below.

F(Z̃, W̃,�) = �Q

(
log p(X,Z,W;�)

)
+ H(Q)

= �Q

(
log

p(X,Z,W;�)

Q(Z,W;Z̃, W̃)

)

≤ log�Q

( p(X,Z,W;�)

Q(Z,W;Z̃, W̃)

)

= log
∑

Z,W∈Z×W

Q(Z,W;Z̃, W̃)
p(X,Z,W;�)

Q(Z,W;Z̃, W̃)

= �(�)

F(�Z, �W,�) =
∑
i∉𝛶r

∑
k

z̃ik log 𝛼k +
𝜆r

2

∑
ii�

sr
ii�

∑
k

z̃ikz̃i�k −
∑
ik

z̃ik log z̃ik

+
∑
j∉𝛶c

∑
�

w̃j� log 𝛽� +
𝜆c

2

∑
jj�

sc
jj�

∑
�

w̃j�w̃j�� −
∑
j�

w̃j� log w̃j�

+
∑
ijk�

z̃ikw̃j� log𝜙(xij;𝜖ijk�).
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Here, CgTrue
 is obtained using the true number of row clusters and CgICL

 is obtained using 
the number of row clusters found with the ICL. For both matrices, Ckk′ is the number of 

CgTrue
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

506 58 72 20 137 19 6

16 150 146 10 24 1 4

0 0 142 38 0 0 0

7 1 13 183 3 0 10

18 10 44 6 310 38 0

0 0 95 12 4 181 6

15 0 11 20 4 1 367

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,CgICL
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

560 120 0 0 131 0 7

12 317 0 0 12 0 10

0 142 0 0 38 0 0

8 197 0 0 4 0 8

30 48 0 0 348 0 0

0 145 0 0 146 0 7

3 36 0 0 6 0 373

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(a)

(b)

Fig. 6   Maximal ICL obtained on Cora, Citeseer, Wiki and Pubmed as a function of the number of row and 
column clusters. Cells marked with “+” correspond to the (g, m) with the greatest ICL. Cells marked with 
“o” correspond to the m with the greatest ICL with g set to its true value
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points known to be in the true cluster k and predicted to be in cluster k′ of the algorithm. 
We observe on CgICL

 that the true cluster of the 2nd and 5th rows are better recovered for 
g = gICL than for g = gTrue . We also note on CgICL

 that the true clusters of the rows 3, 4 
and 6 are merged into the algorithm clusters of the columns 2 and 5. Thus, the algorithm 
with g = gTrue correctly recovers certain clusters but merges the others, while with g = gICL 
these clusters are not so well recovered but no cluster is merged. This explains why the ICL 
criterion leads to an underestimated number of row clusters.

5. Comparison to supervised approaches

We here provide a comparison of our approach to some supervised algorithms. First, 
some ANE algorithms such as deep graph infomax (DGI) (Veličković et al., 2019) and 
(DEEPWALK)  (Perozzi et al., 2014) learn a representation of the nodes in an unsuper-
vised way but evaluate their classification performances using a supervised learning 
algorithm on the learned representation. Besides, we add comparison to weekly-super-
vised algorithms such as Label Propagation (LP)  (Zhu et  al., 2003) and PLANET-
OID (Yang et al., 2016) (Table 3).
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