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Abstract
Skeleton-based action recognition is attracting more and more attention owing to the gen-
eral representation ability of skeleton data. The Graph Convolutional Networks (GCNs) 
methods extended from Convolutional Neural Networks (CNNs) are proposed to directly 
extract spatial–temporal information from the graphs. Previous GCNs usually aggregate 
the skeleton information locally in the vertex domain. However, the focus on the local 
information brought about the limited representation ability in some actions containing 
overall dynamics in both spatial and temporal, which pulled down the overall accuracy of 
the model. Therefore, this paper proposes a more comprehensive two-stream GCN archi-
tecture containing the vertex-domain graph convolution and the spectral graph convolution 
based on Graph Fourier Transform (GFT). One stream utilizes an efficient vertex-domain 
graph convolution to obtain effective spatial–temporal information via Graph Shift Blocks 
(GSB), while the other brings the global spectral information from our improved Residual 
Spectral Blocks (RSB). According to the analysis of the experimental results, the action 
misalignment for certain actions is reduced. Moreover, along with other GCN methods that 
only focus on spatial–temporal information, our RSB strategies help improve their per-
formance. DD-GCN is evaluated on three large skeleton-based datasets, NTU-RGBD 60, 
NTU-RGBD 120, and Kinetics-Skeleton. The experiment results demonstrate a compara-
ble ability to the state-of-the-art.

Keywords  Action recognition · Skeleton · Graph convolutional networks · Dual-domain · 
Spatial–temporal · Spectral

1  Introduction

Action recognition is a challenging task in the field of computer vision. And it is at the 
forefront of applications to understand the human social activity (Islam and Iqbal 2020). 
Action recognition based on RGB images/videos has been widely researched with deep 
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learning methods, such as Convolution Neural Networks (CNNs). The motivation of most 
action recognition algorithms is to extract spatiotemporal feature representations from 
RGB videos. And then, a classifier is trained to distinguish different actions. Simonyan and 
Zisserman (2014) proposed a two-stream method to extract spatial and temporal informa-
tion separately. Also, to obtain temporal features, Ji et al. (2013) extended the traditional 
2D-CNN to 3D-CNN with a 3D convolution kernel.

Meanwhile, owing to the concise and compelling data source, skeleton-based action 
recognition is attracting more and more attention. Concretely, skeleton-based methods 
can effectively focus on the joint transformation of different actions by discarding redun-
dant background information. A more robust and more efficient network based on skel-
eton data can be designed to recognize human actions than the RGB-based methods. And 
the most important thing is that skeletal data can articulate joints connection status and 
their dynamic changes. Rahmani and Bennamoun (2017) demonstrate skeleton-based 
approaches are complementary to RGB-based methods for human action recognition. The 
skeleton joints are constructed into a graph in the non-Euclidean space. The nodes in the 
graph indicate the coordinates of the body part, and the edges indicate the connection of 
the joints. With the feature of both nodes and the edges, a Graph Neural Networks (GNN) 
can be employed for graph embedding (Yang and Li 2020).

Previous work construct the joint coordinates manually into a sequence of vectors 
(Vemulapalli et  al. 2014; Jiang et  al. 2020). Then the recurrent neural network (RNNs) 
is utilized to process the vectors (Liu et  al. 2016; Song et  al. 2017; Zhang et  al. 2017; 
Zheng et  al. 2019). Alternatively, the skeleton joints are composed into a 2D pseudo-
image. Then a CNN-based model is able to generate the final prediction (Liu et al. 2017; 
Li et al. 2017a, b; Zhang et al. 2019; Wang et al. 2021). However, both the RNN-based and 
CNN-based methods do not explicitly take advantage of spatial relationships and temporal 
dynamics. Therefore, a series of graph convolutional networks (GCNs) are proposed for 
skeleton-based action recognition (Yan et al. 2018; Shi et al. 2019a, b; Tang et al. 2018; 
Cheng et al. 2020; Song et al. 2021; Shi et al. 2020; Peng et al. 2021; Liu et al. 2021; Xie 
et al. 2021; Ahmad et al. 2021; Yoon et al. 2021). Inferred from CNNs, GCNs are able to 
process non-Euclidean data such as skeleton graphs through the regulation of the kernel 
size and the promotion of the convolution operation. Subsequently, a graph convolution 
module is widely used to construct the spatial–temporal GCN. Most of the GCN-based 
methods emphasize the improvement of a structure to obtain optimal spatial–temporal 
representations.

Shi et  al. (2019a) extend the GCNs to a two-stream architecture to obtain the bones 
information of the skeleton data. Meanwhile, an adaptive optimal adjacency matrix is 
learned from the skeleton data, which means the topology of the graph is learnable. Then 
they built a multi-stream network describing joints, bones, and their motion information by 
preprocessing the skeleton data (Shi et al. 2020). Cheng et al. (2020) proposed a shift graph 
operation for GCNs, which provides flexible receptive fields for spatial–temporal graphs. 
Song et al. (2021) create a multi-stream architecture with the help of class activation maps 
(CAM), which increases the robustness of the model. Ahmad et al. (2021) present a sparse 
ST-GCN method by eliminating redundant nodes and edges of the graphs. Liu et al. (2021) 
propose an adaptive view transformation module for GCN to model the spatial configura-
tion and temporal dynamics of skeleton sequence.

Previous GCN-based methods for skeleton action recognition show the ability to 
extract spatial–temporal information from the skeleton graphs. For a skeleton graph, the 
information of the nodes is aggregated layer by layer from their neighbors in the vertex 
domain. And the Adjacency matrix is added to the vertex-domain graph convolution to 
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indicate the connection information. Most of the GCN network for action recognition is 
based on the vertex-domain graph convolution, more like template matching of graphs. 
In this manner, the features that focus on the local information can represent high-level 
semantics. However, the focus on the local information has led to their limited represen-
tation ability in some interactive actions or some actions containing overall dynamics in 
both spatial and temporal. For example, the average accuracy of 1s-Shift-GCN on the 
cross-subject of NTU-RGBD 60 dataset is 87.8%. The precision of the actions such as 
“A12. writing”, “A11. reading” and “A30. type on a keyboard” is only 55.9%, 59.3% and 
67.3%.

To solve this problem, the spectral domain convolution based on Graph Fourier Trans-
form (GFT) is introduced in this paper. The vertex-domain graph convolution tends to 
extract local information with the Adjacent matrix, while the spectral-domain graph con-
volution extracts global information because of the Laplacian matrix. The spectral domain 
convolution, which extends the convolution theorem to graphs, uses the Laplacian matrix 
to describe the global relationship between neighbor nodes. Spectral-domain information 
has been utilized for graph node classification tasks in some previous work (Estrach et al. 
2014; Henaff et al. 2015; Defferrard et al. 2016). However, the structures of the network 
containing the spectral convolution are quite simple and crude, and this is why they per-
form inferior to most spatial–temporal GCNs for skeleton graphs. Therefore, this paper 
proposes a deep residual-connected spectral backbone to obtain the global dynamic of 
skeleton graphs, which is compensation for the blind spot of the regular GCN methods.

This paper is an improved version of an earlier work presented in Chen et al. (2021), 
named SS-GCN. Compared to our previous work, the model architecture has been greatly 
improved in both the vertex and spectral streams. The performance gain for each action is 
obtained in Fig. 7 to show that the recognition ability is improved for most action classes, 
primarily those with broader dynamic changes. The improved RSB includes a graph batch 
normalization, an activation function (the ReLU layer), and a graph pooling operation. 
Then the multiple spectral blocks are residual-connected, followed by a normalization 
layer. The new design of the spectral domain branch refers to the brilliant CNN model 
ResNet (He et  al. 2016), to avoid gradient vanishing while the network layers increase. 
Finally, the spectral features are combined with the spatial–temporal features extracted 
from the vertex stream to recognize the action. Compared with our previous SS-GCN, the 
main contributions are summarized as follows:

–	 To extract spatial–temporal information more effectively, the shift operation on the 
graph is employed to our vertex stream inspired by Shift-GCN (Cheng et al. 2020). This 
article further explores the effectiveness of the complementation of the vertex-domain 
and the spectral-domain features through a more efficient spatial–temporal stream, 
which proves the previous GCN is flawed in this task for some actions rely on global 
information.

–	 A more robust spectral GCNs backbone consisting of RSBs is proposed, proving to 
be more effective in extracting spectral features for action recognition. Though some 
experiments show that spectral-based GCN performs inferior to spatial-based GCN 
in some computer vision tasks, our RSB shows particular improvement to the simple 
spectral-based GCNs adopted by our previous SS-GCN owing to the deep architecture.

–	 In previous work, the motivation of the combination of the spatial–temporal informa-
tion and the spectral information is not well expressed and supported. At the same time, 
this paper proposes using spectral-domain information to make up for the weak rec-
ognition ability of previous GCNs in some actions. An analysis of the improvement 
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of each action category by the spectral-domain information is provided in the ablation 
study.

–	 More extensive experiments and more comprehensive analyses are performed. Owing 
to the improvement on both the spectral stream and the spatial–temporal stream, DD-
GCN has greatly improved our previous model SS-GCN. with an increase of 5.3%/5.5% 
on the NTU-RGBD 60 dataset (Shahroudy et al. 2016). The top-1 and top-5 accuracy 
on the Kinetics-Skeleton dataset (Kay et  al. 2017) are also improved by 0.9%/2.0%. 
Additional experiments on NTU-RGBD 120 (Liu et al. 2020) are performed and com-
pared with the SOTA.

The rest of the paper is organized as follows, Sect. 2 describes the related work of action 
recognition based on skeleton data. Section 2.1 elaborates the principle of vertex-domain 
graph convolution and spectral-domain graph convolution. Section 4 introduces the two-
stream structure of our DD-GCN. Section 5 presents the experiment settings and results, 
followed by a detailed experimental analysis and comparison. Conclusion are drawn in 
Sect.  6.

2 � Related work

Owing to the effectiveness data, there is more and more research focusing on skeleton-
based action recognition. The skeleton data that indicates the coordinates dynamics shows 
robustness against illumination change, background variation, and body diversity. The 
methods are composed of the handcraft-feature methods and the deep learning methods. 
One typical handcraft feature is based on the theory of Lie Group (Vemulapalli et al. 2014; 
Jiang et  al. 2020; Fernando et  al. 2015). Vemulapalli et  al. (2014) propose a Lie-group 
skeletal representation that uses rotations and translations in 3D space to model the 3D 
geometric relationships between different body parts specifically. Inspired by this work, 
Jiang et al. (2020) create a new spatial–temporal skeleton transformation descriptor (ST-
STD) to obtain a comprehensive view of the skeleton in both spatial and temporal domain 
for each frame, followed by a denoising sparse long short term memory (DS-LSTM) net-
work. Fernando et al. (2015) use the parameters from the ranking functions per video as a 
new video representation.

However, the deep learning features are more substantial than the handcraft-feature 
methods due to various deep models such as RNNs and CNNs. RNNs-based methods can 
extract the dynamic information with the ability of modeling sequences (Du et al. 2015; 
Liu et  al. 2016, 2018; Song et  al. 2017; Zhang et  al. 2017; Li et  al. 2018; Zheng et  al. 
2019). Du et al. (2015) propose an end-to-end hierarchical RNN for skeleton-based action 
recognition, based on the ability to model the long-term contextual knowledge of temporal 
sequences of the RNNs. Liu et al. (2016) further propose a tree-structure traversal method 
based on LSTM to deal with occlusion and noise in human skeleton data. To make better 
use of the multi-modal features extracted for each joint, then they (Liu et al. 2018) intro-
duce a feature fusion method within the trust gate ST-LSTM unit. Song et al. (2017) com-
bine the spatial attention subnetwork and the temporal attention subnetwork with the main 
LSTM network to pay various levels of attention to different frames. Zhang et al. (2017) 
propose a two-stream View Adaptive network for skeleton action recognition to elimi-
nate the influence of the viewpoints by combining RNN features with CNN features. Li 
et al. (2018) introduce an independently RNN (IndRNN) architecture to ovoid the gradient 
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vanishing while learning long-term dependencies. Zheng et al. (2019) integrate the atten-
tion mechanism into LSTM to model spatial and temporal dynamics simultaneously.

Meanwhile, by forming the skeleton into pseudo-images, CNN-based methods are 
also widely studied (Ke et al. 2017; Liu et al. 2017; Kim and Reiter 2017; Li et al. 2017a, 
b; Cao et  al. 2019). Ke et  al. (2017) introduce a manual clip generation method for the 
skeleton joints of each frame which are placed as a chain by concatenating the joints. Liu 
et  al. (2017) present an enhanced visualization method for skeleton data according to a 
view-invariant transform, an image colorization, and a CNN-based model. Kim and Reiter 
(2017) re-design the Temporal Convolutional Neural Networks (TCN) to learn the spa-
tial–temporal representations of the human skeleton data. Li et al. (2017a) also transform 
the skeleton videos to skeleton-images and utilize a multi-scale deep convolutional neu-
ral network (CNN) architecture to recognize the localized and motion features. Li et  al. 
(2017b) construct two kinds of skeleton-image for both 3D Cartesian coordinates and skel-
eton motion. Then a two-stream CNN is performed for classification. Cao et  al. (2019) 
employ CNNs to solve the sequence learning problem as an image classification problem 
by stacking residual blocks and skip gated links. Wang et  al. (2021) combine the angle 
changes of the edges and the movements of the corresponding body joints to construct a 
skeleton edge motion network.

2.1 � Graph convolutional neural networks

Nevertheless, neither CNNs nor RNNs process the non-Euclidean graphs directly. Both the 
sequences in RNNs and the grids in CNNs have flaws while blending spatial and tempo-
ral patterns. Therefore, several GCN-based models are proposed to capture spatiotemporal 
features from graphs (Yan et al. 2018; Shi et al. 2019a, b; Peng et al. 2021; Liu et al. 2021; 
Xie et al. 2021; Ahmad et al. 2021). Inferred by CNNs, these GCNs avoid the handcrafted 
part-assignment. Yan et al. (2018) propose to treat the skeleton sequences as spatiotempo-
ral graphs and extend CNNs to the vertex domain of the graph by a spatiotemporal GCN 
(ST-GCN). The spatiotemporal information is shown vital for trajectory data in different 
domains (Knauf et  al. 2016). Unlike CNNs, the convolution operation in the GCNs unit 
contains the input data and learnable weights and the adjacency matrix of the graph dem-
onstrating the spatiotemporal connection. By constructing a naturally connected skeleton 
graph, ST-GCN eliminates the need to specify the data structure manually. Si et al. (2019) 
combine vertex-domain graph convolution with LSTM to capture features in both spatial 
configuration and temporal dynamics. Based on ST-GCN, Shi et al. (2019a) raise a two-
stream adaptive GCN (2s-AGCN) to obtain the joint and the second-order information 
of the skeleton data. They add learnable adaptive parameters to the adjacency matrix to 
improve the limitations of natural connection in ST-GCN. Then 2s-AGCN is extended to 
MS-AAGCN (Shi et al. 2020) by a multi-stream architecture which combines the informa-
tion from both joints and bones, as well as their motion trends. Another work from Shi 
et al. (2019b) propose a directed graph network (DGN) to model joints and bones in the 
natural human body, which are represented as a directed acyclic graph (DAG). Cheng 
et al. (2020) propose a novel shift operation for spatial GCNs based on the previous work, 
which greatly reduces the GFLOPs and increases the inflexibility of the receptive fields. 
Inspired by this work, our vertex-domain stream consists of spatiotemporal shift GCN 
blocks, which is more effective while extracting non-local relationships between spatial 
and temporal domains. Yoon et al. (2021) propose Pe-GCN with predictive encoding for 
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latent space, which is robust to the skeleton noise. The model is trained to learn the mutual 
information between latent features.

The effectiveness of GCN methods for graph data comes from the aggregation of tem-
poral and spatial patterns, which is also called vertex-domain information in this work. 
Nevertheless, apart from the vertex-domain methods, there are several spectral convolution 
methods to handle the graph data even they have not been paid attention to in skeleton-
based action recognition (Estrach et al. 2014; Henaff et al. 2015; Defferrard et al. 2016). 
Vertex-domain methods define the convolution through the chosen center and its recep-
tive field with the adjacency matrix. However, spectral-domain methods use the graph 
Laplacian matrix based on spectral graph theory (Chung and Graham 1997). In previous 
work, the spectral domain information is ignored when analyzing the graphs of the human 
skeleton.

Estrach et  al. (2014) exploit a global structure of the graph with the spectrum of its 
graph-Laplacian matrix to generalize the convolution operator from CNNs. A vanilla GCN 
in the spectral domain is proposed by constructing a graph spectral convolution layer, in 
which the spatial filter is replaced with a spectral filter. Henaff et  al. (2015) develop an 
improved spectral GCN by smooth the spectral filters. By smoothing the spectral filters in 
the spectral domain, a more localized filter in the space domain is obtained faster during 
the decay. Defferrard et  al. (2016) learn the functions of the Laplacian directly to avoid 
the eigendecomposition while calculating the spectral convolution. Inspired by Cheng et al. 
(2020), a dual-domain graph CNN is proposed to capture both spatiotemporal and spectral 
information with two kinds of graph convolution operators. Inferred by ResNet, a novel 
residual-connected spectral backbone is proposed to avoid gradient vanishing.

3 � Graph convolution operations

This section introduces two sorts of graph convolution operations according to graph signal 
processing (GSP) for skeleton action recognition.

3.1 � Vertex‑domain graph convolution

GCNs have been a widely used architecture since the work of Yan et al. (2018). By con-
structing the skeleton data into graph G = (V ,E) with N joints and T frames, a vertex-
domain graph convolution operation is defined with the thought of template matching. 
Because of the absence of node ordering and the structure diversity, the simplest way to 
design a template to calculate the convolution is to use a scalar for all neighbors. Given 
an input vector h of l th layer in a GNN, the vertex-domain scalar convolution is shown as 
follows:

where ⟨, ⟩ is the product operation and � is the activation function. wl ∈ R is the template 
vector to obtain neighborhood information in layer l. And Ni denotes the set of all neighbor 
nodes of node i. For a general convolution in graph neural networks, the following formula 
is obtained:

(1)hi
l+1 = �

(
∑

j∈Ni

⟨
wl, hl

ij

⟩)
,
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where A ∈ {0, 1}N×N is the Adjacency matrix of the graph, and Wl is the weight template 
learned by backpropagation. The output matrix is denoted as hl+1 ∈ RN×d , where d is the 
dimension of the feature vectors. The intuitive meaning of vertex-domain convolution is to 
collect information of neighbor nodes to update its representation.

For skeleton action recognition, the formula of vertex-domain convolution operation in 
GCNs is shown below:

where vti denotes the i th vertex in the graph at time t. The feature map is denoted as f. � 
is the refined weight function in GCNs. B is the refined sampling function. As shown in 
Fig. 1b, the kernel B is divided into three subsets: root Bs0 denotes the vertex itself; cen-
tripetal Bs1 contains the closer neighbors with gravity center; centrifugal Bs2 contains the 
farther neighbors. Cardinality Z indicates the contribution of the subsets.

As the feature map is a C × T × N tensor while implementing vertex-domain graph convo-
lution. Meanwhile Eq. 3 can be summarized as follows:

where Kv = 3 and �k = �
−

1

2

k
�k�

−
1

2

k
 . The elements �

ij

k
 of �k denotes whether the neighbor 

vertex vj is in the subset Sik of local vertex vi . �k ∈ R1×1×C×C� denotes the weight function. 
The channel of kernel and the number of kernels are denoted as C and C′ respectively. 
Meanwhile, �k is a learnable attention map to adjust the importance of each vertex.

(2)hl+1 = �(AhlWl),

(3)f out
(
vti
)
=

∑

vtj∈B(vti)

1

Zti
(
vtj
) fin

(
vtj
)
⋅ �

(
lti
(
vtj
))
,

(4)� out =

Kv∑

k

�k

(
�in�k

)
⊙�k,

Fig. 1   Illustration of the skeleton graph for vertex-domain graph convolution. The blue dots representing 
the body joints are connected in both spatial and temporal domain. For the vertex-domain convolution, they 
are divided into three handcrafted subsets: root subset B

s0
 , centripetal subset B

s1
 and centrifugal subset B

s2
 

(Color figure online)
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3.2 � Spectral‑domain graph convolution

In skeleton action recognition, the latest methods all treat joints and bones, as well as 
their motion trajectories, as a spatiotemporal graph to perform vertex-domain convo-
lution operations. However, since the skeleton data is regarded as graphs, the ignored 
spectral-domain information is also vital according to the Spectral Graph Theory. The 
analysis of the properties of a graph concerning the characteristic polynomial, eigenval-
ues, and eigenvectors of the Laplacian matrix, is the main part of spectral graph theory 
in mathematics.

The spectral convolution is performed by the following steps: Graph Laplacian 
matrix, Fourier functions and Fourier transform, Convolution theorem. The N th skel-
eton sequence in time T is converted to a spatiotemporal graph G = (V ,E) . According 
to spectral graph theory, The Adjacency matrix is represented as A. Another essential 
operator is the graph is Laplacian matrix L. And the simple Laplacian matrix is defined 
as L = D − A ∈ Rn×n . D = diag(d(v1),… , d(vN)) ∈ Rn×n is the diagonal degree matrix 
and d(⋅) is the degree of node vi . Then the normalized Laplacian matrix is defined as 
L = D

−
1

2 (D − A)D−
1

2 = I − D
−

1

2AD
−

1

2.
It is obvious that the Laplacian matrix L is a real symmetric matrix. Given a vector 

� related to vertex vi , � is the output vector by calculating the product of the Laplacian 
matrix L and � . And its physical implication can be clarified with the following formula:

where the output vector � represents the difference between vi and its neighbor vertex vj.
Laplacian matrix is also a positive semidefinite matrix and can be proved with Eq. 5 

by the following formula, the quadratic form of L:

As shown in Eq. 7, the quadratic form of the Laplacian matrix L is the sum of the squares 
of the difference between each vertex and its neighborhoods in a graph. From both perspec-
tives in Eqs. 5 and 7, the physical implication of the Laplacian matrix is that it is a meas-
ure of the difference between each node and its neighbor nodes in the graph. This is quite 

(5)� = L� = (D − A)� = D� − A� ,

(6)

�[i] = d(vi)� [i] −
∑

vj∈N(vi)

Ai,j� [i]

=
∑

vj∈N(vi)

1 ⋅ � [i] −
∑

vj∈N(vi)

1 ⋅ � [j]

=
∑

vj∈N(vi)

(� [i] − � [j]),

(7)

f ⊤Lf =
∑

vj∈V

� [i]
∑

vj∈N(vi)

(� [i] − � (j))

=
∑

vi∈V

∑

vi∈N(vi)

(� [i] ⋅ � [i] − � [i] ⋅ � [j])

=
∑

vi∈V

∑

vi∈N(vi)

(
1

2
� [i] ⋅ � [i] − � [i] ⋅ � [j] +

1

2
� [j] ⋅ � [j]

)

=
1

2

∑

vi∈V

∑

vi∈N(vi)

(� [i] − � [j])2.
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different from the Adjacency matrix applied in vertex-domain graph convolution operation, 
which provides the strength of the connection of the edge between nodes.

The vital Laplacian matrix L is precisely the basic content of graph spectral convolu-
tion operation. The convolution in the vertex domain can not be expressed as a meaning-
ful operator roughly. However, the convolution operator ∗G is easily defined in the spectral 
domain according to graph convolution theorem:

where Fourier basis U = [u0,… , un−1] ∈ Rn×n . With the Fourier basis, the spectral graph 
convolution for signal w is defined as ŵ = UTw . Fourier transform UT of the convolution of 
two signals (w, h) is the pointwise product of their Fourier transforms. By denoting ŵ and 
ŵ(Λ) , the graph spectral convolution formula is obtained:

where ŵ = UTw ∈ Rn×1 and Δ = UΛUT ∈ Rn×n . And Λ in ŵ(Λ) is denoted as: 
Λ = diag

([
�0,… , �n−1

])
∈ Rn×n . �i indicates the eigenvalues of the Laplacian matrix. 

ŵ(Λ) is the filter to be learned in the operation of spectral graph convolution.

4 � Dual‑domain GCN architecture

In this section, the two-stream architecture of our dual-domain GCN (DD-GCN) to obtain 
both spatiotemporal and spectral information is introduced in detail. Some actions are diffi-
cult to distinguish in the time–space domain but can be effectively separated in the spectral 
domain. By adopting the two kinds of graph convolution operations, both spatiotemporal 
and spectral information are obtained with the two-stream model. The experiment results 
show that the characteristics of the two domains have complementary effects.

As illustrated in Fig. 2, an end-to-end GCN is proposed to extract spatiotemporal and 
spectral information in a skeleton graph. It consists of two streams, in which an effective 
GCN–TCN-Unit and a novel Spectral-Unit are applied as backbone architecture. First, The 
skeleton data is preprocessed for both vertex-domain and spectral-domain separately. Then, 
followed by a dual-domain graph neural network that adopts two graph convolution opera-
tions, the skeleton signal is represented as high-level semantic features. The complemen-
tary representation eliminates the limitations in vertex and spectral-domain to obtain better 
performance for skeleton action recognition.

In the following subsection, the architecture to obtain information from both the vertex 
domain and the spectral domain is explained in detail.

4.1 � Skeleton action graph

The N sequences of skeleton data in one sample are operated as a sequence of tensors X, 
representing each joint’s coordinates. The construction of the spatial–temporal graphs for 
the vertex-domain convolution follows the work of ST-GCN (Yan et  al. 2018). As shown 

(8)w ∗G h = U
((
UTw

)
⊙
(
UT , h

))
,

(9)

w ∗G h = U(ŵ⊙ UTh)

= U( ̂w(Λ)⊙ UTh)

= ŵ(UΛUT )h

= ŵ(Δ)h,
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in Fig. 1a, the joints coordinates are represented as graph nodes, and the body connections 
are represented as graph edges. Meanwhile, the joints of the same body part between frames 
are also regarded as connected. The input tensors are denoted as X ∈ RN×C×T×V×M , and the 
spatial–temporal graph is denoted as G = (V ,E) with N joints and T frames. All the joints 
in a skeleton sequence are contained in the vertex set V =

{
vti ∣ t = 1,… , T , i = 1,… ,N} . 

The edge set E contains the intra-skeleton edges ES(�) =
{
vtivtj ∣ t = �, (i, j) ∈ H

}
 and 

the inter-frame edges EF =
{
vtiv(t+1)i

}
 . The spatial–temporal graph is regarded as a ten-

sor Xspatiotemporal ∈ R(N∗M)×C×T×V while operating vertex-domain graph convolution. The 
Adjacency matrix A for spatial GCN in GCN–TCN-Unit shows the connectivity of the 
human body. As for spectral-domain convolution, the spectral graph is regarded as a tensor 
Xspectral ∈ RN×T×V×(C∗M) . Instead of the Adjacency matrix, the spectral-domain stream focuses 
on the Laplacian matrix L to obtain the difference between node Vi and neighbor nodes.

4.2 � Vertex‑domain graph convolutional networks

Our implementation of vertex-domain GCN is inspired by the Shift-GCN (Cheng et al. 2020). 
As shown by the top branch in Fig. 2 by the structured spatiotemporal graph, a multi-layer 
spatiotemporal GCN is applied to extract the potential semantic information in the vertex 
domain. Our spatiotemporal stream adopts the spatial shift operation and temporal shift opera-
tion, which is first proposed for CNNs (Wu et al. 2018). To combine spatial information with 
temporal information, the same backbone (vertex-domain backbone) with ST-GCN (Yan et al. 
2018) is utilized, which consists of nine residual GCN–TCN-Units.

4.2.1 � Spatial shift graph convolution

Graph convolution in vertex domain has been illustrated in Sect.   2.1. It is general-
ized from CNNs to non-Euclidean data such as graphs. The Adjacency matrix, which 

Fig. 2   Implementation of our dual-domain graph convolutional networks (DD-GCN). The original skeleton 
data is preprocessed separately for the vertex domain and the spectral domain. The vertex-domain stream 
consists of nine GCN–TCN-Units which can extract the spatiotemporal information effectively by Shift 
Operation. The spectral-domain stream consists of a residual connected spectral convolution network that 
contains 4 or 6 Spectral-Units. Each Spectral Unit is composed of four components in order: spectral graph 
convolution with Chebyshev expansion, batch normalization, ReLU function, and graph pooling layer. Both 
vertex-domain stream and spectral-domain stream consist of a fully connected layer. The final output of the 
combined architecture contains both spatiotemporal and spectral-domain information
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demonstrates the connection of graphs, is adopted in the convolution operation. For spa-
tial convolution, the refined sampling function B is divided into three subsets (root, cen-
tripetal, centrifugal) to fix the size of convolution kernels. The process of regular spatial 
graph convolution is shown in Fig. 3a. During the spatial graph convolution, three kinds 
of the Adjacency matrix are employed (A of root, A of centripetal, and A of centrifugal), 
which are used to model skeleton relations. The spatial graph is constructed as a tensor 
(�)spatial ∈ RV×C , where V is the number of nodes and C is the channel of the human 
skeleton coordinates, which is 3 at the beginning. However, the GFLOPs is huge when 
the number of nodes increases and the connection becomes complicated.

Therefore, a spatial graph shift operation is adopted in our Vertex-domain stream for 
much lesser GFLOPs, as shown in Fig.  3b while extracting spatial information of the 
joints. The spatial graph �spatial ∈ RV×C is operated by graph shift first before calculating 
convolution with C′ spatial kernels of size C. The dimension of the output spatial graph 
is (V × C�) . There are two kinds of spatial shift operation, the local shift and the global 
shift (Cheng et  al. 2020). The difference between them is that the global shift opera-
tion abandons the natural connected structure of the human body and has better perfor-
mance. All joints operated as connected status, which means the Adjacency matrix is an 
identity matrix. The shift distance is i ��� N of i th channel.

By denoting a node as v and its neighbor nodes (all other nodes) as 
Nv =

{
N1
v
,N2

v
,… ,BV−1

v

}
 . As shown in Fig. 3b, the length of channel C is divided into V 

segments. The first segment of the feature is retained. And other N − 1 feature segments 

Fig. 3   This is the illustration of spatial graph convolution without shift operation in a. Spatial graph con-
volution with global shift operation is shown in b. The shift operation can model various relations across 
different joints in different channels with much lower GFLOPs
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are shifted from all other nodes. The output tensor �̃spatial ∈ RV×C after global spatial 
shift operation is obtained. For node v, the feature �̃v

spatial
 is shown as follows:

where c =
⌊
C

V

⌋
 and ∥ denotes the concatenation of the features from different channels. 

Each node gains the features of its neighbor nodes after the global spatial graph shift oper-
ation. The information between channels is exchanged. And that is the reason why shift 
operations can model various relations across different skeletons in different channels.

Instead of dividing the neighbor nodes into three categories and calculating the spa-
tial convolution, spatial shift operation reduces computational complexity with C′ 1 × 1 
convolution kernels.

Aiming to endow different weights because of the different importance of skeleton 
joints, a learnable mask M is adopted to compute the element-wise product.

4.2.2 � Temporal shift graph convolution

The temporal information from human skeleton graphs is extracted by the temporal shift 
graph convolution operation shown in the top branch of Fig. 2.

The temporal shift convolution in graph to obtain temporal information is inspired 
by Wu et al. (2018), in which a Shift-CNN is proposed to simplify convolution opera-
tions. To extract temporal information, the spatial tensors �spatial from time 1 to T are 
stacked as a temporal tensor �temporal ∈ RT×V×C , where V denotes the number of nodes 
and the C is the channel of the human skeleton coordinates, which is 3 at the beginning. 
�temporal is divided into C partitions, {�1

temporal
,�2

temporal
,… ,�T

temporal
} . For each parti-

tion, a learnable bias parameter Sc, c = 1, 2,… ,C is obtained for adaptive temporal shift 
graph convolution.

As shown in Fig.  4, the temporal tensor �temporal can use the traditional Shift con-
volution operator naturally because of its dimension. The process of shift operation in 
temporal shift graph convolution is like translating the original input matrix in a certain 
direction. In our vertex-domain graph convolution stream, the temporal bias is defined 
as real numbers instead of integer constraint. So the output T̃temporal ∈ R of node n after 
temporal shift at time t in channel c can be obtained:

(10)�̃
v
spatial

= �
(v,∶c)

spatial
∥ �

(N1
v
,c∶2c)

spatial
∥ ⋯ ∥ �

(NV−1
v

,(V−1)c∶)

spatial
,

(11)�̃M = �̃spatial◦ Mask = �̃spatial◦(tanh(�) + 1).

Fig. 4   Illustration of temporal shift convolution in vertex stream. The dimension of the temporal tensor is 
suitable for Shift Convolution Operators. The learnable bias is obtained for adaptive temporal shift graph 
convolution
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where � = Sc − ⌊Sc⌋ is the margin after realization of integer for backpropagation. After the 
temporal shift operation, C′ convolution kernels with dimension C is employed to extract 
temporal information.

4.2.3 � Vertex‑domain backbone

In order to extract spatiotemporal information through human skeleton data for action rec-
ognition effectively, a similar backbone with ST-GCN (Yan et al. 2018; Cheng et al. 2020) 
is adopted. As shown in the top branch of Fig. 2, residual connected GCN–TCN-Units are 
stacked, which are composed of 2 spatial shift operations, 2 temporal shift operations, and 
2 point-wise convolution layers.

The essential purpose of the vertex-domain backbone is to extract both the spatial and 
the temporal domain features of the topological graph. In particular, the skeleton graphs’ 
embedded spatiotemporal information is extracted from the skeleton graphs, which is also 
called vertex-domain information in this paper. Both spatial shift convolution and temporal 
shift convolution belong to vertex-domain convolution illustrated in Sect. 2.1. The kernels 
are considered as templates for matching in the spatial domain or the temporal domain.

However, this is the limitation of the previous GCNs for skeleton action recognition. 
Some movements of human activity are pretty similar in the vertex domain. The shift spa-
tial–temporal convolution exploring various relations across different skeletons is challeng-
ing to learn distinguishable features for this problem. According to GSP, spectral graph 
convolution is promoted from another perspective.

4.3 � Spectral‑domain graph convolutional networks

The spectral stream aims to extract the spectral domain information, which is local, sta-
tionary, and compositional through the Laplacian matrix L of the skeleton action graph. 
As illustrated in Sect. 2.1, according to spectral graph theory, an RSB-based architecture 
is proposed based on graph spectral convolution. The spectral-domain GCN is shown to 
be effective to extract high-level semantic patterns with the deep residual structure. Mean-
while, the spectral convolution operation can be studied and improved with strong math-
ematical tools such as spectral graph theory.

4.3.1 � Spectral graph convolution

The previous work in GSP defined the Fourier transform on the graph. And then, the spec-
tral-domain convolution on the graph is proposed. The definition of spectral-domain graph 
convolution is illustrated by Eq. 9 in Sect. 2.1. The purpose of our spectral graph convolu-
tion is to combine the deep learning architecture with it to propose a Spectral-domain GCN 
backbone.

The Let l denotes the number of the layer, the spectral graph convolution is shown as 
follows:

(12)
T̃temporal(v, t, c) = (1 − �)�temporal(v, ⌊t + Sc⌋, c)

+ ��temporal(v, ⌊t + Sc⌋ + 1, c),
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where � is the activation function after spectral convolution and hl denotes the input signal. 
wl is the spectral filter to obtain the output hl+1 . We adopt ŵ(Δ) =

∑K−1

k=0
wkTk(Δ) which is 

of the form of the Chebyshev polynomial parametrization of filters in the spectral domain. 
The Chebyshev expansion (Hammond et al. 2009) is to approximate kernels in Graph Sig-
nal Processing (GSP). And then the Chebyshev spectral convolution operation is obtained:

where Xk = 2Δ̃Xk−1 − Xk−2 , X0 = h , X1 = Δ̃h and Δ̃ = 2𝜆−1
n
Δ − I . The parameter wk 

which is learned by backpropagation is a vector of polynomial coefficients. With the help 
of Chebyshev polynomial, there is no need to do the eigen-decomposition of the Lapla-
cian matrix. And the spectral graph convolution does not depend on the eigenvector of the 
Laplacian matrix.

4.3.2 � Spectral graph pooling

A graph coarsening method (the Graclus multilevel clustering algorithm) (Dhillon et  al. 
2007) is employed during the graph coarsening before graph pooling. It produces coarser 
graphs corresponds to the skeleton joints coordinates based on a greedy rule. The coarsen-
ing level lev demonstrates the depth of the spectral stream. At coarsening level levn , the 
vertex vi is matched with one neighbor unmarked vertex vj to maximize the local normal-
ized cut Wij

(
1∕dvi + 1∕dvj

)
 . The weights of the two matched vertices are added and marked 

as vn+1
i

.
After coarsening phase, in which the number of nodes is divided by approximately 

two from one level to the next coarser level, all the nodes and their coarsened version are 
formed into a balanced binary tree. The rearranged signal is much easier for pooling.

4.3.3 � Spectral‑domain backbone

As the discussion in Sect. 2.1, the vertex-domain backbone aims to explore various rela-
tions across different skeletons. However, the spatial–temporal information extracted by 
Vertex-domain GCN is limited while learning different patterns because of the similarity 
of some actions by vertex-domain graph convolution. So a deep spectral-domain backbone 
is proposed in this work based on spectral-domain graph convolution, which is shown to be 
effective in Sect. 5.

The spectral-domain backbone consists of multiple Spectral-Units to obtain spectral 
information, followed by a fully connected layer for classification. The architecture of our 
spectral-domain backbone is shown in the bottom branch in Fig.  2. The basic Spectral-
Units are residual connected aiming to learn long-term dependencies by preventing the 
gradient vanishing problems. The comparison between simple spectral graph convolution 

(13)
hl+1 = 𝜎(wl ∗G hl)

= 𝜎(ŵl(Δ)hl),

(14)

hl+1 = 𝜎(ŵl(Δ)hl)

= 𝜎

(
K−1∑

k=0

wk
lTk(Δ)h

l

)

= 𝜎

(
K−1∑

k=0

wk
lXk

)
,
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and our residual spectral graph (RSB) convolution is shown in Fig.  5. The BatchNorm 
operation also increases the robustness of the model. A Channel Pooling module is applied 
for the feature map addition of different coarsening layers.

5 � Experiments and analysis

In this section, the datasets and the implementation details of DD-GCN are illustrated, fol-
lowed by an ablation study and experiment analysis. An ablation study is also performed to 
prove the effectiveness of the spectral-domain stream based on spectral graph convolution. 
In the end, there are comparisons with other state-of-the-art approaches.

5.1 � Datasets description

The performance of DD-GCN is evaluated on three large-scale public skeleton-based 
datasets: NTU-RGBD 60 (Shahroudy et al. 2016), NTU-RGBD 120 (Liu et al. 2020) and 
Kinetics-Skeleton (Yan et  al. 2018) for the task of action recognition. An illustration of 
NTU-RGBD data samples is shown in Fig. 6.

5.1.1 � NTU‑RGBD 60 dataset

NTU-RGBD 60 dataset is a large-scale skeleton action dataset which composed of 60 
action classes. And the number of all these clips is 56,880. There are 40 different persons 
performing all the actions. Each action is captured by three cameras at the same height but 
from three different angles: −45◦, 0◦, 45◦ . The skeleton data used in this work contains 25 

Fig. 5   This is the comparison structure between simple spectral graph convolution layers and our residual 
spectral block, which enables the spectral stream to go deeper and is capable of representing high-level 
semantics
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human joints. (Shahroudy et al. 2016) defines two benchmarks: cross-subject (CS) set and 
cross-view (CV) set. Both of them are evaluated in our experiments.

5.1.2 � NTU‑RGBD 120 dataset

NTU RGBD 120 dataset is an extended version of the NTU-RGBD 60 dataset by adding 
another 60 classes and another 57,600 video/skeleton samples. It consists of 114,480 action 
samples divided into 120 action classes. The number of persons of different ages increases 
to 106. The samples are captured in three angles which is the same as NTU-RGBD 60. The 
skeleton data employed in this work consists of 25 human joints, as shown in Fig. 6. The 
two benchmarks are also defined as CS and CV. The action can be categories into Daily 
Actions (82), Medical Conditions (12), and Mutual Actions/Two Person Interactions (26).

5.1.3 � Kinetics‑Skeleton dataset

Kinetics is an activity recognition dataset for RGB-based action recognition, which con-
sists of 300,000 videos clips in 400 classes (Kay et al. 2017). Yan et al. (2018) construct a 
skeleton data based on it by extracting 18 body joints for each frame with an open-source 
toolbox OpenPose. Then the large-scale skeleton-based dataset called Kinetics-Skeleton is 
obtained. The training data is set to 240,000 skeleton clips, and the test data consists of 
20,000 clips. This dataset is challenging, so both the top-1 and top-5 accuracies are present 
as other methods do.

Fig. 6   Examples for class “hand waving”. The red line and green dots represent the skeletons (Color figure 
online)
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5.2 � Implement details of DD‑GCN

The DD-GCN is implemented with Pytorch deep learning framework. Some hyperparam-
eters are needed for both the vertex-domain stream and the spectral-domain stream. For 
NTU-RGBD 60 dataset and NTU-RGBD 120 dataset, the optimizer is SGD (stochastic 
gradient descent) method. And the loss function is cross-entropy loss. Similar to Cheng 
et al. (2020), the weight decay and initial learning rate of the vertex-domain stream are set 
to 0.0001 and 0.1. The learning rate decays by 10 at epoch of 60th, 80th, 100th. For spec-
tral-domain stream on NTU-RGBD 60 dataset and NTU-RGBD 120 dataset, the weight 
decay and initial learning rate of the vertex-domain stream are set to 0.003 and 0.1. The 
learning rate decays by 10 at epoch of 30th, 40th.

For the Kinetics-Skeleton dataset, the SGD is adopted as the optimizer. The settings 
of weight decay and the initial learning rate are the same with NTU-RGBD datasets in 
the vertex-domain stream. For spectral stream, the weight decay, Nesterov momentum for 
SGD, the base learning rate is set to 0.001, 0.9, 0.001. The learning rate decays by 10 at 
epoch of 45th, 55th.

5.3 � Ablation study

In this section, multiple sorts of strategies in DD-GCN are analyzed, such as the RSB strat-
egies, the fusion strategies, and the keyframes strategies.

5.3.1 � RSB strategies

The effectiveness of the spectral-domain backbone, which adopts the residual-connected 
spectral block, is evaluated in Table 1. Compared with the stream adopting simple spectral 
graph convolution, the residual spectral stream demonstrates a better performance with an 
increase of 15.1% and 12.9% on NTU-RGBD 60 CS and CV. Some recent experiments 
show that spectral-based GCN performs inferior to spatial-based GCN in some computer 
vision tasks. However, our experiments based on the RSB backbone show a certain devel-
opment potential of the spectral convolution. The critical problem of the previous spec-
tral convolution network lies in relatively shallow architecture. At the same time, residual-
connected architecture for the spectral-domain stream of DD-GCN is capable of capturing 
deep spectral information. While combined with the vertex-domain stream, which focuses 
on the spatiotemporal information, the residual DD-GCN has a superior performance with 
an increase of 1.1% and 0.7% on CS and CV. In contrast, the simple DD-GCN seems stren-
uous to obtain adequate spectral information for the vertex-domain stream.

Table 1   The ablation study on 
NTU-RGBD dataset denoting the 
effectiveness of the Res-Spectral 
Unit

Methods CS (%) CV (%)

Simple Spectral Stream 55.2 65.3
Residual Spectral Stream 70.3 78.2
Vertex-domain Stream (Shift) 87.8 95.1
DD-GCN (Simple) 88.6 95.3
DD-GCN (Residual) 88.9 95.8
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Besides the numerical results, a qualitative analysis of the situations where the RSB suc-
ceeds is performed. As shown in Fig. 7, The performance gain shows that recognition abil-
ity is improved for most action classes. For the vertex-stream 1s-AAGCN, the recognition 
accuracy of almost all actions has been improved. Even for the 1s-ShiftGCN, it is shown 
that most of the actions that are improved by spectral-domain convolution. The actions 
concentrate in some interactive actions (two person) or some actions with broader dynamic 
changes. The interactive actions contain “A52. pat on back”, “A51. kicking”, “A30. type on 
a keyboard”, “A50. punch/slap” and etc. The dynamically changing actions include “A6. 
pick up”, “A8. sit down”, “A43. falling down”, “A26. hopping” and etc. The spectral infor-
mation can be seen as a kind of global information complementary to the local information 
extracted from the vertex-domain convolution streams. That explains why these particu-
lar actions, including broader dynamic changes, benefit from the spectral-domain stream. 
However, the spectral stream seems weaker while distinguishing some detailed actions, 
such as “A16. wear a shoe” and “A17. take off a shoe”, in which the chronological order is 
important.

5.3.2 � Fusion strategies

As shown in Table 2, the spectral-domain stream is fused with other GCN methods, which 
only obtain the spatial relationships and temporal dynamics simultaneously. Three kinds 
of GCNs are evaluated with our spectral-domain stream. ST-GCN (Yan et al. 2018) with 

Fig. 7   Illustration of the performance gain (%) of the spectral-domain stream with respect to the vertex-
domain stream on the NTU-RGBD 60 dataset for the CS setting. The vertical axis is calculated by subtract-
ing the DD-GCN accuracy of each action from the vertex-domain stream. The horizontal axis denotes the 
class of action as provided in Shahroudy et al. (2016)
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spectral stream improves the results by 2.2% and 2.9% on NTU-RGBD 60 CS and CV. 
The improvement of 1s-AAGCN (Shi et al. 2020) fused with spectral stream is 0.7% on 
NTU-RGBD 60 dataset. And the DD-GCN has the best fusion effect with an increase 
of 1.1% and 2.9% on NTU-RGBD 60 CS and CV. ST-GCN proved to have the greatest 
improvement even though the other two have a superior performance according to their 
optimized spatial–temporal unit. The experiment results of the fused Shift-GCN and the 
fused 1s-AAGCN strategies are quite similar. However, owing to the spatial–temporal shift 
operation, the GFLOPs are more than three times lighter than the one in 1s-AAGCN. As 
shown in Table 2, the improvement in CV (7%) is not as obvious as in CS (1.1%). As we 
are concerned, the CV set is a simpler set using cameras 2 and 3 (37,920 clips) for train-
ing and camera 1 (18,960 clips) for testing. For the cross-view scenario, the model only 
with the vertex-domain GCN has obtained a robust representation ability. However, for the 
cross-subject conditions, our DD-GCN will have a better improvement.

The vertex-domain stream is trained with a similar configuration and steps with 1s-Shift 
GCN in Cheng et al. (2020). However, instead of superimposing the same backbone redun-
dantly in parallel with different preprocessed data (joints graph, bones graph, and their 
motion graphs), DD-GCN achieves a comparable experiment result with the complemen-
tary information from spectral-domain convolution. The experiment results show that the 
spectral-domain stream can improve the spatial–temporal GCNs generally, which indicates 
the flaw of the previous GCNs only focusing on optimizing local representation. Con-
cretely, DD-GCN fuses a sort of global information through spectral-domain convolution 
derived by the GFT. We learn a series of global filters to represent the skeleton patterns by 
projecting the graph signal to the spectral-domain space. Different from the aggregation of 
features in the vertex domain, it has better support of mathematical theory.

5.3.3 � Keyframes strategies

Meanwhile, the keyframes are calculated and extracted from the skeleton sequences for 
DD-GCN. As shown in Table 3, there is an improvement for both accuracy and effective-
ness. The keyframes are obtained by evaluating the coordinate changes with the former 
frame. It is considered the motion information is incorporated manually as the motion 
stream in other multi-stream GCN methods, which can be seen as a manual attention mech-
anism. By prepossessing for the rough skeleton coordinates, the two-stream architecture is 
much easier to train. And the performance is shown to be more robust. DD-GCN with key-
frames strategies improves the results by 0.3% and 0.2% on NTU-RGBD 60 CS and CV.

Table 2   The ablation study on 
NTU-RGBD dataset denoting the 
effectiveness of the fusion with 
vertex-domain stream

Methods CS (%) CV (%)

ST-GCN (Yan et al. 2018) 81.5 88.3
1s-AAGCN (Shi et al. 2020) 88.0 95.1
Vertex-domain Stream (1s-Shift-GCN) (Cheng 

et al. 2020)
87.8 95.1

ST-GCN + Spectral Stream (ours) 83.7 91.2
1s-AAGCN + Spectral Stream (ours) 88.7 95.8
Vertex + Spectral Stream (DD-GCN) (ours) 88.9 95.8
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5.4 � Comparison with other state‑of‑the‑art approaches

To demonstrate the superiority and robustness of the two-stream architecture DD-GCN 
is compared with the state-of-the-art methods on three large-scale skeleton datasets: 
NTU-RGB 60 dataset (Shahroudy et  al. 2016), NTU-RGB 120 (Liu et  al. 2020) and 
Kinetics-Skeleton dataset (Yan et al. 2018).

5.4.1 � Experiments on NTU‑RGBD 60 dataset

On NTU-RGBD 60 dataset, the evaluation protocols on two sets: CS and CV are 
applied as in Shahroudy et al. (2016). Half of the cross-subject samples are employed 
for training and the other half are for evaluation. As for the cross-view scenario, two-
thirds are used for training, and one-third used for evaluation. The comparison results 
are shown in Table  4. It is shown that our DD-GCN achieves an accuracy of 88.9% 
on the CS set and an accuracy of 95.8% on the CV set. The results are compared with 
the state-of-the-art methods. There is a certain gap between the performance of the 
methods (Vemulapalli et al. 2014; Jiang et al. 2020) using a handcraft descriptor based 
on Lie Group and the deep features. In the meanwhile, our DD-GCN outperforms all 
RNN-based and CNN-based methods owing to the excellent graph convolution opera-
tion in both vertex domain and spectral domain. Compared with the method based on 
GCNs, our method also proves its superiority.

For most GCN-based networks, DD-GCN also has better results owing to comple-
mentary information from the spectral backbone. DD-GCN has dramatically improved 
our previous model SS-GCN (Chen et al. 2021) owing to the improvement of the struc-
ture on both the spectral stream and the spatial–temporal stream. DD-GCN outperforms 
ST-GCN by 7.4%/7.5% on this dataset. Compared with the three-stream RA-GCN, our 
two-stream model has a 1.6%/2.2% increase on CS and CV set. ST-TR-AGCN (Plizzari 
et al. 2021) with a two-stream architecture outperforms our work by 0.3% on CS but 
the same on CV because of the attention mechanism in the spatial and temporal GCN 
units. As shown in Fig. 7, there is a general improvement for single-stream GCNs for 
most kinds of actions owing to the spectral information. Although the same two-stream 
network Shift-GCN performs slightly better, it uses additional bones data as input to 
train the same network for feature fusion. The SOTA work, such as 4s Shift-GCN and 
MS-AAGCN, uses additional data processing methods and repeats a model to improve 
accuracy. Despite this, our DD-GCN with a more robust spectral stream shows the 
complementarity between the two ways of graph convolution by further exploring the 
potential of spectral-domain convolution for skeleton action recognition.

Table 3   The ablation study on 
NTU-RGBD dataset denoting the 
effectiveness of the keyframes 
strategies

Methods CS (%) CV (%)

Spectral Stream w/o keyframes 69.8 77.9
Spectral Stream w/ keyframes 70.3 78.2
DD-GCN w/o keyframes 88.4 95.6
DD-GCN w/ keyframes 88.9 95.8
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5.4.2 � Experiments on NTU‑RGBD 120 dataset

On NTU-RGBD 120 Dataset, two standard evaluation protocols are applied in Liu et al. 
(2020). The comparison results are shown in Table 5. The experiment accuracy of DD-
GCN is 84.9% for the CS set, 86.0% for the CV set. Compared with 3s RA-GCN, our 
two-stream model has a 3.8%/3.3% increase on CS and CV set. The performance of 
two-stream ST-TR-AGCN (Plizzari et  al. 2021) concatenating spatial–temporal mod-
ule with self-attention mechanism is 2.2%/1.3% lower than DD-GCN. The DD-GCN 
achieves 0.7% higher accuracy on CS set and 0.5% higher on CV set than the work in 
Wang et al. (2021). This demonstrates the superiority of our GCN model that utilizes 
the residual spectral stream based on the spectral-domain graph convolution.

The results of DD-GCN on the NTU-RGBD 120 dataset are 0.4% lower than 2s Shift-
GCN, which superimposes the same backbone repeatedly with additional preprocessed 
data, the bone graphs (the differential of spatial coordinates). Compared with the SOTA 
4s Shift-GCN, our results are slightly inferior but with much lesser parameters. Neverthe-
less, our work has benefited by fusing two distinguishing graph convolution operators. 
The experiment results show that our two-stream network is reasonable and practical to 
obtain the local diversities and the global dynamics even without additional data.

Table 4   The comparisons of experiment results on NTU-RGBD 60 dataset

Experimental results and the state-of-the-art are highlighted in bold

Methods CS (%) CV (%) Year

Lie Group (Vemulapalli et al. 2014) 50.1 82.8 2014
HBRNN (Du et al. 2015) 59.1 64.0 2015
Deep LSTM (Shahroudy et al. 2016) 60.7 67.3 2016
ST-LSTM (Liu et al. 2016) 69.2 77.7 2016
STA-LSTM (Song et al. 2017) 73.4 81.2 2017
Ind-RNN (Li et al. 2018) 81.8 88.0 2018
DS-LSTM (Jiang et al. 2020) 75.5 84.2 2020
TCN (Kim and Reiter 2017) 74.3 83.1 2017
Synthesized CNN (Liu et al. 2017) 80.0 87.2 2017
CNN + Motion + Trans (Li et al. 2017b) 83.2 89.3 2017
Fuzzy CNN (Banerjee et al. 2021) 84.2 89.7 2021
SEMN (Wang et al. 2021) 80.2 85.8 2021
ST-GCN (Yan et al. 2018) 81.5 88.3 2018
DPRL + GCNN (Tang et al. 2018) 83.5 89.8 2018
TS-SAN (Cho et al. 2020) 87.2 92.7 2020
CA-GCN (Zhang et al. 2020) 83.5 91.4 2020
MS-AAGCN (+ bones and motions) (Shi et al. 2020) 90.0 96.2 2020
2s Shift-GCN (+ bones) (Cheng et al. 2020) 89.7 96.0 2020
4s Shift-GCN (+ bones and motions) (Cheng et al. 2020) 90.7 96.5 2020
AMV-GCN (Liu et al. 2021) 83.9 92.2 2021
3s RA-GCN (Song et al. 2021) 87.3 93.6 2021
ST-TR-AGCN (Plizzari et al. 2021) 89.2 95.8 2021
DD-GCN (ours) 88.9 95.8 2021
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5.4.3 � Experiments on Kinetics‑Skeleton dataset

On the Kinetics-Skeleton dataset, the experiment is conducted following the protocol of Yan 
et  al. (2018). The comparison results with state-of-the-art are shown in Table  6. DD-GCN 
has a 36.1% top-1 accuracy and 59.5% top-5 accuracy. Our DD-GCN shows superior results 
while fusing spatial–temporal and spectral information. Compared with Dynamic ST-GCN 
(Peng et al. 2021), DD-GCN has a higher accuracy of 3.0%/4.3%. DD-GCN is comparable 
with two-stream network ST-TR-AGCN (Plizzari et al. 2021). The accuracy of Pe-GCN (Yoon 
et al. 2021) is 2.3%/3.3% lower than DD-GCN while using the data without noise. Accord-
ing to Fig. 7, some actions are hard to classify by traditional GCNs based on vertex-domain 
graph convolution, while the two-stream architecture containing a distinguish graph convolu-
tion operation is shown to enhance the robustness of the model. As shown in Table 6, a not 
the best but comparable result is obtained when compared to the SOTA method MS-AAGCN 

Table 5   The comparisons of experiment results on NTU-RGBD 120 dataset

Experimental results and the state-of-the-art are highlighted in bold

Methods CS (%) CV (%) Year

ST-LSTM (Liu et al. 2016) 55.7 57.9 2016
SkeleMotion (Caetano et al. 2019) 67.7 66.9 2019
TSRJI (Caetano et al. 2019) 67.9 62.8 2019
Part-Aware LSTM (Liu et al. 2020) 55.7 57.9 2020
2s Shift-GCN (+ bones) (Cheng et al. 2020) 85.3 86.6 2020
4s Shift-GCN (+ bones and motions) (Cheng et al. 2020) 85.9 87.6 2020
Fuzzy CNN (Banerjee et al. 2021) 74.8 76.9 2021
AMV-GCN (Liu et al. 2021) 76.7 79.0 2021
3s RA-GCN (Song et al. 2021 ) 81.1 82.7 2021
ST-TR-AGCN (Plizzari et al. 2021) 82.7 85.0 2021
SEMN (Wang et al. 2021) 84.2 85.5 2021
DD-GCN (ours) 84.9 86.0 2021

Table 6   The comparisons of 
experiment results on Kinetics-
Skeleton dataset

Experimental results and the state-of-the-art are highlighted in bold

Methods Top-1 (%) Top-5 (%) Year

TCN (Henaff et al. 2015) 20.3 40.0 2015
Deep LSTM (Shahroudy et al. 2016) 16.4 35.3 2016
ST-GCN (Yan et al. 2018) 30.7 52.8 2019
TS-SAN (Cho et al. 2020) 35.1 55.7 2020
CA-GCN (Zhang et al. 2020) 34.1 56.6 2020
MS-AAGCN (Shi et al. 2020) (+ 

bones and motions)
37.8 61.0 2020

Pe-GCN (Yoon et al. 2021) 33.8 56.2 2021
SS-GCN (Chen et al. 2021) 35.2 57.5 2021
Dynamic ST-GCN (Peng et al. 2021) 33.1 55.2 2021
ST-TR-AGCN (Plizzari et al. 2021) 36.1 58.7 2021
DD-GCN (ours) 36.1 59.5 2021
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(Shi et al. 2020) with extra preprocessed data mentioned above. However, there is potential for 
further improving the spectral backbone to handle the challenging dataset with various noises.

6 � Conclusion

In this paper, a dual-domain GCN (DD-GCN) for skeleton-based action recognition is 
proposed. We integrate spectral-domain information with spatial–temporal information 
through an end-to-end two-stream architecture. A spectral-GCN backbone is proposed 
based on the spectral-domain graph convolution. Compared with the previous GCN, which 
only focuses on the spatial–temporal information of the skeleton graphs, we explore the 
complementary spectral-GCN architecture and the necessity. With a deep residual-con-
nected RSB backbone, the accuracy of most actions has been improved, primarily the 
actions with broader dynamic changes in global. The experiment results on three large-
scale datasets demonstrate the effectiveness of our DD-GCN. The ablation studies explore 
the reasons for the superiority of DD-GCN for the task of skeleton-based action recog-
nition. The extensive experiments on three large-scale datasets, NTU-RGBD 60, NTU-
RGBD 120, and Kinetics-Skeleton, show competitive or state-of-the-art performance. In 
the future, we will optimize the spectral-domain backbone for skeleton-based action rec-
ognition and hope to inspire more work to focus on the dual-domain graph convolutions.

Acknowledgements  This work is funded by the Nature Natural Science Foundation of China (62002220). 
Xinghao Jiang is the corresponding author.

Author contributions  SC: Conceptualization, Methodology, Writing-original draft, Software. KX: Supervi-
sion, Validation. ZM: Data Curation. XJ: Investigation, Visualization. TS: Writing-review and editing.

Funding  This work is funded by the Nature Natural Science Foundation of China (62002220).

Data availability  The data sets supporting the results of this article are included within the article and its 
additional files.

Code availability  Not applicable.

Declarations 

Conflict of interest  We declare that we do not have any commercial or associative interest that represents a 
conflict of interest in connection with this work.

Ethical approval  Not applicable.

Informed consent  Not applicable.

Consent for publication  We confirm that this work has not been published before. And the publication has 
been approved by all co-authors.

References

Ahmad, T., Jin, L., Lin, L., & Tang, G. (2021). Skeleton-based action recognition using sparse spatio-tem-
poral GCN with edge effective resistance. Neurocomputing, 423, 389–398.



2404	 Machine Learning (2022) 111:2381–2406

1 3

Banerjee, A., Singh, P. K., & Sarkar, R. (2021). Fuzzy integral-based CNN classifier fusion for 3D skel-
eton action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 31(6), 
2206–2216.

Caetano, C., Brémond, F., & Schwartz, W. R. (2019). Skeleton image representation for 3D action recogni-
tion based on tree structure and reference joints. In 2019 32nd SIBGRAPI conference on graphics, pat-
terns and images (SIBGRAPI) (pp. 16–23). IEEE.

Caetano, C., de Souza, J. S., Brémond, F., dos Santos, J. A., & Schwartz, W. R. (2019). SkeleMotion: A 
new representation of skeleton joint sequences based on motion information for 3D action recognition. 
In 16th IEEE international conference on advanced video and signal based surveillance, AVSS 2019, 
Taipei, Taiwan, September 18–21, 2019 (pp. 1–8). IEEE.

Cao, C., Lan, C., Zhang, Y., Zeng, W., Lu, H., & Zhang, Y. (2019). Skeleton-based action recognition with 
gated convolutional neural networks. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 29(11), 3247–3257.

Chen, S., Xu, K., Xinghao, J., & Tanfeng, S. (2021). Spatiotemporal-spectral graph convolutional networks 
for skeleton-based action recognition. In 2021 IEEE international conference on multimedia and expo 
workshops, ICME workshops, virtual, July 5–9, 2021 (pp. 1–6).

Cheng, K., Zhang, Y., He, X., Chen, W., Cheng, J., & Lu, H. (2020). Skeleton-based action recognition with 
shift graph convolutional network. In 2020 IEEE/CVF conference on computer vision and pattern rec-
ognition, CVPR 2020, Seattle, WA, USA, June 13–19, 2020 (pp. 180–189).

Cho, S., Maqbool, M. H., Liu, F., & Foroosh, H. (2020). Self-attention network for skeleton-based human 
action recognition. In IEEE winter conference on applications of computer vision, WACV 2020, Snow-
mass Village, CO, USA, March 1–5, 2020 (pp. 624–633).

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory. No. 92. American Mathematical Society.
Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast 

localized spectral filtering. In Advances in neural information processing systems 29: Annual confer-
ence on neural information processing systems 2016, December 5–10, 2016, Barcelona, Spain (pp. 
3837–3845).

Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted graph cuts without eigenvectors A multilevel 
approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 1944–1957.

Du, Y., Wang, W., & Wang, L. (2015). Hierarchical recurrent neural network for skeleton based action rec-
ognition. In IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, 
USA, June 7–12, 2015 (pp. 1110–1118).

Estrach, J. B., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and deep locally connected 
networks on graphs. In 2nd International conference on learning representations, ICLR (Vol. 2014).

Fernando, B., Gavves, E., Jose Oramas, M., Ghodrati, A., & Tuytelaars, T. (2015). Modeling video evolu-
tion for action recognition. In IEEE conference on computer vision and pattern recognition, CVPR 
2015, Boston, MA, USA, June 7–12, 2015 (pp. 5378–5387). IEEE Computer Society.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2009). Wavelets on graphs via spectral graph theory. 
CoRR, abs/0912.3848.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE 
conference on computer vision and pattern recognition, CVPR 2016, Las Vegas, NV, USA, June 
27–30, 2016 (pp. 770–778). IEEE Computer Society.

Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data. CoRR, 
abs/1506.05163.

Islam, M. M., & Iqbal, T. (2020). HAMLET: A hierarchical multimodal attention-based human activity 
recognition algorithm. In IEEE/RSJ international conference on intelligent robots and systems, IROS 
2020, Las Vegas, NV, USA, October 24–January 24, 2021 (pp. 10285–10292).

Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3D convolutional neural networks for human action recognition. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1), 221–231.

Jiang, X., Xu, K., & Sun, T. (2020). Action recognition scheme based on skeleton representation with DS-
LSTM network. IEEE Transactions on Circuits and Systems for Video Technology, 30(7), 2129–2140.

Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green,T., Back, 
T., Natsev, P., Suleyman, M., & Zisserman, A. (2017). The kinetics human action video dataset. CoRR, 
abs/1705.06950.

Ke, Q., Bennamoun, M., An, S., Sohel, F. A., & Boussaïd, F. (2017). A new representation of skeleton 
sequences for 3D action recognition. In 2017 IEEE conference on computer vision and pattern recog-
nition, CVPR 2017, Honolulu, HI, USA, July 21–26, 2017 (pp. 4570–4579).

Kim, T. S., & Reiter, A. (2017). Interpretable 3D human action analysis with temporal convolutional net-
works. In 2017 IEEE conference on computer vision and pattern recognition workshops, CVPR work-
shops 2017, Honolulu, HI, USA, July 21–26, 2017 (pp. 1623–1631).



2405Machine Learning (2022) 111:2381–2406	

1 3

Knauf, K., Memmert, D., & Brefeld, U. (2016). Spatio-temporal convolution kernels. Machine Learning, 
102(2), 247–273.

Li, B., Dai, Y., Cheng, X., Chen, H., Lin, Y., & He, M. (2017a). Skeleton based action recognition using 
translation-scale invariant image mapping and multi-scale deep CNN. In 2017 IEEE international 
conference on multimedia and expo workshops, ICME workshops, Hong Kong, China, July 10–14, 
2017 (pp. 601–604).

Li, S., Li, W., Cook, C., Zhu, C., & Gao, Y. (2018). Independently recurrent neural network (IndRNN): 
Building a longer and deeper RNN. In 2018 IEEE conference on computer vision and pattern rec-
ognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018 (pp. 5457–5466).

Li, C., Zhong, Q., Xie, D., & Pu, S. (2017b). Skeleton-based action recognition with convolutional neu-
ral networks. In 2017 IEEE international conference on multimedia and expo workshops, ICME 
workshops, Hong Kong, China, July 10–14, 2017 (pp. 597–600).

Liu, X., Li, Y., & Xia, R. (2021). Adaptive multi-view graph convolutional networks for skeleton-based 
action recognition. Neurocomputing, 444, 288–300.

Liu, M., Liu, H., & Chen, C. (2017). Enhanced skeleton visualization for view invariant human action 
recognition. Pattern Recognition, 68, 346–362.

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L., & Kot, A. C. (2020). NTU RGB+D 120: A large-
scale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 42(10), 2684–2701.

Liu, J., Shahroudy, A., Xu, D., Kot, A. C., & Wang, G. (2018). Skeleton-based action recognition using 
spatio-temporal LSTM network with trust gates. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 40(12), 3007–3021.

Liu, J., Shahroudy, A., Xu, D., & Wang, G. (2016). Spatio-temporal LSTM with trust gates for 3D 
human action recognition. In B. Leibe, J. Matas, N. Sebe & M. Welling (Eds.), Computer Vision—
ECCV 2016—14th European conference, proceedings, Part III: Lecture notes in computer science, 
Amsterdam, The Netherlands, October 11–14, 2016 (Vol. 9907, pp. 816–833).

Peng, W., Shi, J., Varanka, T., & Zhao, G. (2021). Rethinking the ST-GCNs for 3D skeleton-based 
human action recognition. Neurocomputing, 454, 45–53.

Plizzari, C., Cannici, M., & Matteucci, M. (2021). Skeleton-based action recognition via spatial and 
temporal transformer networks. Computer Vision and Image Understanding, 208–209, 103219.

Rahmani, H., & Bennamoun, M. (2017). Learning action recognition model from depth and skeleton 
videos. In IEEE international conference on computer vision, ICCV 2017, Venice, Italy, October 
22–29, 2017 (pp. 5833–5842).

Shahroudy, A., Liu, J., Ng, T.-T., & Wang, G. (2016). NTU RGB+D: A large scale dataset for 3D human 
activity analysis. In 2016 IEEE conference on computer vision and pattern recognition, CVPR 
2016, Las Vegas, NV, USA, June 27–30, 2016 (pp. 1010–1019).

Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019a). Two-stream adaptive graph convolutional networks for 
skeleton-based action recognition. In IEEE conference on computer vision and pattern recognition, 
CVPR 2019, Long Beach, CA, USA, June 16–20, 2019 (pp. 12026–12035).

Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2019b). Skeleton-based action recognition with directed graph 
neural networks. In IEEE conference on computer vision and pattern recognition, CVPR 2019, 
Long Beach, CA, USA, June 16–20, 2019 (pp. 7912–7921).

Shi, L., Zhang, Y., Cheng, J., & Lu, H. (2020). Skeleton-based action recognition with multi-stream 
adaptive graph convolutional networks. IEEE Transactions on Image Processing, 29, 9532–9545.

Si, C., Chen, W., Wang, W., Wang, L., & Tan, T. (2019). An attention enhanced graph convolutional 
LSTM network for skeleton-based action recognition. In IEEE conference on computer vision and 
pattern recognition, CVPR 2019, Long Beach, CA, USA, June 16–20, 2019 (pp. 1227–1236). Com-
puter Vision Foundation/IEEE.

Simonyan, K., & Zisserman, A. (2014). Two-stream convolutional networks for action recognition in 
videos. In Advances in neural information processing systems 27: Annual conference on neural 
information processing systems 2014, December 8–13, 2014, Montreal, QC, Canada (pp. 568–576).

Song, S., Lan, C., Xing, J., Zeng, W., & Liu, J. (2017). An end-to-end spatio-temporal attention model 
for human action recognition from skeleton data. In S. P. Singh & S. Markovitch (Eds.), Proceed-
ings of the thirty-first AAAI conference on artificial intelligence, February 4–9, 2017, San Fran-
cisco, CA, USA (pp. 4263–4270).

Song, Y., Zhang, Z., Shan, C., & Wang, L. (2021). Richly activated graph convolutional network for 
robust skeleton-based action recognition. IEEE Transactions on Circuits and Systems for Video 
Technology, 31(5), 1915–1925.



2406	 Machine Learning (2022) 111:2381–2406

1 3

Tang, Y., Tian, Y., Lu, J., Li, P., & Zhou, J. (2018). Deep progressive reinforcement learning for skeleton-
based action recognition. In 2018 IEEE conference on computer vision and pattern recognition, CVPR 
2018, Salt Lake City, UT, USA, June 18–22, 2018 (pp. 5323–5332). IEEE Computer Society.

Vemulapalli, R., Arrate, F., & Chellappa, R. (2014). Human action recognition by representing 3D skeletons 
as points in a Lie Group. In 2014 IEEE conference on computer vision and pattern recognition, CVPR 
2014, Columbus, OH, USA, June 23–28, 2014 (pp. 588–595).

Wang, H., Yu, B., Xia, K., Li, J., & Zuo, X. (2021). Skeleton edge motion networks for human action recog-
nition. Neurocomputing, 423, 1–12.

Wu, B., Wan, A., Yue, X., Jin, P. H., Zhao, S., Golmant, N., Gholaminejad, A., Gonzalez, J., & Keutzer, K. 
(2018). Shift: A zero flop, zero parameter alternative to spatial convolutions. In 2018 IEEE conference 
on computer vision and pattern recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018 
(pp. 9127–9135). IEEE Computer Society.

Xie, J., Miao, Q., Liu, R., Xin, W., Tang, L., Zhong, S., & Gao, X. (2021). Attention adjacency matrix based 
graph convolutional networks for skeleton-based action recognition. Neurocomputing, 440, 230–239.

Yan, S., Xiong, Y., & Lin, D. (2018). Spatial temporal graph convolutional networks for skeleton-based 
action recognition. In Proceedings of the thirty-second AAAI conference on artificial intelligence, New 
Orleans, Louisiana, USA, February 2–7, 2018 (pp. 7444–7452).

Yang, Y., & Li, D. (2020). NENN: Incorporate node and edge features in graph neural networks. In S. J. 
Pan & M. Sugiyama, (Eds.), Proceedings of the 12th Asian conference on machine learning: Proceed-
ings of machine learning research, PMLR, Bangkok, Thailand, November 18–20, 2020 (Vol. 129, pp. 
593–608).

Yoon, Y., Yu, J., & Jeon, M. (2021). Predictively encoded graph convolutional network for noise-robust 
skeleton-based action recognition. Applied Intelligence, 52, 1–15.

Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., & Zheng, N. (2017). View adaptive recurrent neural net-
works for high performance human action recognition from skeleton data. In IEEE international con-
ference on computer vision, ICCV 2017, Venice, Italy, October 22–29, 2017 (pp. 2136–2145).

Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., & Zheng, N. (2019). View adaptive neural networks for high 
performance skeleton-based human action recognition. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 41(8), 1963–1978.

Zhang, X., Xu, C., & Tao, D. (2020). Context aware graph convolution for skeleton-based action recogni-
tion. In 2020 IEEE/CVF conference on computer vision and pattern recognition, CVPR 2020, Seattle, 
WA, USA, June 13–19, 2020 (pp. 14321–14330).

Zheng, W., Li, L., Zhang, Z., Huang, Y., & Wang, L. (2019). Relational network for skeleton-based action 
recognition. In IEEE international conference on multimedia and expo, ICME 2019, Shanghai, China, 
July 8–12, 2019 (pp. 826–831).

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Shuo Chen1 · Ke Xu1 · Zhongjie Mi1 · Xinghao Jiang1   · Tanfeng Sun1

	 Shuo Chen 
	 454539419@qq.com

	 Ke Xu 
	 l13025816@sjtu.edu.cn

	 Zhongjie Mi 
	 jimmymi_95@sjtu.edu.cn

	 Tanfeng Sun 
	 tfsun@sjtu.edu.cn

1	 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 
Shanghai, China

http://orcid.org/0000-0003-1227-3826

	Dual-domain graph convolutional networks for skeleton-based action recognition
	Abstract
	1 Introduction
	2 Related work
	2.1 Graph convolutional neural networks

	3 Graph convolution operations
	3.1 Vertex-domain graph convolution
	3.2 Spectral-domain graph convolution

	4 Dual-domain GCN architecture
	4.1 Skeleton action graph
	4.2 Vertex-domain graph convolutional networks
	4.2.1 Spatial shift graph convolution
	4.2.2 Temporal shift graph convolution
	4.2.3 Vertex-domain backbone

	4.3 Spectral-domain graph convolutional networks
	4.3.1 Spectral graph convolution
	4.3.2 Spectral graph pooling
	4.3.3 Spectral-domain backbone


	5 Experiments and analysis
	5.1 Datasets description
	5.1.1 NTU-RGBD 60 dataset
	5.1.2 NTU-RGBD 120 dataset
	5.1.3 Kinetics-Skeleton dataset

	5.2 Implement details of DD-GCN
	5.3 Ablation study
	5.3.1 RSB strategies
	5.3.2 Fusion strategies
	5.3.3 Keyframes strategies

	5.4 Comparison with other state-of-the-art approaches
	5.4.1 Experiments on NTU-RGBD 60 dataset
	5.4.2 Experiments on NTU-RGBD 120 dataset
	5.4.3 Experiments on Kinetics-Skeleton dataset


	6 Conclusion
	Acknowledgements 
	References




