
Vol.:(0123456789)

Machine Learning (2022) 111:1523–1549
https://doi.org/10.1007/s10994-022-06142-7

1 3

Detect, Understand, Act: A Neuro‑symbolic Hierarchical
Reinforcement Learning Framework

Ludovico Mitchener1  · David Tuckey1 · Matthew Crosby1 · Alessandra Russo1

Received: 2 June 2021 / Revised: 18 October 2021 / Accepted: 7 February 2022 /
Published online: 7 April 2022
© The Author(s) 2022

Abstract
In this paper we introduce Detect, Understand, Act (DUA), a neuro-symbolic reinforce-
ment learning framework. The Detect component is composed of a traditional computer
vision object detector and tracker. The Act component houses a set of options, high-level
actions enacted by pre-trained deep reinforcement learning (DRL) policies. The Under-
stand component provides a novel answer set programming (ASP) paradigm for symboli-
cally implementing a meta-policy over options and effectively learning it using inductive
logic programming (ILP). We evaluate our framework on the Animal-AI (AAI) competi-
tion testbed, a set of physical cognitive reasoning problems. Given a set of pre-trained DRL
policies, DUA requires only a few examples to learn a meta-policy that allows it to improve
the state-of-the-art on multiple of the most challenging categories from the testbed. DUA
constitutes the first holistic hybrid integration of computer vision, ILP and DRL applied to
an AAI-like environment and sets the foundations for further use of ILP in complex DRL
challenges.

Keywords  Neuro-symbolic · Hierarchical reinforcement learning · Deep reinforcement
learning · Inductive logic programming · Answer set programming

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumancic, Ute Schmid, Jay Pujara.

 *	 Ludovico Mitchener
	 ludo.mitchener@gmail.com

	 David Tuckey
	 david.tuckey17@imperial.ac.uk

	 Matthew Crosby
	 matthewcrosby@deepmind.com

	 Alessandra Russo
	 a.russo@imperial.ac.uk

1	 Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK

http://orcid.org/0000-0002-5968-9776
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06142-7&domain=pdf

1524	 Machine Learning (2022) 111:1523–1549

1 3

1  Introduction

Deep reinforcement learning (DRL) involves the use of neural networks as function
approximators in a reinforcement learning (RL) setting (Sutton & Barto 2018). In recent
years, DRL systems have worked well when applied to complex games (Berner et al., 2019;
Schrittwieser et al., 2020). However, the extent to which excelling at these video games can
be used as a real proxy for intelligence is unclear (Crosby et al., 2020). Current state-of-
the-art (SOTA) DRL systems seldom exhibit the most basic of human cognitive faculties
such as causal inference, spatial reasoning or generalisation (Garnelo & Shanahan, 2019;
Crosby et al., 2019). For example, in a recent competition using the Animal-AI (AAI) test-
bed, the top submissions, based on DRL methods, failed to solve common sense physical
reasoning tasks from animal cognition such as object permanence and spatial elimination
(Crosby et al., 2020).

Additionally, DRL methods inherit the drawbacks of neural networks including: opacity
or non-interpretability, poor generalization to samples outside their training distribution, data
inefficiency, and they are purely reactive, i.e. they do not explicitly develop high-level abstrac-
tions necessary for causal or analogical reasoning which could be reused across tasks (Gar-
nelo et al., 2016). To address these shortcomings, which map exactly onto the main strengths
of symbolic AI, we propose a novel neuro-symbolic framework that combines the strengths
of both DRL and symbolic reasoning and learning using the options framework (Garnelo &
Shanahan, 2019; Sutton et al., 1999).

Our framework, called DUA, is divided into three main components: Detect, Under-
stand and Act. The Detect component extracts an interpretable object representation, in the
form of a logic program, from the raw data of the environment using traditional methods
from computer vision. The Understand component implements a novel Answer Set Pro-
gramming (ASP) paradigm to learn a symbolic meta-policy over options using inductive
logic programming (ILP). Finally, the Act component uses individually trained DRL agents
that implement options. The architecture may be loosely thought of as a two-systems solu-
tion (Kahneman, 2011; Booch et al., 2020): the DRL options represent the fast, reactive
and non-interpretable facets of intelligence while the symbolic meta-policy learning is the
substrate of the slow, logically rational and interpretable side of intelligence.

We evaluate our DUA framework on the AAI 2019 competition testbed and demonstrate
several key benefits. Given a set of pre-trained options, we demonstrate few-shot learning
by only requiring 7 training examples to learn a general meta-policy which transfers within
and between tasks to compete on a testbed of 900 unseen arenas. Training only on those 7
examples, DUA achieves state-of-the-art in 7 testbed categories and above the top-10 aver-
age in 4 others, compared to results from the competition. Its modular nature allows it to
easily incorporate new options and update or learn new meta-policies to solve completely
new types of tasks without having to retrain the whole system. Finally, DUA requires no
environment rewards to learn meta-policies, making it particularly adept at extremely
sparsely rewarded settings. This work constitutes the first holistic hybrid integration of
computer vision, ILP and DRL able to solve common sense physical reasoning tasks such
as the animal cognition tasks in the AAI-like environment.

Our contributions are therefore fivefold:

•	 We propose a novel and general RL algorithm for learning first-order symbolic meta-
policies using ILP.

1525Machine Learning (2022) 111:1523–1549	

1 3

•	 We present a novel twist on hierarchical reinforcement learning (HRL) to integrate
deep and symbolic learning in an RL setting.

•	 We showcase the first hybrid integration of computer vision, DRL and ILP.
•	 We adopt a new Event-Calculus inspired ASP paradigm to coordinate such hybrid inte-

gration with agency.
•	 We evaluate our proposed framework in the AAI environment on the full 2019 competi-

tion testbed and achieve SOTA in multiple of the most challenging categories.

The paper is organised as follows. In Sect. 2 we introduce the AAI environment and both
the RL and ILP background required for the rest of the paper. In Sect. 3 we briefly discuss
the most relevant approaches in the literature. The rest of the paper describes the DUA
framework in detail (Sect. 4) followed by the experiments (Sect. 5) and results (Sect. 6).
We finally conclude and suggest avenues for future work.

2 � Background

In this section we introduce the evaluation testbed and a brief summary of the RL and ILP
background material used in the paper.

2.1 � Animal‑AI

The AAI environment (Crosby et al., 2020) comprises of a small arena in which various
objects can be placed to recreate tasks used in animal cognition. To simplify the environ-
ment in order to focus on the cognitive abilities being tested, the objects are colour coded
and of relatively few base types e.g. walls, ramps and food (reward objects). To complete
a task successfully an agent has to navigate the environment to collect a predetermined
amount of food (reward).

The environment uses the Unity physics engine to simulate realistic physical behaviors
such as gravity, friction, acceleration and collisions, and is built on top of ml-agents (Juliani
et al., 2018). The virtual equivalent of food is a green sphere with associated reward pro-
portional to its size. The agent also receives a constant, small and negative, reward of -1/T
at every time step, where T is the maximum number of time steps per episode. The agent’s
observations are comprised of coloured pixel inputs of configurable resolution along with a
three-dimensional velocity vector. The agent uses a simple discrete action space capable of
turning left, right and going forwards or backwards.

The testbed consists of 900 tests broken down into categories, roughly corresponding to
different cognitive skills, such as object permanence or causal reasoning. Many categories
are incredibly challenging for current SOTA DRL models. For example, the spatial elimi-
nation category includes 27 tasks, only 7 of which were solved in the competition. These
tasks involve inferring the only possible location that food could be in (behind an opaque
object) and directing exploration in that area. These tasks are purposefully designed such
that an undirected (e.g. random) exploration strategy will fail. On the other hand, it is not
possible to apply symbolic learning methods directly to the environment due to the pixel
inputs and low-level control provided by the action space.

Tests within a category in AAI may vary greatly in terms of types of objects encoun-
tered and the layout of the environment. For example, the spatial elimination category
involves tests with maze-like arenas composed of walls, as well as other tests involving

1526	 Machine Learning (2022) 111:1523–1549

1 3

forced-choice tasks with cylinders and blue platforms. As such, the object types, their
spatial configuration and the manner in which a cognitive skill is being assessed all vary
greatly within a category.

2.2 � Reinforcement learning

Reinforcement learning (Sutton & Barto 2018) is a general method for training agents to
maximise cumulative reward. The problem is usually represented as a Markov Decision
Process, a tuple M = ⟨S,A, p, r, �⟩ , where S and A are respectively a finite set of states
and actions, p ∶ S × A �→ �(S) is the transition probability function1, r ∶ S × A × S �→ ℝ the
reward function and finally � ∈ [0, 1) the discount factor. Initially the optimisation problem
may be formulated as, given a state, choose an action that leads to highest expected return.
This is known as the action value function Q� for policy � . The Q-value of a state-action
pair may be estimated from experience. By storing the average discounted return for taking
an action from each state, the averages will converge to the true action values Q(s, a).

Hierarchical Reinforcement Learning (HRL) leverages the intrinsic compositionality of
goals and sub-goals to simplify complex tasks using a divide and conquer strategy. Theo-
retically, decomposing a problem hierarchically can greatly reduce both space and time
complexity in the learning and execution of the overall task (Hengst, 2011).

Options (Sutton et al., 1999) are one of the most popular formulation of HRL. They
allow the RL agent to be divided into three components: primitive actions, temporally
extended actions composed of primitive actions, called options, and a high-level policy
over options. The high-level policy decides which option to initiate at a given state. Options
are executed until a termination criterion is met, usually reaching a sub-goal or a timeout.
The high-level policy is then queried again to decide which option should be executed next.

2.3 � Inductive learning of answer set programs

Answer Set Programming (ASP) (Gelfond & Lifschitz, 2000) is a declarative programming
paradigm used for knowledge representation and reasoning. We assume a first-order ASP
language composed of atoms, of the form �(��,… , ��) , where � is a predicate of arity n
( n ≥ 0 ) and ��,… , �� are terms (i.e. constants or variables), and negative atoms, of the
form ��� �(��,… , ��) where ��� represents negation as failure (Clark, 1987). A literal is
an atom or a negative atom. Normal rules are of the form:

where �, ��,… , ��, ��,… , �� are atoms, n ≥ 0 and m ≥ 0 . We refer to � as the head of the
rule and ��,… , ��, ��� ��,… , ��� �� (collectively) as the body of the rule. A normal rule
with n = m = 0 is also referred to as fact. We assume normal rules to be safe, that is every
variable in a rule occurs in at least one positive literal in the body of the rule. A normal
rule is ground if it does not contain variables. Given an ASP program P, composed of a
set of normal rules, the Herbrand Base of P denoted as HBP , is the set of all ground atoms
that can be formed from predicates and constants in P. An Herbrand interpretation, I, is a
subset of HBP . Solutions (i.e. models) of an ASP program P are defined in terms of the

� ∶ −��,… , ��, ��� ��,… , ��� ��

1  Given a finite set X, �(X) = {� ∈ ℝ
X ∶

∑
x∈X �(x) = 1,�(x) ≥ 0} is the probability simplex over X.

1527Machine Learning (2022) 111:1523–1549	

1 3

reduct of P. Given an ASP program P, composed of a set of normal rules, and an Herbrand
interpretation I ⊆ HBP , the reduct of P, denoted as PI , is constructed from the grounding
of P by (i) removing all the rules whose bodies contain the negation of an atom in I, and
(ii) removing all negative atoms from the remaining rules. All rules in the reduct PI have
no negative atoms in the body. An interpretation I1 ⊆ HBP is an Herbrand model of the
reduct PI if every rule r in PI is true in I1 , that is either the body of r is not included in I1 or
the head of r is in I1 . An Herbrand model I1 ⊆ HBP of the reduct PI is minimal if there is
no Herbrand interpretation I2 ⊂ I1 that is a model of PI . Any I ⊆ HBP is an answer set (or
solution of) P, if it is the minimal model of the reduct PI . Throughout the paper we denote
the set of answer sets of a program P with AS(P).

Example 1  Consider the ASP program P given below, and the interpreta-
tion I1 = {������(�����) , ��������(�����)} . The reduct PI1 is the program
PI1 = {��������(�����) ∶ −������(�����), ����(�����). ����(�����) ∶

−person(steve). �������(�����) ∶ −������(�����). ������(�����).} . The reduct PI1 has
the minimal model {��������(�����), ����(�����), �������(�����), ������(�����)}
which is not equal to I1 , so I1 is not an answer set of P. The pro-
gram P has three answer sets, A1={�������(�����), ������(�����)} ,
A2={����(�����), �������(�����), ������(�����)} , and A3={����(�����),
��������(�����), ������(�����)} . They intuitively state that solutions to the program
P are situations where steve is sick or healthy. If steve is sick, he either goes to the doctor
or calls 999. For a more detailed explanation of the semantics of ASP programs, please see
Gelfond and Lifschitz (2000).

ASP allows also optimisation over the answer sets, according to weak constraints. These
are rules of the form:

where ��,… , ��, ��� ��,… , ��� �� for (collectively) the body of the constraint, � and �
are integers specifying respectively the weight and the priority level, and ��,… , �� are
terms that appear in the body of the constraint. We refer to [�@�, ��,… , ��] as the tail of
the constraint. A ground instance of a weak constraint W is obtained by replacing all vari-
ables in W (including those in the tail of W) with ground terms. Weak constraints do not
affect what is, or is not, in an answer set of a program P. They create an ordering over the
set AS(P) of answer sets, which defines which answer sets are better than another. Infor-
mally, given a program P with weak constraints, and an interpretation I, we can construct
the set of tuples (�, �, ��,… , ��) for which there is a ground instance of a weak constraint
in P whose body is satisfied in I and whose (ground) tail is [�@�, ��,… , ��] . At each level
� , the score of I is given by the sum of the weights � of all such tuples with level � . So
an interpretation I1 is better than an interpretation I2 , written I1 ≺ I2 , if there is a level p
for which I1 has a lower score than I2 and there is level higher than � , for which I1 and I2
have different score. An answer set A ∈ AS(P) is optimal if there is no other answer set

P =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�������(�) ∶ −������(�), ����(�), ��� ��������(�).

��������(�) ∶ −������(�), ����(�), ��� �������(�).

����(�) ∶ −������(�), ��� �������(�).

�������(�) ∶ −������(�), ��� ����(�).

������(���
�).

∶∼ ��,… , ��, ��� ��,… , ��� ��.[�@�, ��, ..., ��]

1528	 Machine Learning (2022) 111:1523–1549

1 3

A1 ∈ AS(P) that is better than A. Note that an ASP program P with weak constraints may
have multiple optimal answer sets. For further details, see Calimeri et al. (2019).

Example 2  Consider the ASP program given in Example 1, extended with the following
weak constraints:

Applying the weak constraints to the three answer sets of P (given in Example 1), at prior-
ity level � , A1 and A3 have equal lower score (equal to 0) than A2 , which has score � . But at
the higher priority level � , A1 has lower score (still equal to 0) than A3 , which has score 2).
So, A1 is the optimal answer set, followed by A3 and then A2.

In this paper, we consider ASP programs to be composed of normal rules and weak
constraints.

ILASP (Law et al., 2020) is an ILP framework for learning ASP programs. It includes
a family of SOTA systems capable of learning (in principle) any class of ASP program.
We present here an adapted definition of the notion of inductive learning of answer set
programs that is specific to the class of ASP programs that are learned by our DUA frame-
work2. The task of learning from answer sets makes use of two types of examples: con-
text-dependent partial interpretations and context-dependent ordering examples. intro-
duce first the notion of partial interpretations. A partial interpretation e is a pair of sets of
atoms ⟨einc, eexc⟩ . An answer set A is said to extend a partial interpretation e if einc ⊆ A and
eexc ∩ A = � . A context-dependent partial interpretation (CDPI) is a pair ⟨e,C⟩ , where e is
a partial interpretation and C is an ASP program with no weak constraints, called context
of the partial interpretation e. A context-dependent ordering example o is a pair of CDPIs
⟨⟨e1,C1⟩, ⟨e2,C2⟩⟩ . An ASP program P bravely respects o if there is at least one pair of
answer sets ⟨A1,A2⟩ , where A1 ∈ AS(P ∪ C1) and A2 ∈ AS(P ∪ C2) , such that A1 extends e1 ,
A2 extends e2 and A1 ≺ A2.

In our DUA framework, a learning from answer set task T is formulated as:

where B is an ASP program called background knowledge, SM set of rules (normal rules
and weak constraints) allowed in hypotheses, called hypothesis space, E is a finite set of
context-dependent partial interpretations, called examples, and O is a finite set of con-
text-dependent ordering examples. An hypothesis H is an inductive solution of T if and
only if the following conditions hold: (i) H ⊆ SM , (ii) for every ⟨e,C⟩ ∈ E there exists an
answer set A ∈ AS(B ∪ C ∪ H) that extends e; (iii) for every o ∈ O , B ∪ H bravely respect
o. Learning an answer set program H means computing an inductive solution of a given
learning from answer set task T = ⟨B, SM ,E,O⟩ . Intuitively, a learned hypothesis (or ASP
program) complies with the bias SM , covers all the given examples and includes weak con-
straints so that its answer sets respect the given ordering examples. DUA uses the ILASP
system (Law et al., 2020) to compute inductive solutions that are essentially meta-policies
over options. In Sect. 4 we describe how a learning from answer set task T = ⟨B, SM ,E,O⟩

∶∼ ����(�).[�@�, �]

∶∼ �������(�).[�@�, �]

(1)T = ⟨B, SM ,E,O⟩

2  For a general definition of the learning from Answer Sets framework the reader is referred to Law et al.
(2018).

1529Machine Learning (2022) 111:1523–1549	

1 3

is defined to compute such policies, in particular what the hypothesis space SM is, and how
examples E and O are generated.

In DUA we make use of all these methods. The Understand component learns an ASP
program with weak constraints that defines an agent’s high-level policy over options. The
Act component houses the options: low-level policies learned using DRL. Finally, the
integration of low-level and high-level policies is inspired by the options framework from
HRL.

3 � Related work

In recent years an increasing body of research has been dedicated to merging symbolic
and neural systems in an attempt to reap the advantages of both (Marcus, 2020). Such sys-
tems have proven their worth on various tasks ranging from reasoning on unstructured data
(Minervini et al., 2019; Gupta et al., 2019; Cunnington et al., 2020), to visual question
answering (Mao et al., 2019; Yi et al., n/a, Han et al., n/a), to learning proofs (Fawzi et al.,
2019; Cranmer et al., 2019), to competing in RL tasks (Zamani et al., 2017; Bougie et al.,
2018; Garnelo et al., 2016) and even solving 8th grade science exams (Clark et al., 2019).
Neuro-symbolic methods may be broadly separated into those that attempt to fuse symbols
into the fabric of neural networks themselves (Dong et al., 2019; Liao & Poggio, 2017;
Zhang & Sornette, 2017; d’Avila Garcez et al. 2019; Manhaeve et al., 2018) and those that
connect the two by either using neural networks to bring unstructured data amenable to
symbolic systems or enhance deep systems with symbolic priors. Our approach falls within
the latter and so will our overview of related work, in particular within RL.

Garnelo et al. (2016) were amongst the first to show the promise of hybrid methods in
RL. Using symbolic common-sense priors, such as object permanence, the authors aug-
ment their observation space for a simple RL task. They show that their method generalizes
better than a simple DQN to unseen, similar tasks.

More recently, others have followed suit (Zamani et al., 2017; Bougie et al., 2018) in
augmenting observation spaces with symbolic representations of their environments to
give their agents strong informative priors. Zamani et al. (2017) use a symbolic representa-
tion composed of subgoals that boost RL performance by providing intermediate rewards.
The work from Bougie et al. (2018) is more directly related to our approach as it is also
tested in a complex partially-observable video game environment. They employ a similar
pipeline approach whereby the agent receives images as input and the images are enhanced
by adding strong symbolic priors related to the environment. Both (Zamani et al., 2017;
Bougie et al., 2018) demonstrate significant improvements in results over their purely DRL
counterparts.

Another interesting approach comes from Furelos-Blanco et al. (2021). Induction sub-
goal automata (ISA) uses ASP within the context of HRL, not only to learn the hierarchical
structure of the automata, but also the sub-policies themselves. ISA is fully interpretable
and trained in a non-differentiable, yet end-to-end fashion. Although its implementation is
purely symbolic, the authors suggest ways in which it could use DQN rather than tabular-Q
learning. The symbolic inference and induction of hierarchical options in ISA shares simi-
larities with our own approach, namely the use of the HRL options framework, ASP and
ILASP. Other approaches also based on a similar idea of using or learning reward autom-
ata to guide the RL agent include (Hasanbeig et al., 2019; Xu et al., 2020), where reward
automata are inferred, by SAT solving, from exploration traces and used to “orchestrate”

1530	 Machine Learning (2022) 111:1523–1549

1 3

sequencing of low-level actions in the RL agent, and (Icarte et al., 2018) where reward
automata are manually engineered and used in an interleaved fashion with the RL agent’s
exploration. These existing reward automaton based methods differ from DUA in the fact
that our meta-policy is learned from execution traces and not inferred using SAT solving
or manually engineered, and it is not used to compute at each iteration, but mainly to guide
the choice of options.

Neuro-symbolic techniques have also been used to efficiently verify the safety of DRL
policies for use cases where safety violations are unacceptable (Anderson et al., 2020).
Relational reasoning inspired by symbolic AI has also been shown to be beneficial in cer-
tain RL environments (Shanahan et al., 2020). Furthermore, with the growing importance
of graph theory within ML, graphs are increasingly being used to represent compositional
scene structure and symbolic relations (Jiang et al., 2018; Hart & Knoll, 2020). Graph neu-
ral networks are number and order invariant, while explicitly incorporating relations, void-
ing the need for them to be inferred. This makes graphs ideal candidates for semantic envi-
ronments, benefiting from object-centric understanding (Hart & Knoll, 2020).

Others have explored the use of program synthesis applied to RL. In Sun et al. (2020)
and Andreas et al. (2017) high-level policies are hard-coded and then the options are
learned using RL. While the idea of using a program for high-level policies is similar to
our approach, our approach differs in the following ways. We learn both the high-level pol-
icy and the options, albeit separately with the options being pre-trained. We use inductive
learning of ASP programs that supports relational knowledge discovery rather than func-
tion-based program induction and does not rely on types. Our learning components can
learn programs with general relations, using also non-monotonic semantics in the presence
of incomplete information, which is not applicable to program synthesis. As such, program
synthesis can be seen as a special case of our symbolic learning approach in which gen-
eral relations are restricted to functional relations. A final distinction is that in our DUA
framework the symbolic system is the “reinforcement learner” (i.e. learning the policy in
the shape of weak constraints) and not used to guide a separate RL model as in other works
of program synthesis (Yang et al., 2021) and generalised planning (Srivastava, 2011; Icarte
et al., 2018).

These works provide a promising glimpse into what is possible by boosting DRL meth-
ods with meaningful symbolic-informed priors. Not only do they often increase perfor-
mance and data-efficiency, but they also allow for a higher degree of interpretability. To the
best of our knowledge, however, there has been no neuro-symbolic RL method that goes
beyond using symbolic AI simply as an inductive bias rather than as a central component
in a complex 3D environment, as it is the case of our DUA framwork. No example has been
found of neuro-symbolic RL agents that benefit from the expressivity and symbolic dexter-
ity afforded by formal logic programming (LP) languages such as ASP, and methods for
learning ASP programs such as the ILASP system used in DUA.

4 � DUA

We now introduce the DUA approach. First with a high-level overview, and then with a
detailed description of each of its components. Although DUA is a general framework, to
illustrate its components better, we describe how each component has been designed to
learn and solve tasks in the AAI environment. In Sect. 6.3 we comment on applying the
DUA approach beyond the AAI environment.

1531Machine Learning (2022) 111:1523–1549	

1 3

4.1 � Overview

DUA operates on two different levels of temporal abstraction. The lower level operates in
the same time and action space as the RL environment. This level of temporal abstraction
will be referred to as the micro-level. DUA is capable of initiating actions referred to as
options which persist across often hundreds of environment timesteps. This timescale will
be referred to as the macro-level. DUA has two types of policies, a high-level meta-policy
on the macro-level that maps symbolic states to options, and the options themselves which
map environment observations to discrete actions on the micro-level.

DUA is named after its three components: Detect, Understand and Act (see Fig. 1 for
instantiation of DUA in the AAI environment). The Detect module receives information
from the environment at each timestep and filters it into a meaningful representation. The
Understand (reasoning and learning) module processes this symbolic representation of the
environment and infers the correct option to initiate given the current state by using the
learned meta-policy. The Act component is composed of the options which are pre-trained
DRL agents. Each option takes as input a filtered version of environment observations
based on the instructions of the Understand component. For example, if the Understand
component decides to ‘interact with object x’, only features of the environment pertaining
to object x will be fed to the corresponding option. The option will then execute until a
stopping criterion is met and a new query to the Understand component is made to decide
on the next option to execute.

4.2 � Detect

This module serves to “ground the world.” For an agent in an RL environment, the role of
the Detect module is to filter the raw and noisy image tensor into the salient features which
are most useful to maximise its reward. The Detect module parses the image into a set of
bounding boxes, making use of the colour coding of objects used in AAI. The object detec-
tor recognises colour ranges and associates them with known object types. We use centroid
tracking to keep track of objects over time (Nascimento et al., 1999). Objects no longer vis-
ible persist in memory for a preset number of timesteps.

Finally, the Detect component translates the bounding boxes’ information into an ASP
program composed of ground facts. It also computes simple arithmetic-based heuristics
over bounding boxes to detect relations between objects in the scene, such as relative posi-
tion, and adds it to the ASP program. We call this set of facts in the generated ASP pro-
gram the observables. An example of facts generated is the following:

Fig. 1   Example macro-step through the Detect, Understand, Act architecture

1532	 Machine Learning (2022) 111:1523–1549

1 3

stating that a goal on a platform is visible to the agent. The numbers are identifiers given by
the centroid tracking to each object. The calculations used to determine ��(�, �) and other
relations are detailed in the Appendix.

4.3 � Understand

The Understand module may be considered to be the foundation of our approach. It is in
charge of learning how to act appropriately to solve tasks, and reasoning over the high-
level symbolic state of the environment. The Understand component is itself split into two
sub-components: 1) an ASP program containing the meta-policy (policy over options) and
common sense background knowledge (detailed in the Appendix) and 2) the ILASP learner
which learns the meta-policy.

When queried, the Understand module adds to its ASP program the set of observables
and outputs the optimal option to execute. The ASP program contains a set of rules that
augment the observation space from the Detect module with common sense rules, such
as a goal is always present even if not visible, and a set of rules that instantiate all of the
possible options to execute, together with what type of object they should attend to. There
is one option per answer set of this ASP program: the answer sets of this program repre-
sent all of the possible options that can be selected at a given time. The meta-policy itself
takes the form of a set of weak constraints that rank the answer sets and thus the possible
options. The option to execute is the one corresponding to the optimal answer set (when
multiple answer sets are optimal, one is chosen at random). The set of weak constraints are
learned from environment traces as described in Sect. 4.5.

The representation of sequential events in our ASP program draws inspiration from
Event-Calculus (Sadri & Kowalski, 1995; Kowalski & Sergot, 1989). Time is decomposed
into discrete events over which our program reasons and decides what options to execute
following certain events. Although the events themselves span over irregular time frames
in the environment, the events are perceived as quasi-instantaneous by the ASP program
which reasons over a single event at a time.

4.4 � Act

The Act component houses the set of options, which are pre-trained DRL agents that cor-
respond to sub-goals. In our application to AAI, we use 9 pre-trained options (detailed in
the Appendix). These are:

•	 ��������(�) : goes to touch object X
•	 �������(�, �) : explores behind object X to find object Y
•	 �������(�, �) : traverses along object X without falling to reach object Y
•	 �����(�) : climbs up object X (for ramps)

The Act component receives the identifier of the option to execute, along with some con-
figuration indicating the stopping criteria and what its inputs are. For example, when we
climb an object with identifier X, the bounding box of the object X is fed as input to the

��������(�).

����(�).

��(�, �).

1533Machine Learning (2022) 111:1523–1549	

1 3

climb policy which terminates when the agent has reached the peak of the ramp or times
out. It oversees the course of the option in the environment and then calls the Understand
module upon termination.

We use Proximal Policy Optimisation (Schulman et al., 2017) as our DRL algorithm of
choice for AAI as it works with discrete action spaces, is easy to implement, requires little
fine-tuning, and has been shown to perform well over a wide variety of benchmarks (Schul-
man et al., 2017).

4.5 � Inductive meta‑policy learning

This section describes the core of our contribution, that is our approach for learning a sym-
bolic meta-policy over options which we call Inductive Meta-Policy learning (IMP). We
collect meta-traces from option-environment interactions and translate them into a learn-
ing from answer sets task. These traces are not the environment traces, but the sequence
of states and actions as viewed from the macro-level in the Understand module: the state
of the world (expressed in the ASP program), when it was queried and which option was
then executed. The environment timesteps are ignored in these meta-traces as we are only
interested in learning which option to choose, since the execution of such option is left to
the Act module.

We formalise the collection of meta-traces as a set T of tuples ⟨G,P⟩ , where G is a
meta-trace and P is a boolean. Each tuple in T corresponds to a collected episode. A meta-
trace G is composed of pairs of partially observable symbolic meta-states s and options o.
A meta-state is composed of all detected observables at a single macro-step, along with
all the high-level relations between the agent and the objects inferred (via the background
knowledge in the ASP program) by the Understand module. In other words, a meta-state is
the set of all the true logical atoms in the Understand module at a given macro-state (when
the Understand module is queried). The meta-trace is then the sequence of “symbolic”
meta-states of the system and the options executed after each of these states is observed.
For simplicity, we shall henceforth refer to meta-states simply as states. The boolean P for
each episode represents the success or failure of the episode: -1 means the agent failed to
solve the task and 1 means it succeeded. n is the number of meta-traces. Note that impor-
tantly, IMP, unlike RL methods, does not use environment reward. Instead, it only consid-
ers the binary outcome P: whether the meta-trace leads to success or failure.

In order to learn a meta-policy, we need to transform this set T into a learning from
answer sets task. Meta-policy learning happens in three steps:

1.	 Collect the meta-traces by running the agent in the environment and at each macro-step
randomly picking options to execute. We store the meta-traces along with their respec-
tive episode success in the set of tuples T.

2.	 We abstract each meta-trace: we map the state-option pairs in the meta-traces in T to a
set Ta of tuples including the abstract state-option pairs and associated expected return.
This step finds in T similar state-option pairs and combines them to obtain a value akin
to a Q-value.

3.	 We map the generated set Ta into a learning from answer set task Ti to learn the meta-
policy �meta

Preprocessing Abstraction and Q-value calculation. A difficulty arises
when attempting to compare two similar symbolic states. Take for

1534	 Machine Learning (2022) 111:1523–1549

1 3

example the two state-option pairs: ����(�).��������(�).��(�, �).��������(�) and
����(�).��������(�).��(�, �).��������(�) . They are equivalent, yet they differ due
to the id assigned by the centroid tracking. To abstract away from object identifiers we
modify the atoms such that the specific identifiers are replaced with abstract tokens.
For example, the symbolic state-option pairs in the previous example both become
����(�).��������(�).��(�, �).��������(�) . This allows us to recognise that multiple
state-option pairs correspond to the same abstract state-option pair and are thus compara-
ble. We shall refer to these abstract state-option pairs henceforth as abstract pairs.

Now, to obtain a numerical value akin to a Q-value, we assign to the last state in each
meta-trace G a reward of 1 or −1 , given by the value of P associated with G in the tuple
⟨G,P⟩ ∈ T  . All preceding state-option pairs in the same meta-trace are then assigned a dis-
counted return using a discount factor � , as it is common in reinforcement learning. Since
the state-option pairs are merged into their respective abstract pairs, we average their asso-
ciated reward to compute the expected return, or Q-value, for each abstract pair:

where s̄ is an abstract state, Ri are all individual discounted rewards associated with state-
option pairs that are equivalent to the abstract pair {s̄, ō} and k is the number of such equiv-
alent state-option pairs.

The two pre-processing steps (i.e. computation of abstract pairs and calculation of asso-
ciated Q-values), produce at the end a set Ta of tuples ⟨s̄, ō,Q(s̄, ō)⟩ , containing all abstract
pairs and their associated expected return. This set Ta is used to generate a learning from
answer set task Ti = ⟨B, SM ,E,O⟩ as defined below. A solution H to this learning task is a
set of weak constraints that we call a meta-policy.

Constructing the learning from answer sets task. The Understand component
of DUA generates a learning from answer set task Ti = ⟨B, SM ,E,O⟩ . The background
knowledge B = � , the hypothesis space SM is defined as set of weak constraints of the
form

where �̄ is a single positive option, ���,… , ��� , for i ≤ n are (negative) observables, and
n is the maximum number of literals allowed in a rule. The tail [−�@�, �] of each weak
constraint has weight −� , a priority level � and as � , all the variable terms that appear in the
body of the constraint. Each of these weak constraints represents a preference to execute
the option �̄ if the condition described by ��� … ��� is met. The maximum priority level
allowed is equal to 1.5 times the number of options. This ensures that we have a priority
level for every option as well as some margin for capturing more complex dependencies.
Object types such as ����(�) are not included in the hypothesis space as they are implicit
in the construction of the option space.

The examples E is a set of pairs ei = ⟨⟨einc
i
, eexc

i
⟩, ci⟩ , each representing an abstract pair.

The partial interpretation ⟨einc
i
, eexc

i
⟩ of each example is empty, i.e. einc

i
= eexc

i
= � , and the

context ci of each example ei is an abstract pair represented as a set of facts3. The ordering

(2)Q(s̄, ō) = E{Ri|si ≈ s̄, oi ≈ ō} =
1

k

k∑

i=1

Ri

∶∼ �̄, ���,… , ���[−�@�, �]

3  Note that the representation of abstract pairs as context of an example is sufficient in our case, since the
learning from answer sets task in IMP is aimed at learning only weak constraints.

1535Machine Learning (2022) 111:1523–1549	

1 3

examples O define ordering pairs over the examples in E. It is this set O of ordering exam-
ples what allows us to express preference over choosing an option over another for a given
state. For every abstract state the single optimal option, that is the option with highest
expected return in Ta , is pairwise ordered with respect to all other options taken from that
abstract state. In other words, we ask ILASP to prefer the answer sets where this optimal
option appears for its given abstract state. There are no orderings between abstract states
nor between sub-optimal options within abstract states. For example, in the abstract state
where a goal and two walls are visible, interact with goal is preferred to rotate and avoid
goal. However, there is no ordering between rotate and avoid goal. This would be repre-
sented, for instance, by the following context-dependent examples �� , �� and �� and related
ordering examples �� and ��:

5 � Experimental setup

5.1 � Option training

Each option is trained with identical hyperparameters i.e. no hyperparameter tuning is
necessary. For each option, a distribution of arenas is defined and the agent is trained by
randomly drawing an arena from this distribution for each new episode. For example, for
the ������� option, the arena distribution contained various configurations of goals on
platforms, requiring the agent to balance along the platform to reach the goal. The full list
of options and their corresponding training environments are described in the Appendix.

To accelerate training, we make use of reward shaping as well as observation filtering
unique to each option. For example, the ������� agent only ‘sees’ the bounding box of the
goal and a masked image only showing platforms.

The set of options used is chosen a priori, but not how they are used. The meta-policy
learned is dependent on the set of options available. We conducted an experiment analys-
ing how DUA behaves when using different subsets of our set of options. It showed that
the framework adapted to the set of options available without having to “know” what the
effects of the options are i.e. it can be applied for any set of options.

5.2 � IMP training

Once all the options are pre-trained, we create a training set of 7 arenas (detailed in the
Appendix), deemed sufficient for the agent to learn an effective meta-policy. At each
macro-step, the agent randomly chooses from the options available. The options are object-
type sensitive and so for a given state, only certain options will be available, those for
which their object-type is present. Using the example of ������� again, this option will
only be available when there are platforms detected in the environment. Furthermore, for
each training arena, we enforce early stopping by constraining the number of macro-steps
to be the minimal number of steps necessary to successfully complete the arena. Training

�� = ⟨⟨�, �⟩, {����(�), ��������(��������(�)), ����(�), ����(�)}⟩

�� = ⟨⟨�, �⟩, {����(�), ��������(������, ����(�), ����(�)}⟩

�� = ⟨⟨�, �⟩, {����(�), ��������(�����(�), ����(�), ����(�)}⟩

�� = ⟨�� ≺ ��⟩

�� = ⟨�� ≺ ��⟩

1536	 Machine Learning (2022) 111:1523–1549

1 3

continues on each arena until it has reached a heuristic number of successful episodes. The
collection of traces is parallelisable both within and between training arenas as generating
traces is independent from one arena to another.

Once the traces are collected, they are pre-processed and learning from answer sets task
is automatically generated as described in Sect. 4.5. The learning system ILASP used by
the Understand component returns then a hypothesis. This is stored and used to solve the
AAI testbed.

6 � Results

In this section we compare the performance of our DUA framework to the submissions to
the 2019 AAI competition, and analyse various aspects of inductive meta-policy learning.

6.1 � AAI competition

To evaluate DUA we implemented 9 options and created 7 training arenas. The final meta-
policy learned is displayed below:

The above meta-policy may be read as a ranking over options constrained by certain rela-
tions. Below is a line by line translation in plain English. A given line is only used if there
are no lines above it that are true.

If a ramp is available then climb it.
If the agent is on a platform and there is lava near the
goal, then observe the arena dynamics.
If there are more goals on one side of a platform you are
on, then go to that side.
If there’s no lava, collect multi-goals.
If there’s no lava around the goal and the goal is not on a
platform go get it.
Explore the object most likely to be occluding the goal.
If an object occludes the goal, go explore it.
If there is lava, fetch the goal while avoiding lava.
If the agent is on the platform, then balance on the plat-
form to get to goal.
If goal V1 is bigger than goal V2, go get goal V2.

∶∼ ��������(�����).[−�@��].

∶∼ ������, ��������(�������), ��(�����, ��������).[−�@�
].

∶∼ ��������(����(��)), ���������(��).[−�@�, ��].

∶∼ ��������(�������), �������.[−�@
].

∶∼ ��������(��������(��)), ���������, �����(����, ��������).[−�@	, ��].

∶∼ ��������(�������(��)), ������������(��, ��).[−�@�, ��, ��].

∶∼ ��������(�������(��)), ��������(��).[−�@�, ��].

∶∼ ��������(�����).[−�@�].

∶∼ ��������(�������).[−�@�].

∶∼ ������(��, ��), ��������(��������(��)).[−�@�, ��, ��].

∶∼ ��������(������).[−�@�].

1537Machine Learning (2022) 111:1523–1549	

1 3

If nothing is visible, rotate 360 degrees until an object
is visible.

As such, the final policy can be analysed to give insights into reasons for the behaviour of
the agent and is therefore interpretable to some extent.

Figure 2a shows our method compared to the current high score within each category
achieved by any of the 60 submissions submitted to the 2019 competition. We are compar-
ing our model against the best of all submissions for each individual category. We outper-
form all 60 competitors’ submissions on multiple of the most challenging categories. DUA
achieves state-of-the-art results in all the categories related to the 7 training arenas, with
the exception of y-mazes, where it still outperforms the top 10 average. This suggests that
the meta-policy learned is robust and can generalise to a variety of cognitive reasoning
tasks outside its training distribution.

The Overall scores reported in the results include even the tests for which the agent
cannot detect the objects in the domain. Due to limitations of the Detect module using
colour references, there are many object types (e.g. transparent walls and boxes) that are
not detected. This means that the agent fails all such tasks. Despite this, it still would have
come 3rd overall in the competition.

6.2 � Inductive meta‑policy learning

We now analyze various aspects of our inductive meta-policy learning (IMP) algorithm
including the scalability of IMP at solving new problems by giving it more options, the
very small sample of training arenas sufficient to learn a general meta-policy, and finally its
convergence properties.

6.2.1 � Transfer, scalability and generalisation

Unlike current DRL systems which usually require complete retraining to solve tasks out-
side their training distribution, it is sufficient to provide DUA with a single example of
a new task and any options it may require. AAI contains a wide variety of tests for each
category, yet we find that DUA only requires one example arena per category in order to
generate the results in Fig. 2.

To illustrate IMP’s capacity at few-shot generalisation, we analyse the effect of incre-
mentally adding one arena at a time to the training set. In Fig. 2b we show how the scores
improve as new training arenas and options are added. For example, the first system in
red is just trained on the basic food and obstacles arena and does not have any of the
options required to avoid red objects or climb ramps. Once we provide it with the avoid
option and a single example of a training arena with a red object, the meta-policy adapts to
include avoiding red objects and remains robust as more options are added. This is shown
in Fig. 2b by the jump in performance between the Basic bar and Lava bar on Avoid Red
tasks. Likewise for ramp usage, numerosity and object permanence. The scores for some
tasks fluctuate because objects in AAI do not always have the same uses. For example,
our agent might learn in the ramp usage category to balance on platforms, while in spatial
elimination it needs to chose a side of the platform to drop off of. As such, the performance
does not necessarily always increase for each category when adding new training arenas
and options. A detailed explanation for the results in Fig. 2b is included in the Appendix.

1538	 Machine Learning (2022) 111:1523–1549

1 3

6.2.2 � Fine‑tuning the meta‑policy

We also investigated how many successful meta-traces IMP requires to learn a general
meta-policy effective on the whole testbed. Our results in Fig. 2c show that with very few
positive examples the overall meta-policy already becomes competent at a wide variety of
tasks. However, the competency seems unstable for certain categories such as numerosity
and spatial elimination. We interpret this as simple policies are very quickly learned ena-
bling an immediate jump in performance. However, more intricate dependencies require
more fine-tuning. For example, when the agent is on a platform, balancing on it towards
the goal is only an optimal action if the goal is also on the platform. With the run num-
ber 20, the meta-policy misses this and always balances on platforms, leading to losses
in the numerosity and y-mazes tasks where the agent must choose a side to drop from the
platform.

This quick gain in performance followed by fine-tuning instability is corroborated by
analysing the evolution of Q values during training where optimal actions quickly separate
from sub-optimal actions, but optimal actions then require further meta-traces to stabilise
on slight preferences between optimal actions. In the next section we also analyse the num-
ber of successful traces required to learn a meta-policy for each single training arena and
again found that only 1-4 examples are required.

6.2.3 � One‑shot and few‑shot learning on individual training arenas

To illustrate the fact that IMP only needs a few successful meta-traces, we trained DUA on
one training arena at a time and recorded how many successful meta-traces IMP needed
to learn a policy on each. This can be seen in Fig. 3. The score is obtained by testing the
learned meta-policy on the set of arenas from AAI corresponding to the skills taught by
this training arena. In most cases it demonstrates one-shot learning, requiring a single posi-
tive example to learn the optimal meta-policy for a single training arena. At the same time,
Fig. 3 shows that the meta-policy learned on each individual training arena generalises well
to the arenas of the same category in the AAI testbed. Interestingly, the higher the likeli-
hood of success from taking random options on a given arena, the more iterations IMP
requires to converge. This is to be expected as in categories such as numerosity or y-mazes,
often offering the agent a forced choice, choosing randomly usually guarantees success
50% of the time. It is thus harder for the meta-policy learner to dissociate effective vs lucky
actions. The number of successes required, however, still remains under four for all arenas
from the training set. DUA’s capacity to perform one-shot learning is due to it learning a
robust behavioral policy consistent with a high-level interpretable understanding of what
cognitive skills the category requires.

Fig. 2   a Radar plot comparing success rate per category between SOTA, average of top 10 2019 submis-
sion and our approach: DUA. b Category and overall performance by incremental training set. The training
arenas and options are added cumulatively. For example, the blue test run Object Permanence has also been
trained on all the previous training arenas from Basic to Spatial Elimination. c Category and overall per-
formance by number of successes per training arena observed during meta-policy learning. Scores from all
figures represent mean ± s.d. from 10 separate evaluations

▸

1539Machine Learning (2022) 111:1523–1549	

1 3

(a)

(b)

(c)

1540	 Machine Learning (2022) 111:1523–1549

1 3

6.2.4 � Convergence of meta‑policy Q‑values

We also analyse how the distribution of Q-values evolves during meta-policy training. Ini-
tially the Q-values are spread out and then very quickly two clusters start to form: a large
cluster of sub-optimal abstract pairs with low Q-values and then a smaller cluster of opti-
mal abstract pairs. The final distribution is visualised in Fig. 4.

The number of abstract pairs experienced following a purely random policy converges
to around 120. This indicates that during meta-policy training we have traversed the full
search-space multiple times for each abstract pair. As such, this justifies our use in this
implementation for AAI of one-step learning rather than incrementally updating the meta-
policy. Should IMP be applied to larger search spaces, incremental learning would be use-
ful (Fig. 5).

Fig. 3   Required number of successes observed to converge on an optimal meta-policy for an individual
training arena ± s.d. from 10 separate evaluations

Fig. 4   Final distribution of
Q-values at the end of meta-
policy training

1541Machine Learning (2022) 111:1523–1549	

1 3

6.3 � Applying DUA and IMP to new environments

We have proposed a general method for learning and enacting intelligent behaviour in vir-
tual RL environments. DUA contains the scaffolding to interface computer vision, neural
actors and symbolic reasoner in a closed loop while IMP symbolically learns a high-level
policy over options.

The framework may be applied to any typical RL environment. For each new environ-
ment, one needs to decide what are the observables to be used in the ASP representation,
choose and train the options and finally implement a detector that translates the input from
the environment into observables. It is worth noting that this framework works with any
type of detector as this does not influence the shape of the logic program. The core of our
framework (learning a symbolic meta-policy) adapts to any environment.

Training the set of options should require no or very little hyper-parameter tuning as
each option focuses on learning one skill. In the AAI case, training all options was more
than three orders of magnitude faster than other top submissions based on DRL methods
which additionally require a considerable amount of hyper-parameter tuning. In this paper
we only learn weak constraints that constitute our meta-policy. However, the ILASP sys-
tem used by our DUA architecture is capable of learning any ASP program. For example,
in this work we have encoded in the ASP reasoner the default assumption that “if an object
is visible, then it is also present”. Such assumptions could also be directly learned using
ILASP. As such, this initial framework opens up the opportunity of learning more complex
symbolic representations overlaid over deep neural enactors.

7 � Conclusions & future work

In this paper we have presented a novel neuro-symbolic hierarchical reinforcement learning
approach that outperforms previous approaches on challenging physical cognitive tasks.
DUA acts effectively in continuous, noisy and high-density domains while maintaining a
simplified and goal-driven high-level representation of the environment and its actions.
It is capable of identifying objects, their properties and their relations, making consistent
decisions on their relevance for solving tasks and finally reporting these inferences in an
interpretable manner. We further present a novel algorithm, inductive meta-policy learning,

Fig. 5   Evolution of number of
abstract pairs throughout meta-
policy learning

1542	 Machine Learning (2022) 111:1523–1549

1 3

capable of learning from very few examples, which high-level actions to take, given a sym-
bolic representation of the world in extremely sparsely rewarded environments. We discuss
the modular quality of our approach, which allows for straightforward generalisation and
transfer to further complex tasks.

We have provided evidence that neuro-symbolic approaches can help to solve cognitive
tasks. In the future, this can be improved by shifting away from hand-crafted object detec-
tors, allowing for more resilient and accurate object representations. Further systems would
ideally learn what options are needed and find a way to leverage intra-option dependen-
cies. Although we used IMP for a single policy update, the system can also be used incre-
mentally. This setup would benefit tasks with larger search spaces of symbolic state-option
pairs. Finally, the symbolic dexterity afforded by ASP and ILASP can be further utilised
to incorporate more elaborate reasoning on the objects or even on the previous options
chosen.

Appendix

Logic programming

For an example of a full IMP ILASP learning task, see ���.�� . For an example of the ASP
program used for DUA at inference time see ���������.�� . For an example of the ASP
program used to generate valid random options during imp training see �����_�������.��.

The options

We trained 9 options for DUA based on the kind of actions that we expect to be use-
ful in the Animal-AI environment. These are Observe, Rotate, Drop(side), Interact(x),
Explore(x,y), Collect, Avoid(x,y), Balance(x,y), and Climb(x,y). We will go through each
of them, describing their purpose, their inputs and how they were trained. The first three
are hard-coded, the rest are pre-trained PPO policies. All DRL policies receive the agent’s
3D velocity vector as input (which is standard in Animal-AI) in addition to those described
below. All DRL policies received a small negative reward of 0.05 for going backwards to
disincentivise sub-optimal policies. No hyperparameter tuning was necessary to achieve
sufficient performance. We used the ml-agents implementation of PPO (Juliani et al.,
2018). All options were trained with the following hyperparameters.

AnimalAI:

trainer: ppo
epsilon: 0.2
lambd: 0.95
learning_rate: 1e-4
learning_rate_schedule: linear
memory_size: 128
normalize: false

1543Machine Learning (2022) 111:1523–1549	

1 3

sequence_length: 64
summary_freq: 10000
use_recurrent: false
vis_encode_type: simple
time_horizon: 128
batch_size: 64
buffer_size: 2024
hidden_units: 256
num_layers: 1
beta: 1.0e-2
max_steps: 1.0e7
num_epoch: 3
reward_signals:

extrinsic:

strength: 1.0
gamma: 0.99

Observe

Inputs None.
Description The agent does not move, but keeps track of which direction objects are
moving in the environment. If a blackout happens during the observation, the option
will wait until the blackout is finished to return.
Training None.

Rotate

Inputs None.
Description Rotate clockwise until an object is seen.
Training None.

Drop

Inputs A boolean indicating left or right.
Description Move in a diagonal line left or right until the agent falls off the platform (as
monitored via the vertical velocity component).
Training None.

Interact

Inputs The bounding box of a single object.
Description Go touch an object.
Training The agent and a goal of varying sizes are placed at random in the arena.

1544	 Machine Learning (2022) 111:1523–1549

1 3

Explore

Inputs The bounding box of a single object.
Description Go around an object clockwise or anti-clockwise.
Training The agent is always placed facing a wall of various dimensions and multiple
goals are behind the wall. However, the agent does not ‘see’ the goals at all so it will
learn the policy of wall-following until it bumps into the goal.

Collect

Inputs The masked image for orange goals.
Description Collect as many orange goals as possible in an efficient manner.
Training The agent is placed in an arena with a random number of randomly sized
orange goals.

Avoid

Inputs The full RGB image.
Description Avoid red objects while going to touch goal.
Training The training set is composed of many variants of the agent needing to reach
a green goal while avoiding red lava or red balls which give negative reward and termi-
nate the episode. The lava is placed in many different configurations to resemble mazes
that the agent has to navigate. The goal is always visible to the agent.

Balance

Inputs The masked image for blue platforms and a single bounding box for the goal.
Description Balance on platform without falling off to get to the goal.
Training The training set is composed of various variations of L or U shaped platforms
where the agent is on one side and the goal on the other. The floor is all lava to termi-
nate episodes as soon as the agent falls.

Climb

Inputs The masked image for pink ramps.
Description Climb up ramp.
Training The agent is placed in an arena with a single ramp of varying dimensions with
a goal at the top. The agent does not ‘see’ the goal as with the explore training. The agent
is given a positive reward proportional to its upwards velocity to accelerate training.

Appendix

Detect heuristics

To translate a list of bounding boxes into a logic program composed of objects and their
relations we employ a few simple heuristics described below.

1545Machine Learning (2022) 111:1523–1549	

1 3

On(x,y). X can be the agent or goal. Y can be any object in AAI. To determine whether
a goal is on top of an object y we take the bounding box the size of the goal, mirror it
downwards and check if its colour is other than that of the floor. To check if the agent is on
an object we take the bottom quartile of the agent’s view and check if there is at least a 70%
overlap with another bounding box in the scene.

Danger. If the column beneath a goal’s bounding box intersects any red objects then
there is said to be a danger in getting to the goal.

Adjacent. Two objects are adjacent if the shortest distance between their bounding
boxes is 0.

More_goals(side). To determine whether more goals are on the left or the right we split
the screen in two and count how many goal centroids are on each side. If they end up being
equal we select the side with the larger occlusion area.

IMP training set

In this section we present the training set used to learn a general meta-policy to solve the
AAI testbed.4 The choice of arena for each category is defined by two criteria:

•	 The arena teaches the high-level lesson necessary for a whole category. For example,
prefer bigger goals for y-mazes or choose sides with more goals for numerosity.

•	 The agent succeeds the episode every time it chooses the right sequence of options. In
other words, ensure that the arenas are easy enough that the DRL options reliably suc-
ceed when chosen in the appropriately. Otherwise this will lead to unnecessary noise in
the learning task.

Basic In this arena the agent a goal and a wall are randomly placed in the arena. The agent
must learn how to explore effectively and navigate to goals when visible. Macro-steps are
limited to 3. Category: Basic Food and Obstacles.

Lava In this arena lava is placed between the agent and the visible goal. The agent must
learn to avoid lava to reach the goal. Macro-steps are limited to 1. Category: Avoid Red.

Ramp This arena contains a ramp, an L-shaped platform and a goal above the platform.
The agent must first climb the ramp, then balance on the platform to reach the goal. Macro-
steps are limited to 2. Category: Ramp Usage.

Preference This arena contains a ramp, an L-shaped platform and a goal above the plat-
form. The agent must first climb the ramp, then balance on the platform to reach the goal.
Macro-steps are limited to 2. Category: Y-Mazes.

Count There are two goals on the left and one on the right. The agent must first learn to drop
on the left side and collect the multi goals. Macro-steps are limited to 2. Category: Numerosity.

Spatial Elimination The agent has a forced choice between two occluding objects
likely to hide the goal. The agent must learn to preferentially explore objects most likely to
occlude the goal. Macro-steps are limited to 2. Category: Spatial Elimination.

Object Permanence The episode starts with the goal moving towards the back of the
arena and then there is a blackout following which the goal is hidden behind the occluding
object. The agent must learn to wait for the blackout and understand that the goal has not
vanished, but must be behind the one occluding object. Macro-steps are limited to 3. Cat-
egory: Object Permanence.

4  A snapshot of the agent’s observation at t = 0, for each arena in the training set, is displayed in Fig. 6.

1546	 Machine Learning (2022) 111:1523–1549

1 3

Full Animal‑AI Results

In this section, we present the full results of DUA on the AAI 2019 Olympics testbed, as
outlined in Table 1.

Fig. 6   Agent observation at t = 0 for each of the arenas from the training set. From left to right, up to down
the names are: Basic, Lava, Ramp, Preference, Count, Spatial Elimination, Object Permanence

Table 1   DUA’s performance on
AAI categories of interest

Average ± s.d. over 10 runs
Category highest performance in bold

Category Best Top 10 Average Ours

Basic food and obstacles 89 53 99±4
Moving food 77 71 70±5
Unreachable food 100 72 81±12
Multiple food stationary 77 47 20±11
Multiple food moving 55 28 23±13
Avoid red 50 19 57±5
Ramp usage 37 9 45±4
Hot zones 75 62 81±5
Generalisation and adaptability 54 36 13±2
Internal models 57 44 22±2
Y-Mazes 88 76 78±3
Delayed gratification 53 34 46±5
Detour tasks 33 12 10±2
Cylinder tasks 77 48 19±5
Thorndike escape experiments 50 27 21±6
T-Maze 100 66 48±12
Spatial elimination 26 17 48±5
Support and gravity Bias 44 31 30±6
Radial mazes 59 29 19±4
Object permanence 25 9 29±3
Numerosity 50 43 64±3
Tool use 11 2 0±0
Overall 43.7 32.9 39.0±0.6

1547Machine Learning (2022) 111:1523–1549	

1 3

Author Contributions  All authors contributed to the study conception and design. Material preparation, data
collection, coding and analysis were performed by LM. The first draft of the manuscript was written by
LM and all authors edited and commented on previous versions of the manuscript. All authors read and
approved the final manuscript.

Funding  No funding was received to assist with the preparation of this manuscript.

Data availability  The full Animal-AI environment as well as the 2019 competition testbed and results is
publicly available at http://animalaiolympics.com/AAI/.

Code availability  The full code will not be made available. However, the sections relating to Inductive Meta-
Policy Learning-our primary contribution-will be made available as supporting material to the manuscript.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Anderson, G., Verma, A., Dillig, I., & Chaudhuri, S. (2020). Neurosymbolic reinforcement learning with
formally verified exploration. Advances in Neural Information Processing Systems, 33, 6172–6183.

Andreas, J., Klein, D., & Levine, S. (2017). Modular multitask reinforcement learning with policy sketches.
In Proceedings of the34th International Conference on Machine Learning.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C. et al. (2019). Dota 2 with large
scale deep reinforcement learning. Retrieved from arXiv:​1912.​06680.

Booch, G., Fabiano, F., Horesh, L., Kate, K., Lenchner, J., Linck, N., Srivastava, B. (2020). Thinking fast
and slow in AI.

Bougie, N., Cheng, L. K., & Ichise, R. (2018). Combining deep reinforcement learning with prior knowl-
edge and reasoning. ACM SIGAPP Applied Computing Review, 18(2), 33–45. https://​doi.​org/​10.​1145/​
31671​32.​31671​65

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Schaub, T. (2019) Asp-
core-2 input language format. Retrieved from http://​arxiv.​org/​abs/​1911.​04326.

Clark, K. (1987). Negation as failure. In readings in nonmonotonic reasoning (pp. 311–325).
Clark, P., Etzioni, O., Khashabi, D., Khot, T., Mishra, B. D., Richardson, K.,... Schmitz, M. (2019, sep).

From ‘F’ to ‘A’ on the N.Y. regents science exams: An overview of the aristo project. Retrieved from
https://​arxiv.​org/​abs/​1909.​01958.

Cranmer, M. D., Xu, R., Battaglia, P., & Ho, S. (2019). Learning symbolic physics with graph networks.
Retrieved from https://​arxiv.​org/​abs/​1909.​05862.

Crosby, M., Beyret, B., & Halina, M. (2019). The Animal-AI olympics. Nature Machine Intelligence.
https://​doi.​org/​10.​1038/​s42256-​019-​0050-3

Crosby, M., Beyret, B., Shanahan, M., Hernández-Orallo, J., Cheke, L., & Halina, M. (2020). The Animal-
AI testbed and competition. In Neurips 2019 competition and demonstration track (pp. 164–176).

Cunnington, D., Russo, A., Law, M., Lobo, J., & Kaplan, L. (2020). NSL: Hybrid interpretable learning
from noisy raw data. Retrieved from https://​arxiv.​org/​abs/​2012.​05023.

d’Avila Garcez, A., Gori, M., Lamb, L. C., Serafini, L., Spranger, M., & Tran, S. N. (2019). Neural-sym-
bolic computing: an effective methodology for principled integration of machine learning and reason-
ing. IfCoLoG Journal of Logics and their Applications, 6(4), 611–631.

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1912.06680
https://doi.org/10.1145/3167132.3167165
https://doi.org/10.1145/3167132.3167165
http://arxiv.org/abs/1911.04326
https://arxiv.org/abs/1909.01958
https://arxiv.org/abs/1909.05862
https://doi.org/10.1038/s42256-019-0050-3
https://arxiv.org/abs/2012.05023

1548	 Machine Learning (2022) 111:1523–1549

1 3

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019). Neural logic machines. In 7th International
Conference on Learning Representations, ICLR 2019. Retrieved from https://​arxiv.​org/​abs/​1904.​
11694.

Fawzi, A., Malinowski, M., Fawzi, H., & Fawzi, O. (2019, jun). Learning dy- namic polynomial proofs.
Retrieved from http://​arxiv.​org/​abs/​1906.​01681.

Furelos-Blanco, D., Law, M., Jonsson, A., Broda, K., & Russo, A. (2021). Induction and exploitation of sub-
goal automata for reinforcement learning. Journal of Artificial Intelligence Research, 70, 1031–1116.

Garnelo, M., Arulkumaran, K., & Shanahan, M. (2016). Towards deep symbolic re-inforcement learning.
Retrieved from https://​arxiv.​org/​abs/​1609.​05518.

Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: Rep-
resenting objects and relations. Current Opinion in Behavioral Sciences, 29, 17–23. https://​doi.​org/​10.​
1016/j.​cobeha.​2018.​12.​010.

Gelfond, M., & Lifschitz, V. (2000). Logic programming: The stable model semantics for logic program-
ming. The Journal of Symbolic Logic, 57(1), 274–277.

Gupta, N., Lin, K., Roth, D., Singh, S., & Gardner, M. (2019). Neural module networks for reasoning over
text. Retrieved from https://​arxiv.​org/​abs/​1912.​04971

Han, C., Mao, J., Csail, M., Gan, C., Tenenbaum, J. B., Bcs, M., & Wu, J. (n.d.). Visual Concept-Metacon-
cept Learning (Tech. Rep.). Retrieved from http://vcml.csail.mit.edu.

Hart, P., & Knoll, A. (2020). Graph neural networks and reinforcement learning for behavior generation in
semantic environments. Retrieved fromhttps://​arxiv.​org/​abs/​2006.​12576.

Hasanbeig, M., Jeppu, N. Y., Abate, A., Melham, T., & Kroening, D. (2019). Deep- synth: Program synthe-
sis for automatic task segmentation in deep reinforcement learning. CoRR, abs/1911.10244. Retrieved
from https://​arxiv.​org/​abs/​1911.​10244

Hengst, B. (2011). Hierarchical reinforcement learning. In Encyclopedia of machine learning (pp. 495–
502). Springer US. Retrieved from https://​doi.​org/​10.​1007/​978-0-​387-​30164-8_​363

Icarte, R. T., Klassen, T. Q., Valenzano, R., & McIlraith, S. A. (2018). Using reward machines for high-level
task specification and decomposition in reinforcement learning. In 35th International Conference on
Machine Learning, ICML 2018.

Jiang, J., Dun, C., Huang, T., & Lu, Z. (2018). Graph convolutional Reinforcement Learning. https://​arxiv.​
org/​abs/​1810.​09202

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., & Lange, D. (2018). Unity: A general
platform for intelligent agents. Retrieved from http://​arxiv.​org/​abs/​1809.​02627.

Kahneman, D. (2011). Thinking, fast and slow. New York: Far- rar, Straus and Giroux. Retrieved from
https://​www.​amazon.​de/​Think​ing-​Fast-​Slow-​Daniel-​Kahne​man/​dp/​03742​75637/​ref=​wl_​it_​dp_o_​
pdT1_​nS_​nC?​ie=​UTF8&​colid=​15119​3SNGK​JT9&​coliid=​I3OCE​SLZCV​DFL7

Kowalski, R., & Sergot, M. (1989). A logic-based calculus of events. In Foundations of Knowledge Base
Management (pp. 23–55). Springer.

Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning answer set programs.
Artificial Intelligence, 259, 110–146.

Law, M., Russo, A., & Broda, K. (2020). The ilasp system for inductive learning of answer set programs.
Liao, Q., & Poggio, T. (2017). Object-oriented deep learning. Retrieved from https://​dspace.​mit.​edu/​handle/​

1721.1/​11210​37.
Manhaeve, R., Leuven, K. U., Dumancit, S., Ku Leuven, D., Kimmig, A., Demeester, T., & De Raedt, L.

(2018). DeepProbLog: Neural Probabilistic Logic Pro- gramming (Tech. Rep.). Retrieved from https://​
bitbu​cket.​org/​probl​og/​deepp​roblog.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-symbolic concept learner: Inter-
preting scenes, words, and sentences from natural super- vision. In 7th International Conference on
Learning Representations, ICLR 2019.

Marcus, G. (2020). The next decade in AI: Four steps towards robust artificial intelligence. Retrieved from
https://​arxiv.​org/​abs/​2002.​06177.

Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., & Grefenstette, E. (2019). Differentiable reasoning
on large knowledge bases and natural language. Retrieved from http://​arxiv.​org/​abs/​1912.​10824.

Nascimento, J. C., Abrantes, A. J., & Marques, J. S. (1999). Algorithm for centroid- based tracking of mov-
ing objects. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing -
Proceedings, 6, 3305–3308. https://​doi.​org/​10.​1109/​icassp.​1999.​757548.

Sadri, F., & Kowalski, R. A. (1995). Variants of the event calculus. In ICIP (pp. 67–81).
Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., et al. (2020). Mastering

atari, go, chess and shogi by planning with a learned model. Nature, 7839, 604–609.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization

algorithms. Retrieved from http://​arxiv.​org/​abs/​1707.​06347

https://arxiv.org/abs/1904.11694
https://arxiv.org/abs/1904.11694
https://arxiv.org/abs/1906.01681
https://arxiv.org/abs/1609.05518
https://doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/10.1016/j.cobeha.2018.12.010
https://arxiv.org/abs/1912.04971
https://arxiv.org/abs/2006.12576
https://arxiv.org/abs/1911.10244
https://doi.org/10.1007/978-0-387-30164-8_363
https://arxiv.org/abs/1810.09202
https://arxiv.org/abs/1810.09202
https://arxiv.org/abs/1809.02627
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://dspace.mit.edu/handle/1721.1/112103
https://dspace.mit.edu/handle/1721.1/112103
https://bitbucket.org/problog/deepproblog
https://bitbucket.org/problog/deepproblog
https://arxiv.org/abs/2002.06177
https://arxiv.org/abs/1912.10824
https://doi.org/10.1109/icassp.1999.757548
https://arxiv.org/abs/1707.06347

1549Machine Learning (2022) 111:1523–1549	

1 3

Shanahan, M., Nikiforou, K., Deepmind, A. C., Kaplanis, C., Deepmind, D. B., & Deepmind, M. G. (2020).
An explicitly relational neural network architecture. Retrieved from https://​arxiv.​org/​abs/​1905.​10307

Srivastava, S. (2011). Foundations and applications of generalized planning. AI Communications, 24(4),
349351. https://​doi.​org/​10.​3233/​aic-​2011-​0508

Sun, S.-H., Wu, T.-L., & Lim, J. J. (2020). Program guided agent. Retrieved from https://​openr​eview.​net/​
forum?​id=​BkxUv​nEYDH

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal

abstraction in reinforcement learning. Artificial Intelligence, 112, 181–211.
Xu, Z., Gavran, I., Ahmad, Y., Majumdar, R., Neider, D., Topcu, U., & Wu, B. (2020). Joint inference of

reward machines and policies for reinforcement learning. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (Vol. 30, pp. 590–598).

Yang, Y., Inala, J. P., Bastani, O., Pu, Y., Solar-Lezama, A., & Rinard, M. (2021). Program synthesis guided
reinforcement learning.

Yi, K., Wu, J., Gan, C., Torralba, A., Deepmind, P. K., & Tenenbaum, J. B. (n.d.). Neural-symbolic VQA:
Disentangling reasoning from vision and language understanding (Tech. Rep.). Retrieved from https://​
link.​sprin​ger.​com/, https://​doi.​org/​10.​1007/​978-0-​387-​30164-8_​363.

Zamani, M. A., Magg, S., Weber, C., & Wermter, S. (2017). Deep reinforcement learning using symbolic
representation for performing spoken language instructions (Tech. Rep.). Retrieved from https://​code.​
faceb​ook.​com/​posts/​18156​55955​77955/​intro​ducing.

Zhang, Q., & Sornette, D. (2017). Learning like humans with Deep Symbolic Networks. Retrieved from
http://​arxiv.​org/​abs/​1707.​03377.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://arxiv.org/abs/1905.10307
https://doi.org/10.3233/aic-2011-0508
https://openreview.net/forum?id=BkxUvnEYDH
https://openreview.net/forum?id=BkxUvnEYDH
https://link.springer.com
https://link.springer.com
https://doi.org/10.1007/978-0-387-30164-8_363
https://code.facebook.com/posts/181565595577955/introducing
https://code.facebook.com/posts/181565595577955/introducing
http://arxiv.org/abs/1707.03377

	Detect, Understand, Act: A Neuro-symbolic Hierarchical Reinforcement Learning Framework
	Abstract
	1 Introduction
	2 Background
	2.1 Animal-AI
	2.2 Reinforcement learning
	2.3 Inductive learning of answer set programs

	3 Related work
	4 DUA
	4.1 Overview
	4.2 Detect
	4.3 Understand
	4.4 Act
	4.5 Inductive meta-policy learning

	5 Experimental setup
	5.1 Option training
	5.2 IMP training

	6 Results
	6.1 AAI competition
	6.2 Inductive meta-policy learning
	6.2.1 Transfer, scalability and generalisation
	6.2.2 Fine-tuning the meta-policy
	6.2.3 One-shot and few-shot learning on individual training arenas
	6.2.4 Convergence of meta-policy Q-values

	6.3 Applying DUA and IMP to new environments

	7 Conclusions & future work
	References

