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Abstract
Using deep learning to learn point cloud features directly have become one of the research 
hotspots in the field of 3D point cloud processing. The existing methods usually con-
struct local regions, extract features from local regions, and then aggregate global features 
through multi-layer perceptron and maximum pooling layer. However, most of these pro-
cesses do not consider the contribution of point cloud local features to the final decision 
and the spatial relationship between neighbor points, which limits the accuracy of 3D point 
cloud classification and segmentation. In this article, a novel network model called spatial 
depth attention network is designed to improve the accuracy of point cloud classification 
and segmentation, which embeds local depth attention mechanism into MLP layer to learn 
local neighborhood geometric representation. The local deep attention of the point cloud 
is obtained through the SDA module, and then combined with feature learning and local 
deep attention to effectively capture the local geometric structure. In order to achieve the 
best feature extraction ability, local depth attention features are combined with global fea-
tures. Experiments show that SDANet achieves the same or better performance as the most 
advanced methods on several challenging benchmark datasets and tasks.
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1  Introduction

The 3D point cloud is a geometric description of the model composed of a series of spatial 
sampling points on the surface of the object model. With the rapid development of 3D sen-
sors and laser radar, 3D data acquisition is more convenient. 3D point cloud contains rich 
geometric, shape and scale information, which has been widely used in automatic driving 
(Wu et al., 1809; Zermas et al., 2017), indoor navigation (Zhu et al., 2017), scene under-
standing (Saleh et al., 2018; Saleh et al., 2018) and other fields. Nevertheless, due to the 
disorder, unstructured, uneven density distribution and complex scene of 3D point cloud 
data, how to effectively and accurately classify and segment 3D data is one of the research 
hotspots in the field of computer vision.

Traditional convolutional neural networks have achieved great success in image data 
processing tasks. However, CNNS relies heavily on data with a standard grid structure and 
has low processing performance for irregular and disordered point clouds. In order to make 
full use of the advantages of CNNS, scholars have proposed several methods (Maturana 
& Scherer, 2015; Riegler et  al., 2017; Su et  al., 2015) to map unstructured point cloud 
data to standard three-dimensional grid data. However, these methods are prone to infor-
mation loss and complicated calculations. In 2016, the PointNet (Qi et al., 2017) network 
model made breakthroughs in point cloud classification, component segmentation, and 
scene semantic analysis, making the use of deep learning to directly process the original 
point cloud has become popular and gradually dominates. PointNet +  + (Qi et  al., 2017) 
expanded the PointNet network model and realized the local division and local feature 
extraction of point cloud by constructing hierarchical structure, which solved the problems 
of non-uniform sampling and local feature extraction to a certain extent. These methods 
have achieved good results to a certain extent.

However, the feature extraction operations of shared multi-layer perceptron (MLP) and 
max-pooling in PointNet +  + have nothing to do with the spatial structure of the local area. 
To solve those problems, LSANet (Chen et al., 1905) adaptively generates attention maps 
according to the spatial distribution of the local area. The feature learning process inte-
grated with these attention maps can effectively capture the local geometric structure. On 
this basis, a spatial feature extractor (SFE) is proposed, and a branch architecture is con-
structed to better aggregate the spatial information with relevant features in each layer of 
the network. But only considering local features and ignoring the importance of local fea-
tures is one of the important reasons that limit the accuracy of 3D point cloud classification 
and segmentation. To solve this problem, we should pay more attention to those features 
that are more decision-making in point cloud processing tasks.

Due to the bottleneck of information processing, humans will selectively focus on 
part of all information and allocate limited information processing resources to impor-
tant parts. The attention mechanism in deep learning is essentially similar to the selec-
tive visual attention mechanism of human beings, and has been widely used in object 
detection (Paigwar et al., 2019), semantic segmentation (Hu et al., 2020), biomedical 
image enhancement (Xiaobin et al., 2006), and three-dimensional reconstruction (Yang 
et al., 1808). Inspired by the attention mechanism, we mainly focus on the local fea-
tures that contribute greatly to the final decision in the tasks of 3D point cloud clas-
sification and component segmentation. In this article, we propose the SDA module to 
obtain the attention degree of the local area of space, and make full use of the spatial 
relationship of the points, so as to obtain the attention feature of the local point cloud. 
In order to ensure the completeness of feature extraction, we extract global features of 
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point cloud data and fuse local attention features with global features to achieve opti-
mal classification and segmentation accuracy. We verified the effectiveness of the pro-
posed network through four experiments, including classification, part segmentation, 
scene semantic segmentation and complexity analysis and ablation.

The main contributions of our work are as follows:

•	 We propose a local spatial depth attention mechanism, allowing SDA layer to cal-
culate attention coefficient by considering local neighborhood correlation and local 
projection depth.

•	 We fused the local features of depth attention with global features to obtain suffi-
cient feature extraction capabilities.

•	 Our proposed SDANet has good robustness. By using uncomplete point cloud data 
for testing, the method in this article performs better than other similar algorithms.

The rest of this article is organized as follows. The second section reviews the 
related work of 3D point cloud classification and segmentation. The third part 
describes the proposed local depth attention mechanism and the network structure 
based on SDA module. The fourth part gives the experimental results and discussion. 
The fifth part is the conclusion.

2 � Related work

2.1 � Multi‑view point cloud feature learning

As early as 1995, researchers in the field of visual recognition used a large number 
of 2D images to automatically represent poses and lighting parameters to obtain low-
dimensional subspaces. In geographic information science, there is also the practice 
of combining data provided by airborne laser scanning with existing 2D floor plans 
of buildings to achieve automatic 3D data capture. Multi-view approach converts the 
3D point sets to a collection of 2D views so that the popular 2D convolutional opera-
tions can be applied on the converted data. Multi-view convolutional neural network 
(MVCNN) (Su et al., 2015) was proposed for the first time. By capturing 2D images 
from multiple perspectives, the convolutional layer and pooling layer were aggregated 
into 3D shape descriptors, and then the aggregated features were input into the net-
work to return the classification or segmentation results. MVCNN has shown good 
results in segmentation and classification tasks, and the computational efficiency has 
been improved, but the position of the viewpoint is set in advance to make it impossi-
ble to dynamically select views. At the same time, because a large amount of key geo-
metric spatial information is ignored, the accuracy of MVCNN segmentation and clas-
sification is also affected, and it is not suitable for large-scale complex scenes. Some 
improvement methods GVCNN (Feng et  al., 2018), SnapNet (Boulch et  al., 2017), 
MHBN (Tan et  al., 2018), 3D-MiniNet (Alonso et  al., 2020), although enhance the 
accuracy of point cloud segmentation and classification tasks in some degree, 2D pro-
jection is limited to the surface modeling of the object, unable to capture the internal 
structure of 3D, resulting in information loss.
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2.2 � Voxel‑based point cloud feature learning

Voxelization is an intuitive method that converts unstructured, sparse point clouds into 
standard neural network processing. VoxNet (Maturana & Scherer, 2015) was first pro-
posed in 2015, by voxelizing unstructured point cloud data into grid data and apply it 
to a 3D deep learning network. This method constructs multiple 3D grids, normalizes 
the corresponding voxels in the grid, and then enters the network convolutional layer 
extracts features and performs maximum pooling processing on non-overlapping vox-
els. VoxNet solves the problem of unstructured point cloud to a certain extent, but still 
has the problem of occupying a large amount of memory during calculation. As the 
resolution increases, the number of squares increases. In order to solve the problem of 
voxelized grid occupying large memory and complex training, FPNN (Li & Pirk, 1605) 
represented 3D space as 3D vector field as network input, and used field detection filter 
to extract effective features. PointGrid (Le et al., 2018) uses a simple point quantization 
strategy to sample a fixed number of points in each grid cell, enabling the network to 
extract local geometric features. The voxel-based method solves the unstructured prob-
lem of 3D point clouds, but low-resolution voxels lead to the loss of useful information, 
and high-resolution voxels lead to large and complex computation.

2.3 � Learning features from unstructured point cloud directly

In order to reduce computational complexity and make full use of 3D point cloud data, 
Qi et al. pioneered PointNet (Qi et al., 2017), directly input the original point cloud data, 
normalize the data through the T-Net network, and then use MLP to learn each point In 
addition, the maximum pooling layer is used to aggregate global features, which solves 
the problems of point cloud disorder, displacement and rotation invariance at a low cost. 
PointNet +  + (Qi, Li, et al., 2017) based on PointNet expansion, by building a local lay-
ering module, local features are captured along a multi-resolution hierarchical structure, 
which solves the problems of non-uniform sampling and local feature extraction. The 
PointSIFT module (Jiang et al., 1807), which can be embedded in various PointNet net-
works, uses directional coding convolution (OEC) to integrate information from eight 
directions to obtain a representation of coded orientation information. RandLA-Net (Hu 
et  al., 2020) designed a local feature aggregation module to effectively learn complex 
local structures by gradually increasing the size of the receptive field of each neural 
layer. First introduce local spatial coding (LocSE) units for each 3D point to retain local 
geometric structure information, and then use the attention mechanism to aggregate 
useful local features, and increase the effectiveness of each point by stacking multiple 
LocSE units and pooling layers Feel the wild. This method improves the efficiency of 
calculation and storage while showing a good classification effect. RD3D (Qiang et al., 
2101) proposed a RGB-D SOD framework, which is based on 3D CNNs and conducts 
cross-modal feature fusion in a progressive manner. RD3D first utilizes 3Dconvolutions 
for pre-fusion between RGB and depth, and then conduct explicit fusion of modality-
aware features by a 3D decoder augmented with rich back-projection paths and channel-
modality attention modules. LAM-Net (Cui et al., 2020), EPC-Net (Hui et al., 2101) by 
designing a lightweight network model, calculation and storage efficiency are improved 
while ensuring accuracy. These lightweight modules can be easily embedded in other 
deep learning networks.
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2.4 � Learning features based on graph theory

Since the graph neural network (GNN) (Scarselli et al., 2009) was proposed, the graph 
convolutional neural network (GCNN) (Kip & Welling, 1609) has performed well in 
semi-supervised classification tasks. Some studies SpecGCN (Wang et  al., 1806), 
RGCNN (Gusi et al., 1803), DGCNN (Wang et al., 2019), LDGCN (Zhang et al., 1904), 
PointN-GCNN (Lu et al., 2020), have successfully applied graph neural networks to the 
task of point cloud classification and segmentation. KC-Net (Shen et al., 2018) contains 
a KNN graph to extract the local structural feature of the point clouds and aggregates 
the neighbor information through grapy max pooling. LKPO-GNN (Zhang et al., 2020) 
converts 3D unordered points into 1D ordered sequences. In the LKPO-GNN module, 
the omnidirectional local k-NNs pattern graph is used to represent and learn the rich 
local topological structure of the point cloud, and then the ball query module (Ball 
Query) is used to extract the points rich feature information. The LKPO-GNN module 
and the Ball Query module are alternately used to simplify the central point in the 3D 
point cloud scene and enrich the characteristic information of the central point aggrega-
tion, which has a good ability to express spatial geometric information.

2.5 � Learning features based on attention mechanism

The attention mechanism allows the processing of variable-sized inputs, focusing on the 
most relevant parts of the input to make decisions. Some studies A-SCN (Liu, 2018), 
PAN(Li et al., 1805), GACNet (Wang et al., 2019) assign appropriate attention weight 
coefficients through the relationship between neighbor points. LSANet (Chen et  al., 
1905) uses the hierarchical local spatial feature extractor (SFE) to abstract the input 
point cloud to obtain high-dimensional spatial information, and generates the spatial 
distribution weight (SDW) hierarchically according to the spatial relationship of the 
local neighborhood, which has a more powerful Spatial information extraction func-
tion. Other methods PryramNet (Zhiheng & Ning, 1906), LAENet (Feng et  al., 1909) 
embed the graph attention mechanism in the multi-layer perceptron (MLP) to learn 
local geometric representations. GAPNet (Chen et  al., 2021) learns local geometric 
features by embedding the graph attention mechanism into the stacked MLP. GAPNet 
is proposed, which assigns different attention weights to points in the neighborhood to 
learn point features, and then introduces a multi-headed attention (MHA) mechanism 
to aggregate different GAPLayer Output features, thereby obtaining multi-attention fea-
tures and multi-image features. It not only pays attention to the channel relationship, but 
also guarantees the quality of spatial coding to a certain extent, making the point cloud 
learning more adequate. GATs (Veličković & Cucurull, 1710) operates on graph-struc-
tured data, leveraging masked self-attentional layers. By stacking layers enable nodes to 
pay attention to the characteristics of their neighborhoods, thereby (implicitly) assigning 
different weights to different nodes in the neighborhood, the key to this method is the 
need for a reasonable central node (as shown in Fig. 2b). Because the point cloud data is 
relatively complex, relying only on the central node will cause insufficient information 
utilization, and the error caused by the central node will directly affect the final feature, 
so we need to consider the relationship between the point and its neighbor nodes at the 
same time (as shown in Fig (c)).
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3 � Our method

First, we introduce the description of the local depth features of point clouds. Then 
describe the local features of depth attention based on spatial point clouds in detail. We 
elaborate on the integration of global features with other operations and introduce our 
SDANet finally.

3.1 � Spatial depth attention feature

Suppose the point cloud P is composed of N points {p1, p2,⋯ pN} , the neighborhood of any 
point pi is defined as a sphere with pi as the center of the sphere and r as the radius, denoted 
as pjn = {p

j

i
|j = 1, 2,⋯ , k} , where k is the number of points in the local area. Assume the 

sampling surface of the point cloud is smooth everywhere and have access to the whole 
3D surface. Then the local neighborhood of the point cloud can be fitted with a surface, so 
that the normal vector ni on the surface where the point pi is located can be obtained. In the 
same way, nj

i
 can be obtained, then take ni as the local coordinate axis. Along the positive 

direction of the local coordinate axis, define the two-dimensional plane E as the projection 
plane, as shown in Fig. 1. The point set p�i

n
= {p

�j

i
|j = 1, 2,⋯ , k} is obtained by projecting 

all points in the neighborhood of pi onto E. Then the distance between pj
i
 and p

′j

i
 is the 

local depth, and the value range is [0,2r].
The specific expression of local depth is

Let S =
{
Xi ∈ ℝ

K|i = 1, 2,… ,N
}
 be a local area point set, where Xi is the point with 

K-dimensional attributes in the local point set S, N is the total number of points in the 
local area. The local feature of depth attention consists of two parts, one is the spatial 
feature of the local area where the point is located, and the other is the spatial feature of 
the point itself. Taking into account the different contribution of each local point cloud 
feature to the final decision (for example, it is easier to classify the target as a vehicle 
by using the wheel feature). In this article, a high degree of emphasis is given to the 
local point cloud features with obvious changes in shape. The size of the original point 
cloud data is N × K . After sampling and grouping, the local point cloud G = (L,K) is 
obtained, where L is the number of points and K is the dimension of each point. Estab-
lish a three-dimensional space coordinate system with centroid Go = (gox, goy, goz) as the 
origin (as shown in Fig. 4). Project to Nx − Ny , Ny − Nz , Nz − Nx planes respectively, find 
the closest point PN and the farthest point PL , expressed as follows:

(1)dj = r − ni ⋅
(
p
j

i
− pi

)

Fig. 1   Schematic diagram of the 
local depth of the 3D point cloud
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Put PN and PL into the local depth formula (1) to get the local feature attention:

Then the spatial feature of the local area is encoded and expressed as:

where W1 ∈ ℝ
C×K , Fg is the feature obtained by encoding all local points.

The spatial characteristics of points can be expressed as:

where W0 ∈ ℝ
C×K,Fp

i
∈ ℝ

C , which is the spatial feature of point itself. Since each point 
in the point cloud does not exist in isolation, it has a spatial relationship with surrounding 
neighbor points as shown in Fig. 2 (c), the point spatial feature after correction is expressed 
as:

where

(2)PN = argmax
P

{
max
P∈Lxy

∥ Pxy − Goxy ∥2,max
P∈Lyz

∥ Pyz − Goyz ∥2, max
P∈Lxy

∥ Pzx − Gozx ∥2

}

(3)PL = argmin
P

{
min
P∈Lxy

∥ Pxy − Goxy ∥2, min
P∈Lyz

∥ Pyz − Goyz ∥2, min
P∈Lxy

∥ Pzx − Gozx ∥2

}

(4)dfc = |dPN
− dPL

|

(5)Fg = dfc ⋅
1

N

N∑
i

W1Xi

(6)F
p

i
= W0Xi

(7)F̂
p

i
= W0X̂i

(8)X̂i = Xk
i
− 𝜌

∑
j∈Ni

SGN
(
Xi − Xj

)
− yijN

k
i

Fig. 2   a, b, c are three identical local regions. a shows that the weight of each point is fixed and has nothing 
to do with the spatial relationship. b shows that the weight of each point is related to the center point of the 
local area. c shows that the weight of each point is related to all neighbor points in the local area. Among 
them, xi represents the center point of the local area, and yij represents the spatial relationship between 
neighboring nodes
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SGN(.) is the sign function 0–1. yij = xij1 − xij2 is the boundary coefficient(as shown 
in Fig. 2c), and yij ∈ [0, 2r] . Nk

i
 is the normal vector direction of the plane where the 

current point is located. This method only needs to use the partial order information 
of the state of the neighboring points in the local point cloud (information that is only 
valid for some individuals in the network) and does not require accurate relative state 
and total order information (information that is valid for all individuals in the network).

The final local feature of depth attention is obtained by combining the spatial fea-
ture of point and local region:

where [, ] denotes the concatenation operation, F̂i ∈ ℝ
2C . The local features of depth atten-

tion are not only related to the spatial position of each point itself, but also related to the 
local overall information. Different points in the same local area have different F̂p

i
 , but have 

the same F̂g . In order to achieve accurate classification and segmentation of point cloud 
data, it is not enough to use local features alone. For this reason, we will construct a fusion 
feature of deep attention local features and global features as an effective feature for point 
cloud classification and segmentation.

3.2 � Feature aggregation for point set learning

The point cloud global feature extraction module is an important part of the network 
structure. After the input point cloud is subjected to Spatial transform, it is directly 
operated on the whole to obtain the global feature. The point cloud global feature 
extraction network draws on the main ideas of the PointNet network structure and opti-
mizes it, such as increasing the number of MLP layers to upgrade the input point cloud 
to higher-dimensional features, and designing the convolution kernel size to increase 
the convolution process feel the wild. The input is each point of the point cloud data, 
including spatial coordinate information (or normal vector, color information, etc.). 
Through the multi-layer perceptron MLP, the input points are upgraded to high-dimen-
sional features. The high-dimensional features are mapped by the maximum symmet-
ric function and the nonlinear activation function, and the global features of the input 
point cloud are extracted finally.

In the design of the SDANet network structure, the depth attention local feature 
of the input point cloud and the global feature extraction are paralleled. The two pro-
cesses operate separately and do not affect each other. In order to improve the effect 
of point cloud classification and segmentation, we added a local feature and global 
feature fusion module to the network structure design. This module uses the concat 
operation to fuse local features and global features.

The concat connects multiple tensor channel inputs and serves as the input of the 
next layer of the network. The concat operation expression is

where, A is the local feature tensor of deep attention, B represents the high-dimensional 
feature tensor obtained by the global feature extraction module, axis is the number of 
dimensions when fusion is performed.

(9)F̂i =
[
F̂
p

i
,Fg

]

(10)concat(A,B, axis)
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3.3 � Network architecture

The SDANet architecture is shown in Fig. 3. It mainly includes point cloud alignment 
transformation, SDA module extracting local depth attention features, global feature 
extraction, and local and global feature fusion. The original point cloud data (N × K) is 
standardized by the spatial transform module to realize the normalization of the original 
point cloud with different rotation and translation. The normalized point cloud data is 
subjected to two parallel processes of deep attention local feature and global feature 
extraction to achieve feature extraction. Finally, use the concat module to fuse the local 
features and global features, and then perform point cloud processing tasks according to 
different needs.

When using CNN to classify traditional images, it is usually necessary to consider 
the locality of the input sample, translation invariance, reduction invariance, rotation 
invariance, etc., to improve the accuracy of classification. Similarly, when processing 
point cloud data, it is also necessary to ensure the invariance of input samples. A more 
effective method is to introduce a spatial transformation network between certain two 
layers of the neural network. The spatial transformation network includes two parts: 
The first part is localization net, which used to generate affine transformation system 
structure for design. And the parameters in the localization net are the parameters that 
the spatial transformation network needs to train; The second part is spatial transforma-
tion, which is affine transformation. The affine transformation coefficient � is generated 
through the local network (It can also be other types of spatial transformations, and 
local networks can be designed as needed to obtain the corresponding spatial transfor-
mation coefficients � ), After obtaining the affine transformation coefficient � , we can 
perform affine transformation on the input of the previous layer and input the affine 
transformation result to the next layer.

Fig. 3   SDANet architecture. The SDA layer is shown in Fig. 4. The Global Feature Extraction Module is 
shown in Fig. 5. The architecture contains two parts: classification (top branch) and segmentation (bottom 
branch). The classification model takes N points as input normalizes the data through the spatial transform 
model, followed by SDA layer and MLP to obtain local depth attention features, then merges with global 
features and inputs them to the fully connected layers to obtain classification score for category c finally. 
The feature extraction process of the segmentation model is consistent with the classification model. After 
the effective features of the point cloud are obtained, the category score of each point is output after multi-
ple MLP layers
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 (11).Where, (x� , y� , z� ) represents the 

input point coordinates, (x� , y� , z�) represents the output coordinate point. The transforma-
tion matrix parameter � represents the output of the local network.

4 � Experiments

Through a large number of experiments, we tested and analyzed the object classification, 
component segmentation and scene segmentation tasks of the SDANet network model pro-
posed in this article, then we compared and analyzed it with the latest methods (Figs. 4, 5, 
6 and 7).

4.1 � Classification

4.1.1 � Data set

The data set is ModelNet40 (Wu et al., 2015) and Part- ModelNet40 (cut and delete data 
for each sample in the ModelNet40 data set, and retain half of the data information), 
ModelNet40 has 40 types of samples, the training set and the test set have 9943 and 2468 

Fig. 4   Local point cloud spatial depth attention layer. SDA layer is mainly used to obtain the attention coef-
ficient of the local feature of the point cloud. For the sampled and grouped point cloud data, a three-dimen-
sional space coordinate system is established with the centroid, then all the point clouds in the local area are 
respectively projected to the three projection surfaces to obtain the key points of PN and PL . Code the two 
points to get local feature attention finally

Fig. 5   Global Feature Extraction Model. This module is mainly used to obtain the global characteristics of 
the point cloud. The multi-layer perceptron MLP promotes the input points to high-dimensional features. 
After the high-dimensional features are multiplied by the maximum symmetric function and the nonlinear 
activation function mapping, the global features of the input point cloud are extracted
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samples respectively; Part- ModelNet40 sample category, training set and test set number 
are the same as ModelNet40, but each sample information rate is only half. The data set 
visualization is shown in Fig. 8. 1024 points were sampled from each 3D model for feature 
extraction and model training.

4.1.2 � Training

Unless otherwise specified, the experiments in this article are all carried out in the Pytorch 
environment. We use the Adam optimization algorithm with an initial learning rate of 
0.001, the decay ratio is 0.8 applied every 40 epochs. Set the batch size of the classification 
network to 24. Using 1 NVIDIA GTX1080Ti GPU, the number of training is 200 epochs.

4.1.3 � Results

In order to compare classification accuracy and computational complexity, we use indica-
tors such as overall accuracy and forward times to verify the performance of the algorithm. 
Table  1 compares our results and complexity with some recent new methods. Although 
PointNet achieves the best computational complexity, our model accuracy is 3.5% higher 
than it. At the same time, the accuracy of LSA has reached the highest level of 93.2%, 

Fig. 6   Training algorithm of classification and segmentation networks

Fig. 7   Fusion of the depth attention local feature and global feature. a the depth attention local feature. b 
global feature. c fusion feature
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Fig. 8   Visualization of the data 
set used in the experiment. a 
ModelNet40 data set. b Part-
ModelNet40 data set

Table 1   Classification results on 
ModelNet40 dataset

The bold indicates that the method achieves the best performance in 
this metric compared to other methods

Method MA (%) OA (%) Forward 
time (ms)

PointNet (Qi et al., 2017) 86.2 89.2 15.2
PointNet +  + (Qi et al., 2017) – 91.9 35.3
PointNGCNN (Lu et al., 2020) – 92.8
GAPNet (Chen et al., 2021) 89.7 92.4 27.9
LSANet (Chen et al., 1905) 90.3 93.2 60.0
LAM-PointNet +  + (Cui et al., 2020) – 91.3 33.6
PCT (MengHao et al., 2012) – 93.2 72.4
OURS 91.5 93.7 40.3
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and the time complexity of our model is 32.8% lower than it. This means that our model 
achieves the best balance between accuracy and complexity.

Table  2 shows the classification accuracy results of various methods when the input 
data information is halved. The results show that the classification method has incomplete 
encoding of shape features due to the halving of the amount of input data information, 
which generally reduces the overall accuracy. Compared with Table 1, the reason why the 
forward time of the network has no obvious difference is that although the amount of infor-
mation of the input information is halved, the number of points input to the neural net-
work for processing after subsampling does not change, so that the forward time does not 
fluctuate significantly. Our method pays more attention to the descriptive features of the 
category. For example, it is easier to identify the target as a vehicle based on the character-
istics of the wheel. Although the accuracy is reduced, it still has better performance than 
other methods.

We did another set of experiments to test the overall accuracy of the algorithm by 
changing the point clouds information ratio, that is, compared with the original data, the 
amount of information in the existing data accounts for. Figure 9 shows the results of the 
experiment. The results show that as the input information ratio decreases, the classifica-
tion accuracy generally shows a downward trend. This is because when the effective infor-
mation of the input data is reduced, the shape features will be much reduced. It is extremely 
difficult to use a greatly small amount of data features to classify correctly. However, our 
method always maintains superior performance under different information ratios. This 

Table 2   Classification results on 
Part-ModelNet40 dataset

The bold indicates that the method achieves the best performance in 
this metric compared to other methods

Method MA (%) OA (%) Forward 
time (ms)

PointNet (Qi et al., 2017) 62.5 69.8 14.8
PointNet +  + (Qi et al., 2017) 72.3 35.0
PCT (MengHao et al., 2012) 77.4 70.3
OURS 79.6 83.5 38.6

Fig. 9   Classification of point clouds: overall accuracy with the decreasing of information. Information ratio 
reflects the completeness of information
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proves that the SDANet model has strong adaptability to the classification of incomplete 
information objects.

4.2 � Part segmentation

4.2.1 � Data set

In the Part Segmentation task, we use the ShapeNet (Yi et al., 2016) data set. ShapeNet 
contains 16,881 3D models in 16 shape categories and 50 different parts. Besides, each 
shape model is labeled with several but less than 6 parts. We selected 9943 models for 
training, 2468 models for testing. 2048 points were sampled from each 3D model, and each 
point was associated with a part label (Fig. 10).

4.2.2 � Training

We use the Adam optimization algorithm with an initial learning rate of 0.001. The decay 
ratio is 0.8 applied every 40 epochs. Batch size is set to 10. Using 1 NVIDIA GTX1080Ti 
GPU. The number of part segmentation model training is 250 epochs.

4.2.3 � Results

In order to verify the accuracy of segmentation, we use the mean Intersection over Union 
(mIoU) as an evaluation index to verify the performance of the algorithm. Figure 11 shows 
some visualized results of the output of part segmentation. According to the visualization 
results, for the cup, we classify the grip and the cup body well, the grip part is blue, and 
the cup body part is red. For hats, we classify the brim and the top of the hat very well. The 
top of the hat is divided into blue, and the brim is red. For knives, we classify the handle 
and the blade well. The blade part is blue and the handle part is red. For cars, we correctly 
classify the roof, body, tires and hood. The top of the car is divided into blue, the body 
part is red, the tires are yellow, and the hood is green. For motorcycles, we clearly classify 
the wheels, body, and fuel tanks. The wheels are green, the body is red, and the fuel tank 
is blue. For the table, we correctly classify the table legs and the table board, the table leg 
part is red, and the table board part is blue. Table 3 shows the results of our method on 
the ShapeNet dataset, for some reason, we didn’t show the airplane result data. Our model 

Fig. 10   Visualization of chang-
ing the point clouds information 
ratio
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wins 4 categories for part segmentation compared with 1 winning categories from LAM-
Pointnet +  + , although it is the same accuracy as ours. Although the PCT (MengHao et al., 
2012) performed an excellent level, the algorithm in this paper is only 1.1% smaller than 
that, and our method is still relatively good in classification tasks.

4.3 � Scene segmentation

4.3.1 � Data set

In the Scene Segmentation task, we choose Stanford Large-Scale 3D Indoor Space data 
set (S3DIS) (Armeni et al., 2016) to test the performance of our model for indoor scene 
segmentation. S3DIS contains 6 3D point clouds of indoor scenes, covering a total of 272 
rooms. We select areas1-5 as the training set and area6 as the test set. Sample 4096 points 
from each scene, each point contains XYZ, RGB and normalized location as to the room 
information.

4.3.2 � Training

We use the Adam optimization algorithm with an initial learning rate of 0.001. The epoch 
number is 64. The decay ratio is 0.7 applied every 8 epochs. batch size is set to 4. And we 
distribute the task to two NVIDIA GTX1080Ti GPU.

Fig. 11   Visualization results of part segmentation on ShapeNet dataset. We randomly select 8 types of 
items as the result visualization display, which are Mug, Cap, Chair, Knife, Car, Motorbike, Skateboard, 
Table. Each type of item itself is classified according to different parts



1342	 Machine Learning (2022) 111:1327–1348

1 3

Ta
bl

e 
3  

S
eg

m
en

ta
tio

n 
re

su
lts

 o
n 

th
e 

Sh
ap

eN
et

 d
at

as
et

M
et

ho
d

Io
U

A
ir-

pl
an

e
B

ag
C

ap
C

ar
C

ha
ir

Ea
r p

ho
ne

G
ui

t
K

ni
f

La
m

p
La

pt
M

ot
or

M
ug

Pi
sto

l
Ro

ck
et

Sk
at

e 
bo

ar
d

Ta
bl

e

Po
in

tN
et

 (Q
i e

t a
l.,

 2
01

7)
83

.7
83

.4
78

.7
82

.5
74

.9
89

.6
73

.0
91

.5
85

.9
80

.8
95

.3
65

.2
93

.0
81

.2
57

.9
72

.8
80

.6
Po

in
tN

et
 +

  +
 (Q

i e
t a

l.,
 2

01
7)

85
.1

82
.4

79
.0

87
.7

77
.3

90
.8

71
.8

91
.0

85
.9

83
.7

95
.3

71
.6

94
.1

81
.3

58
.7

76
.4

82
.6

LA
M

-P
oi

nt
 +

  +
 (C

ui
 e

t a
l.,

 2
02

0)
85

.3
83

.0
79

.2
87

.5
78

.4
90

.9
70

.7
91

.3
88

.1
84

.0
95

.3
71

.9
94

.3
81

.9
58

.9
76

.7
82

.8
D

G
C

N
N

 (W
an

g 
et

 a
l.,

 2
01

9)
85

.1
84

.2
83

.7
84

.4
77

.1
90

.9
78

.5
91

.5
87

.3
82

.9
96

.0
67

.8
93

.3
82

.6
59

.7
75

.5
82

.0
SA

W
N

et
 (K

au
l e

t a
l.,

 1
90

5)
84

.8
82

.0
85

.5
88

.7
78

.0
90

.9
77

.0
91

.0
88

.7
82

.5
95

.5
63

.6
94

.2
77

.6
57

.0
74

.8
81

.9
PC

T 
(M

en
gH

ao
 e

t a
l.,

 2
01

2)
86

.4
85

.0
82

.4
89

.0
81

.2
91

.9
71

.5
91

.3
88

.1
86

.3
95

.8
64

.6
95

.8
83

.6
62

.2
77

.6
83

.7
O

U
R

S
85

.3
–

82
.9

84
.8

79
.0

90
.7

68
.6

91
.0

87
.1

82
.8

95
.6

73
.0

95
.6

82
.5

61
.2

76
.2

83
.1



1343Machine Learning (2022) 111:1327–1348	

1 3

4.3.3 � Results

In order to verify the effect of scene segmentation, we selected reasonable evaluation indi-
cators. The IoU of each shape is calculated by averaging IoUs for all parts that fall into 
the same category, then the mIoU is the mean IoUs for all shapes from testing dataset. 
Figure  12 shows the visualization results of Scene segmentation on the S3DIS data set. 
Compared with ground truth, there are many differences between the results obtained by 
our method and PointNet. For conference room, Point incorrectly classifies the door as a 
wall and the wooden board as a ceiling. In addition, for the lobby, point mistakenly clas-
sified part of the trash can as chairs and mistakenly classified wooden boards as tables. 
According to the comparison of the results, the segmentation effect of our model at some 
key positions is closer to Ground truth, which intuitively shows that our method helps to 
improve the accuracy of point cloud scene segmentation. Table 4 shows the results of our 
model and PointNet on the S3DIS dataset. The results show that our model accuracy is 
5.7% better than PointNet.

4.4 � Complexity analysis and ablation experiments

We further compare both space and time complexities with other methods, in which the 
classification network is used. Table 5 shows that our SDANet has proper parameters with 

Fig. 12   Scene segmentation on the S3DIS data set. a Ground truth. b Results of PointNet. c Results of 
OURS. We compared our method and PointNet in the results with ground truth, and the obvious differences 
are marked with red borders
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fast inference time. In addition, our segmentation network involves fewer parameters than 
our classification network (see Table 6).

To verify the effectiveness of the spatial depth attention, global feature extraction, and 
spatial transformation network, we have done ablation experiments under the above condi-
tions, and the final results are shown in Table 7. In the ablation experiment, we tested the 
network parameters under the condition of missing specific function modules and the final 
point cloud target overall accuracy. The results show that without spatial depth attention, 
the network model parameters have been significantly reduced, compared with SDANet by 
37.5%, but the overall accuracy is also reduced by 16.4%. Without global feature extrac-
tion, the number of network model parameters decreased slightly, and the classification 
accuracy also decreased by 11.4%. Without the spatial transformation network, the number 
of network model parameters is almost unchanged, but the classification accuracy directly 
drops by 74.6%, which shows that the input point cloud data is not processed by the spatial 
transformation, and the performance of directly using the deep learning network is very 
poor.

5 � Conclusion

In this article, we propose a neural network based on local depth attention features, called 
SDANet, to learn point clouds represented by shapes. Based on the new design of the 
network, our SDANet has powerful spatial information extraction capabilities, and has 

Table 5   Comparison of different 
methods on the numbers of 
parameters and inference time

Method Parameters (M) Inference 
time(ms)

PointNet (Qi et al., 2017) 3.48 24.0
PointNet +  + (Qi et al., 2017) 1.48 74.2
GAPNet(Chen et al., 2021) 4.41 98.7
LSANet(Chen et al., 1905) 2.30 114.7
LAM-PointNet +  + (Cui et al., 2020) 1.68 72.0
PCT (MengHao et al., 2012) 2.88 93.7
OURS 2.16 64.8

Table 6   The numbers of our 
SDANet’s parameters on datasets

Dataset Task Parameters (M)

ModelNet40 (Wu et al., 2015) Classification 2.16
ShapeNet (Yi et al., 2016) Segmentation 1.84
S3DIS (Armeni et al., 2016) Segmentation 1.44

Table 7   The results of ablation 
experiments

Parameters (M) OA(%)

Remove spatial depth attention 1.35 78.3
Remove global feature extraction 1.84 83.0
Remove spatial transformation network 2.14 23.8
The full framework (SDANet) 2.16 93.7
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achieved results equal to or better than the most advanced methods in shape classification, 
part segmentation and scene semantic segmentation tasks. We also provide visual results 
and detailed information of related experiments. The success of this model verifies the 
effectiveness of local deep attention features in point cloud classification and segmentation 
tasks. With the development of sensor technology, the information obtained in the field of 
autonomous driving will be more refined, but it will inevitably cause the amount of infor-
mation to skyrocket. Therefore, how to process information quickly and effectively is one 
of the future research directions.
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