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Abstract
Deep learning has shown excellent performance in many fields, especially image recog-
nition and retrieval in recent years. The performance of convolutional neural networks 
(CNNs) is particularly outstanding. CNNs, however, are usually computationally inten-
sive, which hinders the deployment of CNNs in resource-limited devices. Methods of 
network compression, pruning methods in particularly, removing redundant structures of 
CNNs, can significantly reduce the computational complexity of CNNs. Most of the state-
of-the-art pruning methods for CNNs, however, have two defects. (1) Filters, also called 
convolutional kernels that are matrices used to extract features in an image, are pruned by 
ranking their weight without considering the effects of their actual output, which results 
in the deletion of important filters and the difficulty in determining the pruning threshold 
on weight. (2) Filters are pruned either in the forward direction or in isolation, which are 
difficult to control the loss of accuracy. This paper proposes a novel pruning method called 
filter similarity analysis with backward pruning (FSABP). FSABP calculates the similarity 
coefficients of filters in each layer, and deletes the filters associated with small similar-
ity coefficients. The smaller the coefficient the more similar the filters. Filters are pruned 
layer by layer in the backward direction starting from the last convolution layer, which can 
effectively control the loss of accuracy by avoiding early removal of the shallow convolu-
tion filters. Experiments on LENET, VGG-16 and ResNet-50 show that FSABP can reduce 
parameter redundancy at the cost of negligible loss of accuracy and even improve accuracy 
in some cases. The results on LENET also suggest that FSABP is applicable to both deep 
and shallow CNNs.
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1  Introduction

Deep learning has made significant progress in the past few years, especially in the field 
of image recognition and retrieval. Convolutional neural networks (CNNs), in particular, 
have achieved remarkable performance, and significantly outperform the traditional meth-
ods in recognizing visual features. CNNs have been designed deeper and deeper to improve 
their accuracy (He et al., 2016; Krizhevsky et al., 2012; Simonyan and Zisserman 2014; 
Szegedy et al., 2015) and are characterized as with a large number of parameters, compu-
tationally intensive, and a big memory footprint. It is challenging to deploy CNNs on the 
resource-limited devices without sacrificing their accuracy (Howard et al., 2017; Iandola 
et al., 2016; Ma et al., 2018; Sandler et al., 2018; Zhang et al., 2018).

Network pruning reduces computational complexity and the memory footprint by effec-
tively compressing the architecture of CNNs. The convolutional layers and the full connec-
tion layers usually contain a large number of parameters and a significant portion of them 
is redundant after training (Han et al., 2015). Pruning the redundant parameters will not 
significantly reduce the accuracy of the networks. With fewer parameters, CNNs are not 
only simplified and much fast, but also possibly deployed on the resource-limited devices 
when the reduced resource demands can be met.

Pruning is usually done by deleting filters and weights. A filter, also called a convolu-
tional kernel, is a matrix used to extract features of an image. Filter pruning is the most 
typical method. The state-of-the-art filter pruning methods, however, have two defects. (1) 
Filters are pruned by ranking their weight and setting pruning thresholds, while ignoring 
their actual output, which result in the deletion of important filters and is difficult to deter-
mine the pruning threshold. (2) There is no standard pruning direction in the existing meth-
ods, and it is difficult to control the loss of precision whether the pruning filter is forward 
or isolated.

For the defect (1), we argue that the similarity of filters is more important than the 
weight. In many cases, small weight plays an important role in loss functions (Li et  al., 
2017). Based on the facts, we propose a pruning method called the filter similarity analysis 
(FSA), which takes the similarity of filters into account when pruning filters. For the defect 
(2), we argue that backward pruning is more appropriate than forward or isolated prun-
ing in terms of controlling the loss of accuracy of CNNs. As a feed forward network with 
hierarchical natures, CNNs use the shallow filters to learn basic local features and the deep 
filters to capture semantic features (Zeiler and Fergus, 2014). The effects of deleting a filter 
usually propagate to the deeper layers, but the shallower layers. Backward pruning has less 
or no such an effect, which avoid the early deletion of important filters and the excess loss 
of accuracy.

The contributions of our paper are three aspects.

1	 FSA is proposed to prune filters of CNNs. Similar filters in a layer are found by calculat-
ing their similarity coefficients of the weight matrices. Those filters with high similar-
ity are kept, others are deleted. By finding and removing redundant filters in terms of 
extract similar features, FSA can retain the ability of a convolutional layer to extract 
rich features while reducing the complexity of CNNs.

2	 FSA with backward pruning, FSABP in short, is proposed to control the loss of the accu-
racy of CNNs and filters are pruned layer by layer starting from the last convolutional 
layer to the first. The accuracy varies significantly in the forward pruning process. When 
the loss of accuracy is too great the chance is slim to recover from the loss through fine 



3163Machine Learning (2022) 111:3161–3180	

1 3

tuning. In the process of backward pruning, however, the loss of accuracy is small and 
can be easily recovered.

3	 We conduct experiments to show that the proposed methods are effective for both shal-
low and deep CNNs, and applicable to any convolutional layer and not affected by the 
size of CNNs.

The rest of the paper is organized as follows: Sect. 2 introduces related work. Section 3 
describes our ideas and pruning methods in detail. The experimental results are discussed 
in Sect. 4. Section 5 is the conclusions.

2 � Related work

Pruning is the most widely used network compression method. Because there are a large 
number of redundant parameters in CNNs, the performance of CNNs is almost unaffected 
by deleting a certain proportion of parameters. Pruning methods can be divided into two 
categories: weight pruning and filter pruning.

The strategy of weight pruning increases the sparsity of the weight matrix to make some 
weights tend to zero by introducing regularization terms into the objective function. Small 
weights are removed. The process of pruning is iterative. After pruning small weights, the 
network is fine-tuned to restore accuracy. Weight pruning requires producing sparse matri-
ces, which are complex in calculation and requires special hardware to efficiently support 
sparse matrix operations.

The process of filter pruning consists of training the original CNNs, ranking the fil-
ters by predefined criterions, and reserving the top-ranked filters and pruning the rest. The 
pruned CNN is then fine-tuned and retrained to achieve the same or even higher accuracy 
than the original CNN. Compared to weight pruning, filter pruning directly deletes filters 
from CNNs and controls the pruning ratio through setting thresholds and has two advan-
tages, no sparse matrix generated and no need for huge disk storage and memory in the 
reasoning stage. The key to filter pruning is how to select the filters to be deleted. The 
selection criterion can be filter specific or filter nonspecific. The filter specific criterion is 
derived directly from the weight of a filter and can be categorized as follow. (1) Random 
pruning: Mittal et al. (2019) obtain the same performance as the state-of-the-art pruning 
methods by randomly pruning 25–50% filters, and suggest that the inherent plasticity of 
CNNs allows the loss of accuracy caused by pruning to be recovered by fine-tuning. (2) 
Entropy-based: Luo and Wu (2017) propose to use entropy to evaluate the importance of 
filters. The parameters of VGG-16 (Simonyan and Zisserman, 2014) and ResNet-50 (He 
et al., 2016) are reduced by 16.64× and 1.47×, and the accuracy of both are decreased by 
1%. (3) Energy-Aware: Yang et  al. (2017) directly prune filters according to the energy 
consumption of CNNs. (4) Filter similarity: Singh et al. (2018) iteratively divide two filters 
with the greatest similarity into a pair and remove one filter from each pair and obtain a 
very good FLOPs (floating point operation per-second) compression rate in various bench-
mark tests. (5) Zero activation: Hu et al. (2016) pruned the filters with a lot of zero activa-
tions, reinitialized the network with initial weight, and then retrained the network, which 
achieve 2× compression ratio without loss of accuracy.

The filter nonspecific criterion is derived from the changes of the characteristics associ-
ated with filters and can be categorized as follow. (1) Adjacent layer filter: Hu et al. (2018) 
used a genetic algorithm to select filters in order to compress the ultra-deep CNNs. Luo 
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et al. (2017) proposed a framework named ThiNet to delete the filters by calculating the 
statistics of the next layer. (2) Feature map: Anwar and Sung (2016) proposed a pruning 
method for feature mapping. They designed the strategy of selecting the least antagonistic 
pruning mask. The pruning template was generated randomly, and the network was pruned 
by using the verification set to select the best mask. (3) Loss function: Molchanov et al. 
(2016) proposed a pruning criterion based on Taylor expansion to find filters that have less 
influence on the loss of accuracy and deleted them to reduce the size of CNNs. Based on 
this criterion, the performance of the pruned CNNs is superior in fine-grained classifica-
tion tasks.

The advantage of the filter specific criterion is that the calculation is straight forward, 
while the disadvantage is that the filters are pruned individually without taking into account 
their similarities with others, which tend to produce excess loss of accuracy and the diffi-
culty in determining the pruning threshold. The advantage of the filter nonspecific criterion 
is the loss of network accuracy is not significant, while the disadvantage is that the calcu-
lation is complex. Instead of judging the importance of filters individually, our proposed 
method is based on their similarity. The difference between ours and Singh et al. (2018) is 
that our similarity is based on the Markov distance of the weight matrix of a filter, instead 
of the Pearson correlation coefficient of filter pairs. We calculate the similarity coefficient 
according to the weight matrix of the filter, and delete the filter whose coefficient is less 
than the mean value.

Another issue related to filter pruning is the pruning direction. There is no preferred 
pruning direction in the literature. Filters are deleted either forward or in isolation. Hu et al. 
(2016) and Luo and Wu (2017) prune part of a convolutional layer. Yang et  al. (2017) 
determined the direction of pruning according to the energy consumption of each layer. 
Anwar and Sung (2016) prune the network once at a given compression ratio and then 
retrain it. They can be categorized as isolated pruning. Hu et al. (2018) and Singh et al. 
(2018) prune each layer sequentially from input to output, which can be categorized as 
forward pruning. The isolated pruning leads to low compression rate, while the forward 
pruning leads to excess loss of accuracy while increasing compression rate. Our proposed 
method prunes backward, from the last convolution layer to the first convolution layer, in 
order to achieve a balance between the compression rate and the loss of accuracy.

3 � Pruning with filter similarity analysis

This section describes the pruning method by filter similarity analysis. The motivation 
and problem are described in Sect. 3.1. Section 3.2 details the filter similarity calculation 
method. The pruning order, an important factor affecting the network accuracy, is dis-
cussed in Sect. 3.3.

3.1 � Motivation and problem description

CNNs extract the features of an image, such as edges, texture, color, etc., by convolutional 
operations, and then perform a specific image processing task based on the extracted fea-
tures. The number of filters is usually thousands in deep CNNs. The weights of a filter are 
derived from network learning. It is inevitable that there exist a lot of similar filters which 
extract the same or similar features. Keeping a part of the similar filters can ensure the 
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extraction of the corresponding features, while removing the remaining filters does not sig-
nificantly reduce the network accuracy.

How to judge the similarity of two filters is the first problem to be solved in order to 
prune filters. The weights of a filter determine the type of features extracted by the filter, so 
similar filters might be found by analyzing the weight values.

CNNs are composed of input layers, convolutional layers, pooling layers, and fully con-
nected layers. A CNN N can be described using Eq. 3.1.

X is the input data, a two-dimensional matrix composed of image pixels. The first layer 
is the input layer and, therefore, A1 = X. When i > 1, the ith layer can be convolutional, 
pooling, or fully connected. Convolutional and fully connected layers contain weight 
parameters and are represented as one or more higher-dimensional matrices. f(·) is the acti-
vation function and h(·) represents the output calculations for different types of layers as 
defined in Eq. 3.2.

If a layer is a convolutional layer, convolutional calculations ( Ai−1 ×Wi ) involving fil-
ters and input data are carried out, where bi is the bias item. If a layer is a pooling layer, 
downsampling on the input data happens, and down(·)is called the down-sample function. 
If a layer is a full connection layer, the matrix multiplication ( Wi ⋅ Ai−1 ) is applied on the 
filter and the input data, which flattens the input matrix into a vector.

We target to delete the filters of the convolutional layers of a network. To formally 
describe the process of pruning filters, we denote F(c, lc, n, k) as the cth convolutional 
layer with lc filters in the network N, each filter having a set of weights, represented by a 
n × k × k matrix, where, k represents the size of the receptive field (a k × k matrix) of a fil-
ter, and n is the number of channels of the input data. The goal of pruning is to make the 
number of filters as small as possible while ensuring the network accuracy, thus reducing 
the total number of weight parameters and the size of the network. The pruning effect is 
usually measured by the change of top-1 accuracy of the network. We denote the function 
g(·) as the network accuracy. Ensuring network accuracy after pruning means that the loss 
of accuracy is less than a given threshold θ. Therefore, the optimal pruned network can be 
described using Eq. 3.3.

In Eq. 3.3, N, N′, N* represents the original network, pruned network and the smallest 
pruned network, respectively. |N′| is the size of the pruned network. g(N), g(N′) is the top-1 
accuracy before and after network pruning, and θ is the threshold of the loss of accuracy. 
N* is the optimal network satisfing the loss threshold.

Equation 3.3 represents the optimal pruning, the one with the least total number of fil-
ters in the network to satisfy the threshold. For each convolutional layer, there are multiple 
combinations of filters to be pruned. A network with m convolutional layers has 2l1+l2+⋯+lm 

(3.1)
{

Ai = X i = 1

Ai = f
(
hi
(
Ai−1,Wi

))
i > 1

(3.2)hi =

⎧
⎪⎨⎪⎩

Ai−1 ∗ Wi + bi the ith layer is the convolutional layer

down
�
Ai−1

�
the ith layer is the pooling layer

Wi ⋅ Ai−1 the ith layer is the full conection layer

(3.3)N∗ = argmin
N�⊆N

||N�|| =
∑
c

F
(
c, lc, n, k

)
s.t. g(N) − g

(
N�

)
≤ 𝜃
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possible combinations. The search space of the optimal network is too large to be practical. 
Therefore, we propose a heuristic pruning method, which takes reverse pruning strategy 
and determines the number of filters to be pruned layer by layer starting from the last con-
volutional layer to the first.

In FSA algorithm, the filter to be pruned needs to be identified after calculating the filter 
similarity. For the cth convolutional layer with lc filters, all the filters can be collectively 
represented by a filter vector Tc =

(
t0, t1,… , tlc

)
 , where each component corresponding to 

a filter, can be 0 or 1, respectively indicating that the filters are deleted or retained. The 
pruning result can be described using Eq. 3.4.

where FSA(N, m, l) represents applying FSA method to the network N with m convolu-
tional layers and l filters to obtain the network N′, T′ is a set of all convolutional layer filter 
vectors constructed by the FSA algorithm.

Combining Eqs. 3.3 and 3.4, q, the number of filters after pruning all the convolutional 
layers can be calculated by Eq. 3.5.

where ||Tc||tj=0 is the number of filters to be deleted at the c-th layer, that is, the number of 
0 s in the vector Tc, lc − ||Tc||tj=0 is the number of filters remaining after pruning.

3.2 � Filters similarity calculation

FSA determines the number of filters to be pruned and their indexes based on the simi-
larity of the filters. The similarity of data objects is generally measured by distance. The 
similarity of filters we used is not the commonly used distance, but is based on the similar-
ity between different channel dimensions in the filter weight matrix, known as the filter 
similarity coefficient. The adjacent pixels of an image are usually similar, and the results of 
convolution operations on the same location of the filter are similar. Judging filter similar-
ity needs to consider the similarity between channels.

For an input data with a channel number of n, the filter weight W is a n × o × o matrix, 
and o represents the height and width of the matrix, which is the filter receptive field. 
When calculate the similarity or correlation of high-dimensional data, it is common prac-
tice to conduct dimension reduction in order to extract key information and get rid of the 
noise caused by irrelevant dimensions.

A filter weight matrix has three dimensions, including channel, height, and width. The 
number of channels of a weight matrix is the same as the number of the input data chan-
nels. Retaining the channel dimensions in the filter weight matrix ensures the integrity of 
the multi-channel input data. We choose to reduce the height of the weight matrix to 1, 
which is one of the two dimensions representing the filter receptive field. This reduces the 
filter weight matrix to two dimensions, denoted as W,W =

[
Wij

]
n×o

 . In Fig. 1, the input 
data is the 32 × 28 × 28 blue matrix, which is operated by a 5 × 5 convolutional filter, and 
the weight matrix of the filter is the 32 × 5 × 5 yellow matrix. The dimension reduction 
based on the updated weights after convolution reduces information loss. The weight 
matrix is compressed by taking the means of the height to get the 32 × 5 green matrix.

(3.4)FSA(N,m, l) =
{
N�, T �|T � =

{
T1, T2,… , Tm

}}

(3.5)q =

m∑
c=1

(
lc −

||Tc||tj=0
)

s.t. 0 ≤ j ≤ lc
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The compressed two-dimensional (2-D) matrix can be seen as a set of row vectors or 
column vectors. Row vectors represent samples from corresponding channels, and col-
umn represent properties. Channel similarity is calculated based on their distance, and 
the similarity coefficient of a filter is the average of the channel similarity. The column 
dimension is corresponding to the filter receptive field, extracts information from the 
adjacent regions in the input data, and the correlation of this information is extremely 
high. This is the reason why we calculate the similarity between channels.

Maharanobis distance calculates the distance between samples with multiple dimen-
sions, and the covariance in it calculates the correlation between the dimensions of a 
sample, which match our needs to calculate the similarity of samples consisting of chan-
nel or row vectors in a filter, and the correlation of the samples consisting of the column 
vectors.

The covariance of the weight matrix is calculated using Eq. 3.6.

Equation  3.7 shows how to calculate the similarity (dij) between row vectors. The 
relationship between the similarity of matrix row vectors and the similarity of the 
weight matrix of a filter is explained in Fig. 2.

(3.6)S =
∑

W = E

[(
W − E

[
W
])(

W − E
[
W
])T

]

Fig. 1   Dimension reduction of 
the filter weight matrix. The 
32 × 28 × 28 input data are con-
volved with 5 × 5 filter to produce 
a 32 × 5 × 5 weight matrix. Take 
the mean value on the z-axis to 
reduce the dimension, so that 
the matrix becomes a matrix of 
32 × 5

Fig. 2   The similarity of the filter 2-D matrix. W
i
(1 ≤ i ≤ n) represent the different row vectors of the filter 

2-D matrix. n is the number of channels. O represents the width of the matrix. Calculate the Markov dis-
tance similarity of the row vector and summed. d is the similarity of 2-D matrix
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The similarity coefficient of a filter, denoted as d, is the sum of the similarity of the 
matrix row vectors, as shown in Eq. 3.8. similarity and takes the mean as the similarity 
coefficient of the filter.

The mean of the similarity of weight matrix d to the number of channels is the similar-
ity coefficient δ of the filter.

After obtaining similarity coefficients δ(δ = d/n) for all filters, the mean of the simi-
larity coefficients ε(ε = δ/m) is calculated for all filters. Filters with similarity coeffi-
cients less than the mean were removed. The similarity coefficient of a filter reflects the 
total effects of the pair-wise similarity among channels of a filter. Filters of the same 
convolutional layer extract the same attribute features (Zeiler and Fergus, 2014). For 
example, if a layer extracts texture features, all the filters in the layer extract them, but 
with different texture directions determined by the similarity between channels, namely 
the similarity coefficients. Such similarity is independent of the weights, and the simi-
larity coefficient of a filter with small weights might be larger than that with large 
weights. Our method differs from the method that determines the importance of the fil-
ter based on the weights. A large similarity coefficient indicates that the corresponding 
filter extracts the significant different feature from others, and small one indicates simi-
lar features being extracted by others. Filter pruning tries to remove as many filters with 
similar functions as possible. We found that the filters with small similarity coefficients 
take a large proportion of all the filters (Fig. 3). The proportion of the filters with small 
similarity coefficients varies for different layers. It is tedious to determine an appropriate 
ratio for each layer. Taking the mean value of the similarity coefficients as the pruning 
threshold is not only simple, but also can remove the majority of the filters with small 

(3.7)dij =

√||||(Wi −Wj)
TS−1

(
Wi −Wj

)|||| (0 ≤ i ≤ n, 0 ≤ j ≤ n, i ≠ j)

(3.8)d =

n∑
i

n∑
j

dij (0 ≤ i ≤ n, 0 ≤ j ≤ n, i ≠ j)

Fig. 3   Distribution of similarity coefficients. a and b show the distributions of similarity coefficients in the 
fifth and thirteenth convolutional layers in the VGG-16, respectively. Filters with small similarity coeffi-
cients take a large proportion of all the filters. The x-axis represents the ID of filters, from 0 to the number 
of filters. The y-axis represents the values of similarity coefficients
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similarity coefficients. The experiment results (Fig. 6) show that, after removing those 
filters with similarity coefficients less than the mean, filters with both large weights and 
small weights are retained, with a distribution similar to that of the original network.

The calculation process of the filter similarity coefficient is as follows:

φ

∈

∈

∈

∈

φ

Because different filters extract different feature information, pruning filters with 
high similarity is equivalent to removing filters extracting similar features. For exam-
ple, if two filters extract similar color characteristics of a picture, their weight matrices 
tend to be similar to ensure they extract similar feature information. Filters that extract 
the same or similar features form a set, deleting some filters in each set according to 
the FSA algorithm to ensure the overall feature extraction capability and integrity of 
the convolutional layers. Figure  4 clearly shows the changes in the outputs of filters 
of VGG-16 before and after pruning. The upper part of the figure is the pre-pruning 
outputs, and the red boxes mark the outputs with obvious different features. After FSA 
pruning, the extracted features of the filters retained in the lower part of the figure are 
as rich as without pruning. Multiple similar features in this case are yellow blocks, and 
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only two of them are retained. The more similar filters are removed, the higher the prun-
ing rate is.

3.3 � Backward pruning

The state-of-the-art pruning methods select only prune certain convolutional layers in the net-
work, and do not take full account for the effect of pruning order on accuracy of the network. 
We propose a backward pruning strategy (FSABP). Since CNN is a feedforward network, and 
the outputs of filters of the shallow convolutional layers are progressively transmitted to the 
deep convolutional layers.

For example, the first convolutional layer extracts smaller local features of the image (e.g., 
edge, color, texture, etc.). The second convolutional layer obtains more abstract concepts from 
the output of the first layer and extracts larger image features (e.g., eyes, ears, mouth, etc.). The 
features extracted by deep convolutional layers are the fusion of the features extracted by shal-
low convolutional layers. In general, shallow convolutional layers extract more general and 
reusable features of datasets, and deep layers learn increasingly complex and abstract visual 
concepts.

As the network getting deep, the number of parameters increases sharply. The deeper the 
network layer, the more filters in the convolutional layers, and the greater the parameters and 
redundancy in each layer. Pruning starting from more redundant and deep convolutional lay-
ers has little effect on the accuracy of the network. The shallow convolutional layers contain 
fewer parameters and less redundancy. Pruning shallow convolution layers not only reduces 
the accuracy of the network, but also is difficult to repair the loss of accuracy. Pruning from 
the last convolutional layer maximizes the accuracy of the network and balances the network 
size and accuracy. Figure 5 shows the backward pruning.

Fig. 4   Visualization of filter pruning results. A, B and C represent the different groups of filters. Filters in 
each set are reduced after pruning. a is the feature map of each filter in the unpruned convolution layer. b 
is the feature map of each filter after pruning. Those red boxes in a marks the different feature map of the 
filters. As can be seen from b, part of the feature map of different features is retained after pruning filters
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4 � Experiments

This section describes the experimental design. Sections 4.1 and 4.2 introduce the net-
work model, datasets and evaluation indicators. Section  4.3 discusses the experimen-
tal results on LENET (Lecun & Bottou, 1998) and VGG-16. Section  4.4 compares 
the results of forward and backward direction pruning, and the Sect. 4.5 describes the 
experimental results on ResNet-50.

4.1 � Experimental networks and datasets

Our experiment was carried out on Intel Xeon Brone 3106@1.70  GHz CPU and 
NIVIDIA GeForce GTX 1080Ti GPU. We evaluated FSA on keras and selected three 
typical CNNs, including LENET, VGG-16 and ResNet-50. LENET and VGG-16 are 
sequential convolutional stack networks. ResNet-50 is residual network.

In the experiment, we used MNIST, CIFAR-10, KAGGLE and ISLVRC 2012 (Ima-
geNet Large Scale Visual Recognition Challenge) datasets. The MNIST dataset is a 
classic dataset in the field of machine learning, including 60,000 training images and 
10,000 test images, which are grayscale images of handwritten numbers. The CIFAR-
10 dataset consists of 60,000 32 × 32 resolution color images, 50,000 training images 
and 10,000 test images, and 10 categories. The KAGGLE dataset contains 25,000 color 
images of dogs and cats, 12,500 images for each category. ISLVRC is a subset of the 
ImageNet dataset, and contains over a million color images and 1000 categories. We 
randomly selected 100 of these categories for our network training.

In the table, “Conv” denotes the convolutional layer and “FC” is the full connection 
layer. The shape column represents the layer structure.

LENET includes two convolutional layers (Conv_1 and Conv_2) and two fully con-
nection layers (FC_1 and FC_2). The first convolutional layer has 20 filters, and the fil-
ter size is 5 × 5, while and the second convolutional layer has 50 filters of size 5 × 5. The 
accuracy can reach 99.2% on the MNIST dataset. The composition of VGG-16 includes 
3 × 3 convolutional layer with increasing depth, max pooling, two full connection layers 
of 4096 nodes and the softmax classifier. As show in Tables 1 and 2.

Fig. 5   Backward direction pruning. Filters are prune layer by layer in the backward direction starting from 
the last convolution layer
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4.2 � Evaluation indicators

The compression rate (CR) is an indicator to evaluate the pruning effect of CNNs.

Here l is the total number of filters and q is the number of remaining filters. How-
ever, the high CR does not mean a good pruning effect because the evaluation of CNNs 
also depends on the accuracy of the network, the calculation speed, and the number of 

(4.1)CR =
l

q

Table 1   LENET basic structure Type Shape Output size

Conv_1 5 × 5 × 20 28 × 28 × 20
Max pooling 2 × 2 14 × 14 × 20
Conv_2 5 × 5 × 50 14 × 14 × 50
Max pooling 2 × 2 7 × 7 × 50
FC_1 500 500
FC_2 10 10
Softmax Classifier 10

Table 2   VGG-16 basic structure Type Shape Output size

Conv_1 3 × 3 × 64 32 × 32 × 64
Conv_2 3 × 3 × 64 32 × 32 × 64
Max pooling 2 × 2 16 × 16 × 64
Conv_3 3 × 3 × 128 16 × 16 × 128
Conv_4 3 × 3 × 128 16 × 16 × 128
Max pooling 2 × 2 8 × 8 × 128
Conv_5 3 × 3 × 256 8 × 8 × 256
Conv_6 3 × 3 × 256 8 × 8 × 256
Conv_7 3 × 3 × 256 8 × 8 × 256
Max pooling 2 × 2 4 × 4 × 256
Conv_8 3 × 3 × 512 4 × 4 × 512
Conv_9 3 × 3 × 512 4 × 4 × 512
Conv_10 3 × 3 × 512 4 × 4 × 512
Max pooling 2 × 2 2 × 2 × 512
Conv_11 3 × 3 × 512 2 × 2 × 512
Conv_12 3 × 3 × 512 2 × 2 × 512
Conv_13 3 × 3 × 512 2 × 2 × 512
Max pooling 2 × 2 1 × 1 × 512
FC_1 4096 4096
FC_2 4096 4096
FC_3 Category 10
Softmax Classifier 10
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parameters, etc. The commonly used evaluation indicators of CNNs include the accuracy 
of Top-1 and Top-5, error rate, the number of the parameters and FLOPs.

CIFAR-10 has 10 categories. When a network predicts an image, it ranks the probability 
the image belongs to the 10 categories from high to low. Top-1 refers to the accuracy of the 
categories ranked the first matching the actual categories. Top-5 refers to the accuracy of 
the categories ranked from the first to the fifth matching the actual categories.

FLOPs is short for floating point operation per-second in the network. The FLOPs of 
CNNs (net_FLOPs) consists of FLOPs of the convolution layer (conv_FLOPS), the pool-
ing layer (pooling_FLOPs) and the full connection layer (FC_FLOPs).

In the above formula, (Cin, Hin, Win) is the input feature. k × k is the size of the filter. 
(Cout, Hout, Wout) is the output feature. The Batchsize is the number of samples selected for 
one training.

The number of the parameters (num_Param) is as follows:

Since the pruning is a kind of damage to CNNs, it is almost impossible to improve all 
evaluation indicators at the same time. In general, the higher the CR, the greater the loss of 
accuracy. The effect of the network pruning depends not only on the choice of the pruning 
method but also on the influence of the training methods. The network pruning is a com-
prehensive optimization process. This paper focused on the test of the pruning algorithm, 
and does not particularly optimize the training process of CNNs, so it is still possible to 
improve the accuracy of the pruned CNN.

4.3 � The results of pruning LENET

We train the LENET from scratch and set the batch size of 32 for 1000 epochs and the 
cross-entropy loss is used as the criterion function. The optimizer uses Adma (Adaptive 
moment estimation). We achieved the Top-1 accuracy of 99.29% and the Top-5 accuracy 
of 99.99%. In order to verify the validity of FSA algorithm, we firstly prune the full con-
nection layer and the second convolutional layer of LENET, then prune the first convo-
lutional layer after fine-tuning. The FSA-1 is the network after the first round of iterative 
pruning, and the FSA-2 is the network after the second round of iterative pruning.

Finally, the Top-1 and Top-5 accuracy of the FSA-1 is 99.01% and 100%, respectively. 
The number of parameters has been reduced from 1.25 to 0.096 M. The total number of 
parameters is cut by 92.41% and FLOPs is cut by 73.45%. The Top-1 and Top-5 accu-
racy of the FSA-2 is 98.67% and 99.99%, respectively. The number of parameters and the 
FLOPs are 0.021 M and 0.27 × 107, respectively, and are reduced by 98.32% and 94.03%, 
respectively.

(4.2)conv_FLOPs = Cin × Cout × k × k × Hout ×Wout × BatchSize

(4.3)pooling_FLOPs = Cin × Hin ×Win × BatchSize

(4.4)FC_FLOPs = Cout × Cin × Batchsize

(4.5)net_FLOPs = conv_FLOPs + pooling_FLOPs + FC_FLOPs

(4.6)num_Param = Cout ×
[(
Cin × k × k

)
+ 1

]
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Table 3 compares our method to the state-of-the-art methods, including GAL (Lin et al., 
2019) and CFP (Singh et al., 2018).

Compared with GAL-λ(λ is sparsity factor), λ = 0.1, FSA-2 has a much higher CR 
(6.20). Both CR and the accuracy of FSA-2 are better than those of CFP-4(CFP-x, x is 
the number of pruning iterations). FSA has a high compression ratio and a small loss of 
accuracy.

We retrain two networks ( FSA_1 and FSA_2 ) with the same structure as the FSA-1 and 
FSA-2, and use the same parameter setting and dataset. The error rate, Top-1 and Top-5 
of FSA_1 are 1.27%, 98.73% and 99.99%, respectively, while those of FSA_2 are 1.41%, 
98.59% and 99.99%, respectively. The accuracy of the original network is less than that of 
the pruned networks.

4.4 � The results of pruning VGG‑16

Experiments on LENET prove that our algorithm is effective to shallow CNNs. Next, we 
train VGG-16 from scratch on CIFAR-10 and KAGGLE datasets. The results also suggest 
the effectiveness of our algorithm to deep CNNs by comparing the evaluation indicators of 
the baseline with those of the pruned networks.

4.4.1 � VGG‑16 on CIFAR‑10

The VGG-16 is trained from scratch using the CIFAR-10 dataset. And the network is 
trained with batch size of 32 for 1000 epochs and the cross-entropy loss is used as the cri-
terion function. Meanwhile, the optimizer uses SGD (Stochastic Gradient Descent) and the 
regularization term is L2.

When pruning the first and the second convolutional layers, a little drop of the num-
ber of parameters causes a significant loss of accuracy. These two layers have nothing to 
be pruned. Table 4, lists the change of evaluation indicators after each layer of backward 
pruning. The number of filters decreases from 4224 to 1303 after pruning, and CR reaches 
3.24. Final Top-1 accuracy of VGG-16 is 85. 51%, 0.19% lower than the original VGG-16, 
and 15.34% higher than the APoz (Hu et al., 2016). Top-5 accuracy of VGG-16 is 99.34%, 

Table 3   The performance of 
LENET on the MNIST dataset

“Baseline” refers to the LENET that we trained from scratch. 
“FLOPs↓” is the percentage decrease of the FLOPs. “acc” denotes the 
accuracy of the network. The data of FSA are in bold

Method CR acc (%) FLOPs FLOPs↓ (%)

CFP-1 1.046 99.09 1.95 × 105 95.56
CFP-2 1.047 99.05 1.58 × 105 96.41
CFP-3 1.048 98.80 1.39 × 105 96.84
CFP-4 1.05 98.23 1.95 × 105 97.98
GAL-0.01 2.56 99.05 0.43 × 107 81.20
GAL-0.05 4.13 98.95 0.17 × 107 92.60
GAL-0.1 4.63 98.97 0.10 × 107 95.60
Baseline 1.00 99.03 4.52 × 107 0
FSA-1 3.54 99.01 1.20 × 107 73.45
FSA-2 6.20 98.67 0.27 × 107 94.03
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0.29% higher than the original VGG-16, and 9.65% better than the APoz. The number of 
parameters decreases by 88.47% and FLOPs drops by 91.20%, which are better than those 
of CFP, GAL, GA (Hu et al., 2018), and LWM (Li et al., 2017), as shown in Table 5.

The distribution of filter similarity before and after pruning is shown in Fig. 6. Figure 7 
shows that the change of filter weights does not cause the change of distribution. The nor-
mal distribution of weights suggests that they are caused by random factors, and the ran-
domly initialized training network after pruning can still maintain the original performance 
without relying on the original filter weights. It is the number of filters that affects the 
accuracy of a network, rather than weights.

We re-train two networks (VGG1 and VGG2) to verify the advantages of pruning net-
work structure. VGG1 and VGG2 have the same structure and the number of filters, of 
the VGG-16 after pruning, respectively, but different distribution in each layer. With 
the same parameter setting and datasets. The accuracy of VGG1 is 87.11%, and that of 

Table 4   The results of backward pruning VGG-16

“Baseline” refers to the VGG-16 that we trained from scratch. “Para.” is the number of parameters and M 
means million. “Para↓” is the percentage decrease of the parameters. “FLOPs↓” is the percentage decrease 
of the FLOPs. The “CONV” column is the convolutional layer. Forexample, “conv_13(512)” refers to the 
13th convolutional layer and there are 512 filters. The “Filters” column is the number of filters left after 
pruning

CONV Filters Top-1 Top-5 Para(M) Para↓ (%) FLOPs FLOPs↓ (%)

Baseline 4224 85.70 99.05 15.27 0 3.39 × 108 0
Conv_13(512) 166 86.16 99.08 13.49 11.66 2.29 × 108 32.34
Conv_12(512) 155 86.02 98.99 11.31 25.93 1.92 × 108 43.27
Conv_11(512) 175 84.28 98.92 9.29 39.16 1.58 × 108 53.43
Conv_10(512) 103 82.97 98.94 6.76 55.73 1.15 × 108 66.13
Conv_9(512) 129 86.42 99.26 4.64 69.61 0.79 × 108 76.79
Conv_8(512) 160 86.77 99.03 3.41 77.67 0.58 × 108 82.90
Conv_7(256) 88 87.19 99.43 2.78 81.79 0.47 × 108 86.06
Conv_6(256) 89 87.48 99.41 2.27 85.13 0.38 × 108 88.66
Conv_5(256) 55 84.62 99.22 1.87 87.75 0.32 × 108 90.64
Conv_4(128) 90 84.81 99.19 1.81 88.15 0.31 × 108 90.93
Conv_3(128) 93 85.51 99.34 1.76 88.47 0.29 × 108 91.20

Table 5   The results of pruning VGG-16 on CIFAR-10

“acc↓” is the percentage decrease of the accuracy. The data of FSA are in bold

Method acc↓ (%) Para(M) Para↓ (%) FLOPs FLOPs↓ (%)

GA 0.03 2.35 84.00 2.74 × 108 56.20
GAL-0.05 1.93 3.36 77.60 1.89 × 108 39.60
GAL-0.1 3.18 2.67 82.20 1.72 × 108 45.20
LWM 0.13 5.40 64.00 0.21 × 108 34.20
CFP-1 0.26 – – 0.62 × 108 80.36
CFP-2 0.51 – – 0.57 × 108 81.93
Baseline 0 15.27 0 3.39 × 108 0
FSA 0.19 1.76 88.47 0.298 × 108 91.20
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VGG2 is 81.95%. The experimental results show that the network structure obtained by 
FSA has a higher accuracy than the same-scale networks do.

4.4.2 � The forward and backward pruning on VGG‑16

In addition to the different pruning methods, the order of pruning is also an important 
factor affecting the accuracy of a network. We conduct both pruning forward and back-
ward on VGG-16 trained on CIFAR-10 dataset using the same parameter setting. The 
results are shown in Table 4 for backward pruning, and Table 6 for forward pruning.

There is no pruning data of the tenth layer in Table 6 because the accuracy of Top-1 
drops significantly after pruning. In order to ensure the loss of accuracy of the network 
is under the threshold, the tenth layer is not pruned.

The Fig. 8 shows the variation of Top-1 accuracy when pruning each layer for both 
forward and backward pruning. Top-1 accuracy of backward pruning is 85.51%, which 
is better than that of forward pruning.

Fig. 6   The filter similarity distribution of the fourth convolutional layer of VGG-16. a and b show the dis-
tributions before and after pruning, respectively. The filters with their similarity falling in a color rectangle 
form a set. The sets become sparse after pruning. The x-axis represents the ID of filters, from 0 to the 
number of filters. Although the number of filters decreases after pruning, the distributions before and after 
pruning are similar

Fig. 7   The filter weight density value of VGG-16 before and after pruning. The filter distribution generally 
satisfies normal distribution. The x-axis represents the range of weights, the y-axis is the density statistics, 
and the scale on the right is the equidistant division
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4.4.3 � VGG‑16 on KAGGLE

We train the VGG-16 on different data sets. The VGG-16 is trained from scratch as base-
line on Kaggle datasets. The network is trained with batch size of 32 for 100 epochs and 
the binary-cross-entropy loss is used as criterion function. Meanwhile, the optimizer uses 
RMSProp (Root Mean Square Prop).

The experimental results are shown in Fig. 9. The number of parameters of the base-
line is 19.19 M, the Top-1 is 95.8% and the error rate is 4.4%. After the second con-
volutional layer is cut out, the number of parameters is 2.12 M and the Top-1 is 97%. 
After the first convolutional layer is pruned, the number of parameters only reduces by 
0.01 M, while the Top-1 is 95.3% and reduces by 1.7%. Therefore, the network can be 
cut in backward direction until the second convolutional layer to achieve the optimal 

Table 6   The results of Forward Pruning VGG-16

CONV Filters Top-1 Top-5 Para(M) Para↓ (%) FLOPs FLOPs↓ (%)

Baseline 4224 85.70 99.05 15.27 0 3.39 × 108 0
Conv_2(64) 16 85.62 99.11 15.18 0.59 2.58 × 108 23.89
Conv_3(128) 42 85.51 98.98 15.07 1.31 2.56 × 108 24.49
Conv_4(128) 29 84.73 99.05 14.81 3.01 2.51 × 108 25.96
Conv_5(256) 84 82.55 98.63 14.36 5.96 2.44 × 108 28.02
Conv_6(256) 96 82.53 98.67 13.87 9.17 2.36 × 108 30.38
Conv_7(256) 80 78.61 98.01 12.91 15.46 2.19 × 108 35.39
Conv_8(512) 160 82.38 98.80 11.03 27.77 1.87 × 108 48.84
Conv_9(512) 175 82.55 98.96 8.99 41.13 1.53 × 108 54.87
Conv_11(512) 184 81.93 98.71 5.97 61.10 1.01 × 108 70.21
Conv_12(512) 164 82.02 98.56 3.79 74.00 0.64 × 108 81.12
Conv_13(512) 130 76.13 98.10 3.02 80.22 0.51 × 108 84.96

Fig. 8   The variation of Top-1 during pruning. The x-axis is the convolutional layer of VGG-16, and the 
y-axis is Top-1 after pruning each layer. After the fifth convolutional layer is pruned in forward pruning, 
the Top-1 drops significantly, and Top-1 of the last layer is reduced 9.57%, the final Top-1 of the network is 
76.13%. Top-1 of the 10th layer during backward pruning starting from the 13th convolutional layer reduces 
by a maximum of 2.53%, and the final Top-1 is 85.51%, which is only 0.19% lower than that of the baseline
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balance between CR and accuracy. The error rate of the network was finally 2.5%, which 
was 1.9% lower than the baseline model, and the CR was 5.6.

4.5 � The results of pruning ResNet‑50

We use the ImageNet dataset to train Resnet-50 and randomly selected 100 categories. 
The network is trained with batch size of 32 for 1000 epochs and the cross-entropy loss 
is used as criterion function. Meanwhile, the optimizer uses SGD and the regulariza-
tion term is L2. We selected the first two layers of standard convolution in each resid-
ual block for pruning. The number of parameters decreased by 33.26% and the FLOPs 
dropped by 59.91%, which is better than the pruning method of CFP, GAL, ThiNet (Luo 
et al., 2017), and SSS (Huang & Wang, 2018), as shown in Table 7.

Fig. 9   The accuracy and error rate distribution. The broken line represents the variation of Top-1 accuracy 
and error rate during the pruning process. It can be seen from a that after the 11th layer is pruned, the Top-1 
is reduced by up to 0.7%. Finally, Top-1 of the first layer is 95.3%, which is 0.5% lower than the unpruned 
VGG-16. b shows the error rate change of pruning. The final network has an error rate of 2.5%

Table 7   The Results of Pruning 
ResNet-50 on ImageNet

“acc ± (%)” represents the change in accuracy. The effect of our 
method on accuracy is positive, and the accuracy after fine-tun-
ing is 0.37 higher than that of the baseline model. “ThiNet-30″ 
and”ThiNet-50″ represent retaining 30% and 50% filters in each block, 
respectively. “SSS-26″ and”SSS-32″ represent ResNet with a depth of 
26 and 32, respectively. The data of FSA are in bold

Method acc ± (%) Para↓ (%) FLOPs↓ (%)

GAL-0.5  − 4.20 16.86 43.03
GAL-1  − 6.27 42.47 61.37
ThiNet-50  − 5.14 51.45 58.19
ThiNet-30  − 7.73 66.04 73.11
SSS-26  − 4.33 38.82 43.03
SSS-32  − 1.97 27.06 31.05
CFP  − 0.80  −  49.60
FSA  + 0.37 33.26 59.91
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5 � Conclusion

The proposed method prunes filter by taking the similarity between filters into account. 
Only the part of filters that extracts significant feature is retained. Backward pruning 
ensures the stability and accuracy of the network during the pruning process. Experi-
mental results show that the method is effective for the pruning of sequential convolu-
tional stack networks and superior to the state-of-the-art pruning methods. The investi-
gation of the effectiveness of our pruning method to the neural networks with different 
structures will be our future work.
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