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Abstract
Machine Learning studies often involve a series of computational experiments in which the 
predictive performance of multiple models are compared across one or more datasets. The 
results obtained are usually summarized through average statistics, either in numeric tables 
or simple plots. Such approaches fail to reveal interesting subtleties about algorithmic per-
formance, including which observations an algorithm may find easy or hard to classify, 
and also which observations within a dataset may present unique challenges. Recently, a 
methodology known as Instance Space Analysis was proposed for visualizing algorithm 
performance across different datasets. This methodology relates predictive performance to 
estimated instance hardness measures extracted from the datasets. However, the analysis 
considered an instance as being an entire classification dataset and the algorithm perfor-
mance was reported for each dataset as an average error across all observations in the data-
set. In this paper, we developed a more fine-grained analysis by adapting the ISA method-
ology. The adapted version of ISA allows the analysis of an individual classification dataset 
by a 2-D hardness embedding, which provides a visualization of the data according to the 
difficulty level of its individual observations. This allows deeper analyses of the relation-
ships between instance hardness and predictive performance of classifiers. We also provide 
an open-access Python package named PyHard, which encapsulates the adapted ISA and 
provides an interactive visualization interface. We illustrate through case studies how our 
tool can provide insights about data quality and algorithm performance in the presence of 
challenges such as noisy and biased data.
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1 Introduction

A well known maxim from the Machine Learning (ML) literature is that each ML algo-
rithm has a bias that makes it more suitable for some classes of problems than others. This 
is stated formally by the No-Free-Lunch theorem (Wolpert, 2002), which asserts that any 
two algorithms perform equally well on average when considering all classes of problems. 
Learning which classification technique should be used to tackle a particular test problem 
or instance can be modeled by Meta-Learning (MtL) (Vilalta & Drissi, 2002), which seeks 
to learn how to map problem characteristics in the performance of ML algorithms (Van-
schoren, 2019).

Despite discussions on the (in)feasibility of universal predictors and how MtL can help 
their construction (Giraud-Carrier & Provost, 2005), a common and advisable practice in 
ML studies is to compare multiple models in a controlled set of experiments, using the 
same datasets and data partitions. Usually a summary of the results are reported and com-
pared among each other in the form of averages and standard deviation values, across all 
the instances in a dataset, and for all datasets in the study. While traditional, this type of 
coarse-grained statistical analysis hinders a more fine-grained evaluation of the strengths 
and weaknesses of the predictive models obtained. Despite a good overall performance on 
average on a dataset, a model may be inaccurate on important subsets of instances (obser-
vations within a dataset). This can lead to algorithmic biases (Hajian et  al., 2016) and 
deceptive results when some ML models are put into production. In other words, examin-
ing performance on individual instances within a dataset can offer a better understanding 
of an algorithm’s true effectiveness and also allows the identification of possible quality 
issues - inaccuracies and biases - with the dataset.

Recently, a methodology known as Instance Space Analysis (ISA) has been developed 
for the analysis of algorithms at the instance level, and demonstrated success when analyz-
ing the performance of classification techniques in ML across multiple datasets (Muñoz 
et al., 2018). There, popular classification datasets from public repositories are described 
by a set of meta-features and have their predictive performance assessed for multiple ML 
classification techniques. A 2-D projection relating these characteristics to the perfor-
mances of the algorithms is then created, presenting linear trends that reveal pockets of 
hard and easy datasets, that is, datasets that are harder or easier for the algorithms to clas-
sify, and how each classifier performs on them. This provides valuable knowledge towards 
understanding the domains of competence of each classification technique and for aiding 
automated algorithm selection. It also reveals the lack of diversity of these common bench-
marks and the need for generating more challenging datasets. In the previous work how-
ever, the analysis was done by considering an instance as an entire classification dataset, 
and the algorithm performance was reported for each dataset as an average error across all 
observations in the dataset.

This paper considers a more fine-grained analysis by adapting the ISA framework to the 
analysis of a single classification dataset, with an instance defined as an observation within 
the dataset. The idea is to project the original data into a 2-D hardness embedding which 
can be scrutinized to inspect data quality and to more deeply understand classifier behav-
iors in a single dataset. This enables closer inspection of observation’s (instance) charac-
teristics that each classifier struggles the most with. To this end, we revisit the concept 
of instance hardness, introduced in the work of Smith et al. (2014) for assessing the level 
of difficulty or probability of misclassification of each instance in a classification dataset. 
By relating meta-features that describe instance hardness to the predictive performance 



3087Machine Learning (2022) 111:3085–3123 

1 3

of multiple classifiers, the ISA projections provide valuable information on each classi-
fier’s strengths and weaknesses. Furthermore, an analysis of data quality issues in a dataset 
becomes possible. The main contributions of our paper can therefore be summarized as:

– We propose the analysis of a classification dataset and algorithms by a 2-D hardness 
embedding, which allows the visualization of the data according to the difficulty level 
of its individual instances;

– We adapt the ISA framework to obtain this projection, by relating instance hardness 
meta-features to the predictive performance of multiple classifiers;

– We present and analyze the hardness profile of a few illustrative datasets, including a 
real dataset of COVID-19 patients with symptoms and comorbidities;

– We analyze how the hardness profile of some datasets changes when subject to inter-
ventions such as the introduction of label noise;

– We provide an open-access Python package named “PyHard”,1 which encapsulates the 
adapted ISA and provides an interactive visualization interface for relating instance 
hardness to classification performance.

With our open source software contribution PyHard, we expect to leverage the concept 
of instance hardness and provide users with the possibility of inspecting their data and 
algorithmic performance beyond simple descriptive summaries and plots. As shown in the 
experiments presented in this paper, the developed tool allows for a better understanding 
of which characteristics pertaining to the training dataset most affect the predictive perfor-
mance of different ML classification algorithms. The tool also allows the analysis of the 
effects of typical data quality issues faced in ML. Specifically, the experiments performed 
seek to ask the following questions: 

1. How can we use ISA and instance hardness metrics to understand a dataset at the level 
of its individual observations?

2. Is it possible to identify and explain any data quality issues by visually inspecting hard 
instances and their feature values?

3. How robust are the instance hardness metrics and conclusions regarding algorithm 
strengths and weaknesses in the presence of data quality issues such as label noise?

We show that ISA can help provide evidence and understanding of common issues a 
data scientist and Machine Learning practitioner face when applying classification models 
on datasets, and how the biases of a dataset or algorithm can become apparent.

The remainder of this paper is organized as follows. Section  2 summarizes the ISA 
framework and its main methodological steps. Section 3 reformulates the ISA framework 
for its application on a single dataset. Section 4 presents how the ISA projections can be 
used for inspecting data and highlighting classifier strengths and weaknesses in a dataset. 
Real, benchmark and synthetic datasets are analyzed to this end. Section 5 concludes this 
work, and provides recommendations for future research.

1 https:// pypi. org/ proje ct/ pyhard/.

https://pypi.org/project/pyhard/
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2  Instance space analysis

The Instance Space Analysis (ISA) framework was originally proposed in (Smith-Miles 
& Lopes, 2011; Smith-Miles et al., 2014) for the analysis of optimization problems and 
algorithms, and later extended to ML and other domains (Muñoz et  al., 2018; Kang 
et al., 2017). Since its proposal, the ISA methodology has been used and validated in 
the analysis of multiple problems, including: rostering (Kletzander et al., 2021), knap-
sack problems (Smith-Miles et al., 2021), timetabling (Smith-Miles and Lopes, 2011), 
traveling salesman problems (Smith-Miles and Tan, 2012), graph coloring (Smith-Miles 
et al., 2014), black-box optimization (Muñoz and Smith-Miles, 2017), time series fore-
casting (Kang et al., 2017), classification (Muñoz et al., 2018), anomaly detection (Kan-
danaarachchi et al., 2020) and regression (Muñoz et al., 2021).

As originally proposed and described in this section, ISA builds upon the Algorithm 
Selection Problem (ASP) (Rice, 1976; Smith-Miles, 2009), highlighted as the shaded 
blue area in Fig. 1. The objective in ASP is to automate the process of selecting good 
candidate algorithms and their hyperparameters for solving new problems, based on 
knowledge gathered from similar problems they solved in the past. The following sets 
from Fig. 1 compose the core of ASP:

– Problem space P : all instances from the problem/domain under consideration;
– Instance sub-space I  : contains a sub-set of instances sampled from P for which the 

characteristics and solutions are available or can be easily computed;

Fig. 1  Instance Space Analysis framework. Extracted from Muñoz et al. (2018)
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– Feature space F  : set of descriptive characteristics, also known as meta-features in ML, 
extracted from the instances belonging to I ;

– Algorithm space A : contains a portfolio of algorithms that can be used to solve the 
instances in I ;

– Performance space Y : evaluating the performance of the algorithms from the set A on 
the instances from I  yields the performance space Y.

The combination of tuples (x, f (x), �, y(�, x)) , where x ∈ I  is an instance, described by 
meta-features f (x) ∈ F  , � ∈ A is an algorithm and y(�, x) ∈ Y gives the performance of � 
when applied to x, for all instances in I  and all algorithms in A , composes a meta-dataset 
M . A meta-learner S can then be trained in order to select the best algorithm (or a ranking 
of algorithms) to be recommended for a new instance x based on its meta-features, that is, 
�∗ = S(f (x)) = arg max�||y(�, x)|| . �∗ is the algorithm (or a set of algorithms) with maxi-
mum predictive performance for x as measured by y.

The Instance Space Analysis (ISA) framework goes further and extends the ASP analy-
sis to give insights into why some instances are harder to solve than others, combining 
the information of meta-features and algorithm performance in a new embedding that can 
be visually inspected. To this end, an optimization problem is solved to find the mapping 
g(f(x)) from the meta-features’ multidimensional space into a 2-D space, such that the dis-
tribution of algorithm performance metrics and meta-feature values across instances in the 
2-D space displays as much of a linear trend as possible to assist the interpretation of hard-
ness directions. The 2-D Instance Space (IS) can then be inspected for regions of good and 
bad algorithmic performance, with ML techniques used to predict algorithms to be recom-
mended for each instance �∗ = S�(g(f (x))) , providing an alternative approach for ASP as 
well as the insights permitted by the visualization.

Within the instance space, it is also possible to define areas of strength for each algo-
rithm known as the algorithm footprint �(y(�, x)) , that is, areas of the IS where the algo-
rithm � performs well. A set of objective measures can be extracted from an algorithm’s 
footprint for algorithmic power evaluation in the IS, such as the area of coverage, purity 
and density, which will be discussed next. Such meta-knowledge can also support the infer-
ence on algorithmic performance for other instances z ∈ P which were not in the sub-space 
I  used to build the IS.

Finally, it is possible to examine the diversity of the projected instances and, when 
applicable, to enrich the IS with carefully designed new instances (Smith-Miles and Bowly, 
2015; Muñoz et al., 2018; Smith-Miles et al., 2021). With such a procedure, one might be 
able to produce more challenging problem instances expanding the boundaries of the ISA.

Summarizing, the application of the ISA methodology requires (Muñoz et al., 2018): 

 i. Building the meta-dataset M;
 ii. Reducing the set of meta-features in M by keeping only those able to best discriminate 

the algorithms’ performances;
 iii. Creating a 2-D IS from the meta-dataset M;
 iv. Building the algorithms’ footprints in the IS for measuring algorithmic performance 

across the IS.

Step (i) is dependent on the problem domain, involving the choice of the problem’s 
instances, meta-features, algorithms and performance measures (the sets I,F,A and Y ). 
The choice of a subset of the meta-features in step (ii) can be done by employing any 
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suitable feature selection algorithm. Here we use a rank aggregation approach, described 
in Sect. 3. Steps (iii) and (iv) are implemented in the MATLAB language and freely avail-
able for use in MATILDA (Melbourne Algorithm Test Instance Library with Data Analyt-
ics) tool.2 MATILDA also includes a feature selection procedure for performing step (ii), 
although the user is encouraged to explore independent methods to arrive at a strong fea-
ture selection. Our work has re-implemented steps (iii) and (iv) using the Python language, 
which are gathered in a public package named “PyISpace”.3

2.1  Instance Space construction

We now consider the problem of finding an optimum mapping from the metadata domain 
to the 2-D instance space. We follow the Prediction Based Linear Dimensionality Reduc-
tion (PBLDR) method proposed in Muñoz et al. (2018). Given a meta-dataset M with n 
instances and m meta-features, let � ∈ ℝ

m×n be a matrix containing the meta-features val-
ues for all instances and � ∈ �n×a be a matrix containing the performance measure of a 
algorithms on the same n instances. An ideal 2-D projection of the instances for this group 
of algorithms is achieved by finding the matrices �r ∈ ℝ

2×m , �r ∈ ℝ
m×2 and �r ∈ ℝ

a×2 
which minimize the approximation error:

such that:

where � ∈ ℝ
2×n is the matrix instance coordinates in the 2-D space and �r is the projection 

matrix. Essentially, this optimization problem seeks to find the optimal linear transforma-
tion matrix �r , such that the mapping of all instances from ℝm to ℝ2 results in the strongest 
possible linear trends across the instance space when inspecting the distribution of each 
algorithm’s performance metric, and each feature. The maximization of linear trends for 
both meta-features and algorithmic performances in the new space is guaranteed by the 
matrices �� and �� in Eqs. (3) and (4).

Assuming that m < n and that � is full row rank (or considering the problem in a sub-
space spanned by � ), the following alternative optimization problem is obtained:

(1)‖� − �̂‖2
F
+ ‖� − �̂‖2

F

(2)� =�r�

(3)�̂ =�r�

(4)��⊤ =�r�

2 https:// matil da. unime lb. edu. au/ matil da/.
3 https:// pypi. org/ proje ct/ pyisp ace/.

https://matilda.unimelb.edu.au/matilda/
https://pypi.org/project/pyispace/
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Muñoz et al. (2021) solve this problem numerically using the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) algorithm as the numerical solver, which is also used here. From 
multiple runs, the solution that achieves a maximum topological preservation as proposed 
in (Yarrow et al., 2014) is chosen, that is, the solution with maximum Pearson Correlation 
between the distances in the feature space and the distances in the instance space.

2.2  Footprint analysis

A footprint is a region in the instance space where an algorithm is expected to perform well 
based on inference from empirical performance analysis (Muñoz et al., 2018). Two types 
of footprints are currently output in the ISA analysis. The first indicates regions of the IS 
where the algorithm shows a good performance according to a given threshold on algorith-
mic performance. The second corresponds to regions where the algorithm performs better 
compared to all others contained in the portfolio.

In order to construct an algorithm’s footprint of good performance, first the perfor-
mance measure values contained in Y must be binarized so that the performance label for 
each algorithm on an instance is either easy (also named good in ISA) or hard (or bad in 
the ISA terminology) based on a user-defined threshold. This is done for each algorithm in 
the portfolio A , resulting in a binary matrix �bin with instances as rows and algorithms as 
columns. For each algorithm in A , the DBSCAN algorithm (Khan et al., 2014) is then used 
to identify high density clusters of easy instances. Next, �-shapes are used to construct 
hulls which enclose all the points within the clusters (Edelsbrunner, 2010). For each cluster 
hull, a Delaunay triangulation creates a partition, and those triangles that do not satisfy 
a minimum purity (the percentage of good instances enclosed within it) requirement are 
removed. The union of the remaining triangles gives the footprint of the algorithm where 
good performance is expected based on statistical evidence.

The footprint of best performance is built similarly, but taking into account the rela-
tive performance of the algorithms in the IS. That is, a Delaunay triangulation is formed 
for dense regions containing instances where the algorithm performs better than the other 
algorithms in the pool. The best footprints of multiple algorithms are also compared in 
order to remove contradicting areas due to overlaps. These footprints are generally smaller 
and may be absent if there is not a region of the IS where the algorithm performs consist-
ently better when compared to the others.

It is also possible to define some objective measures of algorithmic power for each algo-
rithm across the IS by computing: 

 i. The area of the footprint (A), which can be normalized across multiple algorithms for 
ease of comparison;

 ii. The density of the footprint ( � ), computed as the ratio between the number of instances 
enclosed by the footprint and its area;

(5)

min‖‖� − �r�
‖‖
2

F
+ ‖‖� − �r�

‖‖
2

F

s.t.� = �r�

�r ∈ ℝ
2×m

�r ∈ ℝ
m×2

�r ∈ ℝ
a×2
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 iii. The purity of the footprint p, which corresponds to the percentage of good instances 
enclosed by the footprint.

Larger values for these measures provide evidence of a better performance of an algo-
rithm across the IS. A large A implies the algorithm shows a good performance for a 
large portion of the IS. A large � means such area is dense and contains a large amount of 
instances. Finally, p is large when most of the instances enclosed in A are good and will 
be maximum when all instances in A are good. A strong algorithm in the IS is expected to 
present a large normalized footprint area, with density close to one and purity as close to 
100% as the chosen feature set will permit.

3  ISA for a single dataset

ISA has been used in the analysis of public benchmark repositories in ML and popular 
classification algorithms in Muñoz et  al. (2018) and, more recently, in the analysis of 
regression datasets and algorithms (Muñoz et  al., 2021). In this section we present how 
we recast the framework for the analysis of a single classification dataset. Our main inter-
est is on the insights which can be obtained by relating data characteristics and meta-fea-
tures to algorithmic performance. Therefore, some steps of the original ISA framework are 
not included, such as the algorithmic recommendation module and the generation of new 
instances.

Given a classification dataset D containing nD instances �i ∈ X , with mD input features 
and labeled in a class yi ∈ Y  each, we have:

– Problem space P : is reduced to the dataset D;
– Instance space I  : contains all individual instances �i ∈ D;
– Feature space F  : contains a set of meta-features describing instance hardness, also 

known as hardness measures (HM) (Smith et al., 2014);
– Algorithm space A : comprises a portfolio of classification algorithms of distinct 

biases;
– Performance space Y : records the performance obtained by each algorithm in A for 

each instance �i ∈ D.

The following subsections present the components from our framework, which 
are summarized in Fig.  2. Accordingly, for each instance �i in the dataset D, a set of 

Fig. 2  ISA framework for a single dataset
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hardness measures is extracted, and each algorithm in the set A has its performance 
measured on �i , as represented by y(�, �i) . This is done in a cross-validation step, where 
the log-loss error obtained in the prediction of the instance label is recorded for each 
classification technique. This cross-validated log-loss error is the performance met-
ric stored in Y . A feature selection step considering the power of the meta-features to 
describe the performances of the algorithms in A is performed, resulting in a reduced 
meta-feature subset fs(f (�i), y) . Combining the sub-set of selected meta-features to the 
predictive performances of multiple classification algorithms allows the construction of 
the meta-dataset M , from which the 2-D Instance Space projection with coordinates z1 
and z2 is extracted. These steps will be further explained in Sects. 3.1 to 3.4.

3.1  Hardness measures

One important aspect when performing ISA is using a set of informative meta-features 
that are able to reveal the capabilities of the algorithms and the level of difficulty each 
individual instance poses. Here we revisit the definition of Instance Hardness (IH) pro-
posed by Smith et al. (2014) as a property that indicates the likelihood that an instance 
will be misclassified. Namely, the hardness of the instance �i with respect to a classifica-
tion hypothesis h is

 where h ∶ X → Y  is a hypothesis or function mapping input features in an input space X to 
output labels in an output space Y. In practice, h is induced by a learning algorithm l trained 
on a dataset D = {(�i, yi) ∣ �i ∈ X ∧ yi ∈ Y} with hyper-parameters � , that is, h = l(D, �) 
(Smith et al., 2014). The authors also derive the instance hardness for a set of representa-
tive learning algorithms L . We adopt this expression throughout the work, instantiating the 
set L to the pool of classifiers A in ISA.

The idea is that instances that are frequently misclassified by a pool of diverse learn-
ing algorithms can be considered hard. On the other hand, easy instances are likely to be 
correctly classified by any of the considered algorithms.

An additional interest of this paper is assessing which characteristics of the data 
items make them hard to classify. Smith et  al. (2014) define a set of hardness meas-
ures (HM) intended to explain why some instances are often misclassified. These are 
the measures employed as meta-features in F  . Since their objective is to characterize 
the level of difficulty in the classification of each instance in a dataset, they are natu-
ral candidates for describing the algorithm’s performances on the same data. Table  1 
summarizes the HM employed in this work, with their names, acronyms, minimum and 
maximum values achievable and references from where they are extracted. We intro-
duced modifications into some of the measures in order to limit and standardize their 
values. Consequently, all measures are constructed so that higher values are registered 
for instances that are harder to classify.

For each instance �i ∈ D , the hardness measures extracted are:

(6)IHh

(
�i, yi

)
= 1 − p(yi|�i, h),

(7)IHA

(
�i, yi

)
= 1 −

1

|A|

|A|∑

j=1

p
(
yi|�i, lj(D, �)

)
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k-Disagreeing Neighbors kDN(�i) : gives the percentage of the k nearest neighbors of �i 
which do not share its label, as described by Eq. (8). As in (Smith et al., 2014), the value 
of k is set to 5. 

 where kNN(�i) represents the set of k-nearest neighbors of the instance �i in the data-
set D. The higher the value of kDN(�i) , the harder its classification tends to be, since 
it is surrounded by examples from a different class. This measure can be computed at 
a O(nD ⋅ mD) asymptotic computational cost for a dataset D with nD instances and mD 
input features.
Disjunct Class Percentage DCP(�i) : builds a decision tree using D and considers the 
percentage of instances in the disjunct of �i which share the same label as �i . The dis-
junct of an example corresponds to the leaf node where it is classified by the decision 
tree. 

 where Disjunct(�i) represents the set of instances contained in the disjunct where �i 
is placed. Easier instances will have a larger percentage of examples sharing the same 
label as them in their disjunct. Therefore, we output the complement of this percentage. 
Building the DT dominates the asymptotic computational cost of this measure and can 
be performed at O(mD ⋅ nD ⋅ log2 nD) steps (Sani et al., 2018).
Tree Depth TD(�i) : returns the depth of the leaf node that classifies �i in a decision tree 
DT, normalized by the maximum depth of the tree built from D: 

(8)kDN(�i) =
♯{�j|�j ∈ kNN(�i) ∧ yj ≠ yi}

k
,

(9)DCP(�i) = 1 −
♯{�j|�j ∈ Disjunct(�i) ∧ yj = yi}

♯{�j|�j ∈ Disjunct(�i)}
,

(10)TD(�i) =
depthDT (�i)

max(depthDT (�j ∈ D))
,

Table 1  Hardness measures employed as meta-features in this work

Measure Acron. Min Max References

k-Disagreeing Neighbors kDN 0 1 Smith et al. (2014)
Disjunct Class Percentage DCP 0 1 Smith et al. (2014)
Tree Depth (pruned) TD

P
0 1 Smith et al. (2014)

Tree Depth (unpruned) TD
U

0 1 Smith et al. (2014)
Class Likelihood CL 0 1 Smith et al. (2014)
Class Likelihood Difference CLD 0 1 Smith et al. (2014)
Frac. features in overlapping areas F1 0 1 Arruda et al. (2020)
Frac. nearby instances different class N1 0 1 Arruda et al. (2020)
Ratio of intra-extra class distances N2 0 ≈ 1 Arruda et al. (2020)
Local set cardinality LSC 0 1 Arruda et al. (2020)
Local set radius LSR 0 1 Arruda et al. (2020)
Usefulness U ≈ 0 1 Arruda et al. (2020)
Harmfulness H 0 ≈ 1 Arruda et al. (2020)
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 where depthDT (�i) gives the depth where the instance �i is placed in the decision tree. 
There are two versions of this measure, using pruned ( TDP(�i) ) and unpruned ( TDU(�i) ) 
decision trees. Harder to classify instances tend to be placed at deeper levels of the trees 
and present higher TD values. This measure also requires building a decision tree, with 
an asymptotic computational cost of O(mD ⋅ nD ⋅ log2 nD).
Class Likelihood CL(�i) : measures the likelihood of �i belonging to its class: 

 where P(�i|yi) represents the likelihood of �i belonging to class yi , measured in D, 
and P(yi) is the prior of class yi , which we set as 1

n
 for all data instances. For ease of 

computation, the conditional probability P(�i|yi) can be estimated considering each of 
the input features independent from each other, as done in Naive Bayes classification. 
Larger class likelihood values are expected for easier instances, so we output the com-
plement of this value. The asymptotic computational cost to compute the required prob-
abilities from the dataset is O(mD ⋅ nD).
Class Likelihood Difference CLD(�i) : takes the difference between the likelihood of �i 
in relation to its class and the maximum likelihood it has to any other class. 

 The difference in the class likelihood is larger for easier instances, because the confi-
dence it belongs to its class is larger than that of any other class. We take the comple-
ment of the measure as indicated in Eq. (12).4 The probabilities can be calculated as in 
CL, resulting in an asymptotic computational cost of O(mD ⋅ nD).
Fraction of features in overlapping areas F1(�i) : this measure takes the percentage 
of features of the instance �i whose values lie in an overlapping region of the classes as: 

 where I is the indicator function, which returns 1 if its argument is true and 0 other-
wise, �j is the j-th feature vector in D and: 

 The values max(�
yi
j
) and min(�

yi
j
) are the maximum and minimum values of �j in a class 

yi ∈ {c1, c2} . According to the previous definition, the overlap for a feature �j is meas-
ured according to the maximum and minimum values it assumes in the different classes 
and one may regard a feature as having overlap if it is not possible to separate the classes 
using a threshold on that feature’s values. F1 defines instance hardness according to 
whether the example is in one or more of the feature overlapping regions in a dataset. 
Larger values of F1 are obtained for data instances which lie in overlapping regions for 

(11)CL(�i) = 1 − P(�i|yi)P(yi),

(12)CLD(�i) =

1 −
(
P(�i|yi)P(yi) −maxyj≠yi [P(�i|yj)P(yj)]

)

2
.

(13)F1(�i) =

∑mD

j=1
I(xij > max_min(�j) ∧ xij < min_max(�j))

mD

,

min_max(�j) = min(max(�
c1
j
), max(�

c2
j
)),

max_min(�j) = max(min(�
c1
j
), min(�

c2
j
)).

4 For binary classification problems, CL and CLD as defined by Equations (11) and (12) are the same, as 
maxyj≠yi

[P(�i|yj)P(yj)] = 1 − P(�i|yi)P(yi) in this case.
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most of the features, implying they are harder according to the F1 interpretation. Multi-
class classification problems are first decomposed into multiple pairwise binary classifi-
cation problems, whose results are averaged. The asymptotic computational cost of this 
measure is O(mDnD) for binary classification problems and O(mD ⋅ nD ⋅ C) for multiclass 
problems with C > 2 classes, supposing that each of the classes has the same number of 
observations, that is, nD

C
.

Fraction of nearby instances of different classes N1(�i) : in this measure, first a 
minimum spanning tree (MST) is built from D. In this tree, each instance of the 
dataset D corresponds to one vertex and nearby instances are connected according 
to their distances in the input space in order to obtain a tree of minimal cost concern-
ing the sum of the edges’ weights. N1 gives the percentage of instances of different 
classes �i is connected to in the MST. 

 Larger values of N1(�i) indicate that �i is close to examples of different classes, either 
because it is borderline or noisy, making it hard to classify. This measure requires 
first computing the distance matrix between all pairs of elements in D, which requires 
O(mD ⋅ n2

D
) operations and dominates the computational cost of this measure.

Ratio of the intra-class and extra-class distances N2(�i) : first the ratio of the dis-
tance of �i to the nearest example from its class to the distance it has to the nearest 
instance from a different class (aka nearest enemy) is computed: 

 where NN(�i) represents a nearest neighbor of �i and ne(�i) is the nearest enemy of �i : 

 Then N2 is taken as: 

 Larger values of N2(�i) indicate that the instance �i is closer to an example from 
another class than to an example from its own class and is, therefore, harder to classify. 
As in N1, the larger computational cost involved in obtaining N2 is to compute a dis-
tance matrix between all pairs of elements in D, requiring O(mD ⋅ n2

D
) operations.

Local Set Cardinality LSC(�i) : the Local-Set (LS) of an instance �i is the set of 
points from D whose distances to �i are smaller than the distance between �i and �i ’s 
nearest enemy, as defined in Equation (19) (Leyva et al., 2014). LSC outputs the rela-
tive cardinality of such set: 

(14)N1(�i) =
♯{�j|(�i, �j) ∈ MST(D) ∧ yi ≠ yj}

♯{�j|(�i, �j) ∈ MST(D)}

(15)IntraInter(�i) =
d(�i,NN(�i) ∈ yi)

d(�i, ne(�i))
,

(16)ne(�i) = NN(�i) ∈ yj ≠ yi.

(17)N2(�i) = 1 −
1

IntraInter(�i) + 1

(18)LSC(�i) =1 −
|LS(�i)|

♯{�j|yi = yj}
.

(19)LS(�i) =♯{�j|d(�i, �j) < d(�i, ne(�i))},
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 where ne(�i) is the nearest enemy of �i (Eq. (16)), that is, the example from another 
class that is closest to �i . Larger local sets are obtained for easier examples, which are in 
dense regions surrounded by instances from their own classes. Therefore, in Eq. (18) we 
output a complement of the relative local set cardinality. The asymptotic cost of LSC is 
dominated by the computation of pairwise distances between all instances in D, result-
ing in O(mD ⋅ n2

D
) operations.

Local Set Radius LSR(�i) : takes the normalized radius of the local set of �i : 

 Larger radiuses are expected for easier instances, so we take the complement of such 
measure. As in LSC, the asymptotic cost of LSR is O(mD ⋅ n2

D
).

Usefulness U(�i) : corresponds to the fraction of instances having �i in their local sets 
(Leyva et al., 2015). 

 If �i is easy to classify, it will be close to many examples from its class and therefore 
will be more useful. We take the complement of this measure as output. The asymptotic 
computational cost of U is O(mD ⋅ n2

D
) , since the cost of computing the distance between 

all pairs of elements in the dataset is dominant.
Harmfulness H(�i) : number of instances having �i as their nearest enemy (Leyva et al., 
2015). 

 If �i is nearest enemy of many instances, this indicates it is harder to classify and its 
harmfulness will be higher. The asymptotic computational cost of H is also O(mD ⋅ n2

D
).

All measures are computed using the entire dataset. Concerning the computational 
cost of the measures, all of them are polynomials in the number of features and observa-
tions. Although the distance-based measures are the most costly, one must observe that the 
matrix of pairwise distances between all elements must be computed only once and it can 
be reused afterwards to compute all of these measures (namely N1, N2, LSC, LSR, U and 
H). The same reasoning applies to the measures that require building a decision tree model, 
which can be induced only once and have its information extracted for computing DCP and 
TD, and for measures based on the Naive Bayes classification rule (CL and CLD).

3.2  Algorithms and performance assessment

The candidate classification algorithms considered in this work are: Bagging (Bag), Gradi-
ent Boosting (GB), Support Vector Machines (SVM, with both linear and RBF kernels), 
Multilayer Perceptron (MLP), Logistic Regression (LR) and Random Forest (RF). They 
are representative of different learning paradigms commonly employed in the ML classifi-
cation literature. But alternative algorithms can be easily added to the pool.

(20)LSR(�i) = 1 −min

{
1,

d(�i, ne(�i))

max(d(�i, �j)|yi = yj)

}

(21)U(�i) = 1 −
♯{�j|d(�i, �j) < d(�j, ne(�j))}

|D| − 1

(22)H(�i) =
♯{�j|ne(�j) = �i}

|D| − 1
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For assessing the classifiers’ performances in a dataset D, we first split D into r folds 
( r = 5 by default) according to the cross-validation (CV) strategy, such that each instance 
belongs to only one of the r test sets. At each round, r − 1 folds are used for training the 
classifiers and the left-out fold is left for testing. Therefore, for each instance and algorithm 
combination we have one performance estimate. Repeating this process yields an interval 
estimation, which may be more reliable and can be set by the user.

At first, we could simply record whether the classification algorithms classify the 
instances correctly or not. But a more fine-grained evaluation can be obtained if the con-
fidences the classifiers have in their predictions are considered. Therefore, we opted for a 
measure which takes into account the probabilities associated to each class, namely the 
log-loss or cross-entropy performance measure (Eq. (23)):

where C is the number of classes the problem has, yi,c is a binary indicator of whether the 
class c is the actual label of �i (1) or not (0) and pi,c is the calibrated probability the classi-
fier attributes �i to class c. Platt scaling is employed for calibrating the probability values 
(Platt, 1999; Böken, 2021).

An hyper-parameter optimization step was added in our setting, acting as an inner loop 
for each of the training sets of the outer CV. Within this inner loop, a candidate set of 
parameters is evaluated through cross-validation upon the training data from the outer 
loop. We employ a Bayesian optimization (Bergstra et al., 2011; Snoek et al., 2012; Berg-
stra et  al., 2013) algorithm from a range of hyperparameter values for each classifier in 
the pool. The objective is to get closer to the best predictive performance achievable for 
the given data instances and classification algorithms. Within this inner loop, a candidate 
tuple of parameters is evaluated through cross-validation. Optimizing hyper-parameters 
is not so common in meta learning studies due to the high computational cost associated 
when many datasets and algorithms are used, but we consider that it can bring a significant 
improvement in classification performance. Nonetheless, one may opt for disabling the 

(23)logloss(�i) = −

C∑

c=1

yi,c log(pi,c),

Fig. 3  Performance assessment process of the algorithms in A
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hyper-parameter optimization when convenient. Figure 3 shows a schematic representation 
of the complete process described previously.

3.3  Feature selection

According to Muñoz et  al. (2018), it is advisable to maintain just the most informative 
meta-features in the meta-dataset M before the IS projection is generated. We performed a 
supervised meta-feature selection in M , based on the continuous response value y(�j, �i) , 
that is, the log-loss performance of the classifiers for the instances in D , where �j is the j-th 
classifier in the pool. Since there are seven classification algorithms in the pool, a rank-
ing of meta-features for each one of them is obtained. Next, a rank aggregation method is 
employed to merge these subsets, as suggested in (Prati, 2012).

Taking the hypothesis that no previous knowledge about the data domain is available, a 
more general criterion for feature ranking is preferred. Information-theoretic methods offer 
this domain agnostic characteristic, being independent of any learning algorithm, and capa-
ble of capturing linear and non-linear relationships present in data (Li et  al., 2017; Gao 
et al., 2015). A general formulation is presented in Eq. (24).

where �k represents the k-th feature vector, �j is the response variable for the j-th algorithm 
and Sj is the set of selected features for the j-th algorithm. The term MI(�k;�j) is the mutual 
information, and MI(�i;�k|�j) is the conditional mutual information. eval is an arbitrary 
function and different options for it will lead to different methods. The feature set Sj is ini-
tially empty, and the first feature chosen is the one showing maximum mutual information 
with the response variable �j . When a next feature is selected, according to its score J(�k) , 
it is added to Sj , and the process continues until |Sj| = nf  , a desired number of selected fea-
tures is reached, in a forward feature selection process. By default, we set nf = 10 , which is 
the maximum recommended number of meta-features for the ISA projection tool.

The method employed for evaluating the meta-features is the Minimum Redundancy 
Maximum Relevance (MRMR), described in Eq. (25). It is a criterion that gradually 
reduces the effect of feature redundancy as more features are selected (Li et al., 2017). The 
rationale for this choice is that some meta-features may be redundant, since they are built 
on similar assumptions about the source of difficulty of the instances. There is a trade-
off between minimizing the number of redundant meta-features in the selected set as an 
attempt to diversify it, and keeping the most relevant features. The MRMR method is an 
interesting choice, since it rejects redundant features at first, but tolerates the redundancy as 
it becomes more difficult to select informative features.

Since we have seven different classification algorithms, there will be seven feature sets, 
Sj(j = 1,… , 7) , ranked according to their importance as measured by Eq. (25). They are 
joined by a Instant Runoff Voting ranking aggregation method (Hillinger, 2004).5 The 

(24)J(�k) = MI(�k;�j) +
∑

�i∈Sj

eval
(
MI(�i;�k),MI(�i;�k|�j)

)
,

(25)JMRMR(�k) = MI(�k;�j) −
1

|Sj|
∑

�i∈Sj

MI(�k;�i)

5 Available in the Python rankaggregation package.
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top nf  meta-features in this aggregated ranking are kept, whilst the remaining ones are 
discarded.

3.4  Instance space representation and footprints

Given the meta-dataset M with a selected subset of meta-features and the log-loss clas-
sification performances of the seven algorithms considered in this paper, further steps of 
the work employ the ISA functionalities of generating the 2-D IS and the footprints of the 
algorithms using the PyISpace implementation.6

We included in the former package a rotation step in order to standardize the interpreta-
tion of the IS projections. The rotation is performed so that the hard instances are always 
placed towards the upper left corner of the space, whilst the easier instances are placed 
towards the bottom right corner of the space. To achieve such a transformation in the 
instance space, a standard rotation as presented in Eq. (26) is applied, since the original IS 
is always centered at the origin. This rotation preserves the distances between instances as 
in the original instance space, so that there are no topological changes.

To proceed with this rotation step, we first need to find the angle of the original IS 
relative to the abscissa. For this, we consider the vector pointing to the centroid of the 
hard instances. In order to locate this centroid, we use the same binarized performance 
matrix �bin used for building the footprints of the algorithms (Sect. 2.2). This matrix indi-
cates, for each instance and algorithm combination, whether a good or bad predictive per-
formance was attained when compared to a threshold. Next, we calculate the mode of the 
categorization each instance has as either good or bad relative to the algorithms’ perfor-
mances. An instance for which the majority of the algorithms achieve a good predictive 
performance is categorized as easy. In contrast, the bad instances are those for which the 
majority of the algorithms do not attain a good predictive performance, corresponding to 
the hard instances. Once we know the location of the bad (hard) instances in the origi-
nal IS, it is straightforward to find their centroid in this space. Lastly, the rotation angle 
is � = 135◦ − �bad , where �bad is the angle of the vector pointing to the centroid of the 
instances for which a bad predictive performance was achieved most of the times. This 
angle assures that hard instances are placed towards the upper left of the IS and the easy 
instances are placed in the bottom right.

The definition of what constitutes a good and bad predictive performance of the classifi-
cation algorithms according to the log-loss metric for each individual observation, required 
for building the binarized matrix �bin , is based on the results of the following proposition, 
whose proof is enclosed in Appendix A:

Proposition 1 (cross-entropy bounds) For any classification problem with C classes there 
is a lower bound Llower and an upper bound Lupper for the cross-entropy loss (aka log-loss) 
such that: if logloss(�i) < Llower , the prediction was correct; if logloss(�i) > Lupper , the 
prediction was incorrect; and if Llower ≤ logloss(�i) ≤ Lupper , the prediction can be either 

(26)�� = R(�)� =

[
cos � − sin �

sin � cos �

]
�

6 https:// pypi. org/ proje ct/ pyisp ace/.

https://pypi.org/project/pyispace/
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correct or incorrect , where logloss(�i) is the log-loss of instance �i . Specifically, these 
bounds can be set as Llower = − log

(
1

2

)
= log 2 and Lupper = − log

(
1

C

)
= logC.

Therefore, if for an instance �i the measured log-loss value is lower than log 2 , one can 
be certain this instance was correctly classified. On the other hand, a measured log-loss 
value larger than logC implies the instance was certainly misclassified. However, if the 
value of the log-loss metric falls in the interval between log 2 and logC , nothing can be 
said about the prediction, neither whether it was correct or incorrect. Based on the previous 
proposition, as a heuristic the log-loss performance of an algorithm for a given instance 
�i is considered good if its value is lower than the harmonic average of log 2 and logC . 
The idea is to include as many correctly classified instances as possible, while avoiding 
the inclusion of too many misclassified instances, however stricter or smoother threshold 
values can be set if desired. Computationally, as defined in Eq. (23), the log-loss function 
calculation requires the actual label of the instance and the probabilities of classification 
assigned by a predictor to each of the classes.

Finally, we also introduce in this paper the concept of “instance easiness footprint”, by 
taking the values from Eq. (7) as input and defining the easiness of an instance according 
to a threshold on IH, which is by default set as 0.4, implying that on average the probabili-
ties assigned to the correct class of an instance by the pool of classifiers is 0.6, a value that 
can be made stricter or smoother if desired.7 With such an approach, it is possible to obtain 
an indication of regions of the instance space in which the instances consistently receive 
a good classification score and are, therefore, easier to classify. As a footprint, objec-
tive measures of area, density and purity can be extracted from these regions. Therefore, 
larger areas are expected for datasets for which a larger portion of the instances across the 
instance space are considered easier.

4  Experiments

One of the main contributions of our work, along with instantiating the IH-ISA framework 
as presented previously, is PyHard, a Python implementation of the framework, which is 
hosted in PyPI.8 PyHard is a self-contained solution, which encapsulates the ISA frame-
work and runs an application to explore the results visually and interactively. This visu-
alization app allows the user to interact with the IS of a dataset and select regions to be 
further inspected by interactive plots or saved. Throughout the configuration file, it is pos-
sible to choose the set of meta-features, the algorithm portfolio, to enable and to configure 
the hyper-parameter optimization and feature selection steps. In this section we show the 
potential insights obtained by constructing the ISA of a dataset through case studies.9

7 Recalling that IH takes the average likelihood of misclassification of an instance �i by the multiple algo-
rithms in the pool A , the threshold on IH cannot be based on Proposition 1.
8 https:// pypi. org/ proje ct/ pyhard/.
9 The benchmark datasets and outputs of their analysis are available at the shared url https:// gitlab. com/ 
ita- ml/ pyhard. The real-data COVID dataset in the repository had the features names uncharacterized for 
anonymization.

https://pypi.org/project/pyhard/
https://gitlab.com/ita-ml/pyhard
https://gitlab.com/ita-ml/pyhard
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4.1  Case Study: ISA for inspecting a COVID prognosis dataset

Whenever an individual is tested for COVID-19 diagnosis in the Brazilian territory, some 
information must be entered into specialized government systems. They include the pres-
ence or absence of symptoms commonly associated with COVID-19 and comorbidities 
which can impact the severity of the cases. The São José dos Campos municipal health 
department gathers this information and joins outputs from multiple governmental systems 
in order to follow up on cases and formulate public health strategies. This is a large city 
from the São Paulo state with a population around 750,000 inhabitants, an industrial econ-
omy and a high human development index according to Brazilian standards. In a partner-
ship with the health department of this city, part of this data was formatted for predictive 
analysis to support public health decision making.

Here we present an analysis of a dataset containing anonymized data from citizens diag-
nosed with COVID-19, collected from March 1st, 2020 to April 15th, 2021. The dataset 
involves predicting whether a citizen will require hospitalization or not taking as input the 
following attributes: age, sex, initial symptoms (fever, cough, sore throat, dyspnea, res-
piratory distress, low saturation, diarrhea, vomit and other symptoms) and comorbidities 
(chronic cardiovascular disease, immunodeficiency-immunodepression, chronic kidney 
disease, diabetes mellitus, obesity, chronic respiratory diseases and other risks). The idea 
is to take information routinely supplied during COVID testing for estimating the amount 
of resources from the city’s health system that may be required, supporting public heath 
management policies.

The “hospitalization” dataset used here has data from 5,156 citizens, half of which were 
hospitalized. Our objective is to analyze the hardness profile of this dataset and to extract 
some insights from the visualization and interaction with its IS. Figure 4 presents the ISA 
of the hospitalization dataset. Each point corresponds to an observation of the dataset, that 
is, a confirmed COVID case. In Fig. 4a, the observations are colored according to their IH 
values, with harder observations colored in red and easier observations colored in blue. 
Using our rotation step, the hard instances are concentrated in the upper left of the plot 
and easier instances are placed towards the bottom right. In Fig. 4b the same observations 
are colored according to their original labels, where red points correspond to hospitalized 

Fig. 4  ISA for the hospitalization dataset, with points colored according to (a) IH values (blue is easy, red is 
hard) and (b) classes (blue is non-hospitalized, red is hospitalized)
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citizens and blue points are non-hospitalized citizens. It took 17 minutes and 27 seconds 
to build this IS on a laptop with an Intel i75500U processor with 2.40 GHz using 8 GB of 
RAM, running Ubuntu version 20.04.

The combined analysis of these plots already provides us with some interesting insights: 
most of the observations are easy to classify correctly by most of the algorithms, but the 

Fig. 5  ISA for the hospitalization dataset, colored according to some of the meta-features values
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group of hospitalized citizens in most of the cases has either an easy profile, being placed 
in the bottom of the IS, or a hard profile, being colored in red regarding IH. In contrast, 
patients who were not hospitalized had mostly an intermediate hardness level, which con-
tains observations of low and medium IH values. Nonetheless, there is an specific cluster 
of non-hospitalized subjects that were very hard to classify correctly (with z1 coordinates 
lower than -2 and z2 coordinates between 1 and 2), which will be referred as “anomalous 
non-hospitalized group” (acronym ANH) hereafter. The hospitalized individuals placed 
near the instances of the non-hospitalized class in the bottom left of the intermediate clus-
ter of points in the IS (with z1 coordinates lower than -1 and z2 coordinates between 0 and 
1) are also worth investigating, since their hardness profile is more similar to that of obser-
vations of the opposite class. They will be referred as “anomalous hospitalized group 1” 
(AH1) from here on. A second group of interest from the hospitalized class is composed 
of the hard instances in the top of the IS (with z1 coordinates between -2.5 and -1 and z2 
coordinates between 2 and 3) and will be named “anomalous hospitalized group 2” (AH2), 
since most of the data from this class is regarded as easy. Note that the anomalous term 
refers to the expected hardness profile of the instances of both classes, as evidenced by the 
ISA projection.

Figure 5a to f show the IS projection of the hospitalization dataset colored according to 
the values of some of the meta-features used, those which were more explanatory of the 
hardness profile of the data. The following interesting aspects can be highlighted:

– Many of the observations with high IH values at the top of the IS have also a low likeli-
hood of belonging to their own classes (as measured by CL in Fig. 5a) and are placed in 
disjuncts with elements which do not share their labels (measured by DCP in Fig. 5b). 
They include mostly instances from the ANH and AH2 groups, although the DCP 
measure also highlights the instances from the AH1 group as hard. The high values for 
these measures provide evidence that the observations from these groups have charac-
teristics which overlap with those from the other classes;

– Most of the instances with high IH values at the top of the IS are also close to elements 
from the opposite class (measured by N1 in Fig.  5c), have lower inter class distance 
compared to their intra class distance (measured by N2 in Fig.  5d) and have a high 
proportion of nearest neighbors with labels which differ from their own (measured by 
kDN in Fig. 5e). But there are also other hard observations within the left borders of 
the different groups of instances in the ISA according to these measures. They can be 
borderline cases, that is, observations near the decision frontier required for separating 
the classes. The groups ANH and AH1 are highlighted as hard according to these meas-
ures too, but the group AH2 has mixed results. N2 in particular indicates that some of 
the observations from AH2 are closer to an instance of their class than to their nearest 
neighbors from another class;

– The TDP values are high for instances from the non-hospitalized class with exception 
of those in the ANH group. They are also high for a subset of the instances from the 
hospitalized class, mostly those in the AH2 group. Interestingly, the cluster ANH has a 
low TDP value. This measure involves building a pruned decision tree from the data and 
we can see that the observations from this group are classified at depths similar to those 
of the hospitalized observations. The same happens for the AH1 and AH2 instances, 
which are placed at depths similar to those of the observations of the non-hospitalized 
class. Combining these results to those of the previous meta-features, we can infer these 
groups probably contain noisy or outlier instances, which have input data characteris-
tics similar to that of the opposite class.
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In Fig. 6 we present the good (in green) and best (in purple) footprints of the classifiers 
which attained the largest and the smallest footprint areas in the IS built for the hospitaliza-
tion dataset. The easiness footprint encompassing the instances which are easier to classify 
by most of the algorithms of the portfolio is also shown in Fig. 6c. Bagging (Fig. 6a) had 
a normalized footprint area of 0.856, with density of 1.055 and purity of 0.972. The MLP 
(Fig.  6b) had a normalized footprint area of 0.926, with density of 1.007 and purity of 
0.992. Therefore, MLP showed a good predictive performance in a larger area of the IS, 
which was also slightly purer and encompass good instances in 99% of the cases. Indeed, 
the MLP showed a good predictive performance for most of the instances except from those 
of the ANH and AH2 groups, while Bagging was not so consistent for instances in the non-
hospitalized class. But it is interesting to notice that Bagging had some areas of best per-
formance for some hard instances in the top of the IS when compared to other algorithms. 
In fact, Bagging was the algorithm with largest best normalized area in our portfolio. The 
easiness footprint area for this dataset is 0.859, with a density of 1.06 and a purity of 0.998 
and encompasses only the easiest instances from both hospitalized and non-hospitalized 

Fig. 6  ISA for the hospitalization dataset, colored according to the algorithmic performances of two algo-
rithms and IH values. Footprints are also shown, in green (good) and purple (best). Observations with 
higher log-loss error and IH values are colored in red and observations with lower log-loss errors and IH 
values are colored in blue
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classes. This excludes all instances from groups ANH, AH1 and AH2. Therefore, most of 
the observations from the hospitalization dataset are easy to classify, except for those in 
the former groups, which are more challenging. Recommending a particular algorithm for 
new observations is beyond the scope of this paper, but one might expect an algorithm to 
perform well for instances of similar characteristics to those encompassed in its footprint, 
given its high purity level. The PyHard tool allows users to save and to inspect the charac-
teristics of the instances from a selected footprint for supporting such studies.

The PyHard tool also allows to plot the values of the raw input attributes along the IS. 
Figure 7 shows the distributions of some of the attributes with interesting patterns in the IS 
which can help to understand the hardness profile of the data. Age is a well known feature 
with influences on COVID severity, impacting hospitalization. According to Fig. 7a, older 

Fig. 7  ISA for the hospitalization dataset, colored according to some of the raw attribute values
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people (in warmer colors) are predominant in the easy group of hospitalized individuals, 
but also imposes some higher level of difficulty in classifying some of the non-hospitalized 
individuals. Indeed, the easiest cases of non-hospitalized citizens tend to be younger. Some 
hospitalized people from the AH2 group, which are hard to classify, are also younger, 
while from the groups AH1 and ANH are older. According to the medical literature (Barek 
et al., 2020), older people tend to evolve to worse cases of COVID, therefore one might 
expect cases requiring hospitalization to be more frequent among elderly people. This can 
partially explain why some instances from the ANH and AH2 groups are hard to classify, 
since they have conflicting age patterns to what is commonly expected.

All other raw attributes analyzed are binary, indicating that if a citizen has either 
reported the presence of some symptom (colored in red) or did not report such symptom 
(colored in blue), such as low saturation (Fig.  7b) and respiratory distress (Fig.  7c) or 
some comorbidity, namely obesity (Fig. 7d), diabetes (Fig. 7e) and other risks (Fig. 7f). 
All patients who did not require hospitalization, except from some from the ANH group, 
had no saturation or respiratory distress issues and did not report obesity or other risks. 
The ANH group had some patients with low saturation, respiratory distress and other risks 
reported (there is also one case of obesity in this group), which can influence why they 
are harder to classify, since these are patterns of symptoms and comorbidities observed 
more commonly in hospitalized cases. In contrast, the individuals from the AH1 and AH2 
groups have a good saturation, no respiratory distress, no obesity and no other risks. There-
fore, they also have contradicting patterns regarding these aspects while requiring hospi-
talization. Diabetes did not influence much on the difficulty level of the instances and indi-
viduals with and without diabetes are evenly distributed in the IS. This also happens for 
other features, which are omitted here.

Our analysis allows us to highlight some groups of observations from the dataset with 
conflicting raw attributes values considering their expected outcomes. These are cases wor-
thy of closer examination by a domain expert and may either correspond to outliers or were 
wrongly labeled.

Based on these insights, follow-up investigation of the raw data from the observations 
in ANH identified three groups of individuals: people who were cured and did not require 
hospitalization, despite their symptoms and comorbidities; people who quickly progressed 
to death and did not seek hospitalization in time; and people who were actually hospital-
ized, but missing information on their hospitalization date has lead to an erroneous data 
labeling. While the first two groups were correctly labelled and can be considered out-
liers, the latter are incorrectly labeled and should be discarded from the dataset or cor-
rected for building a more reliable prediction model. The group AH1 has many individuals 
with few and mild symptoms which were hospitalized. Whilst they are anomalous regard-
ing the expected characteristics from the hospitalized class, it is possible that their forms 
have missing information on some of the symptoms, bringing noise to the input attributes 
values. AH2 can also present some noise in the input attributes, but they are correct yet 
atypical observations considering the general patterns of the input attributes from the other 
observations of the class they belong to.

Summarizing, the prediction of hospitalization risk from standard information col-
lected from forms filled by the population when they are tested is practicable and can be 
used to support public health decision making. Nonetheless, some of the observations may 
have been wrongly filled or are incomplete, which impacts the hardness level achieved 
in their classification. There is a general need for more careful data collection in Bra-
zil, which is often neglected but can be of great value in fighting the pandemic in one of 
the most affected countries worldwide. Our tool allows us to highlight such problematic 



3108 Machine Learning (2022) 111:3085–3123

1 3

observations and to explore the main reasons why they are hard to classify, whether due to 
labelling errors in the inputs, outputs or anomalies. Such insights offer a richer analysis as 
the foundation for building trusted ML predictive models in practical and critical contexts.

4.2  Case Study: ISA for detecting algorithmic bias using the COMPAS dataset

This section builds an IS for the COMPAS (Correctional Offender Management Profil-
ing for Alternative Sanctions) dataset.10 It presents data regarding crime recidivism and is 
commonly employed in the literature for analyzing sample and algorithmic biases (Kha-
demi & Honavar, 2020). The dataset has 5,278 instances and 13 input attributes, where 
47% of the instances are from the two-year recidivist class and is quite balanced. Some of 
the attributes are nominal, but since they are binary, we treat them as numerical flags of 
either 0 or 1 values.

Algorithmic bias can occur whenever sensitive input attributes from a dataset influence 
the predictive results when they should not. In the case of recidivism data, aspects such 
as race and gender are protected attributes and should not be decisive in determining if an 
offender is likely to commit new crimes (Corbett-Davies & Goel, 2018). In this case study 
we show how ISA can be used to identify potential biases in the errors of the predictors 
induced by the COMPAS dataset. For this, we will compare how low IH and mainly high 
IH instances differ when running the analysis with race as an input attribute, and when 
removing it for being a protected attribute. Our reasoning for this is that even though a 
protected attribute is not used to train a model, it may still influence the model indirectly 
due to an inherent data collection bias. If we train a model without protected attributes, but 
evaluate that there are differences within the error rates for different races or genders, then 
we can suppose that bias is present.

In one analysis, we employed all 13 attributes of the COMPAS dataset as input to the 
ISA, while in the other we removed race_African-American and race_Cau-
casian from the attributes list used as input to the classifiers. As a result, two instance 

Fig. 8  COMPAS dataset ISA projections with and without race as an input attribute, colored according to 
the IH value for each instance

10 https:// www. openml. org/d/ 42192.

https://www.openml.org/d/42192
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spaces are produced and analyzed. Figure 8 presents the instance spaces of the COM-
PAS dataset with (in Fig. 8a) and without (in Fig. 8b) race as an attribute, where the 
points are colored according to their IH values. The IH values are quite linearly distrib-
uted in each IS, and they clearly delimit areas of good and poor predictive performance. 
The IS projection of Fig. 8a is similar to that of Fig. 8b, offering the first evidence that 
the hardness profile of the dataset is maintained despite the usage or not of the race 
attribute. It took 20 minutes and 35 seconds to generate the IS of the original COMPAS 
dataset and 19 minutes and 26 seconds to obtain the IS of the dataset counterpart which 
eliminates the race attribute. The experiments were run on a laptop with an 2.40 GHz 
Intel i75500U processor using 8 GB of RAM, running Ubuntu version 20.04.

Using PyHard’s Lasso tool we manually selected regions of good/easy observations 
(blue points in the bottom of the IS) and bad/hard observations (red points in the top of 
the IS) from both instance spaces and compared their distributions. These selections are 
presented in Appendix B. The interpretation of these selections is as follows: an area 
with points predominantly in red represents instances that were most likely misclassi-
fied, whereas an area with points predominantly in blue represents instances which were 
most likely classified correctly. Therefore, in the case of binary classification, a selec-
tion of good points is a surrogate for true positives plus true negatives ( TP + TN ), and a 
selection of bad points is a surrogate for false positives plus false negatives ( FP + FN ). 
Those sums can be further broken down using class information, if necessary. The focus 
of our analysis will be on the most relevant attributes of the dataset considering poten-
tial algorithmic bias: race_African-American, race_Caucasian, and in addi-
tion priors_count, age and sex.

First, we show in Fig. 9 the distribution of race values considering the entire dataset 
and the selections with low IH and high IH values, respectively, with and without race 
as an attribute. Comparing the distributions, what stands out the most is the fact that 
the graphs present an inversion in the proportion of the classes (recidivism) when com-
paring low IH and high IH values. That is, observations from the no-recidivism class 
are more frequent for low IH values and observations of the recidivism class are more 
frequent in the high IH selections. This provides evidence of greater difficulty in clas-
sifying repeat offenders. The tendencies when race is and is not used as an attribute 
are also similar in the plots, with an exception seen for instances with low IH values of 

Fig. 9  Distributions of attributes race_African-American and race_Caucasian for the entire 
dataset (left) and in different data selections on ISA built with (center) and without (right) race as an 
attribute
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the race_African-American where the proportion of non-recidivists is lower than 
that of recidivists.

Interestingly, the proportions of low IH instances per class and per race in Fig. 9 are 
very similar despite the usage or not of race as an input attribute. High IH observations 
have some minor variations, with an increased proportion of instances from the recidivism 
class for African American individuals when the race attribute is disregarded. This is 
an additional indication that the hardness profile is very similar for both scenarios, that is, 
with and without taking the race attribute as input to the classification models.

In Table 2 we focus on the extract of hard to classify instances and show the summary 
statistics of recidivists and non-recidivists instances with high IH values, for both clas-
sification scenarios, namely with and without using race as an input attribute. Plots with 
the distributions of the same attributes per class are presented in Appendix B. Among the 
instances with high IH value, the actual recidivists ( ���_����_����� = Yes ) have a lower 
average of prior offenses which leads them to be wrongly predicted to be non-recidivists by 
the classification models. However, it is actually more interesting to check non-recidivists 
( ���_����_����� = No ) with high values of IH, because they are a surrogate for FP. In 
practice, this can lead to the conviction of a person who is in fact innocent if the classifi-
cation models are used. In this group, the instances represent, on average, younger male 
African-Americans with a higher average number of prior offenses than the average of the 
non-recidivists along the entire dataset, which also explains why they are harder to classify.

We notice that the classification algorithms continue to be biased for non-recidivist 
high IH instances even when the race attribute is omitted from the set of input attrib-
utes. The average profile of the hard instances from the recidivists and non-recidivists 
is maintained, despite a reduction in the percentage of instances with race_Afri-
can.American = 1. Therefore, whilst FN is most likely for individuals of the Cau-
casian race, FP has occurred more frequently for the African American individuals. 

Table 2  Summary statistics 
for high IH instances of both 
analyses of the COMPAS dataset, 
with and without race as an 
input attribute

Class Recidivist stats With race Without race

Recidivist Caucasian (%) 52.7 50.6
Men (%) 77.3 78.8
Avg Age 37.6 37.1
Avg Prior Offenses 1.3 1.4

Non-recidivist African American (%) 80.4 71.2
Men (%) 92.4 90.2
Avg Age 30.1 30.0
Avg Prior Offenses 6.9 6.9

Table 3  Aggregated confusion 
matrix based on the binarized 
log-loss performance of the 
algorithms in the pool A , for two 
scenarios: with race as an input 
attribute (left) or without race 
as as input attribute (right)

With race Without race

African 
American 
(%)

Caucasian (%) African 
American 
(%)

Caucasian (%)

FP 16.0 8.8 14.6 9.4
FN 16.1 24.2 17.1 23.2
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Algorithmic fairness occurs when groups of instances pertaining to the same protected 
attribute have the same chance of being misclassified, that is, both groups have the same 
FP and FN rates (Corbett-Davies & Goel, 2018). Therefore, even when disregarding the 
race attribute in the classification models, there is no fairness concerning this sensitive 
attribute.

As an additional validation of our previous analysis, we have evaluated the FP and FN 
rates using an aggregated confusion matrix, taking into account the outputs of the multi-
ple classifiers in our pool A . To build this matrix, we count, for each instance, how many 
algorithms in our pool have achieved a good log-loss predictive performance according to 
the threshold specified in Sect. 3.4. This information can be obtained by summing up the 
rows from matrix �bin . If the majority of the algorithms achieved a bad log-loss predictive 
performance for an instance, an incorrect prediction is accounted. By relating this infor-
mation with the true class of the instance, we can identify whether it was a FP or a FN. 
Next, we have decomposed the FP and FN errors by race, as shown in Table 3. Confirming 
what was observed in our previous lasso selections, FP is more common among the Afri-
can American individuals, even when the race attribute is explicitly disregarded. The FN 
rates are slightly superior for the Caucasian individuals, but this difference is smaller than 
that observed for the FP rate.

We now further refine our analysis by focusing the Lasso selection tool on two specific 
regions of the ISA of the COMPAS dataset without race as an input attribute (projection 
shown in Fig. 8b). The reason for analyzing this projection only is that the recommended 
procedure for avoiding undesirable biases is to delete protected attributes from the input set 
of the ML techniques. Two selections of the given ISA are examined: (i) the easiest to clas-
sify instances (with z1 coordinates between 1 and 2 and z2 coordinates between -3 and -2); 
and (ii) the hardest to classify instances (with z1 coordinates between -4 and -3 and z2 coor-
dinates between 1 and 2). These areas were chosen based on the fact that the more difficult 
instances are placed towards the upper left corner of the IS, whilst the easier instances are 
in the bottom right corner.

Fig. 10  Boxplots of the raw feature values referring to prior and juvenile offenses for three sets of instances 
of the COMPAS dataset without race as an input attribute: the easiest to classify (in blue), the hardest to 
classify (in red) and all the other instances (in green)
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The easiest data excerpt contains 27 instances, all of whom are male recidivists 
( ���_����_����� = Yes ) with less than 45 years of age. 88.9% of the individuals of this 
group are African Americans. They also have a quite high number of prior offences, which 
varies between 12 and 28 (median of 18). Therefore, the ML algorithms in our pool found 
it easier to classify correctly young male recidivist individuals with a high number of prior 
offences, the majority of whom are also African Americans.

The hardest selection has 25 male non recidivist individuals ( ���_����_����� = No ). 
Most of them have less than 45 years of age too, except for one individual with 51 years of 
age (who has a high number of prior offenses and two juvenile convictions). The number 
of prior offences varies between 1 and 21 (median of 8) and 76.0% are African Ameri-
can individuals. All individuals in the hardest set had prior juvenile convictions registered 
too, while this characteristic was not observed for the majority of the easiest to classify 
instances (21 out of the 27 easiest instances had no juvenile offenses registered). There-
fore, in general the algorithms faced difficulties in classifying young male individuals who 
were not labeled as recidivists but have prior offences registered in their adult or juvenile 
criminal records. The race attribute had a lower prominence in this group than that veri-
fied for the easiest set. What stands out the most in the hardest to classify observations are 
the unexpected raw features values which contradict the overall patterns of the non-recid-
ivist class, especially regarding the ������_����� (number of prior crimes committed), 
���_���_����� (number of juvenile felonies), ���_����_����� (number of juvenile mis-
demeanors) and ���_�����_����� (number of other prior juvenile convictions) attributes.

Figure 10 contrasts the raw feature values referring to prior and juvenile offenses of the 
easiest (in blue), hardest (in red) and all the other instances (in green) of the COMPAS 
(without ���� ) dataset. The plot from Fig. 10b sums up the counts of the ���_���_����� , 
���_����_����� and ���_�����_����� attributes as a total count of juvenile offenses 
registered for each individual. As shown in Fig. 10a, the easiest data excerpt contains indi-
viduals with high numbers of prior crimes (all recidivists) and the others data excerpt has 
in general minor amounts of prior offenses (although there are many outliers, since this set 
contains individuals from both recidivist and non-recidivist classes). The hardest to classify 
data excerpt has an intermediary number of prior offenses registered, despite being origi-
nally labeled as non-recidivists. Taking the total number of juvenile offenses (Fig. 10b), the 
contrast is more evident. Whilst the “easiest” and “others” data excerpts have in general a 

Fig. 11  Boxplots of some of the meta-features values for three sets of instances of the COMPAS dataset 
without race as an input attribute: the easiest to classify (in blue), the hardest to classify (in red) and all 
the other instances (in green)
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low number of juvenile offences (with first, second and third null quartiles), the hardest to 
classify individuals clearly have a pattern of more juvenile offences registered.

The values of some of the meta-features (boxplots from Fig. 11) in the easiest to classify 
(in blue), hardest to classify (in red) and others (in green) set of instances also evidence the 
contradicting patterns of the hardest to classify instances. The hardest set shows: high CL 
values (Fig. 11a), indicating the instances in this set have a low likelihood of pertaining to 
their class; high DCP values (Fig. 11b), indicating that such observations tend to be placed 
in disjunctures with a majority of examples from the other class; and very high kDN values 
(median at the maximum of 1.0, Fig. 11c), indicating that most of these observations are 
close and surrounded by instances from the other class. In contrast, the easiest to classify 
instances show low hardness measures values, whilst the other instances have intermedi-
ary hardness measures values. All of these results corroborate that the hardest to classify 
instances are either noisy or very atypical. As observed in our refined analysis, Rudin et al. 
(2020) also report data inconsistencies in COMPAS and the risk of dangerous individuals 
being released to society.

The analysis performed on the COMPAS dataset shows how ISA can be used for ana-
lyzing algorithmic bias, through the inspection of the predominant characteristics of groups 
of instances which are hard to classify and surrogates for FN and FP. Particularly, for the 
COMPAS dataset we can notice that even when the sensitive attribute is omitted from the 
input set, the hardness profile of the instances is similar to that observed when the whole 
set of attributes is used. In both cases, the FN and FP rates differ for different populations, 
pointing out an intrinsic bias regarding the race attribute. But a closer inspection of the 
hardest to classify instances when contrasted to the easiest to classify instances also evi-
dence that other types of problems can be present in this dataset, such as data inconsisten-
cies. It would be worth investigating how the usage of fairness-enhancing strategies (Frie-
dler et al., 2019) and data cleasing strategies can change the hardness profiles identified in 
the COMPAS dataset when using ISA.

4.3  Case study: ISA of datasets with label noise

Real world datasets are subject to data quality issues, such as the presence of noise due to 
errors in data collection, storage and transmission. According to Zhu & Wu (2004), a clas-
sification dataset has two possible types of noise: in the predictive input features or in the 

Fig. 12  ISA for the base 2normals dataset, with points colored by class (left) or IH (right)
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target attribute. The later type of noise, also known as label/class noise, usually implies 
more severe problems for the supervised ML techniques, since they rely on optimiz-
ing some loss-function based on reproducing the labels of the training data (Garcia et al., 
2015). Here we study the effects of the presence of different levels of label noise in the ISA 
of a dataset. For such, we use a controlled synthetic dataset for which the absence of label 
noise can be granted and progressively introduce random label noise to it, at increasing 
rates.

Figure 12a shows the base dataset used in these experiments. It is generated using the 
mlbench package from the R language and consists of two classes described by Gaussians 
with spread of 0.8, with 250 data items each. The classes are fairly linearly separable, with 
a little degree of overlap. Figure 12b presents the same dataset with data items colored by 
IH values. We can notice that the hardest instances in the original space are those in the 
boundary and overlap of the classes.

Taking the dataset from Fig. 12a as base, we randomly flip the class labels at the fol-
lowing rates: 5%, 10%, 20%, 30%, 40%, 50%, 70%, 90% and 100%. Since the choice of the 
examples to be corrupted is random, this process is repeated 10 times for each noise rate. 
Although high noise rates are quite unrealistic, studies suggest that even controlled real 
datasets have at least 5% of noise rate (Maletic & Marcus, 2000).

The ISA is run for the original dataset and for the corrupted versions, using default 
hyperparameter values for the classifiers in order to reduce the computational burden. Next, 
we computed the average areas of the easiness footprints and of each of the seven classifi-
cation techniques considered in this work. Figure 13a shows the average easiness footprint 
area registered in the instance spaces produced for the different noise levels. Recalling that 
the easiness footprint corresponds to regions of the IS containing instances that are easier 
to classify, as expected the easiness footprint areas decrease as more noise is introduced 

Fig. 13  Instance easiness and classifiers’ footprint areas for different noise levels
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until reaching the 40-50% noise levels. For 40 and 50% of noise levels, the footprint areas 
of instances for which a consistent good performance is reached is null. This clearly shows 
how the IH values and footprint areas are able to reflect the harmful effects of label noise 
in classification performance. From this point on, the classification problems become com-
plementary to those of the lower noise levels. In the extreme case of 100% noise level, the 
labels of all data points are flipped, so that the classes are inverted and the classification 
problem is therefore equivalent to that of the noiseless version.

The same effect can be verified in the footprint areas of the classification techniques 
(Fig. 13b). Indeed, the regions of the IS where the techniques have a good classification 
performance is reduced for increasing noise levels until the 50% level is reached, when the 
areas begin to increase again. But it is also interesting to notice that some of the classifica-
tion techniques are more robust than others to the presence of the different noise levels. 
For the original dataset, all classification techniques are quite effective, as we have a sim-
ple classification problem. This includes the linear models (Logistic Regression and linear 
SVM), since this is a fairly linearly separable problem. For increasing noise levels, the 
performance of the ensemble techniques (Bagging, Gradient Boosting and Random Forest) 
degrades to a large extent, whilst the linear predictors remain quite robust. Boosting algo-
rithms focus on hard instances in their iterations, which can justify the loss of performance, 
since the hard instances will correspond to the noisy ones. But interestingly, Boosting was 
far more affected by a noise level of 40% and not so much in the case of 50% of label noise. 
One must observe, however, that all algorithms have a large decrease of footprint area for 
high noise levels, indicating that they perform well on very few instances of the IS. The 
linear predictors remained quite robust compared to other algorithms for most of the noise 
levels, despite their simplicity. Bagging, on the other hand, was in general the most affected 
algorithm for all noise levels as far as the footprint area is concerned.

It would be worth evaluating in the future how the employment of noise cleansing tech-
niques affect the ISA of a noisy dataset, by monitoring the differences of footprint areas for 
both noisy and clean versions of a same dataset.

5  Conclusion

In this paper we have presented an approach to build and analyze an embedded space of 
instance hardness for a given classification dataset. We have also launched PyHard, a new 
analytical tool intended to address a gap in meta-learning studies regarding instance hard-
ness for a single dataset. The problem was introduced recalling the ISA framework and 
linking its formulation to our problem setting. ISA plays a central role here, finding a trans-
formation that reduces the dimensionality of a meta-dataset in a space with linear trends 
with respect to the difficulty of the individual instances and traces regions of good perfor-
mance for different classification algorithms.

We have shown projections of sample datasets, including a real COVID prognosis data-
set, and insights that can be obtained through their ISA visualization and inspection, such 
as highlighting observations with potential quality issues and making the strengths of dif-
ferent classification techniques more explicit. The tool also includes functionalities in order 
to better support the end-user in the analysis of their datasets, including visualizing fea-
tures distributions for different selections of the dataset. Although a visual inspection does 
not offer irrefutable proof, it can give valuable insights and guide some descriptive analy-
sis, as demonstrated.
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Regarding the computational cost of our analyzes, the step which demands more time 
is tuning the hyperparameter values of the classification techniques. This hyperparameter 
tuning step can be easily withdrawn from the analysis, although it is more interesting to 
evaluate instance hardness considering the best performance achievable by each classifica-
tion model for a particular dataset. One may also run the predictive evaluation before-hand 
using another set of desired classifiers and meta-features and use PyISpace to obtain the IS 
projections from his/her own meta-dataset, while the PyHard visualization application can 
be used to inspect and interact with the obtained IS afterwards.

As future work, we plan to consolidate the visualization tool and validate its usage 
in the analysis of datasets of increasing complexity levels and scale. We can also study 
how the ISA reflects the effectiveness of data pre-processing approaches for improving 
data quality. This is the case of data cleaning approaches for dealing with label noise, a 
proper missing data imputation and removing possible sample biases. Dealing with other 
types of problems, such as learning with imbalanced datasets, is also of interest. We also 
intend to assist the user in relating classification performance to the meta-features values 
by obtaining rules aimed to describe situations where each algorithm shows good predic-
tive performance.

More hardness meta-features can be devised and added to the tool too. In fact, most 
of the meta-features (hardness measures) used in this work rely on class overlapping as 
a main source of difficulty for classification. But other perspectives can also be regarded, 
such as the density and structure of the input space. One promising approach is to model 
the data as a proximity graph from which centrality based features can be extracted.

Another worthwhile strategy in order to validate the hardness embedding for a given 
dataset is to separate a validation set and build the IS projection only on the remaining data 
points. By projecting the left-out validation instances in the IS built, we can assess whether 
hard/easy instances are placed in proper regions of the IS and how the included ML algo-
rithms are expected to behave in their classification.

While we focused on 2-D projections for obtaining visual insights and delineating the 
footprints of the algorithms more easily, it is also possible to generate hardness embed-
dings of higher dimensions. The higher the dimension, the less information on the original 
meta-features values is lost, but the visualization appeal is also hindered. The usefulness of 
such higher-dimensional embeddings needs to be characterized and understood in future 
work.

Finally, we have not fully explored all the functionalities included in the MATILDA 
tool11 in this work. For instance, there is a module for automatic algorithm selection for 
different regions of the instance space that was not included in our analyses. This informa-
tion is interesting to better characterize the domains of competence of the algorithms and 
will be explored in the future. We can also consider ways to generate new data instances at 
targeted regions of the instance space, which can be useful for data augmentation, includ-
ing new instances with increased measures of difficulty to drive algorithmic advances.

11 Online tool for Instance Space Analysis, available at https:// www. matil da. unime lb. edu. au.

https://www.matilda.unimelb.edu.au
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Appendix A Proof of proposition

Proposition 1 (cross-entropy bounds). For any classification problem with C classes there 
is a lower bound Llower and an upper bound Lupper for the cross-entropy loss (aka log-loss) 
such that: if logloss(�i) < Llower , the prediction was correct; if logloss(�i) > Lupper , the pre-
diction was incorrect; and if Llower ≤ logloss(�i) ≤ Lupper , the prediction can be either cor-
rect or incorrect , where logloss(�i) is the log-loss of instance �i . Specifically, these bounds 
can be set as Llower = − log

(
1

2

)
= log 2 and Lupper = − log

(
1

C

)
= logC.

Proof Given a multiclass setting consisting of C classes, the outcome of a classifier is the 
predicted probability vector [p1, p2,… , pC] , and the predicted class is defined as arg max

j

pj . 

And yj,c ∶= Ij=c indicates the true class c.
We first prove that if the classifier succeeds in correctly predicting the class of instance 

�i , then logloss(�i) < Lupper and that the value of Lupper is − log(
1

C
) . Without loss of general-

ity, suppose j = 1 is the correct class, since the classes can be always reordered so that each 
one of them becomes the first in the set. In that case, arg max

j

pj = 1 , which implies that:

Summing all those inequalities results in

On the other hand, 
∑

j pj = 1 . Therefore,

However, if logloss(�i) < Lupper it does not necessarily imply that the instance �i was cor-
rectly classified. We show this by counterexample: take the particular predicted probability 
vector 

[
1

2
− �,

1

2
+ �, 0,… , 0

]
 , and define the right class as c = 1 . For this vector, the classi-

fier predicts the class 2, since it has the highest probability. The log-loss value is

If we choose 0 < 𝜀 <
1

2
−

1

C
 , which is always possible for C ≥ 3 , then

p1 > p2

p1 > p3

⋮

p1 > pC

(C − 1)p1 > p2 +⋯ + pC

(C − 1)p1 > 1 − p1

p1 >
1

C

log p1 > log
1

C

− log p1 < − log
1

C

−y1,c log p1 < − log
1

C

∴logloss(�i) < − log
1

C
= Lupper

−

C∑

j=1

yj,c log pj = −y1,c log p1 = − log
(
1

2
− �

)
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Specifically for binary problems with only two classes, if logloss(�i) < − log
1

2
 , then

So, in the particular case of binary classification problems, Llower = Lupper . Thus,

To find Llower , we first show that a multiclass problem can be reduced to a binary clas-
sification problem in the sense of log loss metric. Herewith, the vector [p1, p2,… , pn] is 
equivalent to [p1, p�2] , with p�

2
=
∑C

j=2
pj . In both cases, the log loss value is the same. Thus, 

we assume Llower = − log
1

2
 and prove it by contradiction.

Assume that logloss(�i) < − log
1

2
 , that the correct class is c = 1 and ∃pk ∶ pk > p1 (clas-

sification error). Then,

Therefore, Llower = − log
1

2
 .   ◻

Appendix B Additional figures

Additional figures from the analysis of the COMPAS dataset are presented here. They 
show the Lasso selections of easy and hard instances (Fig. 14) and distributions of some 
other attributes besides race, namely number of priors (Fig. 15a), age (Fig. 15b) 
and sex (Fig. 15c). Median values are represented by vertical dashed lines. A summary of 
these results is presented and discussed in Sect.  4.2 using Table 2.

logloss(�i) = − log
(
1

2
− 𝜀

)

< − log
(
1

2
−

1

2
+

1

C

)

< − log
1

C
= Lupper

−y1,c log p1 < − log
1

2
⟹ p1 >

1

2
> p2 ⟹ arg max

j

pj = 1

arg max
j

pj = 1 ⟺ logloss(�i) < − log
1

2
(binary class problems)

− log p1 < − log
1

2

⟹
1

2
< p1 < pk

⟹ 1 < p1 + pk (absurd!)
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Fig. 15  Distribution of different features values for the entire COMPAS dataset, low IH and high IH data 
points, with race as an input attribute
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