
Vol.:(0123456789)

Machine Learning (2023) 112:741–763
https://doi.org/10.1007/s10994-022-06206-8

1 3

Adversarial learning for counterfactual fairness

Vincent Grari1,2   · Sylvain Lamprier1 · Marcin Detyniecki2,3

Received: 20 November 2021 / Revised: 14 April 2022 / Accepted: 26 May 2022 /  
Published online: 3 August 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
In recent years, fairness has become an important topic in the machine learning research 
community. In particular, counterfactual fairness aims at building prediction models which 
ensure fairness at the most individual level. Rather than globally considering equity over 
the entire population, the idea is to imagine what any individual would look like with a var-
iation of a given attribute of interest, such as a different gender or race for instance. Exist-
ing approaches rely on Variational Auto-encoding of individuals, using Maximum Mean 
Discrepancy (MMD) penalization to limit the statistical dependence of inferred representa-
tions with their corresponding sensitive attributes. This enables the simulation of counter-
factual samples used for training the target fair model, the goal being to produce similar 
outcomes for every alternate version of any individual. In this work, we propose to rely on 
an adversarial neural learning approach, that enables more powerful inference than with 
MMD penalties, and is particularly better fitted for the continuous setting, where values 
of sensitive attributes cannot be exhaustively enumerated. Experiments show significant 
improvements in term of counterfactual fairness for both the discrete and the continuous 
settings.
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1  Introduction

Fair machine learning aims at producing predictive models that do not induce any preju-
dice or favoritism toward an individual or a group based on a set of sensitive character-
istics. As of now, a large majority of works in the field focused on group fairness, that 
ensures a form of conditional independence between outcomes of the models Ŷ  and any 
sensitive attribute A. However, group fairness may induce dramatic consequences for some 
individuals. For example, a person may be refused a position only because she belongs to a 
privileged group, regardless of her merit within the group.

Recently, Counterfactual fairness (Kusner et  al., 2017) proposed to assess fairness at 
the individual level, by leveraging causal inference to ensure that some sensitive attributes 
are not the cause of a prediction change. It argues to lead to a more intuitive, powerful, 
and less error-prone way of reasoning about fairness (Chiappa, 2019). The idea is to imag-
ine what any individual would look like with a variation of a given attribute of interest, 
such as a different gender or race for instances, in order to ensure similar outcomes for 
every alternate version of the same individual. While plenty of methods have been pro-
posed recently to tackle this challenge for discrete variables, to the best of our knowledge 
no approach address the continuous case. The existing approches may not hold when, for 
instance, the sensitive attribute is the age or the weight of an individual. As discussed in 
Sect. 2.2, discretizing sensitive attributes is not an option in most of cases. Moreover, exist-
ing approaches present some limitations for counterfactual inference even in the discrete 
case (see end of Sect. 2.2).

The main contributions of this paper are:

•	 We propose a novel adversarial learning approach to overcome these limitations for 
counterfactual inference;

•	 Based on this, we define an approach for counterfactual fairness tolerant to continuous 
features, notably via a dynamic sampling method that focuses on individualized hard 
locations of the sensitive space;

Section 2 first gives details for counterfactual fairness, which we believe are essential for a 
good understanding of our contributions. Section 3 details our approach in two main steps. 
Section 4 evaluates performances for both the discrete and the continuous settings.

2 � Background

Recently, there has been a dramatic rise of interest for fair machine learning by the aca-
demic community. Many questions have been raised, such as: How to define fairness (Hin-
nefeld et al., 2018; Hardt et al., 2016; Dwork et al., 2012; Kusner et al., 2017)? How to mit-
igate the sensitive bias (Zhang et al., 2018; Grari et al., 2019; Kamiran & Calders, 2012; 
Bellamy et al., 2018; Calmon et al., 2017; Zafar et al., 2015; Celis et al., 2019; Wadsworth 
et  al., 2018; Louppe et  al., 2017; Chen et  al., 2019; Kearns et  al., 2017)? How to keep 
a high prediction accuracy while remaining fair in a complex real-world scenario (Grari 
et al., 2019; Adel et al., 2019)? To answer these questions, three main families of fairness 
approaches exist in the literature. While pre-processing (Kamiran & Calders, 2012; Bel-
lamy et al., 2018; Calmon et al., 2017) and post-processing (Hardt et al., 2016; Chen et al., 
2019) approaches respectively act on the input or the output of a classically trained predic-
tor, in-processing approaches mitigate the undesired bias directly during the training phase 
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(Zafar et al., 2015; Celis et al., 2019; Zhang et al., 2018; Wadsworth et al., 2018; Louppe 
et al., 2017). In this paper we focus on in-processing fairness, which reveals as the most 
powerful framework for settings where acting on the training process is an option.

Throughout this document, the aim is to learn a predictive function h� from training data 
that consists of m examples (xi, ai, yi)

m

i=1
 , where xi ∈ ℝ

p is the p-sized feature vector X of 
the ith example, ai ∈ ΩA the value of its sensitive attribute and yi its label to be predicted. 
According to the setting, the domain ΩA of the sensitive attribute A can be either a discrete 
or a continuous set. The outcome Y is also either binary or continuous. The objective is to 
ensure some individual fairness guarantees on the outcomes of the predictor Ŷ = h𝜃(X,A) , 
by the way of Counterfactual Fairness.

2.1 � Fairness definitions and metrics

The vast majority of fairness research works have focused on two metrics that have become 
very popular in the fairness field: Demographic parity (Dwork et al., 2012) and Equalized 
odds (Hardt et al., 2016). Both of them consider fairness globally, by focusing on equity 
between groups of people, classically defined according to one or several categorical sensi-
tive attributes.

Some recent works recently proposed to extend this for the continuous setting by mini-
mizing (non-linear) correlation between predictions Ŷ  and sensitive attributes A (Mary 
et al., 2019; Grari et al., 2019), that can be measured for instance via the Hirschfeld-Gebe-
lein-Rényi maximal correlation (HGR).

However, even such approaches in the continuous setting only consider fairness glob-
ally and can lead to particularly unfair decisions at the individual level. For example, a fair 
algorithm can choose to accept a high MSE error for the outcome of a given person if this 
allows the distribution P(Ŷ|A) to get closer to P(Ŷ) . Penalization can be arbitrarily high on 
a given kind of individual profile compared to any other equivalent one, only depending on 
where the learning process converged. Global fairness is unfair.

To tackle this problem, Counterfactual fairness has been recently introduced for quan-
tifying fairness at the most individual sense (Kusner et al., 2017). The idea is to consider 
that a decision is fair for an individual if it coincides with the one that would have been 
taken in a counterfactual world in which the values of its sensitive attributes were different. 
It leverages the previous work (Pearl, 2009), which introduced a causal framework to learn 
from biased data by exploring the relationship between sensitive features and data.

Definition 1  Counterfactual demographic parity (Kusner et al., 2017): A predictive func-
tion h� is considered counterfactually fair for a causal world G, if for any x ∈ X and ∀y ∈ Y

,∀(a, a�) ∈ Ω2
A
 with a ≠ a′ : p(ŶA←a = y|X = x,A = a) = p(ŶA←a� = y|X = x,A = a) , where 

ŶA←a� = h𝜃(XA←a� , a
�) is the outcome of the predictive function h� for any transformation 

XA←a′ of input X, resulting from setting a′ as its sensitive attribute value, according to the 
causal graph G.

Following Definition 1, an algorithm is considered counterfactually fair in term of 
demographic parity if the predictions are equal for each individual in the factual causal 
world where A = a and in any counterfactual world where A = a� . It therefore compares the 
predictions of the same individual with an alternate version of him/herself. Similar exten-
sion can be done to adapt the Equalized Odds objective for the Counterfactual framework 
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(Pfohl et al., 2019). Learning transformations X̂A←a′ for a given causal graph is at the heart 
of Counterfactual Fairness, as described in below.

2.2 � Counterfactual fairness

In this paper, we focus on the classical causal graph depicted in Fig. 1, often used in the 
counterfactual fairness literature (Kusner et al., 2017; Pfohl et al., 2019; Chiappa, 2019), 
which can apply for most applications. For more specific tasks, note further that our 
approach could be easily adapted for different graphs, such as those explored in Kusner 
et al. (2017) for instances. In this causal graph, both input X and outcome Y only depend 
on the sensitive attribute A and a latent variable U, which represents all the relevant knowl-
edge non dependent on the sensitive feature A. In that setting, the knowledge of U can be 
used during training to simulate various versions of the same individual, corresponding to 
different values of A, in order to obtain a predictive function h� which respects the fairness 
objective from Definition 1. For any training sample, U has to be inferred since only X, 
A and Y are observed. This inference must however ensure that no dependence is created 
between U and A (no arrow from U to A in the graph from Fig. 1), unless preventing the 
generation of proper alternative versions of X and Y for any values A.

Concerning causal effect identifiability (i.e., whether a joint distribution of latent and 
observed confounder variables can be uniquely inferred from observations), sufficient con-
ditions as raised in (Louizos et al., 2017; Madras et al., 2019; Kilbertus et al., 2020) imply 
strong assumptions which require specific directed acyclic graphs different from ours. As 
in Pfohl et al. (2019), that considers the same causal graph, we make no formal guarantee 
on identification even in the case where these assumptions hold (more information in their 
article). However, we argue that, given any distribution P(U, A, X, Y) exactly inferred from 
a sufficiently large amount of observations (X, Y, A), with a constant prior on U, the coun-
terfactual quantities P(XA←a� |X, Y ,A) and P(YA←a� |X, Y ,A) are identifiable, whenever U is 
independent from A. From this, if the prior P(U) is the true one, and the decoding is suf-
ficiently powerful, a classifier can be trained to minimize counterfactual unfairness accord-
ing to the inferred model (step 2 in the following).

Several current approaches Louizos et  al. (2017); Kim et  al. (2021); Kocaoglu et  al. 
(2017); Xu et al. (2019) enforce fairness on counterfactual data generated by their model. 
These works, which do not focus on the final predictor itself, assume that giving fair gen-
erated counterfactual observations as input to a traditional machine learning algorithm is 
sufficient to maintain the fairness objective. We argue that it is not always the case and 
the final predictions need to be evaluated to ensure a good fairness level. For this rea-
son, we rather leverage a two-step method, as already considered in Russell et al. (2017); 
Pfohl et al. (2019), that focus separately on Causal Inference (step 1) and Model Learning 

Fig. 1   Graphical causal model
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(step 2). We develop and discuss the general principles of this family of methods in the 
following.

2.2.1 � Step 1: Counterfactual Inference

The goal is to define a way to generate counterfactual versions of original individuals. As 
discussed above, this is usually done via approximate Bayesian inference, according to a 
pre-defined causal graph. The initial idea to perform inference was to suppose with strong 
hypothesis a non deterministic structural model with some specific distribution for all the 
causal links (Kusner et al., 2017). In this setting, the posterior distribution of U was esti-
mated using the probabilistic programming language Stan (Team et al., 2016). Then, lev-
eraging recent developments for approximate inference with deep learning, many works 
proposed to use Variational Autoencoding (Kingma & Welling, 2013) methods (VAE) to 
generalize this first model and capture more complex - non linear - dependencies in the 
causal graph. This leads to consider the following lower bound (ELBO) on the training set 
D:

where DKL denotes the Kullback-Leibler divergence of the posterior q�(u|x, y, a) from a 
prior p(u), typically a standard Gaussian distribution N(0, I) . The posterior q�(u|x, y, a) is 
represented by a deep neural network with parameters � , which typically outputs the mean 
�� and the variance �� of a diagonal Gaussian distribution N(��, ��I) . The likelihood term 
factorizes as p�(x, y|u, a) = p�(x|u, a)p�(y|u, a) , which are defined as neural networks with 
parameters � . Since attracted by a standard prior, the posterior is supposed to remove prob-
ability mass for any features of U that are not involved in the reconstruction of X and Y. 
Since A is given together with U as input of the likelihoods, all the information from A 
should be removed from the posterior distribution of U.

However, some works (Chiappa, 2019; Louizos et al., 2017; Madras et al., 2019; Pfohl 
et  al., 2019) show that the resulting latent space U and the sensitive variable A remain 
too highly correlated with this classical ELBO optimization. Some information from A 
leaks in the inferred U. To cope with it, a specific TARNet (Shalit et al., 2017) architec-
ture can be employed (Madras et  al., 2019) or a penalisation term can be added in the 
loss function. For example, (Chiappa, 2019; Pfohl et  al., 2019) add a Maximum Mean 
Discrepancy (MMD) (Gretton et  al., 2012) constraint. The MMD term can be used to 
enforce all the different aggregated posterior to the prior distribution (Pfohl et al., 2019): 
LMMD(q�(u|A = ak)||p(u)) for all ak ∈ ΩA (referred to as MMD wrt P(U) in the following). 
Alternatively, the constraint can directly enforce the matching between pairs of posteriors 
(Chiappa 2019): LMMD(q�(u|A = ak)||q�(u|A = a)) for all ak ∈ ΩA , with a standing for the 
original sensitive value of the considered individual (referred to as MMD wrt Ua in the 
following). Notice that while this additional term can improve independence, it can also 
encourage the model to ignore the latent confounders U, by being too restrictive. One pos-
sible approach to address this issue is to apply weights λ (hyperparameters) to control the 
relative importance of the different terms. In addition, we employ in this paper a variant of 
the ELBO optimization as done in Pfohl et al. (2019), where the DKL(q�(u|x, y, a)||p(u)) 
term is replaced by a MMD term LMMD(q�(u)||p(u)) between the aggregated posterior 
q�(u) and the prior. This has been shown more powerful than the classical DKL for ELBO 

LELBO = −�
(x, y, a) ∼ D,

u ∼ q�(u|x, y, a)

[
log p�(x, y|u, a)

]
+ DKL

(
q�(u|x, y, a)||p(u)

)
]
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optimization in Zhao et al. (2017), as the latter can reveal as too restrictive (uninformative 
latent code problem) (Chen et al. 2016; Bowman et al. 2015; Sønderby et al. 2016) and can 
also tend to overfit the data (Variance Over-estimation in Feature Space). Finally, the infer-
ence for counterfactual fairness can be optimized by minimizing (Pfohl et al. 2019):

where λx , λy , λMMD , λADV are scalar hyperparameters. The additional MMD objective can 
be interpreted as minimizing the distance between all moments of each aggregated latent 
code distribution and the prior distribution, in order to remove most sensitive dependency 
from the code generator. It requires however a careful design of the kernel used for MMD 
computations (typically a zero mean isotropic Gaussian). Note that we chose to present 
all models with a generic inference scheme q(U|X, Y, A), while most approaches from the 
literature only consider q(U|X, A). The use of Y as input is allowed since U is only used 
during training, for generating counterfactual samples used to learn the predictive model in 
step 2. Various inference schemes are considered in our experiments (Sect. 4).

2.2.2 � Step 2: Counterfactual predictive model

Once the causal model is learned, the goal is to use it to learn a fair predictive function h� , 
by leveraging the ability of the model to generate alternative versions of each sample. The 
global loss function is usually composed of the traditional predictor loss l(h�(xi, ai), yi) (e.g. 
cross-entropy for instance i) and the counterfactual unfairness estimation term LCF(�):

where λ is an hyperparameter which controls the impact of the counterfactual loss in the 
optimization. The counterfactual loss LCF(�) considers differences of predictions for alter-
native versions of any individual. For example, Russell et al. (2017) considers the follow-
ing Monte-Carlo estimate from S samples for each individual i and each value a ∈ ΩA:

where Δi,s
ak
= Δ(h�(x

s
i,A←ai

, ai), h�(x
s
i,A←ak

, ak)) is a loss function that compares two predic-
tions, xs

i,A←a
 denotes the s-th sample from the causal model for the i-th individual of the 

training set and the sensitive attribute value a. Following the causal model learned at step 
1, xs

i,A←a
 is obtained by first inferring a sample u from q�(u|xi, ai, yi) and then sampling 

xs
i,A←a

 using p�(x|u, a) with the counterfactual (or factual) attribute value a. According to 
the task, Δ can take various forms. For binary classification, it can correspond to a logit 
paring loss as done in Pfohl et al. (2019): Δ(z, z�) = (�−1(z) − �−1(z�))2 , where �−1 is the 
logit function. For continuous outcomes, it can simply correspond to a mean squared 
difference.

LCE−VAE = − �

(x, y, a) ∼ D,

u ∼ q�(u|x, y, a)

[
λx log(p�(x|u, a)) +
λy log(p�(y|u, a))

]

+ λMMD LMMD(q�(u)||p(u)) +
λADV

|ΩA|
∑

ak∈ΩA

LMMD(q�(u|a = ak)||p(u))

(1)L =
1

m

m∑
i

l
(
h�(xi), yi

)
+ LCF(�)

(2)LCF(�) =
1

m

m∑
i=1

1

ma

∑
ak∈ΩA

1

S

S∑
s=1

Δi,s
ak
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2.2.3 � Discussion

For now, state-of-the-art approaches have focused specifically on categorical variables A. 
Unfortunately, the classical methodology for CounterFactual Fairness as described above 
cannot be directly generalized for continuous sensitive attributes, because the two steps 
involve enumerations of the discrete counterfactual modalities ak in the set ΩA . Particu-
larly in step 1, sampling A from a uniform distribution for approximating the expectation 
Ea∼p(A)LMMD

(
q�(u|A = a)||p(u)) is not an option since this requires to own a good estima-

tion of q�(u|A = a) for any a ∈ ΩA , which is difficult in the continuous case. While such 
a posterior can be obtained for discrete sensitive attributes (at least when |ΩA| << m ) by 
aggregating the posteriors q�(u|xi, ai, yi) over training samples i such that ai = a , such a 
simple aggregation over filtered samples is not possible for continuous attributes. Note that 
splitting samples in bins regarding to their sensitive value A is not an option due to the 
difficulty for setting an effective discretization step size  : while a large step size induces 
aggregating too different sensitive values (leading to dependencies on A inside bins), small 
steps imply unreliable aggregated posterior estimates due to small numbers of samples in 
each bin (especially for data unevenly spread over ΩA).

Moreover, existing approaches based on MMD costs imply to infer codes U from a dis-
tribution that takes A as input, in order to be able to obtain the required aggregated dis-
tributions via: q�(u|a) = �pdata(x,y|a)[q�(u|x, y, a)] . Omitting A from the conditioning of the 
generator would correspond to assume the mutual independence of u and a given x and y, 
which is usually wrong. On the other hand, passing A to the generator of U can encourage 
their mutual dependency in some settings, as we observe in our experiments. This is not 
the case with our proposal below.

3 � Adversarial learning for counterfactual fairness

In this section we revisit the 2 steps shown above by using adversarial learning rather than 
MMD costs for ensuring Counterfactual Fairness. Our contribution covers a broad range of 
scenarios, where the sensitive attribute A and the outcome value Y can be either discrete or 
continuous.

3.1 � Step 1: Counterfactual Inference

To avoid the comparison of distributions for each possible sensitive value, which reveals 
particularly problematic in the continuous setting, we propose to employ an adversarial 
learning framework, which allows one to avoid the enumeration of possible values in ΩA . 
We follow an approach similar to the adversarial auto-encoders proposed in Makhzani 
et al. (2015), but where the discriminator real/fake data is replaced by a sensitive value pre-
dictor. The idea is to avoid any adversarial function to be able to decode A from the code 
U inferred from the encoder q� , which allows one to ensure mutual independence of A and 
U. This defines a two-players adversarial game, such as in GANs (Goodfellow et al., 2014), 
where the goal is to find some parameters � which minimize the loss to reconstruct X and 
Y, while maximizing the reconstruction loss of A according to the best decoder p� (A|U):

(3)arg min
�,�

max
�

LADV (�,�,�)
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where λx , λy , λMMD , λADV are scalar hyperparameters. Compared to existing approaches 
presented in the previous section, the difference is the last term which corresponds to the 
expectation of the log-likelihood of A given U according to the decoder with parameters � . 
This decoder corresponds to a neural network which outputs the parameters of the distri-
bution of A given U (i.e., the logits of a Categorical distribution for the discrete case, the 
mean and log-variance of a diagonal Gaussian in the continuous case).

All parameters are learned conjointly. Figure 2 gives the full architecture of our vari-
ational adversarial inference for the causal model from Fig. 1. It depicts the neural network 
encoder q�(U|X, Y ,A) which generates a latent code U from the inputs X, Y and A. A neural 
network decoder p�(X, Y|U) reconstructs the original X and Y from both U and A. The 
adversarial network p� tries to reconstruct the sensitive attribute A from the confounder 
U. As classically done in adversarial learning, we alternate steps for the adversarial maxi-
mization and steps of global loss minimization (one gradient descent iteration on the same 
batch of data at each step). Optimization is done via the re-parametrization trick (Kingma 
& Welling, 2013) to handle stochasticity.

LADV (�,�,�) ≥ − �

(x, y, a) ∼ D,

u ∼ q�(u|x, y, a)

[
λx log(p�(x|u, a)) + λy log(p�(y|u, a))

]

+ λMMD LMMD(q�(u)||p(u)) + λADV �

(x, y, a) ∼ D,

u ∼ q�(u|x, y, a))
[log(p� (a|u))]

Fig. 2   Our Counterfactual inference architecture. Circles are observed variables, squares are samples from 
the neural distributions. Arrows represent retro-propagated gradients
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3.2 � Step 2: Counterfactual predictive model

As described in Sect. 2.3, the counterfactual fairness in the predictive model learned at step 
2 is ensured by comparing, for each training individual, counterfactual predictions YA←a′ for 
all a� ∈ ΩA . For the discrete case (i.e., A is a Categorical variable), we keep this process for 
our experiments. However, for the continuous setting (i.e., A is for instance generated from a 
Gaussian), such an approach must be somehow adapted, due to the infinite set ΩA . In that case, 
we can consider a sampling distribution P�(A) to formulate the following loss, which can be 
optimized via Monte-Carlo sampling and stochastic gradient descent (SGD):

This formulation is equivalent to the one from Eq. (2), for continuous outcomes Ŷ  (thus 
considering a least squared cost as Δ ) and for continuous attributes A (thus using the sam-
pling distribution P�(A) rather than considering every possible a ∈ ΩA ). Note that using a 
non-uniform sampling distribution P�(A) would enforce the attention of the penalisation 
near the mass of the distribution. This prevents using the prior of A estimated from the 
training set, since this would tend to reproduce inequity between individuals: counterfac-
tual predictions for rare A values would be little taken into account during training. We 
therefore consider a uniform P�(A) in our experiments for the continuous setting when 
using the LCF(�) objective at step 2.

However, for the specific case of high-dimensional sensitive attributes A, using a uniform 
sampling distribution P�(A) could be inefficient. The risk is that a high number of counterfac-
tual samples fall in easy areas for the learning process, while some difficult areas - where an 
important work for fairness has to be performed - remain insufficiently visited. To tackle this 
problem, we propose to allow the learning process to dynamically focus on the most useful 
areas of ΩA for each individual. During learning, we consider an adversarial process, which 
is in charge of moving the sampling distribution P�(A) , so that the counterfactual loss is the 
highest. This allows the learning process to select useful counterfactuals for ensuring fairness. 
Who can do more can do less: dynamically focusing on hardest areas allows one to expect fair-
ness everywhere. Again, we face a two-players adversarial game, which formulates as follows:

Compared to Eq. (4), this formulation considers an adversarial sampling distribu-
tion P�(A|U) rather than a uniform static distribution P�(A) . It takes the form of a neu-
ral network that outputs the parameters of the sampling distribution for a given indi-
vidual representation U. In our experiments we use a diagonal logit-Normal distribution 
sigmoid(N(��(u), �

2
�
(u)I)) , where ��(u) and �2

�
(u) stand for the mean and variance param-

eters provided by the network for the latent code u. Samples from this distribution are then 

(4)
LCF(𝜃) =

1

m

m∑
i

l(h𝜃(xi), yi) + λ �

u ∼ P(u|xi, ai, yi),
x̃ ∼ P(x|ui, ai),

a� ∼ P�(A), x� ∼ P(x|u, a�)

[(h𝜃(x̃) − h𝜃(x
�))2]

(5)

arg min
𝜃

arg max
𝜙

LDynCF(𝜃,𝜙)

LDynCF(𝜃,𝜙) =
1

m

m∑
i

l(h𝜃(xi), yi) + λ �

u ∼ P(u|xi, ai, yi),
x̃ ∼ P(x|u, ai),

a� ∼ P𝜙(a|u), x� ∼ P(x|u, a�)

[(h𝜃(x̃) − h𝜃(x
�))2]
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projected on the support ΩA via a linear mapping depending on the shape of the set. Passing 
U as input for the network allows the process to define different distributions for different 
codes: according to the individual profiles, the unfair areas are not always the same. This 
also limits the risk that the adversarial process gets stuck in sub-optimums of the sensitive 
manifold. As done for adversarial learning in step 1, all parameters are learned conjointly, 
by alternating steps for the adversarial maximization and steps of global loss minimization. 
The re-parametrization trick (Kingma & Welling, 2013) is also used, for the adversarial 
optimization of P�(A|U).

4 � Experiments

We empirically evaluate the performance of our contribution on 6 real world data sets. For 
the discrete scenario and specifically in the binary case ( Y ∈ {0, 1},A ∈ {0, 1} ), we use 3 dif-
ferent popular data sets: the Adult UCI income data set (Dua & Graff, 2017) with a gender 
sensitive attribute (male or female), the COMPAS data set (Angwin et al., 2016) with the race 
sensitive attribute (Caucasian or not-Caucasian) and the Bank dataset (Moro et al., 2014) with 
the age as sensitive attribute (age is between 30 and 60 years, or not). For the continuous set-
ting (Y and A are continuous), we use the 3 following data sets: the US Census dataset (US 
Census Bureau, 2019) with gender rate as sensitive attribute encoded as the percentage of 
women in the census tract, the Motor dataset The Institute of Actuaries of France (2015) with 
the driver’s age as sensitive attribute and the Crime dataset (Dua & Graff, 2017) with the ratio 
of an ethnic group per population as sensitive attribute.

Additionally to the 6 real-world datasets, we consider a synthetic scenario, that allows us 
to perform a further analysis of the relative performances of the approaches. The synthetic 
scenario subject is a pricing algorithm for a fictional car insurance policy, which follows the 
causal graph from Fig. 1. We simulate both a binary and a continuous dataset from this sce-
nario. The main advantage of these synthetic scenarios is that it is possible to get "ground 
truth" counterfactuals for each code U, obtained using the true relationships of the genera-
tion model while varying A uniformly in ΩA . This will allow us to evaluate the counterfac-
tual fairness of the models without depending on a given inference process for the evalua-
tion metric, by relying on prediction differences between these true counterfactuals and the 
original individual. The objective of this scenario is to achieve a counterfactual fair predictor 
which estimates the average cost history of insurance customers. We suppose 5 unobserved 
variables (Aggressiveness, Inattention, Restlessness, Reckless and Overreaction) which cor-
responds to a 5 dimensional confounder U. The input X is composed of four explicit variables 
X1, ...,X4 which stand for vehicle age, speed average, horsepower and average kilometers per 
year respectively. We consider the policyholder’s age as sensitive attribute A. The input X and 
the average cost variable Y are sampled from U and A as depicted in Fig. 1 from the main 
paper. We propose both a binary and a continuous version of this scenario. For both of them, 
5000 individuals are sampled. Details of distributions used for the continuous setting of this 
synthetic scenario are given below:
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4.1 � Step 1: Counterfactual Inference

In this section, we report experiments performed for assessing our adversarial approach 
for Counterfactual Inference (step 1 of the previous section). We compare our adversarial 
approach with two version of the approach in Eq. , each using one of the two MMD con-
straints MMD wrt P(A) or MMD wrt Ua as presented in Sect. 2.2 (step 1). Note that these 
approaches are not applicable for continuous datasets as discussed at the end of Sect. 2. 
For every approach, we compare three different inference schemes for U: q�(u|x, y, a) , 
q�(u|x, y) and q�(u|x, a) . As a baseline, we also use a classical Variational Autoencoder 
inference without counterfactual independence constraint (i.e., Eq. (4) without the last 
term).

All hyper-parameters for every approach have been tuned by 5-fold cross-validation. For 
the US Census data set for our approach for instance, the encoder q� architecture is an 
MLP of 3 hidden layers with 128, 64 and 32 units respectively, with ReLU activations. On 
this dataset, the decoder p� is an MLP of only one hidden layer with 64 units with a ReLu 
activation function and the output consists in one single output node with linear activa-
tion to reconstruct Y and 37 units to reconstruct X (number of features). The adversarial 
neural network p� is an MLP of two hidden layers with 32 and 16 units respectively. For 
the binary datasets, a sigmoid is applied on the outputs of decoders for A and Y. For both 
MMD constraints we used a Gaussian radial basis function kernel. For all datasets, the 
prior distribution p(U) considered for training the models is a five-dimensional standard 
Gaussian.

In order to evaluate the level of dependence between the latent space U and the sensitive 
variable A, we compare the different approaches by using the neural estimation of the HGR 
correlation coefficient given in Grari et  al. (2019). This coefficient, assesses the level of 
non-linear dependency between two jointly distributed random variables. The estimator is 
trained for each dataset and each approach on the train set, comparing observed variables A 
with the corresponding inferred codes U.

For all data sets, we repeat five experiments by randomly sampling two subsets, 80% 
for the training set and 20% for the test set. Finally, we report the average reconstruction 
loss for X and Y on the test set, as long as the HGR between inferred test codes and the 

U ∼ N

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

0

0.5

1

1.5

2

⎞
⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0

0 4 0 0 0

0 0 2 0 0

0 0 0 3 0

0 0 0 0 2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

X1 ∼ N(7 + 0.1 ∗ A + U1 + U2 + U3, 1);

X2 ∼ N(80 + A + U2
2
, 10);

X3 ∼ N(200 + 5 ∗ A + 5 ∗ U3, 20);

X4 ∼ N((104 + 5 ∗ A + U4 + U5, 1000)

X ∼ [X1,X2,X3,X4];

A ∼ N[45, 5];

Y ∼ N(2 ∗ (7 ∗ A + 20 ∗
�
j

Uj), 0.1)
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corresponding sensitive attributes. Results of our experiments can be found in Table 1 for 
the discrete case and Table 2 for the continuous case. For all of them, we attempted via the 
different hyperparameters ( λx , λy , λMMD , λADV ) to obtain the lower dependence measure 
while keeping the minimum loss as possible to reconstruct X and Y.

As expected, the baseline without the independence constraint achieves the best X and 
Y reconstruction loss, but this is also the most biased one with the worst dependence in 
term of HGR in most datasets. Comparing the different constraints in the discrete case, 
the adversarial achieves globally the best result with the lower HGR while maintaining a 
reasonable reconstruction for X and Y. It is unclear which MMD constraint performs better 
than the other. We observe that the best results in terms of independence are obtained with-
out the sensitive variable given as input of the inference network (inference only with X 
and Y). Note however that for the MMD constraints, this setting implies to make the wrong 
assumption of independence of U w.r.t. A given X and Y for the estimation of the constraint 
(as discussed at the end of Sect. 2). This is not the case for our adversarial approach, which 
obtains particularly good results on this setting for discrete datasets. On continuous data-
sets, our approach succeeds in maintaining reasonable reconstruction losses for important 
gains in term of HGR compared to the classical VAE approach (without constraint). Inter-
estingly, on these datasets, it appears that our approach obtains slightly better results when 
using the full information (X, Y and A) as input of the inference network. We explain this by 
the fact that removing the influence of a binary input is harder than the one of a smoother 
continuous one, while this can reveal as a useful information for generating relevant codes.

4.2 � Step 2: Counterfactual predictive model

This section reports experiments involving the training procedure from step 2 as described 
in Sect. 3. The goal of these experiments is threefold: 1. assess the impact of the adversar-
ial inference on the target task of counterfactual fairness, 2. compare our two proposals for 
counterfactual bias mitigation (i.e., using a uniform distribution or an adversarial dynamic 
one for the sampling of counterfactual sensitive values) and 3. assess the impact of the con-
trol parameter from Eq. (5).

The predictive model used in our experiments is a MLP with 3 hidden layers. The 
adversarial network P� from Eq. (5) is a MLP with 2 hidden layers and RELU activation. 
For all our experiments, a single counterfactual for each individual is sampled at each itera-
tion during the training of the models. Optimization is performed using ADAM.

Tables 3 and 4 report results for the discrete and the continuous case respectively. The 
inference column refers to the inference process that was used for sampling counterfactu-
als for learning the predictive model. For each setting, we use the best configuration from 
Tables 1 and 2. The mitigation column refers to the type of counterfactual mitigation that is 
used for the results: No mitigation or LCF (Eq. 2) for the discrete case; No mitigation, LCF 
(Eq. 4) or LDynCF (Eq. 5) for the continuous setting. Results are reported in terms of accu-
racy (for the discrete case) or MSE (for the continuous case) and of Counterfactual Fair-
ness (CF). The CF measure is defined, for the mtest individuals from the test set, as:

where C(i) is the set of counterfactual samples for the i-th individual of the test set. This 
corresponds to counterfactuals sampled with the Adversarial inference process defined at 

(6)CF =
1

mtest

mtest∑
i

�(x� ,a�)∼C(i)[Δ(h�(xi, ai), h�(x
�, a�))]
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step 1 (with the best configuration reported in Tables 1 and 2). As discussed above, the 
synthetic datasets allow one to rely on "true" counterfactuals for the computation of coun-
terfactual fairness, rather than relying on an inference process which may include some 
bias. For these datasets, we thus also report an additional RealCF metric, which is defined 
as in Eq. (6), but using these counterfactuals sampled from the true codes used to gener-
ate the test data. For both CF and RealCF, for every i from the test set, |C(i)| equals 1 for 
binary settings and |C(i)| equals 1000 for the continuous one. Δ is a cost function between 
two predictions, the logit paring cost for the binary case (more details given in Sect. 2.2 
step 2) and a simple squared difference for the continuous setting.

Results from both tables first confirm the good behavior of our inference model 
from step 1, which allows one to obtain greatly better results than other inference pro-
cesses for both the discrete and the continuous settings. Our adversarial counterfac-
tual inference framework allows one to get codes that can be easily used to generate 
relevant counterfactual individuals. For this observation, the most important results 
are those given for the synthetic scenarios, for which the RealCF metric shows good 
results for our method, while strongly reliable since relying on counterfactuals sam-
pled from true codes of individuals.

Secondly, results from Table 2 show that, even in the continuous setting where the 
enumeration of all values from ΩA is not possible, it is possible to define counterfac-
tual mitigation methods such as our approaches LCF and LDynCF . These two methods, 
used in conjunction with our Adversarial Inference, give significantly better results 
than no mitigation on every dataset. Interestingly, we also observe that LDynCF allows 
one to improve results over LCF , which shows the relevance of the proposed dynamic 
sampling process. Furthermore, note that we can reasonably expect even better results 
compared to LCF on data with higher-dimensional sensitive attributes.

To illustrate the impact of the hyperparameter λ on the predictions accuracy (MSE 
Error) and the counterfactual fairness estimation (CF), we plot results for 10 differ-
ent values of λ (5 runs each) on Fig. 4 for the Crime data set. It clearly confirms that 
higher values of λ produce fairer predictions, while a value near 0 allows one to only 
focus on optimizing the predictor loss. This is also observable from Fig. 3 which plots 
counterfactual predictions for a specific instance i from the test set. Higher values of λ 
produce clearly more stable counterfactual predictions.

In Fig. 5, we consider the distribution of considered counterfactual samples w.r.t. to 
the sensitive variable A for the uniform sampling strategy from P�(A) and the dynamic 
strategy as defined in Eq. (5). This is done on the Motor dataset and for a specific 
randomly sampled instance i with sensitive attribute ai = 75 , at a given point of the 
optimization, far before convergence (the model is clearly unfair at this point). The 
blue points are the counterfactual fairness estimation (h�(Xi,A←a, a) − h�(Xi,A←a� , a

�)) 
for each counterfactual sampled a’ s (1.000 points) from the uniform distribution 
P�(A) . The red points are the counterfactual fairness estimations for counterfactu-
als corresponding to a’ values (30 points) sampled from our dynamic distribution 
P�(a

�|u) = N(��(u), �
2
�
(u)I) , where � are the parameters of the adversarial network 

which optimizes the best mean and variance for each latent code u ( ��(u) and �2
�
(u) ). 

Being optimized to maximize the error at each gradient step, the red points are sam-
pled on lower values of A where the error is the most important. More importantly, 
very few points are sampled in the easy area, near the true sensitive value of i which is 
75. This demonstrates the good behavior of our dynamic sampling process.



754	 Machine Learning (2023) 112:741–763

1 3

4.3 � Total and counterfactual effect

In addition, we propose to compare performances of our approach with works based on 
fair data generation (Louizos et al., 2017; Kim et al., 2021; Kocaoglu et al., 2017; Xu et al., 
2019), such as mentioned at the end of Sect. 2.2, to emphasize the benefits of our two-steps 
process for learning counter-factually fair prediction models.

Traditionally, these methods are evaluated in terms of total and counterfactual causal 
effect of the sensitive on the data generated by the models. Total causal effect (TCE) aims 
at assessing the statistical parity on the outcomes generated from causal intervention. TCE 
for binary sensitives is defined as:

where YA←a corresponds to generated causal transformation of input Y, resulting from set-
ting a as the sensitive attribute to the corresponding individual, according to the causal 
graph G (i.e., obtained via distribution P(YA←a|X, Y ,A)).

A limit of such a metric is that it only considers fairness in the data given as training set 
for learning the predictor model. We claim that this is not enough since any residual bias 
in these data may strongly impact the final prediction (on both training and testing data). 
To overcome this limitation, and assess total effect of sensitives on predictions rather than 
on training data only, we introduce the Total Predictions Effect (TPE), which refers to the 

(7)TCE = P(YA←a1
) − P(YA←a0

)

(a) (b)

(c) (d)

Fig. 3   Impact of λ (Crime data set) on a specific instance i. Blue points are counterfactual predictions 
h�(xi,A←a�

) from 1.000 points A ← a
′ generated randomly. The red cross represents the prediction h�(xi,A←a

) 
for the real A = a of instance i (Color figure online)
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statistical parity of the output prediction from intervention. The metric is defined in the 
binary case as:

which takes into account the fairness of the predictor from transformed data XA←a.
Following (Kim et al., 2021; Xu et al., 2019), we also consider counterfactual effects, 

which depend on the effect of the sensitive on the outcome for specific individuals (or 
groups of individuals). Similarly as for the total effect, for any observation o, we consider 
the Counterfactual Causal Effect defined as: CCE = P(YA←a1

|o) − P(YA←a0
|o) and intro-

duce the Counterfactual Prediction Effect as: CPE = P(h�(XA←a1
)|o) − P(h�(XA←a0

)|o).
Causal Effect In Table  5, we represent the results from the different generated data 

observations on the Adult UCI dataset. We consider the condition observations o as the 
concatenation of the features race and native_country as in Xu et  al. (2019); Kim et  al. 
(2021) ( O = {race, native_country} ). We report the chi-square distance �2 that indicates 
the similarity between the generated and the real dataset. We consider three baselines that 
are unaware of the fairness constraint: CausalGan (Kocaoglu et al., 2017) that preserves the 

(8)TPE = P(h�(XA←a1
)) − P(h�(XA←a0

))

Fig. 4   Impact of hyperparameter 
λ (Crime data set): Higher values 
of λ produce fairer predictions, 
while λ near 0 allows to only 
focus on optimizing the regres-
sion loss

Fig. 5   Dynamic Sampling Visualization for a randomly sampled individual whose age A is 75. Red points 
are sampled counterfactuals from the dynamic distribution P�(a

�|u) with u the inferred confounding for this 
individual (Color figure online)
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causal structures, the DCEVAE WR that represents the DCVAE architecture (Kim et al., 
2021) without any fairness regulation term (i.e., �f = 0 according to notations in  (Kim 
et al., 2021)) and the original data. Our approach that contains no fairness penalty on the 
generated outcomes (in step 1) is also designed to reflect the causal structure. We also ana-
lyze the impact of CFGAN CE (Xu et al., 2019), which aims at decreasing the TCE in the 
generated data, CFGAN CE (Xu et al., 2019) which in turn aims at decreasing the 4 differ-
ent (CCE), and finally DCEVAE, which corresponds to the DCVAE model with a fairness 
penalization set to �f = 0.3.

As expected, only the three last methods, which act on the data rather than on the pre-
dictor itself, are able to mitigate TCE and CCE. Our method does not seek at mitigating 
biases in inferred outcomes, but seeks at leveraging inferred variables that allow it to learn 
a fair predictor. This is thus without any surprise that the reconstructed Y are not unbiased 
with regards to the sensitive; this is even a good indication of no information loss in the 
step 1 of our process, despite mitigating correlation between the latent confounder U and 
the sensitive A. In the following, we compare these observations to results in prediction 
effects.

Predictions Effect In this part, we focus on the level of fairness of the final predic-
tor model. A Logistic Regression (LR), a Neural Network (NN) and a classification tree 
(CART) are considered in the following. These predictors are either trained on the datasets 
produced from generation-focused models (i.e., CausalGAN, CFGAN TE, CFGAN CE, 
DCVAE RW and DCEVAE), or trained in the second step as described in Sect. 3.2 for our 
two-steps model. Please note that our algorithm can only handle derivative gradient during 
the optimization, therefore we have discarded the tree CART.

We report the results for each prediction model in Table 6, in terms of TPE, CPE (measured 
on generated data for test samples) and prediction accuracy (measured on the original test data-
set). From this table, we observe completely different results than those from previous table, with 
generation based models such as CFGAN greatly penalized compared to two-steps methods such 
as ours. This confirms our intuition that, even if produced data have biases well mitigated on the 
test set (as seen in Table 5), some small residuals of these biases can stay in the data. Then, the 
learning process is free to assign important emphasis on these problematic features, if this helps 
to achieve good prediction accuracy. In two-steps approaches such as ours, this is not the case, 
since biases of the outcomes are mitigated while learning prediction models, which enables more 
fairness robustness on test data.

Table 5   Total causal effect and counterfactual causal effect on adult UCI

Total causal effect 
(TCE)

Counterfactual causal effect (CCE) X
2

o
00

o
01

o
10

o
11

Real Data 0.1936 0.1785 0.1266 0.1293 0.2023 0
Causal GAN 0.1729 0.0717 0.1201 0.1326 0.1856 20388
DCEVAE WR 0.1819 0.1694 0.1472 0.1522 0.1899 20822
OURS 0.1834 0.1783 0.1803 0.1778 0.1845 21641
CFGAN CE 0.0135 0.0586 0.0087 0.003 0.0148 20591
CFGAN TE 0.0171 0.007 0.0168 0.0201 0.0169 20541
DCEVAE 0.0050 0.0051 0.0040 0.0043 0.0051 21142



761Machine Learning (2023) 112:741–763	

1 3

5 � Conclusion

We developed a new adversarial learning approach for counterfactual fairness. To the 
best of our knowledge, this is the first such method that can be applied for continu-
ous sensitive attributes. The method proved to be very efficient for different dependence 
metrics on various artificial and real-world data sets, for both the discrete and the con-
tinuous settings. Finally, our proposal is applicable for any causal graph to achieve 
generic counterfactual fairness. As future works, it might be interesting to consider a 
generalization of our proposal for Path Specific (Chiappa, 2019) counterfactual fairness 
in the continuous case.
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