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Abstract
This paper provides an in-depth analysis on how to effectively acquire and generalize 
cross-modal knowledge for multi-modal learning. Mixture-of-Expert (MoE) and Prod-
uct-of-Expert (PoE) are two popular directions in generalizing multi-modal information. 
Existing works based on MoE or PoE have shown notable improvement on data genera-
tion, while new challenges such as high training cost, overconfident experts, and encoding 
modal-specific features also emerge. In this work, we propose Bayesian mixture variational 
autoencoder (BMVAE) which learns to select or combine experts via Bayesian inference. 
We show that the proposed idea can naturally encourage models to learn modal-specific 
knowledge and avoid overconfident experts. Also, we show that the idea is compatible with 
both MoE and PoE frameworks. When being a MoE model, BMVAE can be optimized by 
a tight lower bound and is efficient to train. The PoE BMVAE has the same advantages 
and a theoretical connection to existing works. In the experiments, we show that BMVAE 
achieves state-of-the-art performance.
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1  Introduction

Objects or concepts in the real world can often be realized from different perspectives or 
modalities. For example, people can learn a new type of neural network by visually observ-
ing the architecture diagram or studying reports textually describing the model. To have 
comprehensive understanding, the ability to effectively generalize the knowledge across 
modalities is essential. While it is a trivial skill for human beings, how to make machines 
generalize heterogeneous information is still an open topic. In this work, we focus on learn-
ing generative models from multi-modal data without explicit supervision. The underlying 
challenges or criteria summarized by Shi et al. (2019) are as follows.

Coherent joint generation Given a randomly sampled latent vector, the model should 
be able to generate multi-modal data by transforming the vector and ensure the generated 
data describe the same objects or concepts. For example, a model can generate an arbitrary 
image and the associated texts describing the image content.

Coherent cross generation The model should be able to transfer modalities. For exam-
ple, the model can generate text descriptions of a given image, and vice versa. It should 
also be applicable to data missing scenarios. Specifically, missing information is expected 
to be at least partially recovered by existing modalities.

Latent factorization The learned latent space can be decomposed into subspaces captur-
ing shared and modality-specific features.

Synergy The quality of generation can be boosted when multiple modalities are 
observed.

To satisfy the criteria, one plausible solution is to build a variational encoder (Kingma 
& Welling, 2014) for each modality, and combine the encoders to obtain a joint posterior 
by Product-of-Experts (PoE) or Mixture-of-Experts (MoE) methods. MVAE (Wu & Good-
man, 2018) is a representative PoE model, which has product of Gaussian experts as the 
joint posterior. Although MVAE does not focus on factorizing latent spaces by shared or 
private factors, it possesses a key benefit that the cross-modal generation can be effectively 
done without additional uni-modal encoders. In terms of MoE, the state-of-the-art model 
is MMVAE (Shi et al., 2019). MMVAE shows notable improvement over MVAE on cross-
modality generation and satisfies the four proposed criteria. More importantly, experiments 
show that MMVAE can avoid over-confident experts which commonly exist in MVAE. 
However, MMVAE is relatively inefficient to train mainly due to the fact that the MoE 
posterior has no analytic form in most cases. To address the efficiency issue, a PoE model 
mmJSD (Sutter et  al., 2020) has been proposed. However, the limitation being mmJSD 
accepts only the experts that follow Gaussian. Another recently proposed model, DMVAE 
(Daunhawer et  al., 2020), shows remarkable performance on disentangling latent factors 
but is also constrained to employing Gaussian posteriors.

In general, PoE can be more efficient than MoE if all the experts are Gaussian, as there 
exists a closed-form joint posterior. However, for non-Gaussian experts, PoE can be intrac-
table (Hinton, 2002). On the other hand, MoE is much easier to work with non-Gaussian 
experts through tractable training methods. The flexibility of assuming diverse distribu-
tions can potentially lead to better fit on the observed data.

In this work, we propose the Bayesian mixture variational autoencoder (BMVAE) for 
multi-modal learning. The idea comes from an assumption that uni-modal experts are not 
always equally reliable if modality-specific information exists. For example, an expert 
trained by image data is unlikely to learn sentence structures or tones of textual descrip-
tions. Similarly, we may not expect an expert to learn all the details of images from textual 
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descriptions. Therefore, to achieve high-quality generation, it is necessary to rely on certain 
clever ways to select suitable experts. Following this idea, BMVAE is designed to select 
experts for each latent dimension via Bayesian inference during learning. We show that 
BMVAE can be implemented given both MoE and PoE frameworks. When implemented 
as MoE, denoted by BMVAEM , it has a clear connection to Bayesian Model Averaging 
(Hoeting et al., 1999) and shows the following advantages over MMVAE:

–	 BMVAEM shows improvement over MMVAE on coherent joint generation, coherent 
cross generation and synergy. Regarding the latent factorization criteria, BMVAEM 
naturally learns to disentangle and encode modality-specific features. Additionally, the 
degree of specificity is quantified for each latent dimension, making the representations 
more explainable.

–	 BMVAEM is more efficient to train. For data with M modalities, MMVAE requires M2 
passes through decoders during training, while BMVAEM only needs M passes.

–	 MMVAE needs to be learned by optimizing a looser lower bound, as the tighter bound 
empirically causes overconfident experts. We show that BMVAEM does not need to 
sacrifice the theoretical tightness to avoid the overconfidence issue.

For PoE-based BMVAE, denoted by BMVAEP , we present connections between the pro-
posed and existing models. Specifically, we show that the model can be regarded as gener-
alized mmJSD with stochastic weights and a different sampling strategy. We also show that 
BMVAEP and BMVAEM can have equivalent joint posteriors in specific settings.

2 � Background

Section 2.1 is an overview of the recently proposed works. Section 2.2 briefly reviews the 
idea of joint posteriors factorization via MoE and PoE. Sections 2.3 and 2.4 are the funda-
mentals of MMVAE. Section 2.5 introduces the mmJSD objectives.

2.1 � Overview of recent works

Variational autoencoders (VAE) have been shown to be effective for multi-modal learning. 
An example is JMVAE (Suzuki et al., 2017) which is designed to model the joint distribu-
tion of modalities by following the VAE framework. Also, the model has the ability to han-
dle missing modality at test (or prediction) time. The cost of handling missing data is that 
it requires an additional uni-modal encoder for each modality, and the uni-modal encod-
ers are optimized to approximate the joint distribution. The TELBO model proposed by 
Vedantam et al. (2018) can be learned by optimizing a different objective, which can han-
dle partially observed features by PoE inference networks. To obtain more effective latent 
factorization, Hsu and Glass (2018) propose PVAE which specifically learns shared and 
modality-specific representations. Similar to JMVAE, PVAE requires additionally train-
ing uni-modal encoders to handle missing modalities. Another work, MFM (Tsai et  al., 
2019), factorizes latent representations into discriminative and modality-specific factors, 
where discriminative factors are learned from labeled data. Instead of employing VAE, the 
authors propose multi-modal Wasserstein autoencoder for inference.

The works introduced above need additional data information, learning objectives, 
or uni-modal networks, which is a less ideal setting as discussed by Shi et al. (2019). 
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By contrast, a more compact solution is MVAE proposed by Wu and Goodman (2018). 
MVAE is designed to model joint posterior via PoE architectures. Different from 
TELBO, an expert in MVAE is responsible for a whole modality instead of a single 
feature. As a result, MVAE shows competitive performance and does not need addi-
tional uni-modal encoders. Shi et  al. (2019) report that MVAE could severely suffer 
from over-confident experts due to the product operations and propose MMVAE which 
models the joint posterior by MoE methods. Empirical results show that MMVAE can 
avoid aforementioned issues and outperform MVAE on data generation and modality 
transferring. Although MMVAE has several advantages over MVAE, it is less efficient 
to train. Since the joint posterior generated by MoE generally has no analytic form, the 
learning process would then rely on sampling-based methods having higher training 
cost. Besides, for data with M modalities, MMVAE requires M2 passes through decod-
ers during training. More recently, Sutter et  al. (2020) propose mmJSD to address 
the efficiency issue by focusing on PoE-based dynamic prior. Instead of employing 
KL divergence for regularization, mmJSD applies JS divergence for both regulari-
zation and learning multi-modal information. To achieve efficient learning, mmJSD 
requires the prior and uni-modal posteriors to be Gaussian. Another PoE model pro-
posed recently is DMVAE (Daunhawer et al., 2020). DMVAE focuses on not only effi-
cient learning but also disentangling latent factors. Different from typical multi-modal 
VAEs, DMVAE requires additional loss functions and adversarial training approaches 
to learn disentangled features.

2.2 � Factorized joint posteriors

Here we introduce the idea of factorizing posteriors via MoE and PoE for multi-modal 
learning. Given M-modalities data {x1,… , xM} or x1∶M for training, the parameterized 
likelihood p� and posterior q� are commonly modelled by deep neural networks with 
� = {�1,… , �M} and � = {�1,… ,�M} , respectively. In MMVAE, the joint posterior 
q� is designed to be factorized by a uniform combination of uni-modal posteriors. 
Namely, q�(z ∣ x1∶M) =

∑
m �m ⋅ q�m

(z ∣ xm) , where �m =
1

M
 . Each uni-modal posterior 

q�m
 is implemented by an encoder with corresponding modality as input.
Regarding PoE-based factorization, the most common form would be 

q�(z ∣ x1∶M) =
∏

m q�m
(z ∣ xm) . In PoE settings, the experts are usually assumed to be 

Gaussian, as the joint distribution will also be Gaussian and thus can be learned effi-
ciently. If the experts are non-Gaussian, training the PoE model generally becomes 
intractable (Hinton, 2002). On the contrary, we note that MoE models are more flex-
ible on selecting distributions to fit data. If the weights �1∶M are constants or learnable 
parameters, the MoE joint posterior q�(z ∣ x1∶M) can be easily trained if sampling from 
q�m

(z ∣ xm) is efficient. Specifically, the gradient for learning �m can be estimated via 
Monte Carlo methods which can be applied to a wide range of distributions (Mohamed 
et al., 2020).

Another difference between MoE and PoE is the overconfidence issue. Shi et  al. 
(2019) show that PoE could suffer from over-confident experts, which empirically 
leads to weak performance on modality transfer. Also, in order to let a PoE model be 
aware of missing modalities, training tricks involving artificial sub-sampling may be 
necessary (Wu & Goodman, 2018).
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2.3 � Importance weighted autoencoder for multi‑modal learning

In the work of MMVAE, Shi et al. suggest that importance weighted autoencoder (IWAE) 
(Burda et  al., 2016) could be more effective than vanilla VAE in multi-modal learning. 
Equation 1 is the objective function of IWAE for data with M-modalities.

In Eq. 1, the hyper-parameter K is the number of samples from posterior q� . Burda et al. 
(2016) theoretically prove that higher K improves tightness of a lower bound for variational 
inference. It potentially enhances the model to learn more informative latent representa-
tions and achieve better performance on data generation. When K = 1 , Eq. 1 is equivalent 
to the vanilla VAE.

In addition to improved performance over vanilla VAE in general cases, Shi et al. (2019) 
suggest that IWAE can be especially beneficial in multi-modal learning. Specifically, the 
estimated posteriors tend to have higher entropy, encouraging an uni-modal posterior (i.e. 
q�m

 ) to assign higher probability to regions of other modalities.

2.4 � Learning objectives of MMVAE

Here we briefly introduce MMVAE. Equation 2 is the proposed objective function for train-
ing. The function LM has been shown to be a lower bound of log likelihood of observed 
data, i.e. LM ≤ log p(x1∶M).

Shi et al. (2019) also reveal that there exists a tighter lower bound as shown in Eq. 3, where 
L = K∕M for having the same number of samples as Eq. 2.

Optimizing LT is more effective theoretically as LM ≤ LT ≤ log p(x1∶M) . However, 
empirical results show that optimizing LT can lead to modality collapse in MMVAE, sig-
nificantly degrading performance on multi-modal data generation. Specifically, the joint 
posterior ignores most experts during training and is then reduced to a uni-modal posterior 
generally.

A possible reason for the collapse could be the weights for gradients in IWAE. For exam-
ple, let z1∶K

1
 and z1∶K

2
 be latent vectors sampled from q�1

 and q�2
 respectively. In LT , z1∶K

1
 and 

z1∶K
2

 can simultaneously exist inside the log summation. By the weight mechanism of IWAE, 
z1∶K
1

 and z1∶K
2

 receive gradients with different weights according to their contributions to the 
likelihood. If modality 1 has less contribution, q�1

 would be gradually ignored due to decreas-
ing gradients. On the contrary, in LM , samples inside the log summation must come from the 

(1)LI = �z1∶K∼q�(z∣x1∶M )

[
log

K∑

k=1

1

K

p�(z
k, x1∶M)

q�(z
k ∣ x1∶M)

]

(2)LM =
1

M

M∑

m=1

�z1∶K
m

∼q�m

[
log

1

K

K∑

k=1

p�(z
k
m
, x1∶M)

q�(z
k
m
∣ x1∶M)

]

(3)
LT = �

z1∶L
1

∼ q�1

⋮

z1∶L
M

∼ q�M

[
log

1

M

M∑

m=1

1

L

L∑

l=1

p�(z
l
m
, x1∶M)

q�(z
l
m
∣ x1∶M)

]
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same modality. The effect is that gradients from different modalities are forced to be equally 
weighed, preventing a modality from fading out due to weak update signals.

2.5 � The mmJSD learning objectives

2.5.1 � Standard mmJSD objective

Sutter et al. (2020) recently propose mmJSD as an objective for multi-modal learning. The dif-
ferences between mmJSD and previous works are twofold. Firstly, the evidence lower bound 
(ELBO) is optimized via JS instead of KL divergence. Secondly, the joint posterior is com-
bined with priors and serves as a so-called dynamic prior. Equation 4 is the objective, where ∑P

m=1
�m = 1 and function fM defines a mixture distribution averaging uni-modal q�m

 and 
parameterized prior p�(z).

For efficient training, fM  is restricted to be product of Gaussian. Namely, 
fM({q�m

(z ∣ xm)}
M
m=1

, p�(z)) =
∏M

m=1
q
�m
�m
p
�M+1

�
 , where q�m

 and p� are all Gaussian.

2.5.2 � Modality‑specific mmJSD objective

Sutter et  al. (2020) also propose a variant of mmJSD focusing on learning shared and 
modality-specific latent factors. The idea is to let latent vectors z be concatenation of sub-
vectors {sm}Mm=1 and c, where {sm} encodes features specific to the m-th modality, and c 
encodes modality-independent information. Equation 5 is the objective.

Although the objective is in a form of mmJSD, Sutter et al. show that the idea can also 
work on MMVAE and MVAE.

A limitation of the objective is that {sm}Mm=1 are constrained to have the same number of 
dimensions despite the fact that some modalities might be more complex than others. Besides, 
deciding the number of dimensions of {sm}Mm=1 or c requires additional experiments for 
validation.

(4)

�q�

[
log p�(x1∶M ∣ z)

]
− JSM+1

�
({q�m

(z ∣ xm)}
M
m=1

, p�(z))

JSP
�
({rm(z)}

P
m=1

) =

P∑

m=1

�mDKL(rm(z) ∣ fM({rv(z)}
P
v=1

))

(5)

M∑

m=1

�q�c (c∣x1∶M )

[
�q�sm

[
log p�(xm ∣ sm, c)

]]

−

M∑

m=1

DKL(q�sm
(sm ∣ xm)||p�(sm)) − JSM+1

�
({q�cm

(c ∣ xm)}
M
m=1

, p�(c))
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3 � The MoE Bayesian mixture variational autoencoder

In this section, we introduce the learning algorithms of BMVAEM . The main ideas, dimen-
sion-wise mixture, stochastic weight inference and explicit regularization, are introduced in 
Sects. 3.1–3.3. The introductions are based on IWAE for generality and can easily fit VAE 
by setting K = 1.

3.1 � Dimension‑wise MoE mixture

We first introduce the joint posterior in BMVAEM . We follow the MoE framework but pro-
pose a different algorithm from MMVAE for mixing uni-modal experts. We note that the 
proposed method can naturally fit a tight lower bound LT without modality collapse and is 
more computationally efficient.

In our method, the joint posterior q� is factorized by not only modality but also latent 
factor. Equation 6 is the factorization, where D is the number of dimensions of a latent 
vector.

Conceptually, we create D expert sets where each set has M experts to decide the value of 
one latent factor. It differs from MMVAE in two ways. The first difference is each latent 
factor has its own mixture weights �m,d which can be 1

M
 or learned from data. The algo-

rithms for learning the weights are discussed in Sect. 3.2. The second difference lies in the 
individually sampled latent factor. Specifically, the mixture weights �m,d form a categorical 
distribution C�d

(m) for latent dimension d. When we want to obtain a sample z from joint 
posterior q� , the sampling process repeats Eq. 7 for d = 1,… ,D . Afterwards, we can con-
catenate the sampled z1,… , zD to get z.

To train the IWAE, we conduct standard IWAE objective (i.e. LI ) with z1∶K sampled by 
the proposed method and apply reparameterization. Note that the number of parameters of 
encoders and decoders is the same as it is in MMVAE, as each expert here is responsible 
for only one factor. The comparison of encoding-decoding between BMVAE and MMVAE 
is illustrated in Fig. 1.

From Fig. 1a, we can see that a sampled z in BMVAEM is composed of factors gener-
ated by randomly chosen encoders. It can be regarded as a simulation of modality missing 
in training time. Additionally, we note that this mechanism has two merits.

Optimization with tight lower bound It can be seen that latent vectors sampled by 
our methods naturally contain outputs from multiple modalities. By taking derivative of 
the log summation term in LI , gradients through the outputs can be weighed differently. 
Compared with MMVAE optimized by LT , we find BMVAEM optimized by LI does not 
suffer from modality collapse. The difference could come from the stochastic selection of 

(6)

q�(z ∣ x1∶M) =

D∏

d=1

q�,d(zd ∣ x1∶M)

q�,d(zd ∣ x1∶M) =

M∑

m=1

�m,d ⋅ q�m,d
(zd ∣ xm)

(7)
m ∼ C�d

(m)

zd ∼ q�m,d
(zd ∣ xm)
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experts. In LT , samples from all the experts simultaneously exist for decoding. If one of 
the experts, say q�1

 , is relatively powerful, the model could choose to rely on q�1
 and ignore 

q�2∶M
 . On the other hand, in BMVAEM , experts are selected by binary indicators sampled 

from categorical distribution C�d
(m) . If �d are all close to 1

M
 , relying on a single modality 

could be risky, as there is a chance the corresponding expert is not selected. Therefore, the 
model does have motivation to make all experts similarly capable.

Reduced computational cost As illustrated in Fig. 1a, BMVAEM is similar to a multi-
task autoencoder generating heterogeneous data by decoding a given latent code. Specifi-
cally, decoding during training BMVAEM is done by computing p�1 (x ∣ z) and p�2 (x ∣ z) , 
where z is one of the sampled latent vectors. In MMVAE, decoding is done by computing 
p�1 (x ∣ z1) , p�1 (x ∣ z2) , p�2 (x ∣ z1) and p�2 (x ∣ z2) , where z1 and z2 are sampled from modal-
ity 1 and 2, respectively. In summary, MMVAE requires M2 passes through decoders while 
BMVAEM needs M passes.

Fig. 1   Comparison of encoding 
and decoding between BMVAE 
and MMVAE
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3.2 � Stochastic inference on mixture weights

In MMVAE, the mixture weights are constant 1
M

 , which is reasonable as favoring a specific 
modality without concrete evidence could result in overconfident experts. In BMVAEM , 
we note that using multiple sets of experts allows imbalanced mixture weights. In reality, 
the imbalance could have a connection with finding shared and private latent subspaces, 
which is beneficial to multi-modal learning. For example, assuming latent factor d encodes 
private features of modality 1, it is intuitive to expect q�1,d

 to be able to make more reliable 
predictions and should have higher credibility, namely, 𝛼1,d >

1

M
.

To determine parameters �m,d , we propose learning them jointly with � and � by fol-
lowing the same IWAE objective. We assume C� =

∏D

d=1
C�d

 , and denote a collection of D 
binary indicators sampled from C�1∶D

 respectively as a symbol m⋆ . The objective function 
after incorporating modality selection is shown in Eq. 8.

In Eq. 8, there are two additional assumptions. Firstly, we assume the prior p(z) is inde-
pendent to modalities. Hence, p(z ∣ m⋆) = p(z) . Secondly, the categorical prior C can be 
factorized as C =

∏D

d=1
Cd . The parameters (i.e. mixture weights) of Cd are all constants 

1

M
 . The reason for choosing 1

M
 is to provide uninformative prior. Also, it could encourage 

experts from different modalities to find shared features, which can improve performance 
on cross-modality generation.

To learn C� , we employ differentiable Gumbel-Softmax (Jang et  al., 2017; Maddison 
et al., 2017) to approximate discrete samples generated by categorical distributions. In this 
work, we allocate M learnable parameters (i.e. �d ) for each latent dimension. An indicator, 
m, for selecting modality in dimension d is sampled by Eq. 9 for i = 1,… ,M with tem-
perature �d . The sampled M-dimensional vector is followed by straight-through trick (Jang 
et al., 2017) for being discrete. The general idea of the trick is to create a constant vector 
mc having the same size and values as m1∶M . A discrete indicator is then obtained via one_
hot(mc) + m1∶M − mc . The result is one-hot encoded but the gradient will only pass through 
continuous m1∶M since mc is constant.

Another issue of learning with Eq. 9 is deciding the temperature �d . High temperature can 
make the Gumbel-Softmax distribution more continuous and uniform. It helps finding 
shared information across modalities; however, it also increases the difficulty of encod-
ing private features. On the contrary, low temperature leads to a more discrete distribu-
tion, which discourages the model from finding shared information. In order to find both 

(8)

�
z1∶K ∼ q𝛷
m⋆1∶K

∼ C𝛼

[
log

K∑

k=1

1

K

p𝛩(z
k,m⋆k

, x1∶M)

q𝛷(z
k,m⋆k

∣ x1∶M)

]

= �
z1∶K ∼ q𝛷
m⋆1∶K

∼ C𝛼

[
log

K∑

k=1

1

K

p𝛩(x1∶M ∣ zk,m⋆k

)p(zk)C(m⋆k

)

q𝛷(z
k ∣ x1∶M ,m

⋆k
)C𝛼(m

⋆k
)

]

(9)

mi =
exp((log(�i,d) + gi)∕�d)

∑M

j=1
exp((log(�j,d) + gj)∕�d)

g = − log(− log(u))

u ∼ Uniform(0, 1)



4338	 Machine Learning (2022) 111:4329–4357

1 3

shared and private information, we propose dimension-wise temperature, which includes 
both high and low �d . We first decide lower and higher temperature bounds l and u. Then, 
we let �d = l +

(u−l)(d−1)

D−1
 to ensure both high and low �d are included. As a result, the model 

can thereby find appropriate dimensions for encoding shared and private features.

3.3 � Explicit regularization for inference

We find explicitly controlling optimization of mixture weights can make training easier and 
help strengthen shared features. To do this, we approximately decompose Eq. 8 into two 
terms as shown in Eq. 10.

It can be observed that G is negative KL divergence DKL(C�‖C) if K = 1 . In practice, we 
find optimizing DKL(C�‖C) where C and C� are both categorical distributions is more 
numerically stable, as there is an analytic form. The final objective of BMVAEM is Eq. 11, 
where the hyper-parameter �c reweighs strength of the divergence. If �c = 1 , LB is approxi-
mately the derived result in Eq. 8.

In practice, we note that models trained with �c = 1 do not necessarily realize multi-
modal learning. For example, a model may learn to set �m,d to either 1 or 0 for all d. 
Given 

∑M

m=1
�m,d = 1 , the binary weights turn BMVAEM into a concatenation of multiple 

uni-modal IWAE. To fix this, we simply raise the strength of DKL(C�‖C) to encourage 
�m,d ≈

1

M
 . We find �c in [10, 15] helps the model learn both shared and private features from 

data.

4 � The PoE Bayesian mixture variational autoencoder

In this section, we present our PoE-based BMVAE, namely BMVAEP . The proposed 
model can be regarded as a generalized mmJSD with stochastic weights and a different 
sampling strategy. In Sect. 4.1, we first reveal an alternative form of mmJSD. The learn-
ing algorithm and objective of BMVAEP are introduced in Sect. 4.2. Finally, we show that 
there exists an equivalence between our MoE and PoE-based posteriors in Sect. 4.3.

4.1 � The alternative form of mmJSD

Our PoE-based BMVAE is derived from the standard mmJSD objective but in a differ-
ent form. Specifically, we find Eq. 4 is equivalent to the common ELBO with additional 
objectives.

(10)

F = �
z1∶K ∼ q𝛷
m⋆1∶K

∼ C𝛼

[
log

K∑

k=1

1

K

p𝛩(x1∶M ∣ zk,m⋆k

)p(zk)

q𝛷(z
k ∣ x1∶M ,m

⋆k
)

]

G = �m⋆1∶K∼C𝛼

[
log

K∑

k=1

1

K

C(m⋆k

)

C𝛼(m
⋆k
)

]

(11)LB = F − �c ⋅ DKL(C�‖C)
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Let the PoE joint posterior 
∏M

m=1
q�m

 be q̄ , �q =
∑M

m=1
�m , and �z = 1 − �q . The JS 

divergence term in Eq. 4 can be reorganized as follows.

By combining Eq. 12 with Eq. 4, we obtain the following objective equivalent to the stand-
ard mmJSD.

Given that p�(z) mainly encodes prior knowledge of data, the first part of Eq. 13 simply 
combines M uni-modal VAEs without explicit cross-modalities alignment. Therefore, it 
can be seen that multi-modal learning is mostly realized by the additional objectives. The 
realization is also intuitive. The first KL divergence encourages uni-modal posteriors to 
learn cross-modality information from the joint posterior q̄ , and the second one regularizes 
the learned q̄.

4.2 � Stochastic and dimension‑wise weights

Similar to the idea presented in Sect. 3, we propose inferring weights by latent dimension. To 
do this, we let the non-negative weights �1∶D = {�1,… ,�D} be D M-dimensional random 
variables instead of constant vectors. The weight �z remains a hyper-parameter. For dimension 
d, there is a constraint 

∑M

m=1
�m,d = 1 . Note that this constraint seems to violate the mmJSD 

objective since 
∑M

m=1
𝜋m,d + 𝜋z > 1 . However, as shown in Eq.  13, the violation simply 

increases the strength of regularization and additional objectives, which can be easily fixed by 
re-scaling the KL divergence terms.

To define a PoE-based joint posterior, we follow Eq. 6 but employ geometric rather than 
arithmetic mean. Given that �1∶M are not necessarily discrete, we propose sampling �1∶M from 
parameterized Dirichlet distributions. Equation  14 is the defined posterior in dimension d, 
where 𝛽d ∈ ℝ

M
>0

 are learnable parameters and inferred via reparameterization gradient for Dir-
ichlet (Figurnov et al., 2018).

(12)

JSM+1
𝜋

({q𝜙m
}M
m=1

, p𝛩(z))

=

M∑

m=1

𝜋mDKL(q𝜙m
||q̄𝜋qp𝜋z

𝛩
(z)) + 𝜋zDKL(p𝛩(z)||q̄𝜋qp

𝜋z
𝛩
(z))

=

M∑

m=1

𝜋m ∫z

q𝜙m
log

q
𝜋q

𝜙m
q
𝜋z
𝜙m

q̄𝜋qp
𝜋z
𝛩
(z)

dz + 𝜋z ∫z

p𝛩(z) log
p
𝜋q

𝛩
(z)p

𝜋z
𝛩
(z)

q̄𝜋qp
𝜋z
𝛩
(z)

dz

=

M∑

m=1

𝜋m(𝜋qDKL(q𝜙m
||q̄) + 𝜋zDKL(q𝜙m

||p𝛩(z))) + 𝜋z𝜋qDKL(p𝛩(z)||q̄)

(13)

�z∼q𝛷

[
log p𝛩(x1∶M|z)

]
−

M∑

m=1

𝜋m𝜋zDKL(q𝜙m
||p𝛩(z))

�����������������������������������������������������������������������������
Multi-modal ELBO

−

M∑

m=1

𝜋m𝜋qDKL(q𝜙m
||q̄) − 𝜋z𝜋qDKL(p𝛩(z)||q̄)

���������������������������������������������������������������������
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With the defined joint posterior, we present the objective LP for learning BMVAEP in 
Eq. 15, where q̄ is constructed by Eq. 14, �ab = �a�b , � and �prior are hyper-parameters.

There are two differences between LP and the alternative form of mmJSD (i.e. Eq. 13). 
The first one is the newly included KL divergence for inferring Dirichlet distributions. The 
second difference is we introduce weighted product of posteriors. Here we also reverse 
DKL(p𝛩(z)||q̄) to be consistent with the common ELBO form. The reason for shifting to 
multi-modal ELBO is that we find the learned � are not meaningful when training with 
uni-modal ELBO. To see this, in uni-modal ELBO, the gradient propagated from recon-
struction loss is not through � . Therefore, the learned � only involves DKL(q𝜙m

||q̄) and 
DKL(Dir(�d)||�prior) , which includes insufficient data information.

4.3 � On the equivalence of MoE and PoE‑based joint posteriors

We show that there exists an equivalence between MoE and PoE joint posteriors in 
BMVAE. The equivalence originates from parameter settings of Dirichlet distributions. Let 
the weights �d ∼ Dir(�d) and �m,d for all m ∈ {1,… ,M} have similar values for simplicity. 
When 𝛽m,d > 1 , �d are likely to be close to the centre of the (M − 1)-simplex in a sense of 
continuous weights (i.e. �m.d ≈

1

M
 ). On the contrary, �d sampled with 𝛽m,d < 1 tend to be in 

corners of the simplex, resulting in nearly discrete weights. Specifically, if �m,d → 0 , �m,d is 
either 1 or 0.

When �m,d are discrete, the MoE and PoE mixture methods of BMVAE become simi-
lar, as they both learn to stochastically select one expert for each latent dimension. There-
fore, training BMVAEP with a constraint 𝛽d ≪ 1 would be close to training BMVAEM 
with additional objectives DKL(q𝜙m

||q̄) and DKL(q�m
||p�(z)) . It first implies that BMVAEP 

can approximate BMVAEM by constraining 𝛽d ≪ 1 and �mq = �mz = 0 . Secondly, it may 
raise a question that if we can equip BMVAEM with the additional objectives to improve 
MoE-based multi-modal learning. However, we find the two additional objectives empiri-
cally do not improve BMVAEM on the evaluation tasks we reveal in Sect. 6. Also, differ-
ent from PoE, the joint posterior q̄ has no analytic form, increasing computational cost of 
DKL(q𝜙m

||q̄) in the training stage.

(14)
q�,d(zd ∣ x1∶M) =

M∏

m=1

q
�m,d
�m,d

(zd ∣ xm)

�1∶M,d ∼ Dir(�d)

(15)
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�z∼q̄

[
log p𝛩(x1∶M|z)

]
− 𝜆zqDKL(q̄||p𝛩(z))

]

�����������������������������������������������������������������
Multi-modal ELBO
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− 𝜂

D∑
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5 � Analysis of time and space complexity

We analyze complexity of training MMVAE, mmJSD, BMVAEM and BMVAEP in this 
section. We first discuss time complexity. Training the VAE-based models involves encod-
ing, decoding, obtaining joint posteriors, sampling from posteriors, and KL divergence 
minimization. We define the upper bound of the cost of training an encoder or decoder 
as CT including forward and backward passes. As an example, the cost of training a sin-
gle-modality auto-encoder without variational inference is bounded by CT + CT = 2CT . 
As latent dimensions are assumed to be mutually independent in the discussed models, 
we note that the training procedures excluding encoding and decoding can be decomposed 
into dimension-wise operations with complexity O(D). The operations are enumerated as 
follows.

–	 Obtaining product of 2 Gaussian posteriors.
–	 Obtaining a categorical or Dirichlet posterior where the underlying encoder is a single-

layer neural network.
–	 Sampling from a Gaussian or categorical posterior.
–	 Sampling from a mixture of posteriors.
–	 Estimating KL divergence between 2 Gaussian or categorical distributions.

With the enumerated upper bounds, we analyze training costs of the discussed models and 
summarize the results in Table 1.

MMVAE The cost of obtaining M posteriors is MCT . As MMVAE does not sample 
embeddings from a joint posterior but M posteriors, the cost of sampling is MK ⋅ O(D) 
where K is the sample size of IWAE. The MK embeddings are then decoded by M decod-
ers, costing M2KCT . Finally, the cost of estimating the sampling-based KL divergence for 
the MK embeddings is MK ⋅ O(D).

BMVAEM The cost of obtaining M posteriors and 1 categorical posterior is 
MCT + O(D) . Sampling from a mixture of posteriors of an IWAE-based BMVAEM costs 
(M + 1)K ⋅ O(D) . Different from MMVAE, the number of generated embeddings is K 
instead of MK. Therefore, the cost of decoding reduces to MKCT . Finally, the cost of the 
sampling-based KL divergence is (M + 1)K ⋅ O(D) where the additional cost comes from 
the categorical distributions.

mmJSD The cost of encoding and decoding is 2MCT . Obtaining the product of M 
Gaussian densities and a prior costs (M + 1) ⋅ O(D) . We assume the product of Gaussian is 
both used for the joint posterior and dynamic prior. Sampling from the joint posterior costs 
O(D) and estimating KL divergence between uni-modal posteriors and dynamic prior costs 
M ⋅ O(D) in total.

Table 1   Time complexity of multi-modal VAEs

MMVAE BMVAE
M

mmJSD BMVAE
P

Encoding + decoding (M2
K +M)C

T
M(K + 1)C

T
+ O(D) 2MC

T
2MC

T
+ O(D)

Joint posteriors 0 O(D) (M + 1) ⋅ O(D) M ⋅ O(D)

Sampling MK ⋅ O(D) (M + 1)K ⋅ O(D) O(D) O(D)
KL divergence MK ⋅ O(D) (M + 1)K ⋅ O(D) M ⋅ O(D) (2M + 1) ⋅ O(D)

Total cost ≈ M
2
KC

T
≈ M(K + 1)C

T
≈ 2MC

T
≈ 2MC

T



4342	 Machine Learning (2022) 111:4329–4357

1 3

BMVAEP The cost of encoding and decoding is 2MCT + O(D) where O(D) comes from 
the Dirichlet distribution. The joint posterior is the weighted product of M Gaussian densi-
ties costing M ⋅ O(D) . The embeddings for decoding are sampled from the joint posterior 
costing O(D). The cost of the KL divergence losses is (M +M + 1) ⋅ O(D) which can be 
observed from Eq. 15.

For the analysis of space complexity, we define the upper bound of the cost of an 
encoder or decoder as CS . Other costs coming from the following components are assumed 
to have space complexity O(D).

–	 A single-layer neural network with D neurons.
–	 A D-dimensional embedding sampled from a posterior.

The costs of the discussed multi-modal VAEs are summarized in Table 2.

6 � Experiments

In Sects. 6.1 and 6.2, we compare BMVAEM with MMVAE following protocols and data-
sets proposed by Shi et  al. (2019). The autoencoders are IWAE and the posteriors are 
Laplace distributions. In each evaluation task, the sample size K of IWAE is the value sug-
gested by Shi et al. and applied to both MMVAE and BMVAEM . In Sect. 6.3, we evalu-
ate both BMVAEM and BMVAEP on a 3-modal dataset proposed by Sutter et al. (2020). 
For fair comparison, the posteriors are all Gaussian and the autoencoders used in testing 
include both VAE and IWAE. In Sect.  6.4, we evaluate models via MultiBench (Liang 
et al., 2021) measuring cross-modality generalization, training speed, and robustness. The 
tested datasets are more challenging, and the models for evaluations are not limited to MoE 
and PoE methods.

In each experiment, the models for comparison have the same uni-modal encoders 
and decoders. Our models are all trained by Adam optimizer (Kingma & Ba, 2015) with 
learning rate 0.001. The parameters �c and � for controlling mixture weights in BMVAEM 
and BMVAEP are decided via validation data. The parameter search space of �c and � is 
{0.01h, 0.1h, 0.5h} , where h is the average size of data. For example, if the training data are 
all 32 × 32 images, h = 32 × 32 . The remaining parameters of BMVAEP , �zq , �mz and �mq , 
are set to be 1, 1

M
 and 1

M
 respectively. The parameters �prior of the Dirichlet prior is 0.5 in 

Sects. 6.1, 6.2, and 6.3. In Sect. 6.4, it is chosen from {0.5, 1, 10} via validation. The train-
ing epochs are reported in respective subsections. We note that although BMVAE seems to 

Table 2   Space complexity of multi-modal VAEs

MMVAE BMVAE
M

mmJSD BMVAE
P

Encoders and decoders 2MC
S

2MC
S
+ O(D) 2MC

S
2MC

S
+ O(D)

Sampled embeddings MK ⋅ O(D) MK ⋅ O(D) O(D) O(D)
Total cost ≈ 2MC

S
≈ 2MC

S
≈ 2MC

S
≈ 2MC

S
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be more complex than MMVAE in the aspect of mixture method, BMVAE can normally 
converge in fewer epochs.

6.1 � MNIST‑SVHN

The first dataset used for evaluation is MNIST-SVHN. It is constructed by pairing images 
depicting the same digit class from MNIST and SVHN. Examples are shown in Fig. 2. As 
can be seen that the modalities are both images but with distinct and more complicated 
styles.

Following the settings in the previous work, the encoders for MNIST and SVHN data 
are multi-layer perceptron (MLP) and convolutional neural network (CNN) respectively. 
The number of dimensions of a latent vector is 20. Likelihoods, prior and posteriors are 
all Laplace. The likelihoods are weighted to balance reconstruction errors. In particular, 
given SVHN are 3-channel 32× 32 images and MNIST are 1-channel 28× 28 images, the 
log likelihood of MNIST is multiplied by 32×32×3

28×28
= 3.92 . Latent classification and coher-

ence of generations are used for evaluation as suggested by Shi et al. (2019). BMVAE and 
MMVAE are both trained for 30 epochs. The structures of uni-modal encoders and decod-
ers are shown in Table 3.

6.1.1 � Latent classification

The goal here is to examine whether the shared information (i.e. digit class) can be effec-
tively learned by models by checking if the digits can be successfully recognized from 

Fig. 2   Examples of MNIST-
SVHN data

Table 3   MNIST-SVHN encoders 
and decoders. Args: (kernel size, 
stride, padding)

Layer Type In Out Args

MNIST encoder 1 Linear, RELU 784 400
2a Linear 400 20
2b Linear 400 20

MNIST decoder 1 Linear, RELU 20 400
2 Linear, Sigmoid 400 784

SVHN encoder 1 Conv2d, RELU 3 32 (4,2,1)
2 Conv2d, RELU 32 64 (4,2,1)
3 Conv2d, RELU 64 128 (4,2,1)
4a Conv2d 128 20 (4,1,0)
4b Conv2d 128 20 (4,1,0)

SVHN decoder 1 ConvT2d, RELU 20 128 (4,1,0)
2 ConvT2d, RELU 128 64 (4,2,1)
3 ConvT2d, RELU 64 32 (4,2,1)
4 ConvT2d, Sigmoid 32 3 (4,2,1)
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latent vectors by linear classifiers. The assumption is that accurate recognition implies 
informative representations regarding shared information. Second, implication is that the 
information is encoded separately across latent dimensions as shallow classifiers are suf-
ficient for the recognition task. The classification accuracy is listed in Table 4. To show the 
advantages of multi-modal architectures, performance of uni-modal VAE is also included.

6.1.2 � Coherence

Another evaluation metric is to examine coherence of joint and cross-modal generations. In 
general, coherence checks both shared and private information by observing the generated 
data. When evaluating random generation via coherence, the decoders are required to gen-
erate images given the same vector which is randomly sampled from prior. To achieve high 
scores, the generated images need to depict the same digit class. Also, styles of the images 
need to be consistent with the corresponding modality. In cross-modal coherence, the gen-
eration conditions on distinct modality rather than random noises. For example, given an 
SVHN image depicting digit “3”, we first input the image into SVHN encoder and let it 
generate a sampled latent vector. Afterwards, we let the MNIST decoder generate an image 
given the sampled latent vector and check if it also depicts “3” in MNIST-style. To rec-
ognize digits and styles from generated images, two CNN-based classifiers are trained by 
SVHN and MNIST datasets respectively. The score of coherence is estimated by the prob-
ability of correct digit matching. Evaluation results are shown in Table 5.

6.2 � CUB image‑captions

The other dataset used in the experiment is Caltech-UCSD Birds (CUB). It contains 11,788 
photos of birds with captions describing birds’ visual characteristics. Examples are shown 
in Fig. 3. CUB dataset provides more challenges than MNIST-SVHN due to more complex 
data and heterogeneous modalities.

For evaluation on CUB, we follow the methods proposed by Shi et  al. (2019) which 
focuses on coherence as CUB has no clear label information. Notably, the coherence dis-
cussed here is measured on a vector space. The details of the proposed evaluation are as 
follows.

Table 4   Digit classification 
accuracy

The bold values indicate the best performance in average

BMVAE
M

MMVAE Uni-modal VAE

MNIST 0.94 0.91 0.85
SVHN 0.76 0.68 0.21

Table 5   Random and cross-modal coherence. M and S are abbreviations of MNIST and SVHN. S   M and 
M   S are generations given MNIST and SVHN, respectively

The bold values indicate the best performance in average

Random S M M S

BMVAE
M

0.50 0.89 0.71
MMVAE 0.42 0.86 0.69



4345Machine Learning (2022) 111:4329–4357	

1 3

Data generation For image data, the decoder actually outputs vectors in feature space of 
a pre-trained ResNet-101 He et al. (2016) instead of real images. The motivation is to avoid 
generating blurry images. The method of generation and reconstruction then becomes find-
ing the most similar vector of a real photo on the feature space by Euclidean distance. 
Additionally, likelihood of the image decoder is Laplace distribution. For the caption data, 
the encoder and decoder are based on CNN. The likelihood of decoder is Categorical dis-
tribution. For other training details, the priors and posteriors are Laplace where the number 
of dimensions of latent vectors is 128. The training epochs for BMVAE and MMVAE are 
30 and 50. The structures of uni-modal encoders and decoders are shown in Table 6.

Coherence To check whether a pair of generated image and caption matches, the pro-
posed idea is to map generated images and captions into a common vector space. To do so, 
Shi et al. (2019) suggested employing Canonical Correlation Analysis (CCA). Specifically, 

Fig. 3   Examples of CUB data

Table 6   CUB encoders and decoders. CN: Conv2d. BN: BatchNorm2d. RE: RELU. Args: (kernel size, 
stride, padding)

Layer Type In Out Args

Image encoder 1 Linear, ELU 2048 1024
2a Linear, ELU 1024 512
2b Linear, ELU 512 256
4a Linear 256 128
4b Linear 256 128

Image decoder 1 Linear, ELU 128 256
2 Linear, ELU 256 512
3 Linear, ELU 512 1024
4 Linear 1024 2048

Text encoder 1 CN, BN, RE 1 32 (4,2,1)
2 CN, BN, RE 32 64 (4,2,1)
3 CN, BN, RE 64 128 (4,2,1)
4 CN, BN, RE 128 256 ((1,4),(1,2), (0,1))
5 CN, BN, RE 256 512 ((1,4),(1,2),(0,1))
6a CN 512 128 (4,1,0)
6b CN 512 128 (4,1,0)

Text decoder 1 CT N, BN, RE 128 512 (4,1,0)
2 CT N, BN, RE 512 256 ((1,4),(1,2),(0,1))
3 CT N, BN, RE 256 128 ((1,4),(1,2),(0,1))
4 CT N, BN, RE 128 64 (4,2,1)
5 CT N, BN, RE 64 32 (4,2,1)
6 CT N, RE 32 1 (4,2,1)
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generated images are converted into 2048-dimensional feature vectors by pre-trained 
ResNet-101. Generated captions are converted into 300-dimensional vectors by averag-
ing word vectors trained by FastText Bojanowski et  al. (2017). To do the mapping, two 
projection matrices W1 ∈ ℝ

2048×40 and W2 ∈ ℝ
300×40 are trained by maximizing correla-

tions between WT
1
y1 and WT

2
y2 , where y1 and y2 are the feature vectors. After training, when 

there are new pairs of feature vectors, we can do the projection by W1 and W2 and compute 
the correlation as the performance measurement. The random and cross-modal coherence 
results are shown in Table  7. Examples of cross-modal generation are also provided in 
Fig. 4.

6.3 � MNIST‑SVHN‑Text

Here we evaluate our models with data having 3 modalities. The dataset for evaluation 
is MNIST-SVHN-Text proposed by Sutter et  al. (2020). It is constructed by adding text 
modality on the MNIST-SVHN dataset, where the text data are character-level strings of 
digit names (e.g. ‘o’, ‘n’, ‘e’). In order to increase complexity of the text data, random num-
bers of space characters are dynamically inserted in front of the digit names.

In addition to datasets, a notable difference to the settings in Sect. 6.1 is that we con-
duct Gaussian instead of Laplace posteriors for fair comparisons with mmJSD and MVAE 
(Wu & Goodman, 2018). Models trained by the modality-specific framework reviewed in 
Sect.  2.5.2 are also included for comparisons. BMVAE, MVAE, MMVAE, mmJSD are 
trained for 50 epochs. The modality-specific versions of MVAE, MMVAE and mmJSD are 
trained for 100 epochs. The uni-modal encoders and decoders are shown in Table 8.

Table 7   Correlation of images 
(I) and sentences (S) generations. 
The ground truth of random 
coherence is 0.273

The bold values indicate the best performance in average

Random I S S I

BMVAE
M

0.270 0.171 0.210
MMVAE 0.263 0.104 0.135
Uni-modal VAE – 0.028 0.003

Fig. 4   CUB generation results



4347Machine Learning (2022) 111:4329–4357	

1 3

6.3.1 � Latent classification

The classification task is the same as the one introduced in Sect. 6.1.1. However, we can 
now examine the generated samples given data with multiple modalities. To obtain sam-
ples from BMVAEM , we first construct a categorical distribution by normalizing �m,d for 
each latent dimension. For example, if modality 1 and 3 are given, the parameters of the 
categorical distribution in dimension d are �1,d

�1,d+�3,d
 and �3,d

�1,d+�3,d
 . Then, we can conduct ances-

tral sampling to obtain samples from BMVAEM.
To obtain samples from BMVAEP , we first sample mixture weights from the learned 

Dirichlet distributions. Then, as weighted product-of-Gaussian has an analytic form, we 
directly construct the joint posteriors to generate samples for BMVAEP . The evaluation 
results are shown in Table 9.

We first compare BMVAEM with other MoE models, and see that BMVAEM has a clear 
advantage when more modalities are given. Similar results can also be found from the com-
parisons between BMVAEP and other PoE models. The advantages could indicate effec-
tiveness of the learned weights. More concretely, the ideal experts are correctly selected or 
properly weighted via the learned �.

Table 8   MNIST-SVHN-Text 
encoders and decoders. Args: 
(kernel size, stride, padding)

Layer Type In Out Args

MNIST encoder 1 Linear, RELU 784 400
2a Linear 400 20
2b Linear 400 20

MNIST decoder 1 Linear, RELU 20 400
2 Linear, Sigmoid 400 784

SVHN encoder 1 Conv2d, RELU 3 32 (4,2,1)
2 Conv2d, RELU 32 64 (4,2,1)
3 Conv2d, RELU 64 64 (4,2,1)
4 Conv2d, RELU 64 128 (4,2,1)
5a Conv2d 128 20 (4,1,0)
5b Conv2d 128 20 (4,1,0)

SVHN decoder 1 ConvT2d, RELU 20 128 (4,1,0)
2 ConvT2d, RELU 128 64 (4,2,1)
3 ConvT2d, RELU 64 64 (4,2,1)
4 ConvT2d, RELU 64 32 (4,2,1)
5 ConvT2d, Sigmoid 32 3 (4,2,1)

Text encoder 1 Conv1d, RELU 71 128 (1,1,0)
2 Conv1d, RELU 128 128 (4,2,1)
3 Conv1d, RELU 128 128 (4,2,0)
4a Linear 128 20
4b Linear 128 20

Text decoder 1 Linear,RELU 20 128
2 ConvT1d, RELU 128 128 (4,1,0)
3 ConvT1d, RELU 128 128 (4,2,1)
4 ConvT1d, Softmax 128 71 (1,1,0)
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6.3.2 � Coherence

The experiment settings are the same as Sect. 6.1.2 with an exception that we apply a dif-
ferent method for random generation for BMVAE. The motivation is that we observe the 
joint posteriors q�(z) are less similar to the prior p(z) after learning the data. To have more 
effective generation, we follow an idea proposed by Daunhawer et al. (2020) where ex-post 
estimation (Ghosh et al., 2020) is employed. Specifically, we find p̂(z) ≈ q𝛷(z) via density 
estimation and draw samples from p̂(z) instead of p(z) for evaluating random coherence. 
In the experiments, we let p̂(z) be a 10-component Gaussian mixture model with diagonal 
covariance matrices. The results are shown in Table 10.

The results in Table 10 also lead to the conclusions we made in Sect. 6.3.1 with an inter-
esting observation on the performance of MMVAE and mmJSD. As can be seen, the two 
models achieve the best performance in MNIST and Text generation; however, the accu-
racies significantly drop to 30%–48% when generating SVHN. Therefore, the MS learn-
ing framework of the two models becomes essential. On the other hand, BMVAEM and 
BMVAEP both avoid this issue and do not need additional learning algorithms.

Table 9   Classification accuracy 
of sampled latent vectors. The 
provided modalities include 
MNIST (M), SVHN (S) and Text 
(T). The modality specific (MS) 
objectives improve performance 
of MVAE, MMVAE, and 
mmJSD. BMVAE has particular 
advantages when multiple 
modalities are available

The bold values indicate the best performance in average

M S T M,S M,T S,T M,S,T

MVAE 0.85 0.20 0.58 0.80 0.92 0.46 0.90
MMVAE 0.96 0.81 0.99 0.89 0.97 0.90 0.93
mmJSD 0.97 0.82 0.99 0.93 0.99 0.92 0.98
MVAE (MS) 0.86 0.28 0.78 0.82 0.94 0.64 0.92
MMVAE (MS) 0.96 0.81 0.99 0.89 0.98 0.91 0.92
mmJSD (MS) 0.98 0.85 0.99 0.94 0.98 0.94 0.99
BMVAE

M(K=1) 0.96 0.80 0.99 0.94 0.98 0.98 0.96
BMVAE

M(K=10) 0.96 0.74 0.99 0.92 0.98 0.95 0.95
BMVAE

P
0.97 0.82 0.99 0.96 0.99 0.98 0.98

Table 10   Random (R) and cross-modal coherence with modalities MNIST (M), SVHN (S) and Text (T). 
The modality specific (MS) objectives does not always improve performance of MVAE, MMVAE, and 
mmJSD but is able to prevent a significant performance drop (e.g., the S   M column). BMVAE does not suf-
fer from the issue and has advantages on performance when multiple modalities are available

The bold values indicate the best performance in average

R M S M T M S,T S M S T S M,T T M T S T M,S

MVAE 0.72 0.17 0.14 0.22 0.37 0.30 0.86 0.20 0.12 0.22
MMVAE 0.54 0.82 0.99 0.91 0.32 0.30 0.31 0.96 0.83 0.90
mmJSD 0.60 0.82 0.99 0.95 0.37 0.36 0.48 0.97 0.83 0.92
MVAE (MS) 0.74 0.16 0.17 0.25 0.35 0.37 0.85 0.24 0.14 0.26
MMVAE (MS) 0.67 0.77 0.97 0.86 0.88 0.93 0.90 0.82 0.70 0.76
mmJSD (MS) 0.66 0.80 0.97 0.93 0.89 0.93 0.92 0.92 0.79 0.86
BMVAE

M(K=1) 0.66 0.76 0.99 0.97 0.88 0.99 0.92 0.95 0.77 0.93
BMVAE

M(K=10) 0.70 0.72 0.99 0.92 0.91 0.96 0.94 0.91 0.70 0.88
BMVAE

P
0.72 0.80 0.99 0.97 0.90 0.94 0.92 0.97 0.80 0.96
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6.4 � MultiBench

In this subsection, we consider a broader class of models, modalities, and metrics for eval-
uations. We select MultiBench (Liang et  al., 2021), which is a benchmark scoring gen-
eralization across modalities, training or testing complexity, and robustness against noisy 
or missing data. The benchmark was proposed with 15 datasets covering 10 modalities 
and 6 research areas. With a unified pipeline handling multi-modal data processing, mod-
els based on distinct paradigms are possible to be jointly evaluated. In our experiments, 
we select 5 publicly available datasets officially supporting generative models for training, 
and we compare BMVAE with 6 competitors including but not limited to MoE and PoE 
methods.

6.4.1 � Datasets and models

We select datasets that do not have restricted access issues and have been officially tested 
by MultiBench MVAE. The selected datasets are CMU-MOSI (Zadeh et al., 2016), UR-
FUNNY (Hasan et  al., 2019), CMU-MOSEI (Bagher  Zadeh et  al., 2018), MUSTARD 
(Castro et al., 2019) and AV-MNIST (Vielzeuf et al., 2018). Modalities covered by the 5 
datasets are language, image, video, and audio.

Besides MoE and PoE models, we additionally test MFM (Tsai et  al., 2019), PVAE 
(Hsu & Glass, 2018) and late fusion (LF). As introduced in Sect.  2.1, MFM factorizes 
latent representations into modality-specific factors and discriminative factors encod-
ing shared information, where the discriminative factors are learned from labels. Another 
model, PVAE, also learns to find modality-specific and shared factors but does not follow 
the MoE or PoE framework. Instead, PVAE transforms concatenated uni-modal embed-
dings into joint representations, requiring an additional hidden layer and separately learn-
ing uni-modal and multi-modal encoders. The third method, LF, is a baseline method 
adopted by MultiBench. It directly takes concatenation of uni-modal embeddings as the 
multi-modal representations. Despite being a simple method, it shows remarkable perfor-
mance in MultiBench evaluation.

In the experiments, the architectures and parameter sizes of uni-modal encoders and 
decoders are the same across the tested methods, except that VAE-based methods require 
additional layers for reparameterization, and LF does not need decoders. The the architec-
tures and parameters follow the released code.1 The likelihoods we select are all Laplace. 
Regarding importance sampling, we do not set the sample size K > 1 as no improved per-
formance is observed. To obtain mean and variance of model performance, all the experi-
ments are repeated 10 times, and the built-in early-stopping mechanism is always turned 
on.

6.4.2 � Evaluation results

We follow the presentation proposed by MultiBench where the evaluation results are visu-
alized to reveal trade-offs and provide deeper insights. The visualization results are plotted 
in Fig. 5a, b.

1  https://​github.​com/​plian​g279/​Multi​Bench.

https://github.com/pliang279/MultiBench
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Figure  5a is the result summarizing model performance and robustness. The perfor-
mance scores correspond classification accuracies of predicting labels given latent repre-
sentations. Robustness is tested by measuring model performance with increasingly noisy 
data. The robustness can be quantified via computing relative robustness and effective 
robustness proposed by MultiBench. Given noisy data, relative robustness directly meas-
ures model performance while effective robustness measures the rate of performance 
drops. We average relative and effective robustness scores as the final result, and repre-
sent variance of robustness via circle size. Figure 5b is the visualization presenting trade-
off between performance and training speed. The circle size corresponds to variance of 
performance.

From Fig.  5a, b, we confirm that LF is a strong baseline as it shows decent perfor-
mance and robustness in average, while we also note a potential weakness that the vari-
ances are relatively large. We can also observe trade-offs between LF and MFM in terms 

Fig. 5   Trade-off between performance and robustness or between performance and training speed. The size 
of circles in Fig. 5a represents variance of robustness. The size of circles in Fig. 5b represents variance of 
performance

Table 11   Log likelihood of VAE-based models, where M = 10
6 and K = 10

3 . The tested data are the 5 
selected datasets and the covered modalities

The bold values indicate the best performance in average

MVAE MMVAE mmJSD BMVAE
M

BMVAE
P

PVAE

CMU-MOSI Video −1882 −1860 −1884 −1850 −1841 −1709
Audio −6052 −6177 −6064 −6042 −6052 −5806
Language −7828 −7914 −7838 −7914 −7895 −7314

UR-FUNNY Video −9138 −9218 −9126 −9228 −9155 −8226
Audio −2602 −2600 −2497 −2568 −2580 −2055
Language −7822 −7899 −7795 −7904 −7853 −7163

CMU-MOSEI Video −2596 −2647 −2627 −2651 −2604 −2397
Audio −9081 −9093 −9193 −9138 −9184 −8844
Language −9088 −9095 −9063 −9143 −9106 −9049

MUSTARD Video −10.3 M −10.3 M −10.3 M −10.3 M −10.3 M −10.3 M
Audio −0.24 M −0.24 M −0.24 M −0.24 M −0.24 M −0.24 M
Language −7801 −7789 −7812 −7935 −7799 −7126

AV-MNIST Image −25.9K −25.8K −26.0K −25.1K −25.2K −24.9K
Audio −0.57 M −0.57 M −0.57 M −0.57 M −0.58 M −0.42 M



4351Machine Learning (2022) 111:4329–4357	

1 3

of performance, robustness, and training time. The MoE models we discussed in this work 
show good and similar performance and robustness. We also note that the MoE mod-
els have lower variances of robustness when compared to the PoE models, mmJSD and 
BMVAEP . Finally, we confirm that although MMVAE can reach good performance and 
robustness, it requires a significantly long training time.

Finally, we report log-likelihood of the VAE-based models in Table 11 to examine per-
formance of generation. We note that the differences are marginal except for PVAE. The 
reason for achieving higher log-likelihood could be the additional modality-specific rep-
resentations. For example, to generate data with 3 modalities, PVAE takes joint and 3 sets 
of modality-specific representations for decoding, while other models only use joint repre-
sentations. It can be observed that the additional representations effectively improve log-
likelihood. while a potential issue would be handling unexpectedly noisy or missing data.

7 � Analysis of mixture weights

In this section, we analyze the learned mixture weights from multiple aspects. In Sect. 7.1, 
we provide observations and visualizations of the learning results. Sections 7.2 and 7.3 are 
quantitative and qualitative analyses of the weights. The weights we select for analyses in 
Sects. 7.1–7.3 are learned by BMVAEM(k=1) ; however, weights learned by BMVAEM(k>1) 
and BMVAEP also show similar characteristics and do not contradict conclusions we reach. 
In Sect. 7.4, we verify if BMVAE can be trained with fixed and uniform mixture weights. 
Takeaway messages summarizing our observations are provided in respective subsections.

7.1 � Observations and visualizations

We take the weights learned from MNIST-SVHN-Text for analyses, since the data con-
tain explainable attributes such as digit class, style or color scheme. The learned mixture 
weights are visualized in Fig. 6.

In the figure, the learned �m,d for d = 1,… , 20 are presented. Note that the values are 
normalized probabilities, namely, 

∑3

m=1
�m,d = 1 . We can then judge whether a dimen-

sion tends to encode private or public information by observing the normalized values. 
For example, we may conclude that dimension 1, 2 and 11 encode information specific 
to MNIST, SVHN and Text respectively. In contrast, dimension 12 may be more like a 
shared dimension with a slight preference for SVHN. We note that the preference can also 

Fig. 6   Mixture weights learned from MNIST-SVHN-Text
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be meaningful. Let a dimension set DS be {2, 6, 12, 16, 17, 18, 19} . It can be observed that 
the 7 dimensions all prefer SVHN. Also, MNIST and Text are equally weak in DS . With 
these observations we make two assumptions:

Assumption 1  DS is mainly responsible for encoding image styles specific to SVHN, 
which can explain why MNIST and Text are equally uninformative here. It may also imply 
that the specific styles are irrelevant to digit classes.

Assumption 2  Given that dimensions in DS are occupied, the information relevant to digit 
recognition tends to be encoded in the remaining 13 dimensions.

We denote the set of 13 dimensions as DS̄ , and compare it with DS in Sects. 7.2 and 7.3 
to verify the two assumptions.

7.2 � Quantitative analysis

Here we conduct 10-class digit classification to check if digit information is mostly 
encoded in DS̄ . The idea is that if DS̄ are more relevant to digit recognition, the values in 
DS̄ serve as better features for the classification task. To do this, we split vectors sam-
pled from learned posteriors into sub-vectors by DS̄ and DS . A set containing 13-dimen-
sional vectors corresponding to DS̄ and sampled from MNIST, SVHN or Text encoders 
are denoted as ZM

DS̄
 , ZS

DS̄
 , or ZT

DS̄
 respectively. Likewise, we can define sub-vector sets ZM

DS
 , 

ZS
DS

 , and ZT
DS

 . Afterwards, we train a linear classifier and measure the accuracy for each 
sub-vector set. The results are shown in Table 12.

The observations we have are as follows:

–	 ZDS̄
= {ZM

DS̄
, ZS

DS̄
, ZT

DS̄
} significantly outperforms ZDS

 on the classification task. Moreo-
ver, ZDS̄

 generally reproduces the accuracies reported in Table  9. It could indicate 
that digit classes are mainly encoded in DS̄.

–	 We can see that the three encoders all learn to encode digit information in ZDS̄
 instead 

of ZDS
 . It indicates that the three posteriors are successfully aligned with each other.

The second observation could be an expected result for BMVAEP as the DKL(q𝜙m
||q̄) 

objective encourages unifying posteriors. On the other hand, why does BMVAEM can 
still align the posteriors without the additional objective may be unclear.

To see the reason for alignment, let us tentatively assume DS indeed encodes SVHN-
specific styles which are irrelevant to digit classes. It means that the SVHN decoder will 
learn to focus on DS for image reconstruction, while other decoders tend to ignore DS . If 

Table 12   Digit classification accuracy using sub-vectors. The results show that the digit information is 
aligned and encoded in dimension D

S̄

Z
M

D
S̄

Z
S

D
S̄

Z
T

D
S̄

Z
M

D
S

Z
S

D
S

Z
T

D
S

Accuracy 0.95 0.78 0.99 0.25 0.15 0.30



4353Machine Learning (2022) 111:4329–4357	

1 3

the learned weights are positive in DS , at some moments ZM
DS

 or ZT
DS

 will be selected to 
reconstruct SVHN images during training. Given that SVHN-specific styles are mean-
ingless to MNIST and Text, the propagated gradients could be noise for the encoders. It 
may be similar to variational dropout which injects random noise to neurons to achieve 
sparsification. In our case, the MNIST and Text encoders learn to compress information 
to DS̄ . It also explains why SVHN encoder learns digit classes well in DS̄ . Since the 
digit classes are also meaningful to SVHN, the propagated gradients from MNIST or 
Text decoders would not be noise but beneficial information for learning.

In summary, the classification results confirm Assumption 2 that DS̄ encodes informa-
tion relevant to digit recognition. The results could also lead to the following takeaway 
message.

Message 1 Despite no explicit objectives constraining alignment, BMVAE can learn to 
recognize and encode shared information in specific latent dimensions.

(a) (b)

(d)(c)

Fig. 7   Results of conditional generation. Both BMVAE and mmJSD (MS) learns to disentangle digits and 
styles, while BMVAE is able to decide appropriate dimensions for encoding information without supervi-
sion
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7.3 � Qualitative analysis

Here we analyze the learned weights by image generation. In Sect.  7.2, we show DS̄ is 
responsible for the digit class. Here we attempt to show DS is relevant to SVHN-specific 
styles.

The idea is that given a latent vector sampled from the SVHN posterior, we explicitly 
replace the values in DS̄ with random values, then let the SVHN decoder generate an image 
based on the modified vector. Ideally, the generated image would depict a different digit 
while preserving the original style. Conversely, if we choose to replace values in DS with 
random noise, the expected result would be depicting the same digit with a different SVHN 
style. The results are shown in Fig. 7a, b.

In Fig.  7a, each row is generated by replacing values in DS with random noise. The 
noise is sampled from the prior. As can be observed, digits in each row vary but image 
styles are well-preserved. In Fig. 7b, we change to replace values in DS̄ . As expected, a 
sampled digit class can now be depicted in diverse styles.

The results of generation confirm Assumption 1 that information encoded in DS is rel-
evant to style but not the digit labels. It implies that BMVAE can naturally disentangle 
modality-specific features without the need for explicitly designed algorithms such as 
mmJSD (MS). The takeaway messages are as follows.

Message 2 BMVAE can learn to disentangle shared and modality-specific information 
without supervision.

Message 3 The inferred mixture weights effectively indicates how BMVAE distributes 
learned features among latent dimensions.

Table 13   Classification accuracy of sampled latent vectors. Models with superscript u are trained by con-
stant and uniform mixture weights. The dropped performance in the M,S and S,T columns could imply that 
models trained with uniform weights do not effectively preserve multi-modal information after merging

M S T M,S M,T S,T M,S,T

BMVAEu

M
0.96 0.80 0.99 0.88 0.98 0.95 0.94

BMVAE
M

0.96 0.80 0.99 0.94 0.98 0.98 0.96
BMVAEu

P
0.96 0.79 0.99 0.93 0.99 0.97 0.98

BMVAE
P

0.97 0.82 0.99 0.96 0.99 0.98 0.98

Table 14   Coherence evaluation for verifying the impact of learnable weights. The models with uniform 
weights have slight modality collapse issues such as BMVAEu

M
 on S   M and BMVAEu

P
 on M  S

R M S M T M S,T S M S T S M,T T M T S T M,S

BMVAEu

M
0.47 0.76 0.99 0.69 0.55 0.80 0.81 0.94 0.78 0.87

BMVAE
M

0.66 0.76 0.99 0.97 0.88 0.99 0.92 0.95 0.77 0.93
BMVAEu

P
0.73 0.69 0.99 0.94 0.86 0.94 0.92 0.92 0.73 0.90

BMVAE
P

0.72 0.80 0.99 0.97 0.90 0.94 0.92 0.97 0.80 0.96
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7.4 � BMVAE with uniform weights

We investigate whether the learnable mixture weights can be replaced by uniform weights 
when training BMVAE. To do this, we train BMVAEM and BMVAEP with constant 
weights 1

M
 , denoted by BMVAEu

M
 and BMVAEu

P
 , on the MNIST-SVHN-Text dataset. We 

conduct the latent classification and coherence evaluation tasks to examine the trained 
models.

From Table 13, it can be observed that classification performance is degraded if models 
are trained with uniform weights. The degradation is more obvious when multiple modali-
ties are available, implying that the mixture method is not effective enough to preserve 
modality-specific information. From Table 14, it can be observed that BMVAEu

M
 has a sig-

nificant drop in performance and may have the modality collapse issue. The PoE model 
BMVAEu

P
 is also weaker than BMVAEP , while the degradation is relatively small.

We summarize the observations and provide the takeaway messages as follows.
Message 4 Adopting learnable and uneven weights improves model performance in 

general. The advantage is particularly significant on BMVAEM.
Message 5 Forcing mixture weights to be uniform has negative effects on learning 

cross-modality information. In practice, one can observe less informative multi-modal 
latent representations and degraded performance in modality transferring.

Message 6 Learnable and uneven weights can help eliminate the modality collapse 
problem.

8 � Conclusion

In this work, we propose dimension-wise Bayesian inference for multi-modal learning. We 
demonstrate the idea works on both MoE and PoE frameworks. The proposed MoE model, 
BMVAEM , achieves state-of-the-art performance and is efficient to train. Therefore, com-
putational cost is no longer an issue when we employ MoE methods. Regarding the pro-
posed PoE model, BMVAEP , we demonstrate that it achieves state-of-the-art performance 
as well and has theoretical connections to mmJSD and BMVAEM.

In addition to data generation, we reveal that BMVAE does not need a specially-
designed objective such as mmJSD (MS) to encode modal-specific information. Moreover, 
the private and shared features can be described by the inferred mixture weights. We also 
show that the inferred weights are beneficial to expert selection, improving data genera-
tion when multiple modalities are provided. Finally, we demonstrate that diverse mixture 
weights not only disentangle latent factors but also prevent degraded generation.
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