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Abstract
Collective graphical model (CGM) is a probabilistic model that provides a framework for 
analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved 
variables under given observations is one of the essential operations in CGM. Because 
the MAP inference problem is known to be NP-hard in general, the current mainstream 
approach is to solve an alternative problem obtained by approximating the objective func-
tion and applying continuous relaxation. However, this approach has two significant draw-
backs. First, the quality of the solution deteriorates when the values in the count data are 
negligible due to the inaccuracy of Stirling’s approximation. Second, the application of 
continuous relaxation causes the violation of integrality constraints. This paper proposes 
novel algorithms for MAP inference in CGMs on path graphs to overcome these prob-
lems. Our method is based on the discrete difference of convex algorithm (DCA); DCA 
is a general framework to minimize the sum of a convex function and a concave func-
tion by repeatedly minimizing surrogate functions. Utilizing the particular structure of path 
graphs, we efficiently solve the surrogate function minimization by minimum convex cost 
flow algorithms. Furthermore, our approach also leads to a new method of solving another 
important task; MAP inference of the sample size in CGM on path graphs. Our method is 
naturally applicable to this task, allowing us to design very efficient algorithms. Experi-
mental results on synthetic and real-world datasets show the effectiveness of the proposed 
algorithms.
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1 Introduction

In recent years, the importance of aggregated count data, which is calculated from the 
data of multiple individuals, has been increasing (Tanaka et al. 2019; Zhang et al. 2020). 
Although technologies for acquiring individual data such as sensors and GPS have greatly 
advanced, it is still very difficult to handle individual data due to privacy concerns and the 
cost of data collection. However, there are many situations where data aggregated from 
multiple individuals can be obtained and utilized easily. For example, mobile spatial sta-
tistics (Terada et al. 2013), which is the hourly population data of fixed-size square grid 
cells calculated from cell phone network data in Japan, is available for purchase; such data 
is being used for disaster prevention and urban planning (Suzuki et al. 2013). In traffic net-
works, traffic volume data at each point can be obtained more easily by sensors or cameras 
than the trajectories of individual cars, and the data is useful for managing traffic conges-
tion (Morimura et al. 2013; Zhang et al. 2017).

Collective graphical model (CGM) (Sheldon and Dietterich 2011) is a probabilistic 
model to describe aggregated statistics of a sample drawn from a graphical model. CGM 
makes it possible to conduct various practical tasks on aggregated count data, such as 
interpolation of unobserved aggregated count values, denoising of observed count values, 
and parameter learning of the underlying graphical model. Particularly, the case where the 
underlying graph is a path graph is important because CGMs on path graphs can treat time 
series data in which the states of interest follow Markov chains. In fact, most of the real-
world applications of CGMs utilize CGMs on path graphs to represent the collective move-
ment of humans and animals (Du et al. 2014; Sun et al. 2015; Akagi et al. 2018). Detailed 
analyses of time series of collective people movements from limited observations would be 
useful for controlling people flow to avoid congestion and to maintain social distancing in 
urban spaces.

One of the essential operations in CGM is maximum a posteriori (MAP) inference. 
MAP inference is the discrete (combinatorial) optimization problem of finding an assign-
ment of unobserved variables that maximizes the posterior probability under given obser-
vations. MAP inference makes it possible to interpolate missing values of aggregated data 
and estimate more detailed information behind the observations. For example, suppose the 
population distribution of humans in each area and at each time is given as observations. In 
that case, the number of people moving between each time and area with the highest poste-
rior probability can be estimated by performing MAP inference on a CGM. This allows us 
to obtain more detailed information about crowd movements from a series of snapshots of 
population distribution. Another example is population interpolation; by conducting MAP 
inference on a CGM with population distribution at two-time points as input, we can obtain 
population distribution at the time points in between. This allows us to obtain the city’s 
high temporal resolution population dynamics from observations of population distribution 
at limited time points.

Unfortunately, MAP inference for general CGMs has been shown to be NP-hard (Shel-
don et al. 2013) and thus is difficult to solve exactly and efficiently. Therefore, an alterna-
tive approach that solves an approximate problem, which is derived by applying Stirling’s 
approximation and continuous relaxation, has been proposed (Sheldon et al. 2013). Sub-
sequent studies have focused on solving this approximate problem efficiently (Sun et  al. 
2015; Vilnis et al. 2015; Nguyen et al. 2016; Singh et al. 2020).

However, there are inherent problems with this approach to solving the approxi-
mate problem. First, this approach tends to output a solution with a low posterior 
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probability when the values in the count tables are small, because Stirling’s approximation, 
log x! ≈ x log x − x , is inaccurate when x is small. Such a situation frequently occurs when 
the number of values that each variable in the graphical model takes is large, or when the 
sample size is small. Second, since continuous relaxation is applied, the integrality con-
straints of count table values are violated in the output. As a result, values that should be 
integers (e.g., the number of people) are no longer integers, which not only reduces inter-
pretability, but also makes the output less sparse, resulting in high memory consumption to 
maintain the output. It is possible to obtain integer-valued results by rounding the output, 
but this rounding process destroys the sum constraints among the estimated counts, e.g., 
the sum of the count table values at each node may not match the sample size.

To resolve these issues, in this paper, we propose a new method for MAP inference for 
CGMs on path graphs. We first show that the objective function of the problem can be 
expressed as the sum of univariate discrete convex functions and discrete concave func-
tions. Based on this expression, we utilize the idea of the difference of convex algorithm 
(DCA) (An Le Thi and Pham Dinh 2018). DCA is a framework to minimize a function 
expressed as the sum of a convex function and a concave function. In DCA, a solution 
is obtained by repeatedly minimizing a surrogate function that upper-bounds the objec-
tive function, and the objective function value decreases monotonically in each iteration. 
In addition, the algorithm terminates in a finite number of iterations in our case since the 
variables are discrete, not continuous.

The key to make the DCA-based algorithm efficient is a fast minimization algorithm 
for the surrogate function. Because the feasible region of our problem is limited to inte-
ger lattice points, continuous optimization methods such as the gradient descent, which 
are usually used in DCAs, cannot be applied to minimize our surrogate function. Instead, 
we utilize the special structure of path graphs; it enables us to formulate the minimiza-
tion problem of the surrogate function as a combinatorial optimization problem called the 
minimum convex cost flow problem. Fast algorithms for the minimum convex cost flow 
problem are known and we can minimize the surrogate function efficiently by using these 
algorithms.

The proposed method has several practical advantages. First, since the proposed method 
does not use Stirling’s approximation, it offers an accurate inference even when the val-
ues in the count tables are small. This makes it possible to output solutions with much 
higher posterior probability than the approximation-based approach. Second, because the 
proposed method does not apply continuous relaxation, the obtained solution is guaranteed 
to be integer-valued, which results in sparse and interpretable outputs. In Sect. 5, we show 
experimental results gained from synthetic and real-world datasets; they indicate that the 
proposed method outputs higher quality solutions than the existing approach. We show that 
the superiority of the proposed method is much greater when the sample size is not very 
large or the number of states on nodes in the graphical model is large.

Furthermore, our approach also leads to a new method of solving another important 
task; sample size estimation in CGM on path graphs. The sample size is the number of 
individuals in a sample obtained from the original graphical model before aggregation; for 
instance, in human flow analysis, the sample size corresponds to the total number of people 
in the entire space. In most existing CGM studies, the MAP inference problem is solved 
under the assumption that the sample size is given in advance (Sheldon et al. 2013; Sun 
et al. 2015; Singh et al. 2020; Nguyen et al. 2016). However, it is often difficult to know the 
true sample size exactly a priori. This is because the true sample size cannot be obtained 
from the observed aggregate values due to observation noise, or worse, some aggregate 
values may be missing. For example, when dealing with population distribution data of a 
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city, it is possible that the total number of people in the entire city at each time is not con-
stant due to inaccurate observations. In this case, there are several options for the sample 
size, and we have to manually set the appropriate value. This may be a barrier to real-world 
applications of the MAP inference problem of CGMs.

A natural approach to tackle this task is to set a prior distribution for the sample size 
and conduct MAP inference of sample size and unobserved aggregate values simultane-
ously. However, it is not easy to construct an efficient algorithm for this new MAP infer-
ence problem; a naive method is to solve the MAP inference problem with a given sample 
size for all candidate sample sizes and output the solution with the highest posterior prob-
ability among them. But this method requires a lot of computation time because we have to 
solve many MAP inference problems.

Our approach based on DCA and the minimum convex cost flow algorithms can natu-
rally handle the MAP inference problem even when the sample size is not given. The pro-
posed method can estimate the sample size by solving only one MAP inference problem 
and thus can output a solution very efficiently. Experimental results confirm that the pro-
posed method can achieve almost the same objective function values with significantly less 
computational time than the baseline method with a brute force search of sample size.

A preliminary version of this work appeared in the Proceedings of NeurIPS’21 (Akagi 
et al. 2021). The main difference from Akagi et al. (2021) is that the algorithm is extended 
to the problem setting when the sample size is unknown, and the effectiveness of the algo-
rithm has been confirmed by experiments using synthetic and real-world datasets.

2  Related work

2.1  MAP inference for CGMs

Several methods have been proposed for the MAP inference of CGMs, but most of them 
take the approach of solving the approximate problem (Sheldon et  al. 2013), which is 
derived by applying Stirling’s approximation and continuous relaxation. For example, the 
interior point method (Sheldon et al. 2013), projected gradient descent (Vilnis et al. 2015), 
message passing (Sun et al. 2015) and Sinkhorn-Knopp algorithm (Singh et al. 2020) have 
been used to solve the approximate problem. In particular, Nguyen et al. (2016) proposes a 
method to use DCA to solve this approximate problem. Although this approach is similar 
to our proposal in that it uses DCA, the purpose of applying DCA is totally different: our 
focus is to solve the MAP inference problem without using any approximation or continu-
ous relaxation.

One of the few exceptions is the method proposed in Akagi et al. (2020), which solves 
the original MAP inference problem directly without using approximation. Our method 
follows this line of research, but there are two major differences. First, their method can 
only be applied to CGM on a graph with two vertices, and thus applicability is very lim-
ited. Since our method is consistent with this method when applied to CGM on a graph 
with two vertices, our method can be regarded as a generalization of their method. Second, 
their work assumes accurate observations and does not handle observation noise.

Sheldon et al. (2007) solves related collective MAP inference problems on path graphs. 
The problems addressed in this paper are different from ours; their purpose is finding the 
most likely assignments of the entire variables for each individual, while our purpose is 
finding the most likely node and edge contingency tables. In their settings, non-linear terms 
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in the log posterior probability vanish, and the MAP inference problem can be solved eas-
ily by linear optimization approaches.

2.2  Difference of convex algorithm (DCA)

DCA, which is sometimes called Convex Concave Procedure (Yuille and Rangarajan 
2001), is a framework to minimize a function expressed as the sum of a convex function 
and a concave function (An Le Thi and Pham Dinh 2018). DCA was originally proposed as 
a method for optimization in continuous domains. DCA has been used in various machine 
learning fields, such as feature selection (An Le  Thi et  al. 2015), reinforcement learn-
ing (Piot et al. 2014), support vector machines (Xu et al. 2017) and Boltzmann machines 
(Nitanda and Suzuki 2017).

Several studies have applied DCA to discrete optimization problems. This line of 
research is sometimes called discrete DCA (Maehara and Murota 2015). (Narasimhan and 
Bilmes 2005; Iyer and Bilmes 2012) propose algorithms to minimize the sum of a submod-
ular function and a supermodular function. This algorithm is generalized to yield the mini-
mization of the sum of an M/L-convex function and an M/L-concave function (Maehara 
and Murota 2015), where M-convex function and L-convex function are classes of discrete 
convex functions (Murota 1998). Although our work is closely related to these studies, it is 
not part of them. This is because our problem can be regarded as the minimization of the 
sum of two M-convex functions and a separable concave function, and this is not included 
in the class of functions dealt with in Maehara and Murota (2015)1.

3  Collective graphical models

3.1  Collective graphical models in previous studies

Collective graphical model (CGM) is a probabilistic generative model that describes the 
distributions of aggregated statistics of a sample drawn from a certain graphical model 
(Sheldon and Dietterich 2011). Let G = (V ,E) be an undirected tree graph (i.e., a con-
nected graph with no cycles). We consider a pairwise graphical model over discrete ran-
dom variable X ∶= (Xu)u∈V defined by

where �uv(xu, xv) is a local potential function on edge (u, v) and Z ∶=
∑

x

∏
(u,v)∈E �uv(xu, xv) 

is the partition function for normalization. In this paper, we assume that xu takes values on 
the set [R] for all u ∈ V  , where [k] denotes the set {1, 2,… , k} for a positive integer k.

We draw an ordered sample (X(1),… ,X(M)) independently from the graphical model, 
where M is the sample size. Let nu ∶= (nu(i))i∈[R] and nuv ∶= (nuv(i, j))i,j∈[R] , where 
nu(i) ∶= |{m ∣ X(m)

u
= i}| and nuv(i, j) ∶= |{m ∣ X(m)

u
= i, X(m)

v
= j}| . Each entry of nu 

and nuv is the number of occurrences of a particular variable setting (see Fig.  1). We 

(1)Pr(X = x) =
1

Z

∏

(u,v)∈E

�uv(xu, xv),

1 A separable convex function is both L-convex and M-convex, but a sum of two M-convex functions is 
neither M-convex nor L-convex.
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call (nu)u∈V node contingency table and (nuv)(u,v)∈E edge contingency table, and denote 
n ∶= ((nu)u∈V , (nuv)(u,v)∈E) . We assume that observations y ∶= (yu)u∈V are generated by 
adding noise to the node contingency table (nu)u∈V , and the distribution of y is given by

where pui is the noise distribution. An additional assumption is described below.

Assumption 1 For u ∈ V  and i ∈ [R] , log pui(y ∣ n) is a concave function in n.

Assumption 1 is a quite common assumption in CGM studies (Sheldon et al. 2013; Sun 
et  al. 2015). Commonly used noise distributions such as Gaussian distribution 
pui(yu(i) ∣ nu(i)) =

1√
2��2

exp
�−(yu(i)−nu(i))

2

2�2

�
 and Poisson distribution pui(yu(i) ∣ nu(i)) =

nu(i)yu(i)∕yu(i)! ⋅ exp(−nu(i)) satisfy Assumption 1.
It is also possible to consider observation models other than the one described here. For 

example, some observations may be missing, noiseless observations may be obtained, or 
some or all of the elements of the noisy edge contingency table may be observed. For the 
sake of simplicity, we limit ourselves to models where noisy vertex contingency tables are 
observed, but the following description and the proposed method can be generalized to the 
above cases as well.

The MAP inference problem for CGM is to find n that maximizes the posterior prob-
ability Pr(n ∣ y) . The MAP inference problem is the operation of finding the vertex/edge 
contingency table with the highest posterior probability from noisy observations. It is of 
great importance in CGM research because it allows interpolation of missing values in 
aggregate data and estimation of more detailed information hidden behind observations. 
For more specific applications, see the example in Sect. 3.3.

Pr(y ∣ n) =
∏

u∈V

∏

i∈[R]

pui(yu(i) ∣ nu(i)),

Fig. 1  An example of generation process of contingency tables in CGM on a path graph when 
T = 3,R = 3,M = 6
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Since Pr(n ∣ y) = Pr(n, y)∕Pr(y) from Bayes’ rule, it suffices to maximize the joint prob-
ability Pr(n, y) = Pr(n) ⋅ Pr(y ∣ n) . Pr(n) is called CGM distribution and calculated as fol-
lows (Sun et al. 2015):

Here, �(⋅) is the indicator function, �u is the degree of node u in G, and 𝕃ℤ

M
 is the set of pos-

sible contingency tables. Using the above notations, the MAP inference problem can be 
written as

3.2  Prior distribution for sample size

In this paper, we consider both existing problem setups where the sample size is given as 
input and new problem setups where the sample size is not given as input. As we will see 
later, the existing problem setup can be considered a particular case of the new problem 
setup, so we will discuss the new problem setup, i.e., when the sample size is unknown, 
and mention the particular case when necessary.

We set a prior probability distribution of the sample size, Pr(M) = q(M) , where M ≥ 0 
is a random variable which represents the sample size. We make an assumption on the 
prior probability distribution q(M).

Assumption 2 log q(M) + log q(M + 2) ≤ log q(M + 1) holds for all M ∈ ℤ
≥0.2

Many practical probability distributions satisfy Assumption  2; e.g. the discrete 
Gaussian distribution qGauss(M) ∝ exp(−(M − �)2∕2�2) , the Poisson distribution 
qPoisson(M) ∝ exp(�M∕M!) , and the uniform distribution

(2)Pr(n) = F(n) ⋅ 𝕀(n ∈ 𝕃
ℤ

M
),

(3)F(n) ∶=
M!

ZM
⋅

∏
u∈V

∏
i∈[R]

�
nu(i)!

��u−1
∏

(u,v)∈E

∏
i,j∈[R] nuv(i, j)!

⋅

�

(u,v)∈E

�

i,j∈[R]

�uv(i, j)
nuv(i,j),

𝕃
ℤ

M
∶=

{
n ∈ ℤ

|V|R+|E|R2

≥0
∣ M =

∑

i∈[R]

nu(i) (u ∈ V),

nu(i) =
∑

j∈[R]

nuv(i, j) ((u, v) ∈ E, i ∈ [R])
}
.

(4)min
n∈𝕃ℤ

M

− logF(n) − log Pr(y ∣ n).

(5)quniform,U(M) =

{ 1

U
M ∈ {0, 1,… ,U − 1}

0 otherwise

2 This condition is equivalent to discrete concavity of log q(M) , which is defined later in Definition 1. The 
proof of this equivalence is shown in Lemma 7.
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for some positive integer U3.
Note that by setting

we obtain the existing problem setup where the sample size Mgiven is given as input. This 
indicates that our new formulation is a generalization of the existing problem setup. There-
fore, all subsequent discussions are also applicable to existing problem settings.

The posterior distribution of (M,n) under the given observation y is written as 
Pr(M, n ∣ y) = Pr(M, n, y)∕Pr(y) ∝ q(M)Pr(n ∣ M)Pr(y ∣ n) . Therefore, by the same argu-
ment as the derivation of (4), the MAP inference problem can be written as

where

and F(M,n) is the same function as F(n) in (3) with M added to the argument.

3.3  CGMs on path graphs

Hereafter, we focus on CGMs on path graphs, which is the main topic of this paper. 
Path graph PT is an undirected graph whose vertex set is V = [T] and edge set is 
E = {(t, t + 1) ∣ t ∈ [T − 1]} (see Fig. 2). A graphical model (not CGM) on path graph is 
the most basic graphical model that represents a time series generated by a Markov model; 
that is, the current state depends only on the previous state. A CGM on a path graph repre-
sents the distribution of aggregated statistics when there are many individuals whose state 
transition is determined by a Markov model. In the rest of this paper, we use the notation 
nti ∶= nt(i) , ntij ∶= nt,t+1(i, j) , and �tij ∶= �t,t+1(i, j) for simplicity.

We give an example of a CGM on a path graph which models human mobility. Con-
sider that a space is divided into R distinct areas and that M people are moving around 
in the space. The random variable X(m)

t  represents the area to which person m belongs 
at time step t, and the time series X(m) =

(
X
(m)

1
,… ,X

(m)

T

)
 is determined by the graphical 

model p(x) = 1

Z

∏T−1

t=1
�txtxt+1

 . Here, �tij is the affinity between two areas i and j at time step 
t → t + 1 . nti represents the number of people in area i at time step t, and ntij represents the 

qgiven(M) =

{
1 M = Mgiven,

0 otherwise,

(6)min
(M,n)∈𝕃ℤ

− log q(M) − logF(M,n) − log Pr(y ∣ n),

(7)

𝕃
ℤ ∶=

{
(M, n) ∈ ℤ

1+|V|R+|E|R2

≥0
∣ M =

∑

i∈[R]

nu(i) (u ∈ V),

nu(i) =
∑

j∈[R]

nuv(i, j) ((u, v) ∈ E, i ∈ [R])
}

Fig. 2  A path graph PT

3 In this paper, we define log 0 ∶= −∞.
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number of people who moved from area i to j at time step t → t + 1 . We have noisy obser-
vations yti for t ∈ [T] and i ∈ [R] , which are generated by adding noise to nti . The MAP 
inference problem we want to solve is to find the sample size M, the true number of people 
of each area at each time step, (nti)t∈[T],i∈[R] , and the true number of people moving between 
each two areas, (ntij)t∈[T−1],i,j∈[R] , with the highest posterior probability given the observa-
tion (yti)t∈[T],i∈[R].

The MAP inference problem of (M,n) can be formulated as follows from (2), (3), (6), 
(7):

where ftij(z): = log z! − z ⋅ log�tij, g(z): = − log z!, hti(z): = − log pti(yti ∣ z), k(z) = − log q(z) + z log Z, 
Note that Z is the partition function of the original graphical model (see (1)).

We can derive the optimization problem (8) as follows; because

holds on path graphs, we have

from (3). This gives

where C is a constant. We can verify easily that the feasible region of problem (8) is 𝕃ℤ 
defined in (7).

(8)

min
M,n

T−1∑

t=1

∑

i,j∈[R]

ftij(ntij) +

T−1∑

t=2

∑

i∈[R]

g(nti) +

T∑

t=1

∑

i∈[R]

hti(nti)

+k(M) + g(M)

s.t.
∑

i∈[R]

nti = M t ∈ [T],

∑

j∈[R]

ntij = nti t ∈ [T − 1], i ∈ [R],

∑

i∈[R]

ntij = nt+1,j t ∈ [T − 1], j ∈ [R],

ntij, nti,M ∈ ℤ
≥0,

�t =

{
1 if t = 1, T ,

2 otherwise

F(M,n) =
M!

ZM
⋅

∏T−1

t=2

∏
i∈[R] nti!

∏T−1

t=1

∏
i,j∈[R] ntij!

⋅

T−1�

t=1

�

i,j∈[R]

�
ntij

tij

− log q(M) − logF(M,n) − log Pr(y ∣ n)

= − log q(M)− logM! +M log Z −

T−1∑

t=2

∑

i∈[R]

log nti!

+

T−1∑

t=1

∑

i,j∈[R]

log ntij! −

T−1∑

t=1

∑

i,j∈[R]

ntij log�tij −

T∑

t=1

∑

i∈[R]

log pti(y ∣ n)

=

T−1∑

t=1

∑

i,j∈[R]

ftij(ntij) +

T−1∑

t=2

∑

i∈[R]

g(nti) +

T∑

t=1

∑

i∈[R]

hti(nti) + k(M) + g(M) + C,



108 Machine Learning (2023) 112:99–129

1 3

4  Algorithms for MAP Inference Problem for CGMs on Path Graphs

4.1  Application of DCA

To solve problem (8), we propose utilizing the idea of the Difference of Convex Algorithm 
(DCA). Before describing our method, we review a discrete version of DCA (Maehara and 
Murota 2015; Maehara et al. 2018).

DCA is a general framework to solve the minimization problem

where D ⊆ ℤ
d , Q ∶ D → ℝ is a discrete convex function, and R ∶ D → ℝ is a discrete 

concave function. Here, we define the convexity for discrete functions as follows.4

Definition 1 Let D ⊆ ℤ
d . A discrete function f ∶ D → ℝ is called convex if for all x ∈ D , 

there exists an affine function f̄ ∶ ℝ
d
→ ℝ such that

A discrete function f is called concave if −f  is convex.

To solve problem (9), DCA generates a solution sequence x(1), x(2),… by the following 
procedure: 

Step 1  Choose an arbitrary feasible solution x(1) ∈ D and set the iteration counter as 
s ← 1.

Step 2  Find a function R̄(s)
∶ ℝ

d
→ ℝ such that 

 Note that such a function exists since R is discrete concave.
Step 3  Set 

 and s ← s + 1 . Go to Step 2.
 Because

the objective function value monotonically decreases: P(x(1)) ≥ P(x(2)) ≥ ⋯.

(9)min
x∈D

{
P(x) ∶= Q(x) +R(x)

}
,

f̄ (x) = f (x),

f̄ (y) ≤ f (y) (∀y ∈ D).

R̄
(s)
(x(s)) = R(x(s)),

R̄
(s)
(x) ≥ R(x) (∀x ∈ D).

(11)x(s+1) ∈ arg min
x∈D

{
P̄
(s)
(x) ∶= Q(x) + R̄

(s)
(x)

}

P(x(s+1)) ≤ P̄
(s)
(x(s+1)) ≤ P̄

(s)
(x(s)) = P(x(s)),

4 There are several possible definitions of discrete convexity, and the convexity in Definition 1 is equivalent 
to the one called convex extensibility in the previous literature (Murota 1998).
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To apply the DCA framework, the objective function must be expressed as the sum of 
convex and concave functions. The following proposition shows that our MAP inference 
problem in (8) has such a structure.

Proposition 3 Let D be the feasible region of problem  (8), and define discrete functions 
Q ∶ D → ℝ and R ∶ D → ℝ by

Under Assumption 1, Q is discrete convex. R is discrete concave.

The proof is given in the "Appendix". Hereafter, we set functions Q and R as in Proposi-
tion 3. As the objective function of problem (8) is written as P(M, n) = Q(M, n) +R(M, n) , 
we can apply DCA to our problem.

The following proposition explicitly provides an efficiently computable upper bound of 
R we can use in Step 2.

Proposition 4 Define a function R̄(s)
∶ ℝ

d
→ ℝ by

where

and �(s)

ti
 is a real number which satisfies − log(n

(s)

ti
+ 1) ≤ �

(s)

ti
≤ − log n

(s)

ti
 and � (s) is a real 

number which satisfies − log(M(s) + 1) ≤ � (s) ≤ − logM(s) . Then, the function R̄(s) satisfies

Please see the "Appendix" for the proof.

4.2  Minimum cost flow algorithm for the subroutine

The most important and difficult part to derive an efficient DCA-based algorithm is design-
ing efficient algorithms for subproblem (11). To achieve this, we show that the subprob-
lem can be formulated as the Minimum Convex Cost Flow Problem (C-MCFP), which is 
the efficiently solvable subclass of the Minimum Cost Flow Problem (MCFP). The (non-
linear) MCFP is a combinatorial optimization problem on a directed graph G = (V, E) . 
Each node i ∈ V has a supply value bi ∈ ℤ , and each edge (i, j) ∈ E has a cost function 

Q(M,n) ∶=

T−1∑

t=1

∑

i,j∈[R]

ftij(ntij) +

T∑

t=1

∑

i∈[R]

hti(nti) + k(M),

R(M,n) ∶=

T−1∑

t=2

∑

i∈[R]

g(nti) + g(M).

R̄
(s)
(M,n) ∶=

T−1∑

t=2

∑

i∈[R]

ḡ
(s)

ti
(nti) + ḡ(s)(M),

ḡ
(s)

ti
(z) ∶= − log(n

(s)

ti
!) + 𝛼

(s)

ti
⋅ (z − n

(s)

ti
)

ḡ(s)(z) ∶= − log(M(s)!) + 𝛾 (s) ⋅ (z −M(s))

R̄
(s)
(M(s), n(s)) = R(M(s), n(s)),

R̄
(s)
(M, n) ≥ R(M,n) (∀(M,n) ∈ D).
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cij ∶ ℤ
≥0 → ℝ ∪ {+∞} . MCFP is the problem of finding a minimum cost flow on G that 

satisfies the supply constraints at all nodes. MCFP can be described as follows:

Note that z takes only integer values (i.e., z ∈ ℤ
|E| ). A subclass of MCFP in which all 

cost functions are discrete convex functions (see Definition 1) is called the C-MCFP; it is 
known to be efficiently solvable (Ahuja et al. 1993).

The following proposition shows that the subproblem min(M,n)∈D P̄
(s)
(M,n) can be for-

mulated as a C-MCFP.

Proposition 5 Define the MCFP instance as follows:

• the node set V is defined by V ∶= {o, d} ∪ (∪t∈[T](Ut ∪Wt)), where Ut ∶= (ut,i)i∈[R] , 
Wt ∶= (wt,i)i∈[R],

• the edge set E consists of five types of edges,

– edges (o, u1,i, 0) and (wT ,i, d, 0) for i ∈ [R],
– edges (ut,i,wt,i, hti(z)) for t = 1, T  and i ∈ [R],
– edges (ut,i,wt,i, ḡ

(s)

ti
(z) + hti(z)) for t = 2,… , T − 1 and i ∈ [R],

– edges (wt,i, ut+1,i, ftij(z)) for t ∈ [T − 1] and i, j ∈ [R],
– an edge (d, o, k1(z) + ḡ(s)(z)),

   where (u, v, c(z)) represents a directed edge from node u to node v with cost function 
c(z),

• the supply values (bi)i∈V are defined by bv = 0 for v ∈ V.

Let z∗ is an optimal solution of this MCFP instance, and define M∗ by M∗ ∶= z∗
d,o

 , n∗ by 
n∗
ti
∶= z∗

ut,iwt,i
 and n∗

tij
∶= z∗

wt,iut+1,j
 . Then, (M∗, n∗) is an optimal solution of the problem 

min(M,n)∈D P̄
(s)
(M,n) . Furthermore, the MCFP instance belongs to C-MCFP.

The proof is given in the "Appendix". Figure  3 illustrates an example of the MCFP 
instance defined in Proposition 5. The above proposition enables us to solve the subproblem 

min
z∈ℤ

|E|
≥0

∑

(i,j)∈E

cij(zij) s.t.
∑

j∶(i,j)∈E

zij −
∑

j∶(j,i)∈E

zji = bi i ∈ V.

Fig. 3  An example of the MCFP instance defined in Proposition 5 when T = 3 and R = 2
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min(M,n)∈D P̄
(s)
(M,n) efficiently by applying existing algorithms for C-MCFP. A minimum 

cost flow problem such that bv = 0 for all v ∈ V , as with this problem, is called a minimum 
cost circulation problem (Tardos 1985).

4.3  Overall view of the proposed method and time complexity analysis

From the above arguments, we can construct an efficient optimization algorithm, described 
in Algorithm 1, for the MAP inference Problem (8). Under the assumption that the support 
of the prior distribution q(M) is finite, the algorithm is guaranteed to terminate after a finite 
number of iterations because P(M(s), n(s)) monotonically decreases and D is a finite set.

We analyze the time complexity of one iteration of the proposed method (Lines 3–5 in 
Algorithm 1). The computational bottleneck is solving C-MCFP in Line 3. There are sev-
eral algorithms to solve C-MCFP and time complexity varies depending on which one is 
adopted. In this paper, we consider two typical methods, the successive shortest path algo-
rithm (SSP) and the capacity scaling algorithm (CS) (Ahuja et al. 1993).

SSP is an algorithm that successively augments unit flow along the shortest path from 
a supply node (i.e. bi > 0 ) to a demand node (i.e. bi < 0 ) in the residual graph, which is 
an auxiliary graph calculated from the current flow. Given a C-MCFP instance with graph 
G = (V, E) , the shortest path in the residual graph can be computed in O(|E| log |V|) time 
by Dijkstra’s algorithm with a binary heap, and the augmentation of the flow can be done 
in O(|E|) time. The augmentation is performed B ∶= (

∑
i∈V

��bi��)∕2 times totally, so the 
total time complexity is O(B|E| log |V|) . CS resembles SSP, but it differs in that it tries to 
push a large amount of flow, rather than a unit amount of flow, in a single augmentation. 
In CS, the number of shortest path calculations and flow augmentations can be bounded 
O(|E| logU) times, where U ∶= maxi∈V

||bi|| , so the total computational complexity is 
O(|E|2 log |V| logU).

Although bv = 0,∀v ∈ V in the C-MCFP instance constructed in Proposition 5, we have 
to push Mmax flow from o to d beforehand to eliminate the negative cost edge, where Mmax 
is the maximum value M can take (i.e. the maximum value of the support of the prior dis-
tribution q(M) ). Therefore, B = Θ(Mmax) and U = Θ(Mmax) holds in our problem. Because 
|V| = O(TR) and |E| = O(TR2) , the time complexity in one iteration is O(MmaxTR

2 log(TR)) 
when SSP is applied and O(T2R4 log(TR) logMmax) when CS is applied. As a special 
case, the time complexity for the MAP inference problem with a given sample size (the 
problem setting in previous studies) with SSP is O(MgivenTR

2 log(TR)) and with CS is 
O(T2R4 log(TR) logMgiven) where Mgiven is the given sample size, because Mmax = Mgiven . 
These result imply that each method has its own advantages and disadvantages: SSP has 
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small time complexity for T and R, while CS has small time complexity for Mmax or Mgiven . 
This difference is confirmed empirically in Sect. 5.

4.4  Discussions

Here, we discuss why it is possible to construct an efficient algorithm when the graph is 
a path graph. The difficulty of MAP inference in CGM can be decomposed into the fol-
lowing two factors. The first is the non-convexity of the objective function; the objective 
function is the sum of convex functions and concave functions, as expressed in (8), and the 
objective function as a whole is not convex. The second is many constraints; as can be seen 
from (7), the variables M and n has a lot of complex constraints, all of which must be con-
sidered. The proposed method addresses difficulty (i) with the discrete DCA. Difficulty (ii) 
is addressed by restricting the graph to path graphs. An essential property of path graphs 
is that they only contain vertices of degree 2 or less. Because the constraints on vertices of 
degree 2 or less can be expressed as flow conservation laws, we can formulate the problem 
as a minimum convex cost flow problem by constructing an appropriate flow network.

When considering graphical models on tree graphs other than path graphs, there are 
always vertices of degree 3 or higher in the graph, and constraints around these vertices 
cannot be expressed as flow-preserving laws. Therefore, to extend our approach to graphs 
other than path graphs, it is necessary to develop a different method than network flow to 
handle constraints at vertices of degree 3 or higher. We leave this extension to future work.

5  Experiments

We perform experiments to evaluate the effectiveness of the proposed methods. All experi-
ments are conducted on a 64-bit macOS machine with Intel Core i7 CPUs and 16 GB of 
RAM. All algorithms are implemented in C++ (gcc 9.1.0 with -O3 option). Experiments 
are conducted both in the existing problem setting where sample size is given as input and 
in the new problem setting where no sample size is given. The experiments are as follows:

• Experiments using synthetic instances with a given sample size in 5.1,
• Experiments using synthetic instances without a given sample size in 5.2,
• Experiments using real-world instances with and without a given sample size in 5.3,
• Experiments on histogram interpolation, one of the applications of MAP inference, 

with synthetic instances in 5.4.

5.1  Synthetic instances with a given sample size

5.1.1  Settings

We solve randomly generated synthetic instances of the MAP inference problem (8). We 
fix T to 5 and vary the values of R and M. We use two types of potential functions as 
follows. 

1. uniform. �tij is independently drawn from a uniform distribution on the set of integers 
{1, 5, 10}.
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2. distance. We set �tij =
1

|i−j+1| . This potential models the movement of individuals in 
one-dimensional space: the state indices i and j represent coordinates in the space, and 
the closer the two points are, the more likely are movements between them to occur.

The input observations y are generated by the following procedure; first, we gener-
ate independent M samples by Gibbs sampling in the graphical model (Bishop and Nas-
rabadi 2006), then we calculate the true contingency tables ntrue by aggregating the gen-
erated samples, and finally we get y according to the Gaussian observation distribution 
pti(yti ∣ nti) ∝ exp

(
−

(yti−nti)
2

10

)
 . The sample size M is given as input of the algorithms.

To construct surrogate functions in the proposed method, we can choose arbitrary �(s)

ti
 

which satisfies the condition − log(n
(s)

ti
+ 1) ≤ �

(s)

ti
≤ − log n

(s)

ti
 (see Proposition  4). To 

investigate the influence of the choice of �(s)

ti
 , we try three strategies to decide �(s)

ti
 : (1) 

�
(s)

ti
= − log(n

(s)

ti
) , (2) �(s)

ti
= −

1

2
(log(n

(s)

ti
) + log(n

(s)

ti
+ 1)) , (3) �(s)

ti
= − log(n

(s)

ti
+ 1) . We call 

them Proposed (L), Proposed (M), Proposed (R), respectively. Note that when the sample 
size is given, the term k(M) + g(M) in the objective function of (8) can be ignored because 
M is a constant, and it is not necessary to determine � (s).

As the compared method, we use Non-Linear Belief Propagation (NLBP) (Sun et  al. 
2015), which is a message-passing style algorithm to the solve approximate MAP infer-
ence problem derived by applying Stirling’s approximation and continuous relaxation. 
Because the output of NLBP is not integer-valued and log(z!) is defined only if z is an inte-
ger, we cannot calculate the objective function of (8) directly. To address this, we calculate 
it by replacing the term log(z!) by linear interpolation of log(⌊z⌋!) and log(⌈z⌉!) , which is 
given by (⌈z⌉ − z) ⋅ log(⌊z⌋!) + (z − ⌊z⌋) ⋅ log(⌈z⌉!) . Note that although there are various 
algorithms to solve the approximate MAP inference problem (see Sect. 2.1), the objective 
function values attained by these algorithms are the same. This is because the approximate 
problem is a convex optimization problem (Sheldon et al. 2013).

We also calculated and compared the error between the solution output by each algo-
rithm and the ground truth contingency table which was generated by Gibbs sampling 
and aggregation. The error metric we used is normalized absolute error (NAE), which is 
defined as

where ntrue
tij

 is the ground truth value of the edge contingency table and nest
tij

 is the estimated 
value of the edge contingency table. Note that NAE is a metric that has been used fre-
quently in previous studies of CGM (Tanaka et  al. 2018; Akagi et  al. 2018; Iwata and 
Shimizu 2019).

5.1.2  Results

First, we compare the attained objective values and NAEs. The results are shown in 
Table  1. We generate 10 instances for each parameter setting and determined the aver-
age of attained objective function values. Because the objective function P(n) is 
equal to − log Pr(n ∣ y) + const. , P(n) takes both positive and negative values, and 
the difference of the objective function values is essential; when P(n1) − P(n2) = � , 
Pr(n1 ∣ y) = exp(−�) ⋅ Pr(n2 ∣ y) holds.

∑
t∈[T−1]

∑
i∈[R]

∑
j∈[R]

���n
true
tij

− nest
tij

���∑
t∈[T−1]

∑
i∈[R]

∑
j∈[R] n

true
tij

,
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All the proposed methods consistently have smaller objective function values than the 
compared method. The difference tends to be large when R is large and M is small. This 
would be because small values appear in the contingency table more frequently when R is 
large and M is small, and the effect of the inaccuracy of Stirling’s approximation becomes 
larger. Among the proposed methods, proposed (L) achieves the smallest objective func-
tion values in most cases. This finding is considered to be an important guideline for deter-
mining hyperparameters �(s)

ti
.

Furthermore, in most cases, all the proposed methods achieve smaller NAEs than the 
existing method. As with the objective function values, the differences tend to be larger 
when R is large or M is small. This confirms the superior performance of the proposed 
method in terms of estimation accuracy. However, NLBP achieves a slightly smaller NAE 
when R = 10,M = 103 or R = 20,M = 103 with the distance potential. This may be due to 
the fact that the values included in the contingency table are large enough that Stirling’s 
approximation becomes accurate and NLBP is able to output a good solution. Among the 
three proposed methods, there was not much difference in NAEs. This indicates that the 
proposed method is robust with respect to the choice of hyperparameters �(s)

ti
 in terms of 

estimation accuracy.
To compare the characteristics of solutions obtained by proposed (L) and NLBP, we 

solve an instance with R = 20 , M = 102 , and uniform potential by each method. Obtained 
edge contingency tables n1ij are shown in Fig. 4 as heat maps. We also show the edge con-
tingency table obtained by rounding each element of the NLBP solution to the nearest inte-
ger. We observe that the proposed method outputs sparse solutions while the solutions by 
NLBP are blurred and contain a lot of non-zero elements. This difference is quantified by 
“sparsity”, which is calculated by

Sparsity of the output of proposed (L) is 77%, while the sparsity of the output of NLBP is 
0%. This is caused by its application of continuous relaxation and the inaccuracy of Stir-
ling’s approximation around 0. For NLBP (rounded), many near-zero values are rounded 
to 0 and the solution is sparser than the Proposed (L) solution. But the constraints of the 

(12)
(
1.0 −

(# of non - zero elements)

(# of elements)

)
× 100 (%).

Fig. 4  Comparison of solutions yielded by proposed method (L), NLBP, and NLBP (rounded). We solve an 
instance with R = 20 , M = 102 and uniform potential. The obtained edge contingency table n1ij is presented 
as a matrix heatmap with the maximum value of color map 3. Sparsity is defined by (12) and Constraints 
Violation is defined by (13)
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problem (8) are totally violated; for example, the sum of the edge contingency table values 
does not match the sample size. To quantitatively evaluate the constraints violation, we 
compute

for each solution nest (we call this value “constraints violation”). Each term in this formula 
corresponds to a constraint of the optimization problem (8), and this value measures the 
violation of constraints of the optimization problem (8). For the solutions output by Pro-
posed (L) and NLBP, this value is 0, indicating that the constraints are not violated, but 
for NLBP (rounded), the value is 82.0, indicating that the constraints are violated drasti-
cally. In additional experiments, we observed that the outputs of the three methods become 
closer as M increases.

We compare the computation time of each algorithm. As explained in Sect. 4.3, we can 
choose an arbitrary C-MCFP algorithm as the subroutine in the proposed method and the 
time complexity varies depending on the choice. We compare proposed (L) with SSP, pro-
posed (L) with CS, and NLBP.

Figure 5 shows the relationship between input size and computation time. These results 
are consistent with the complexity analysis results in Sect. 4.3; SSP is efficient when R is 
large but becomes inefficient when M is large, and the converse is true for CS. The results 
also suggest that it is important to choose the algorithm depending on the size parameter 
of the input. The proposed method is not much worse than the existing method in terms 
of computation time by choosing an appropriate C-MCFP algorithm according to the size 
of the input. Figure 6 shows the relationship between running time and objective function 
value of each method in instances of R = 20,M = 104 and R = 30,M = 103 with uniform 
potential. These results show that the properly selected proposed method reaches smaller 
objective function values more quickly than the existing method.

(13)
||||||

∑

i∈[R]

nest
1i

−M

||||||
+

∑

i∈[R]

||||||

∑

j∈[R]

nest
1ij

− nest
1i

||||||
+

∑

j∈[R]

||||||

∑

i∈[R]

nest
1ij

− nest
2j

||||||

Fig. 5  The computation time of each algorithm. The values are averages of 10 synthetic instances when 
R is fixed to 20 (left) and M is fixed to 103 (right). T is set 5 and the uniform potential is used. This result 
indicates a trade-off between SSP and CS in terms of computation time depending on the value of M and R 
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5.2  Synthetic instances without a given sample size

5.2.1  Settings

We compared methods for MAP inference problem without a given sample size using ran-
dom instances generated in the same way as in Sect. 5.1. Note that the sample size used to 
generate random instances is not given as input to the algorithms. We use Gaussian distri-
bution pti(yti ∣ nti) ∝ exp

(
− (yti − nti)

2
)
 as the noise distribution and the uniform distribu-

tion quniform,106 (M) defined by (5) as the prior distribution of M.
We prepare two proposed methods; one is to solve the instance of C-MCFP constructed 

in Proposition 5 using SSP (DCA-SSP) and the other is to solve it using CS (DCA-CS). In 
both methods, we set �(s)

ti
= − log(n

(s)

ti
) , � (s) = − logM(s) when constructing the surrogate 

function (see Proposition 5).
Because no methods for MAP inference of the sample size have been proposed so far, 

we use a naive approach to solve the optimization problem (8) as baselines; solving the 
problem for fixed M by the algorithm for the MAP inference problem with a given sample 
size with a brute force search of M ∈ {0, 1,… ,Mmax} . We prepare two baseline methods, 
one using SSP (BF-SSP) and the other using CS (BF-CS), for solving the problem (8) with 
fixed M . We set Mmax = max(10, 2 ⋅

∑R

i=1
y1i).

5.2.2  Results

First, we compare the attained objective values and NAEs by DCA-SSP, DCA-CS, BF-
SSP, BF-CS. The results are shown in Table 2. As shown, the four methods achieve nearly 
identical objective function values and NAEs in all cases. BF-SSP and BF-CS are naive 
methods that conduct brute force searches of the sample size, so the objective function 
value achieved by them is considered to be the smallest among the currently available 
methods. The fact that the proposed methods, DCA-SSP and DCA-CS, achieve almost the 
same objective function values as BF-SSP and BF-CS indicates that the optimization per-
formances of the proposed methods are sufficiently high.

Second, we compare the computation time of the four methods. Figure 7 shows the rela-
tionship between input size and computation time. It can be seen that the two proposed 
methods are much faster than the two baseline methods. In particular, the difference is 

Fig. 6  The relationship between running time and objective function value. The left figure shows the result 
of an instance of R = 20,M = 104 and uniform potential, and right figure shows that of R = 30,M = 103 
and uniform potential. This result shows that the properly selected proposed method reaches smaller objec-
tive function values more quickly than the existing method
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significantly larger when M is large. This is because the proposed method needs to apply 
DCA only once, while the baseline method needs to apply it Mmax times. In the comparison 
between proposed methods, DCA-CS is faster when M is large, and DCA-SSP is faster 
when R is large. This result is consistent with the results of the time complexity analysis.

Overall, the proposed methods achieve almost the same objective function values and 
NAEs as the baseline methods in much smaller computation times, demonstrating the 
effectiveness of the proposed methods.

5.3  Real‑world Instances

We conduct experiments using real-world population datasets in both settings where a sam-
ple size is given and not given.

5.3.1  Settings

The datasets are generated from 8694 car trajectories collected by a car navigation appli-
cation in the Greater Tokyo area, Japan5. We randomly sample M (M = 100, 500, 1000) 
trajectories from this data and create aggregated population data of each area at fixed 
time intervals. The areas are decided by dividing the targeted geospatial space into fixed-
size grid cells. The grid size is set to 10 km × 10 km ( R = 8 × 7 = 56 ) and 5 km × 5 km 
( R = 16 × 13 = 208 ), and time interval is 60 min ( T = 24).

Aggregated population data of humans often contain noise based on the following sce-
narios. The first scenario is that it is difficult to obtain accurate aggregate values due to 
the poor performance of the sensors and equipment used to observe location information. 
The second scenario is that noises are added artificially to aggregate values when pub-
lished to prevent identifying individual information. To take such a situation into account, 
we assume noisy observation. As the noise distribution, we use Gaussian distribution 
pti(yti ∣ nti) ∝ exp

(
−(yti − nti)

2
)
.

Fig. 7  The computation time of the MAP inference methods without  a given sample size in synthetic 
instances. The values are averages of 10 synthetic instances when R is fixed to 20 (left) and M is fixed to 103 
(right). T is set 5 and the uniform potential is used. The result indicates the proposed methods (DCA-SSP 
and DCA-CS) solve the problem much faster than baseline methods (BF-SSP and BF-CS)

5 We use the data collected by the smartphone car navigation application of NAVITIME JAPAN Co., Ltd. 
(http://corporate.navitime.co.jp/en/). The data are collected with consent and appropriately anonymized.
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We construct the potential �tij = exp (− dist (i, j)) , where dist (i, j) is the Euclidean dis-
tance between the centers of cell i and cell j in the grid space. We create 10 instances 
by random sampling and averaged the attained objective function values for each setting. 
We also evaluate the estimation accuracy of the edge contingency table (ntij)t∈[T−1],i,j∈[R] by 
NAE.

We solved the MAP inference problem in both problem settings where the sample size 
is given and not given. In the former setting, the compared methods are proposed (L) and 
NLBP. In addition, we also evaluate the estimation accuracy of NLBP (rounded), which 
is a method that rounds the output of NLBP to integer values. Note that we do not evalu-
ate the objective function values of NLBP (rounded). This is because the output of NLBP 
(rounded) completely violates the constraints on summation in the MAP inference prob-
lem (8) and the objective function value cannot evaluate whether the optimization problem 
is successfully solved or not. In the setting where the sample size is not given, the com-
pared methods are DCA-SSP and DCA-CS, which is explained in Sect. 5.2. The surrogate 
function and the prior distribution for the sample size are the same as those depicted in 
Sect. 5.2.

Table 3  Attained objective function values and NAEs for real-world instances

The top table shows the results for a problem with a given sample size, and the bottom table shows the 
results for a problem without a given sample size. The bottom table also shows the sample sizes estimated 
by each method. For each setting, we generated 10 instances and averages are shown. The smallest values in 
each table are highlighted

M 100 500 1000

R 56 208 56 208 56 208

Obj. Val. Proposed (L) − 3.02e+02 2.97e+02 − 6.61e+03 − 2.62e+03 − 1.70e+04 − 9.76e+03
NLBP 1.30e+03 3.24e+03 − 3.46+03 6.93e+03 − 1.34e+04 4.70e+03
NLBP 

(rounded)
– – – – – –

NAE Proposed (L) 0.690 0.441 1.002 0.829 1.073 0.956
NLBP 1.38 1.544 1.241 1.438 1.209 1.381
NLBP 

(rounded)
0.877 0.870 1.079 0.907 1.128 0.991

M 100 500 1000

R 56 208 56 208 56 208

Obj. Val. DCA-SSP 3.11e+03 3.44e+03 1.06e+04 1.67e+04 1.68e+04 2.94e+04
DCA-CS 3.11e+03 3.45e+03 1.06e+04 1.67e+04 1.68e+04 2.94e+04

NAE DCA-SSP 0.721 0.741 1.003 0.820 1.070 0.947
DCA-CS 0.719 0.745 1.003 0.821 1.070 0.948

Estimated 
M

DCA-SSP 76.0 40.9 491.5 404.9 995.9 922.6
DCA-CS 76.0 40.6 491.6 404.6 995.9 922.1
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5.3.2  Results

Table 3 shows the results. The top table shows the results for a problem with a given sam-
ple size, and the bottom table shows the results for a problem without a given sample size. 
The bottom table also shows the sample sizes estimated by each method.

First, in the top table, we observe that Proposed (L) consistently attain smaller objective val-
ues and NAEs than the existing method. The superiority of the proposed method increase when 
R is large and M is small, and this is the same trend as the results with synthetic data. The NAE 
of NLBP is relatively large; this is due to the fact that small values are assigned to the elements 
of the output that should be 0, which is the same phenomenon seen in Fig. 4. The NAE values 
are improved to some extent by rounding, but the proposed method is still superior.

In the setting where the sample size is not given (the bottom table in Table 3), the two 
proposed methods (DCA-SSP and DCA-CS) achieved similar objective function values 
and NAEs, suggesting that the effect of the method of solving the minimum convex cost 
flow problem on the estimation performance is small. For cases other than M = 100 , the 
proposed method achieves the same level of NAE as the problem setting where the sample 
size is given. This indicates that the proposed method can successfully estimate the sample 
size even when the sample size is not given. Note that it is not very meaningful to compare 
the objective function values between the setting where the sample size is given and not 
because their objective functions are different. For M = 100 , NAEs are worse than in the 
problem setting where the sample size is given. This may be because the estimated sample 
size (the value of “estimated M” in the table) is underestimated compared to the true value. 
When the problem is highly sparse (i.e., M is small and R is large), the sample size tends 
to be underestimated (this tendency is also confirmed in experiments using synthetic data). 
There are possible ways to get around this, such as using a probability distribution that 
assigns more probability to large values as a prior distribution for sample size.

5.4  Histogram interpolation

As an application of MAP inference of CGMs on path graphs, we can interpolate the time series 
of histograms. This application is useful, for example, when the population distribution can only 
be observed at rough time intervals. By estimating the population distribution at fine time intervals 
through interpolation, it will be possible to understand the movement of crowds in more detail.

In this section, we show experimental results on this application and discuss the differ-
ences between the output of the proposed method and that of the existing method.

5.4.1  Settings

First, we briefly explain how to realize interpolation between two histograms by MAP 
inference of CGMs on path graphs. Suppose we are given histogram �1 ∶= [�11,… , �1R] 
at time 1 and the histogram �T ∶= [�T1,… , �TR] at time T. The interpolated histogram �t at 
time t (= 2,… , T − 1) is calculated by the following procedure. 

1. Consider a CGM on a path graph with T vertices.
2. Let y1 = �1 and yT = �T.
3. yt (t = 2,… , T − 1) is treated as a missing value. This can be achieved by setting 

hti(z) = 0 (t = 2,… , T − 1, i ∈ [R]) in the objective function of the problem (8).
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4. Find a solution n∗ to the MAP inference problem under an appropriate potential �.
5. Obtain an interpolation result by �ti = n∗

ti
(t = 2,… , T − 1, i ∈ [R]).

In our experiment, we consider a grid space of size 5 × 5 = 25 (= R) and a histogram 
� ∶= [�1,… , �R] with a value �i for each cell i (= 1,… ,R) . To get interpolation results 
which consider the geometric structure defined by Euclidean distance in the grid space, we 
set the potential �tij = exp(−(ri − rj)

2 − (ci − cj)
2)) , where (ri, ci) is the two-dimensional 

coordinate of the center of cell i in the grid space. We set T = 6 and use Gaussian distribu-
tion pti(yti ∣ nti) ∝ exp(−5(yti − nti)

2) for the noise distributions at t = 1, T  . The sample size 
M is given as input, and M is set to 20.

5.4.2  Results

The results are shown in Fig. 8. Note that Fig. 8 illustrates different objects from what is 
shown in Figs  4; 8 illustrates the interpolated node contingency table values nti as two-
dimensional grid spaces, while Fig. 4 illustrate edge contingency table values n1ij as matri-
ces. As shown in the figure, NLBP tends to assign non-zero values to many cells, while 
proposed (L) assigns non-zero values to a small number of cells, resulting in sparse solu-
tions. Moreover, the outputs of the proposed (L) are integer-valued while those of NLBP 
are not. This characteristic of the proposed method is beneficial for interpretability when 
the histogram values are the numbers of countable objects (e.g., the number of people in 
the area). The figure also describes the objective function values achieved. In all cases, the 
objective function values achieved by the proposed method are much smaller than those by 
NLBP, which confirms that the proposed method is able to output interpolation results with 
large posterior probabilities. Note that the sparse and sharp nature of the output of the pro-
posed method may mislead the readers to believe that there is a solution with a posteriori 
probability significantly higher than the others; there are many solutions with almost iden-
tical posterior probabilities around the MAP solution in the MAP inference problem we are 
solving here. Care should be taken when interpreting the output of the proposed method.

6  Conclusion

In this paper, we propose a non-approximate method to solve the MAP inference problem 
for CGMs on path graphs. Our algorithm is based on an application of DCA. In the algo-
rithm, surrogate functions can be constructed in closed-form and minimized efficiently by 
C-MCFP algorithms. Our method is naturally applicable to problem settings where sample 
size is not given as input. Experimental results show the effectiveness of our algorithms 
both in the quality of solutions and computation time.

Fig. 8  Three examples of interpolation results yielded by each method. In each example, three sequences of 
histograms in the two-dimensional grid space are presented; the first row shows the input histograms �1 and 
�T , the second row shows the interpolation results obtained by proposed (L), and the third row shows the 
interpolation results obtained by NLBP

▸
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Appendix A Proofs

A.1 Proof of Proposition 3

Proof First, we prove two lemmas.

Lemma 6 For i = 1,… , n , let �i ∶ ℤ → ℝ be a discrete convex function. Then, the function 
� ∶ ℤ

n
→ ℝ defined by

is also discrete convex.

Proof Fix z = (z1,… , zn) arbitrarily. By the assumption, we have affine functions 
�̄�1,… , �̄�n ∶ ℝ → ℝ such that

By defining �̄� ∶ ℝ
n
→ ℝ by

we have an affine function that shows the discrete convexity of � .   ◻

Lemma 7 Let � ∶ ℤ → ℝ be a discrete function. The function � is discrete convex if and 
only if the following holds for all z ∈ ℤ:

Proof ⟹ part: Assume that � is discrete convex. Fix z ∈ ℤ arbitrarily, and we have an 
affine function �̄� such that

We then obtain the desired results as follows:

where the first equality holds since �̄� is affine.
⟸ part: Assume that (A1) holds for all z ∈ ℤ . Fix x ∈ ℤ arbitrarily, and define an aff-

ine function �̄� ∶ ℝ → ℝ by

We have �̄�(x) = 𝜙(x) . To prove the discrete convexity of � , it suffices to show that 
�̄�(y) ≤ 𝜙(y) for all y ∈ ℤ . For y > x , since

�(z1,… , zn) =

n∑

i=1

�i(zi)

�̄�i(zi) = 𝜙i(zi),

�̄�i(y) ≤ 𝜙i(y) (∀y ∈ ℤ).

�̄�(y1,… , yn) =

n∑

i=1

�̄�i(yi),

(A1)�(z + 1) + �(z − 1) ≥ 2�(z).

�̄�(z) = 𝜙(z),

�̄�(y) ≤ 𝜙(y) (∀y ∈ ℤ).

𝜙(z + 1) + 𝜙(z − 1) ≥ �̄�(z + 1) + �̄�(z − 1) = 2�̄�(z) = 2𝜙(z),

�̄�(z) = (𝜙(x + 1) − 𝜙(x))(z − x) + 𝜙(x).
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by (A1), we obtain the desired inequality as follows:

For y < x , it follows from the same argument that �̄�(y) ≤ 𝜙(y) .   ◻

From Lemma 6, it suffices to show that ftij(z),−g(z), hti(z), k(z) are univarite discrete con-
vex functions. From Lemma 7, the proof is completed by showing

The inequation (A2) holds because

The inequation (A3) holds because

The inequation (A4) holds because − log
[
pti(yti ∣ z)

]
 is a continuous convex function in z 

from Assumption 1. The inequation (A5) holds from Assumption 2.   ◻

A.2 Proof of Proposition 4

Proof First, we show that

holds for arbitrary w ∈ ℤ
≥0 , when − log(w + 1) ≤ � ≤ − logw . When z ≥ w,

�(x + 1) − �(x) ≤ �(x + 2) − �(x + 1) ≤ ⋯ ≤ �(y) − �(y − 1)

�̄�(y) = 𝜙(x) + (𝜙(x + 1) − 𝜙(x))(y − x) = 𝜙(x) +

y−1∑

i=x

(𝜙(x + 1) − 𝜙(x))

≤ 𝜙(x) +

y−1∑

i=x

(𝜙(i + 1) − 𝜙(i)) = 𝜙(y).

(A2)ftij(z + 2) + ftij(z) ≥ 2ftij(z + 1) ∀z ∈ ℤ,

(A3)−g(z + 2) − g(z) ≥ −2g(z + 1) ∀z ∈ ℤ,

(A4)hti(z + 2) + hti(z) ≥ 2hti(z + 1) ∀z ∈ ℤ,

(A5)k(z + 2) + k(z) ≥ 2k(z + 1) ∀z ∈ ℤ.

ftij(z + 2) + ftij(z) − 2ftij(z + 1)

= log(z + 2)! − (z + 2) log�tij + log z! − z log�tij − 2 log(z + 1)! + 2(z + 1) log�tij

= log(z + 2) − log(z + 1) ≥ 0.

− gtij(z + 2) − gtij(z) + 2gtij(z + 1)

= log(z + 2)! + log z! − 2 log(z + 1)!

= log(z + 2) − log(z + 1) ≥ 0.

(A6)− log(w!) + � ⋅ (z − w) ≥ − log(z!), ∀z ∈ ℤ≥0

− log(w!) + � ⋅ (z − w) + log(z!) =

z∑

k=w+1

(� + log k) ≥ 0
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holds because � + log(w + 1) ≥ 0 . When z < w,

holds because −� − logw ≥ 0 . Thus, inequality (A6) holds.
Substituting w = n

(s)

ti
 and w = M(s) in (A6), we get ḡ(s)

ti
(z) ≥ g(z) and ḡ(s)(z) ≥ g(z) for all 

z ∈ ℤ
≥0 . This yields

Furthermore, since ḡ(s)
ti
(n

(s)

ti
) = g(n

(s)

ti
) and ḡ(s)(M(s)) = g(M(s)) from simple calculation, we 

get R̄(s)
(M(s), n(s)) = R(M(s), n(s)) .   ◻

A.3 Proof of Proposition 5

Proof There is a one-to-one correspondence between a feasible solution to the problem (8), 
(M,n) , and a feasible solution to the MCFP instance constructed, z , under the relationship 
M = zd,o, nti = zut,iwt,i

 and ntij = zwt,iut+1,j
 ; the constraint 

∑
i∈[R] nti = M corresponds to the 

flow conservation rule at node o and d, the constraint 
∑

j∈[R] ntij = nti corresponds to the 
flow conservation rule at node wt,i and the constraint 

∑
i∈[R] ntij = ni+1,j corresponds to the 

flow conservation rule at node ut+1,j . Moreover, corresponding (M,n) and z have the same 
objective function value in problem (8) and the MCFP instance, respectively. These facts 
yield that (M∗, n∗) is the optimum solution of the problem (8). Because all the cost func-
tions are discrete convex (this can be easily verified by (A2, A3, A4, A5) and definition of 
ḡ
(s)

ti
(z) and ḡ(s)(z) in Proposition 4), the constructed instance belongs to C-MCFP.   ◻
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− log(w!) + � ⋅ (z − w) + log(z!)
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(−� − log k) ≥ 0

R̄
(s)
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t=2
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