
Vol.:(0123456789)

Machine Learning (2023) 112:99–129
https://doi.org/10.1007/s10994-022-06275-9

1 3

MAP inference algorithms without approximation
for collective graphical models on path graphs via discrete
difference of convex algorithm

Yasunori Akagi1 · Naoki Marumo2 · Hideaki Kim1 · Takeshi Kurashima1 ·
Hiroyuki Toda1

Received: 13 April 2022 / Revised: 21 September 2022 / Accepted: 30 October 2022 /
Published online: 8 December 2022
© The Author(s) 2022

Abstract
Collective graphical model (CGM) is a probabilistic model that provides a framework for
analyzing aggregated count data. Maximum a posteriori (MAP) inference of unobserved
variables under given observations is one of the essential operations in CGM. Because
the MAP inference problem is known to be NP-hard in general, the current mainstream
approach is to solve an alternative problem obtained by approximating the objective func-
tion and applying continuous relaxation. However, this approach has two significant draw-
backs. First, the quality of the solution deteriorates when the values in the count data are
negligible due to the inaccuracy of Stirling’s approximation. Second, the application of
continuous relaxation causes the violation of integrality constraints. This paper proposes
novel algorithms for MAP inference in CGMs on path graphs to overcome these prob-
lems. Our method is based on the discrete difference of convex algorithm (DCA); DCA
is a general framework to minimize the sum of a convex function and a concave func-
tion by repeatedly minimizing surrogate functions. Utilizing the particular structure of path
graphs, we efficiently solve the surrogate function minimization by minimum convex cost
flow algorithms. Furthermore, our approach also leads to a new method of solving another
important task; MAP inference of the sample size in CGM on path graphs. Our method is
naturally applicable to this task, allowing us to design very efficient algorithms. Experi-
mental results on synthetic and real-world datasets show the effectiveness of the proposed
algorithms.

Keywords Collective graphical model · Network flow · Discrete difference of convex
algorithm

Editor: Pradeep Ravikumar.

 * Yasunori Akagi
 yasunori.akagi.cu@hco.ntt.co.jp

Extended author information available on the last page of the article

http://orcid.org/0000-0001-7205-1307
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06275-9&domain=pdf

100 Machine Learning (2023) 112:99–129

1 3

1 Introduction

In recent years, the importance of aggregated count data, which is calculated from the
data of multiple individuals, has been increasing (Tanaka et al. 2019; Zhang et al. 2020).
Although technologies for acquiring individual data such as sensors and GPS have greatly
advanced, it is still very difficult to handle individual data due to privacy concerns and the
cost of data collection. However, there are many situations where data aggregated from
multiple individuals can be obtained and utilized easily. For example, mobile spatial sta-
tistics (Terada et al. 2013), which is the hourly population data of fixed-size square grid
cells calculated from cell phone network data in Japan, is available for purchase; such data
is being used for disaster prevention and urban planning (Suzuki et al. 2013). In traffic net-
works, traffic volume data at each point can be obtained more easily by sensors or cameras
than the trajectories of individual cars, and the data is useful for managing traffic conges-
tion (Morimura et al. 2013; Zhang et al. 2017).

Collective graphical model (CGM) (Sheldon and Dietterich 2011) is a probabilistic
model to describe aggregated statistics of a sample drawn from a graphical model. CGM
makes it possible to conduct various practical tasks on aggregated count data, such as
interpolation of unobserved aggregated count values, denoising of observed count values,
and parameter learning of the underlying graphical model. Particularly, the case where the
underlying graph is a path graph is important because CGMs on path graphs can treat time
series data in which the states of interest follow Markov chains. In fact, most of the real-
world applications of CGMs utilize CGMs on path graphs to represent the collective move-
ment of humans and animals (Du et al. 2014; Sun et al. 2015; Akagi et al. 2018). Detailed
analyses of time series of collective people movements from limited observations would be
useful for controlling people flow to avoid congestion and to maintain social distancing in
urban spaces.

One of the essential operations in CGM is maximum a posteriori (MAP) inference.
MAP inference is the discrete (combinatorial) optimization problem of finding an assign-
ment of unobserved variables that maximizes the posterior probability under given obser-
vations. MAP inference makes it possible to interpolate missing values of aggregated data
and estimate more detailed information behind the observations. For example, suppose the
population distribution of humans in each area and at each time is given as observations. In
that case, the number of people moving between each time and area with the highest poste-
rior probability can be estimated by performing MAP inference on a CGM. This allows us
to obtain more detailed information about crowd movements from a series of snapshots of
population distribution. Another example is population interpolation; by conducting MAP
inference on a CGM with population distribution at two-time points as input, we can obtain
population distribution at the time points in between. This allows us to obtain the city’s
high temporal resolution population dynamics from observations of population distribution
at limited time points.

Unfortunately, MAP inference for general CGMs has been shown to be NP-hard (Shel-
don et al. 2013) and thus is difficult to solve exactly and efficiently. Therefore, an alterna-
tive approach that solves an approximate problem, which is derived by applying Stirling’s
approximation and continuous relaxation, has been proposed (Sheldon et al. 2013). Sub-
sequent studies have focused on solving this approximate problem efficiently (Sun et al.
2015; Vilnis et al. 2015; Nguyen et al. 2016; Singh et al. 2020).

However, there are inherent problems with this approach to solving the approxi-
mate problem. First, this approach tends to output a solution with a low posterior

101Machine Learning (2023) 112:99–129

1 3

probability when the values in the count tables are small, because Stirling’s approximation,
log x! ≈ x log x − x , is inaccurate when x is small. Such a situation frequently occurs when
the number of values that each variable in the graphical model takes is large, or when the
sample size is small. Second, since continuous relaxation is applied, the integrality con-
straints of count table values are violated in the output. As a result, values that should be
integers (e.g., the number of people) are no longer integers, which not only reduces inter-
pretability, but also makes the output less sparse, resulting in high memory consumption to
maintain the output. It is possible to obtain integer-valued results by rounding the output,
but this rounding process destroys the sum constraints among the estimated counts, e.g.,
the sum of the count table values at each node may not match the sample size.

To resolve these issues, in this paper, we propose a new method for MAP inference for
CGMs on path graphs. We first show that the objective function of the problem can be
expressed as the sum of univariate discrete convex functions and discrete concave func-
tions. Based on this expression, we utilize the idea of the difference of convex algorithm
(DCA) (An Le Thi and Pham Dinh 2018). DCA is a framework to minimize a function
expressed as the sum of a convex function and a concave function. In DCA, a solution
is obtained by repeatedly minimizing a surrogate function that upper-bounds the objec-
tive function, and the objective function value decreases monotonically in each iteration.
In addition, the algorithm terminates in a finite number of iterations in our case since the
variables are discrete, not continuous.

The key to make the DCA-based algorithm efficient is a fast minimization algorithm
for the surrogate function. Because the feasible region of our problem is limited to inte-
ger lattice points, continuous optimization methods such as the gradient descent, which
are usually used in DCAs, cannot be applied to minimize our surrogate function. Instead,
we utilize the special structure of path graphs; it enables us to formulate the minimiza-
tion problem of the surrogate function as a combinatorial optimization problem called the
minimum convex cost flow problem. Fast algorithms for the minimum convex cost flow
problem are known and we can minimize the surrogate function efficiently by using these
algorithms.

The proposed method has several practical advantages. First, since the proposed method
does not use Stirling’s approximation, it offers an accurate inference even when the val-
ues in the count tables are small. This makes it possible to output solutions with much
higher posterior probability than the approximation-based approach. Second, because the
proposed method does not apply continuous relaxation, the obtained solution is guaranteed
to be integer-valued, which results in sparse and interpretable outputs. In Sect. 5, we show
experimental results gained from synthetic and real-world datasets; they indicate that the
proposed method outputs higher quality solutions than the existing approach. We show that
the superiority of the proposed method is much greater when the sample size is not very
large or the number of states on nodes in the graphical model is large.

Furthermore, our approach also leads to a new method of solving another important
task; sample size estimation in CGM on path graphs. The sample size is the number of
individuals in a sample obtained from the original graphical model before aggregation; for
instance, in human flow analysis, the sample size corresponds to the total number of people
in the entire space. In most existing CGM studies, the MAP inference problem is solved
under the assumption that the sample size is given in advance (Sheldon et al. 2013; Sun
et al. 2015; Singh et al. 2020; Nguyen et al. 2016). However, it is often difficult to know the
true sample size exactly a priori. This is because the true sample size cannot be obtained
from the observed aggregate values due to observation noise, or worse, some aggregate
values may be missing. For example, when dealing with population distribution data of a

102 Machine Learning (2023) 112:99–129

1 3

city, it is possible that the total number of people in the entire city at each time is not con-
stant due to inaccurate observations. In this case, there are several options for the sample
size, and we have to manually set the appropriate value. This may be a barrier to real-world
applications of the MAP inference problem of CGMs.

A natural approach to tackle this task is to set a prior distribution for the sample size
and conduct MAP inference of sample size and unobserved aggregate values simultane-
ously. However, it is not easy to construct an efficient algorithm for this new MAP infer-
ence problem; a naive method is to solve the MAP inference problem with a given sample
size for all candidate sample sizes and output the solution with the highest posterior prob-
ability among them. But this method requires a lot of computation time because we have to
solve many MAP inference problems.

Our approach based on DCA and the minimum convex cost flow algorithms can natu-
rally handle the MAP inference problem even when the sample size is not given. The pro-
posed method can estimate the sample size by solving only one MAP inference problem
and thus can output a solution very efficiently. Experimental results confirm that the pro-
posed method can achieve almost the same objective function values with significantly less
computational time than the baseline method with a brute force search of sample size.

A preliminary version of this work appeared in the Proceedings of NeurIPS’21 (Akagi
et al. 2021). The main difference from Akagi et al. (2021) is that the algorithm is extended
to the problem setting when the sample size is unknown, and the effectiveness of the algo-
rithm has been confirmed by experiments using synthetic and real-world datasets.

2 Related work

2.1 MAP inference for CGMs

Several methods have been proposed for the MAP inference of CGMs, but most of them
take the approach of solving the approximate problem (Sheldon et al. 2013), which is
derived by applying Stirling’s approximation and continuous relaxation. For example, the
interior point method (Sheldon et al. 2013), projected gradient descent (Vilnis et al. 2015),
message passing (Sun et al. 2015) and Sinkhorn-Knopp algorithm (Singh et al. 2020) have
been used to solve the approximate problem. In particular, Nguyen et al. (2016) proposes a
method to use DCA to solve this approximate problem. Although this approach is similar
to our proposal in that it uses DCA, the purpose of applying DCA is totally different: our
focus is to solve the MAP inference problem without using any approximation or continu-
ous relaxation.

One of the few exceptions is the method proposed in Akagi et al. (2020), which solves
the original MAP inference problem directly without using approximation. Our method
follows this line of research, but there are two major differences. First, their method can
only be applied to CGM on a graph with two vertices, and thus applicability is very lim-
ited. Since our method is consistent with this method when applied to CGM on a graph
with two vertices, our method can be regarded as a generalization of their method. Second,
their work assumes accurate observations and does not handle observation noise.

Sheldon et al. (2007) solves related collective MAP inference problems on path graphs.
The problems addressed in this paper are different from ours; their purpose is finding the
most likely assignments of the entire variables for each individual, while our purpose is
finding the most likely node and edge contingency tables. In their settings, non-linear terms

103Machine Learning (2023) 112:99–129

1 3

in the log posterior probability vanish, and the MAP inference problem can be solved eas-
ily by linear optimization approaches.

2.2 Difference of convex algorithm (DCA)

DCA, which is sometimes called Convex Concave Procedure (Yuille and Rangarajan
2001), is a framework to minimize a function expressed as the sum of a convex function
and a concave function (An Le Thi and Pham Dinh 2018). DCA was originally proposed as
a method for optimization in continuous domains. DCA has been used in various machine
learning fields, such as feature selection (An Le Thi et al. 2015), reinforcement learn-
ing (Piot et al. 2014), support vector machines (Xu et al. 2017) and Boltzmann machines
(Nitanda and Suzuki 2017).

Several studies have applied DCA to discrete optimization problems. This line of
research is sometimes called discrete DCA (Maehara and Murota 2015). (Narasimhan and
Bilmes 2005; Iyer and Bilmes 2012) propose algorithms to minimize the sum of a submod-
ular function and a supermodular function. This algorithm is generalized to yield the mini-
mization of the sum of an M/L-convex function and an M/L-concave function (Maehara
and Murota 2015), where M-convex function and L-convex function are classes of discrete
convex functions (Murota 1998). Although our work is closely related to these studies, it is
not part of them. This is because our problem can be regarded as the minimization of the
sum of two M-convex functions and a separable concave function, and this is not included
in the class of functions dealt with in Maehara and Murota (2015)1.

3 Collective graphical models

3.1 Collective graphical models in previous studies

Collective graphical model (CGM) is a probabilistic generative model that describes the
distributions of aggregated statistics of a sample drawn from a certain graphical model
(Sheldon and Dietterich 2011). Let G = (V ,E) be an undirected tree graph (i.e., a con-
nected graph with no cycles). We consider a pairwise graphical model over discrete ran-
dom variable X ∶= (Xu)u∈V defined by

where �uv(xu, xv) is a local potential function on edge (u, v) and Z ∶=
∑

x

∏
(u,v)∈E �uv(xu, xv)

is the partition function for normalization. In this paper, we assume that xu takes values on
the set [R] for all u ∈ V , where [k] denotes the set {1, 2,… , k} for a positive integer k.

We draw an ordered sample (X(1),… ,X(M)) independently from the graphical model,
where M is the sample size. Let nu ∶= (nu(i))i∈[R] and nuv ∶= (nuv(i, j))i,j∈[R] , where
nu(i) ∶= |{m ∣ X(m)

u
= i}| and nuv(i, j) ∶= |{m ∣ X(m)

u
= i, X(m)

v
= j}| . Each entry of nu

and nuv is the number of occurrences of a particular variable setting (see Fig. 1). We

(1)Pr(X = x) =
1

Z

∏

(u,v)∈E

�uv(xu, xv),

1 A separable convex function is both L-convex and M-convex, but a sum of two M-convex functions is
neither M-convex nor L-convex.

104 Machine Learning (2023) 112:99–129

1 3

call (nu)u∈V node contingency table and (nuv)(u,v)∈E edge contingency table, and denote
n ∶= ((nu)u∈V , (nuv)(u,v)∈E) . We assume that observations y ∶= (yu)u∈V are generated by
adding noise to the node contingency table (nu)u∈V , and the distribution of y is given by

where pui is the noise distribution. An additional assumption is described below.

Assumption 1 For u ∈ V and i ∈ [R] , log pui(y ∣ n) is a concave function in n.

Assumption 1 is a quite common assumption in CGM studies (Sheldon et al. 2013; Sun
et al. 2015). Commonly used noise distributions such as Gaussian distribution
pui(yu(i) ∣ nu(i)) =

1√
2��2

exp
�−(yu(i)−nu(i))

2

2�2

�
 and Poisson distribution pui(yu(i) ∣ nu(i)) =

nu(i)yu(i)∕yu(i)! ⋅ exp(−nu(i)) satisfy Assumption 1.
It is also possible to consider observation models other than the one described here. For

example, some observations may be missing, noiseless observations may be obtained, or
some or all of the elements of the noisy edge contingency table may be observed. For the
sake of simplicity, we limit ourselves to models where noisy vertex contingency tables are
observed, but the following description and the proposed method can be generalized to the
above cases as well.

The MAP inference problem for CGM is to find n that maximizes the posterior prob-
ability Pr(n ∣ y) . The MAP inference problem is the operation of finding the vertex/edge
contingency table with the highest posterior probability from noisy observations. It is of
great importance in CGM research because it allows interpolation of missing values in
aggregate data and estimation of more detailed information hidden behind observations.
For more specific applications, see the example in Sect. 3.3.

Pr(y ∣ n) =
∏

u∈V

∏

i∈[R]

pui(yu(i) ∣ nu(i)),

Fig. 1 An example of generation process of contingency tables in CGM on a path graph when
T = 3,R = 3,M = 6

105Machine Learning (2023) 112:99–129

1 3

Since Pr(n ∣ y) = Pr(n, y)∕Pr(y) from Bayes’ rule, it suffices to maximize the joint prob-
ability Pr(n, y) = Pr(n) ⋅ Pr(y ∣ n) . Pr(n) is called CGM distribution and calculated as fol-
lows (Sun et al. 2015):

Here, �(⋅) is the indicator function, �u is the degree of node u in G, and 𝕃ℤ

M
 is the set of pos-

sible contingency tables. Using the above notations, the MAP inference problem can be
written as

3.2 Prior distribution for sample size

In this paper, we consider both existing problem setups where the sample size is given as
input and new problem setups where the sample size is not given as input. As we will see
later, the existing problem setup can be considered a particular case of the new problem
setup, so we will discuss the new problem setup, i.e., when the sample size is unknown,
and mention the particular case when necessary.

We set a prior probability distribution of the sample size, Pr(M) = q(M) , where M ≥ 0
is a random variable which represents the sample size. We make an assumption on the
prior probability distribution q(M).

Assumption 2 log q(M) + log q(M + 2) ≤ log q(M + 1) holds for all M ∈ ℤ
≥0.2

Many practical probability distributions satisfy Assumption 2; e.g. the discrete
Gaussian distribution qGauss(M) ∝ exp(−(M − �)2∕2�2) , the Poisson distribution
qPoisson(M) ∝ exp(�M∕M!) , and the uniform distribution

(2)Pr(n) = F(n) ⋅ 𝕀(n ∈ 𝕃
ℤ

M
),

(3)F(n) ∶=
M!

ZM
⋅

∏
u∈V

∏
i∈[R]

�
nu(i)!

��u−1
∏

(u,v)∈E

∏
i,j∈[R] nuv(i, j)!

⋅

�

(u,v)∈E

�

i,j∈[R]

�uv(i, j)
nuv(i,j),

𝕃
ℤ

M
∶=

{
n ∈ ℤ

|V|R+|E|R2

≥0
∣ M =

∑

i∈[R]

nu(i) (u ∈ V),

nu(i) =
∑

j∈[R]

nuv(i, j) ((u, v) ∈ E, i ∈ [R])
}
.

(4)min
n∈𝕃ℤ

M

− logF(n) − log Pr(y ∣ n).

(5)quniform,U(M) =

{ 1

U
M ∈ {0, 1,… ,U − 1}

0 otherwise

2 This condition is equivalent to discrete concavity of log q(M) , which is defined later in Definition 1. The
proof of this equivalence is shown in Lemma 7.

106 Machine Learning (2023) 112:99–129

1 3

for some positive integer U3.
Note that by setting

we obtain the existing problem setup where the sample size Mgiven is given as input. This
indicates that our new formulation is a generalization of the existing problem setup. There-
fore, all subsequent discussions are also applicable to existing problem settings.

The posterior distribution of (M,n) under the given observation y is written as
Pr(M, n ∣ y) = Pr(M, n, y)∕Pr(y) ∝ q(M)Pr(n ∣ M)Pr(y ∣ n) . Therefore, by the same argu-
ment as the derivation of (4), the MAP inference problem can be written as

where

and F(M,n) is the same function as F(n) in (3) with M added to the argument.

3.3 CGMs on path graphs

Hereafter, we focus on CGMs on path graphs, which is the main topic of this paper.
Path graph PT is an undirected graph whose vertex set is V = [T] and edge set is
E = {(t, t + 1) ∣ t ∈ [T − 1]} (see Fig. 2). A graphical model (not CGM) on path graph is
the most basic graphical model that represents a time series generated by a Markov model;
that is, the current state depends only on the previous state. A CGM on a path graph repre-
sents the distribution of aggregated statistics when there are many individuals whose state
transition is determined by a Markov model. In the rest of this paper, we use the notation
nti ∶= nt(i) , ntij ∶= nt,t+1(i, j) , and �tij ∶= �t,t+1(i, j) for simplicity.

We give an example of a CGM on a path graph which models human mobility. Con-
sider that a space is divided into R distinct areas and that M people are moving around
in the space. The random variable X(m)

t represents the area to which person m belongs
at time step t, and the time series X(m) =

(
X
(m)

1
,… ,X

(m)

T

)
 is determined by the graphical

model p(x) = 1

Z

∏T−1

t=1
�txtxt+1

 . Here, �tij is the affinity between two areas i and j at time step
t → t + 1 . nti represents the number of people in area i at time step t, and ntij represents the

qgiven(M) =

{
1 M = Mgiven,

0 otherwise,

(6)min
(M,n)∈𝕃ℤ

− log q(M) − logF(M,n) − log Pr(y ∣ n),

(7)

𝕃
ℤ ∶=

{
(M, n) ∈ ℤ

1+|V|R+|E|R2

≥0
∣ M =

∑

i∈[R]

nu(i) (u ∈ V),

nu(i) =
∑

j∈[R]

nuv(i, j) ((u, v) ∈ E, i ∈ [R])
}

Fig. 2 A path graph PT

3 In this paper, we define log 0 ∶= −∞.

107Machine Learning (2023) 112:99–129

1 3

number of people who moved from area i to j at time step t → t + 1 . We have noisy obser-
vations yti for t ∈ [T] and i ∈ [R] , which are generated by adding noise to nti . The MAP
inference problem we want to solve is to find the sample size M, the true number of people
of each area at each time step, (nti)t∈[T],i∈[R] , and the true number of people moving between
each two areas, (ntij)t∈[T−1],i,j∈[R] , with the highest posterior probability given the observa-
tion (yti)t∈[T],i∈[R].

The MAP inference problem of (M,n) can be formulated as follows from (2), (3), (6),
(7):

where ftij(z): = log z! − z ⋅ log�tij, g(z): = − log z!, hti(z): = − log pti(yti ∣ z), k(z) = − log q(z) + z log Z,
Note that Z is the partition function of the original graphical model (see (1)).

We can derive the optimization problem (8) as follows; because

holds on path graphs, we have

from (3). This gives

where C is a constant. We can verify easily that the feasible region of problem (8) is 𝕃ℤ
defined in (7).

(8)

min
M,n

T−1∑

t=1

∑

i,j∈[R]

ftij(ntij) +

T−1∑

t=2

∑

i∈[R]

g(nti) +

T∑

t=1

∑

i∈[R]

hti(nti)

+k(M) + g(M)

s.t.
∑

i∈[R]

nti = M t ∈ [T],

∑

j∈[R]

ntij = nti t ∈ [T − 1], i ∈ [R],

∑

i∈[R]

ntij = nt+1,j t ∈ [T − 1], j ∈ [R],

ntij, nti,M ∈ ℤ
≥0,

�t =

{
1 if t = 1, T ,

2 otherwise

F(M,n) =
M!

ZM
⋅

∏T−1

t=2

∏
i∈[R] nti!

∏T−1

t=1

∏
i,j∈[R] ntij!

⋅

T−1�

t=1

�

i,j∈[R]

�
ntij

tij

− log q(M) − logF(M,n) − log Pr(y ∣ n)

= − log q(M)− logM! +M log Z −

T−1∑

t=2

∑

i∈[R]

log nti!

+

T−1∑

t=1

∑

i,j∈[R]

log ntij! −

T−1∑

t=1

∑

i,j∈[R]

ntij log�tij −

T∑

t=1

∑

i∈[R]

log pti(y ∣ n)

=

T−1∑

t=1

∑

i,j∈[R]

ftij(ntij) +

T−1∑

t=2

∑

i∈[R]

g(nti) +

T∑

t=1

∑

i∈[R]

hti(nti) + k(M) + g(M) + C,

108 Machine Learning (2023) 112:99–129

1 3

4 Algorithms for MAP Inference Problem for CGMs on Path Graphs

4.1 Application of DCA

To solve problem (8), we propose utilizing the idea of the Difference of Convex Algorithm
(DCA). Before describing our method, we review a discrete version of DCA (Maehara and
Murota 2015; Maehara et al. 2018).

DCA is a general framework to solve the minimization problem

where D ⊆ ℤ
d , Q ∶ D → ℝ is a discrete convex function, and R ∶ D → ℝ is a discrete

concave function. Here, we define the convexity for discrete functions as follows.4

Definition 1 Let D ⊆ ℤ
d . A discrete function f ∶ D → ℝ is called convex if for all x ∈ D ,

there exists an affine function f̄ ∶ ℝ
d
→ ℝ such that

A discrete function f is called concave if −f is convex.

To solve problem (9), DCA generates a solution sequence x(1), x(2),… by the following
procedure:

Step 1 Choose an arbitrary feasible solution x(1) ∈ D and set the iteration counter as
s ← 1.

Step 2 Find a function R̄(s)
∶ ℝ

d
→ ℝ such that

 Note that such a function exists since R is discrete concave.
Step 3 Set

 and s ← s + 1 . Go to Step 2.
 Because

the objective function value monotonically decreases: P(x(1)) ≥ P(x(2)) ≥ ⋯.

(9)min
x∈D

{
P(x) ∶= Q(x) +R(x)

}
,

f̄ (x) = f (x),

f̄ (y) ≤ f (y) (∀y ∈ D).

R̄
(s)
(x(s)) = R(x(s)),

R̄
(s)
(x) ≥ R(x) (∀x ∈ D).

(11)x(s+1) ∈ arg min
x∈D

{
P̄
(s)
(x) ∶= Q(x) + R̄

(s)
(x)

}

P(x(s+1)) ≤ P̄
(s)
(x(s+1)) ≤ P̄

(s)
(x(s)) = P(x(s)),

4 There are several possible definitions of discrete convexity, and the convexity in Definition 1 is equivalent
to the one called convex extensibility in the previous literature (Murota 1998).

109Machine Learning (2023) 112:99–129

1 3

To apply the DCA framework, the objective function must be expressed as the sum of
convex and concave functions. The following proposition shows that our MAP inference
problem in (8) has such a structure.

Proposition 3 Let D be the feasible region of problem (8), and define discrete functions
Q ∶ D → ℝ and R ∶ D → ℝ by

Under Assumption 1, Q is discrete convex. R is discrete concave.

The proof is given in the "Appendix". Hereafter, we set functions Q and R as in Proposi-
tion 3. As the objective function of problem (8) is written as P(M, n) = Q(M, n) +R(M, n) ,
we can apply DCA to our problem.

The following proposition explicitly provides an efficiently computable upper bound of
R we can use in Step 2.

Proposition 4 Define a function R̄(s)
∶ ℝ

d
→ ℝ by

where

and �(s)

ti
 is a real number which satisfies − log(n

(s)

ti
+ 1) ≤ �

(s)

ti
≤ − log n

(s)

ti
 and � (s) is a real

number which satisfies − log(M(s) + 1) ≤ � (s) ≤ − logM(s) . Then, the function R̄(s) satisfies

Please see the "Appendix" for the proof.

4.2 Minimum cost flow algorithm for the subroutine

The most important and difficult part to derive an efficient DCA-based algorithm is design-
ing efficient algorithms for subproblem (11). To achieve this, we show that the subprob-
lem can be formulated as the Minimum Convex Cost Flow Problem (C-MCFP), which is
the efficiently solvable subclass of the Minimum Cost Flow Problem (MCFP). The (non-
linear) MCFP is a combinatorial optimization problem on a directed graph G = (V, E) .
Each node i ∈ V has a supply value bi ∈ ℤ , and each edge (i, j) ∈ E has a cost function

Q(M,n) ∶=

T−1∑

t=1

∑

i,j∈[R]

ftij(ntij) +

T∑

t=1

∑

i∈[R]

hti(nti) + k(M),

R(M,n) ∶=

T−1∑

t=2

∑

i∈[R]

g(nti) + g(M).

R̄
(s)
(M,n) ∶=

T−1∑

t=2

∑

i∈[R]

ḡ
(s)

ti
(nti) + ḡ(s)(M),

ḡ
(s)

ti
(z) ∶= − log(n

(s)

ti
!) + 𝛼

(s)

ti
⋅ (z − n

(s)

ti
)

ḡ(s)(z) ∶= − log(M(s)!) + 𝛾 (s) ⋅ (z −M(s))

R̄
(s)
(M(s), n(s)) = R(M(s), n(s)),

R̄
(s)
(M, n) ≥ R(M,n) (∀(M,n) ∈ D).

110 Machine Learning (2023) 112:99–129

1 3

cij ∶ ℤ
≥0 → ℝ ∪ {+∞} . MCFP is the problem of finding a minimum cost flow on G that

satisfies the supply constraints at all nodes. MCFP can be described as follows:

Note that z takes only integer values (i.e., z ∈ ℤ
|E|). A subclass of MCFP in which all

cost functions are discrete convex functions (see Definition 1) is called the C-MCFP; it is
known to be efficiently solvable (Ahuja et al. 1993).

The following proposition shows that the subproblem min(M,n)∈D P̄
(s)
(M,n) can be for-

mulated as a C-MCFP.

Proposition 5 Define the MCFP instance as follows:

• the node set V is defined by V ∶= {o, d} ∪ (∪t∈[T](Ut ∪Wt)), where Ut ∶= (ut,i)i∈[R] ,
Wt ∶= (wt,i)i∈[R],

• the edge set E consists of five types of edges,

– edges (o, u1,i, 0) and (wT ,i, d, 0) for i ∈ [R],
– edges (ut,i,wt,i, hti(z)) for t = 1, T and i ∈ [R],
– edges (ut,i,wt,i, ḡ

(s)

ti
(z) + hti(z)) for t = 2,… , T − 1 and i ∈ [R],

– edges (wt,i, ut+1,i, ftij(z)) for t ∈ [T − 1] and i, j ∈ [R],
– an edge (d, o, k1(z) + ḡ(s)(z)),

 where (u, v, c(z)) represents a directed edge from node u to node v with cost function
c(z),

• the supply values (bi)i∈V are defined by bv = 0 for v ∈ V.

Let z∗ is an optimal solution of this MCFP instance, and define M∗ by M∗ ∶= z∗
d,o

 , n∗ by
n∗
ti
∶= z∗

ut,iwt,i
 and n∗

tij
∶= z∗

wt,iut+1,j
 . Then, (M∗, n∗) is an optimal solution of the problem

min(M,n)∈D P̄
(s)
(M,n) . Furthermore, the MCFP instance belongs to C-MCFP.

The proof is given in the "Appendix". Figure 3 illustrates an example of the MCFP
instance defined in Proposition 5. The above proposition enables us to solve the subproblem

min
z∈ℤ

|E|
≥0

∑

(i,j)∈E

cij(zij) s.t.
∑

j∶(i,j)∈E

zij −
∑

j∶(j,i)∈E

zji = bi i ∈ V.

Fig. 3 An example of the MCFP instance defined in Proposition 5 when T = 3 and R = 2

111Machine Learning (2023) 112:99–129

1 3

min(M,n)∈D P̄
(s)
(M,n) efficiently by applying existing algorithms for C-MCFP. A minimum

cost flow problem such that bv = 0 for all v ∈ V , as with this problem, is called a minimum
cost circulation problem (Tardos 1985).

4.3 Overall view of the proposed method and time complexity analysis

From the above arguments, we can construct an efficient optimization algorithm, described
in Algorithm 1, for the MAP inference Problem (8). Under the assumption that the support
of the prior distribution q(M) is finite, the algorithm is guaranteed to terminate after a finite
number of iterations because P(M(s), n(s)) monotonically decreases and D is a finite set.

We analyze the time complexity of one iteration of the proposed method (Lines 3–5 in
Algorithm 1). The computational bottleneck is solving C-MCFP in Line 3. There are sev-
eral algorithms to solve C-MCFP and time complexity varies depending on which one is
adopted. In this paper, we consider two typical methods, the successive shortest path algo-
rithm (SSP) and the capacity scaling algorithm (CS) (Ahuja et al. 1993).

SSP is an algorithm that successively augments unit flow along the shortest path from
a supply node (i.e. bi > 0) to a demand node (i.e. bi < 0) in the residual graph, which is
an auxiliary graph calculated from the current flow. Given a C-MCFP instance with graph
G = (V, E) , the shortest path in the residual graph can be computed in O(|E| log |V|) time
by Dijkstra’s algorithm with a binary heap, and the augmentation of the flow can be done
in O(|E|) time. The augmentation is performed B ∶= (

∑
i∈V

��bi��)∕2 times totally, so the
total time complexity is O(B|E| log |V|) . CS resembles SSP, but it differs in that it tries to
push a large amount of flow, rather than a unit amount of flow, in a single augmentation.
In CS, the number of shortest path calculations and flow augmentations can be bounded
O(|E| logU) times, where U ∶= maxi∈V

||bi|| , so the total computational complexity is
O(|E|2 log |V| logU).

Although bv = 0,∀v ∈ V in the C-MCFP instance constructed in Proposition 5, we have
to push Mmax flow from o to d beforehand to eliminate the negative cost edge, where Mmax
is the maximum value M can take (i.e. the maximum value of the support of the prior dis-
tribution q(M)). Therefore, B = Θ(Mmax) and U = Θ(Mmax) holds in our problem. Because
|V| = O(TR) and |E| = O(TR2) , the time complexity in one iteration is O(MmaxTR

2 log(TR))
when SSP is applied and O(T2R4 log(TR) logMmax) when CS is applied. As a special
case, the time complexity for the MAP inference problem with a given sample size (the
problem setting in previous studies) with SSP is O(MgivenTR

2 log(TR)) and with CS is
O(T2R4 log(TR) logMgiven) where Mgiven is the given sample size, because Mmax = Mgiven .
These result imply that each method has its own advantages and disadvantages: SSP has

112 Machine Learning (2023) 112:99–129

1 3

small time complexity for T and R, while CS has small time complexity for Mmax or Mgiven .
This difference is confirmed empirically in Sect. 5.

4.4 Discussions

Here, we discuss why it is possible to construct an efficient algorithm when the graph is
a path graph. The difficulty of MAP inference in CGM can be decomposed into the fol-
lowing two factors. The first is the non-convexity of the objective function; the objective
function is the sum of convex functions and concave functions, as expressed in (8), and the
objective function as a whole is not convex. The second is many constraints; as can be seen
from (7), the variables M and n has a lot of complex constraints, all of which must be con-
sidered. The proposed method addresses difficulty (i) with the discrete DCA. Difficulty (ii)
is addressed by restricting the graph to path graphs. An essential property of path graphs
is that they only contain vertices of degree 2 or less. Because the constraints on vertices of
degree 2 or less can be expressed as flow conservation laws, we can formulate the problem
as a minimum convex cost flow problem by constructing an appropriate flow network.

When considering graphical models on tree graphs other than path graphs, there are
always vertices of degree 3 or higher in the graph, and constraints around these vertices
cannot be expressed as flow-preserving laws. Therefore, to extend our approach to graphs
other than path graphs, it is necessary to develop a different method than network flow to
handle constraints at vertices of degree 3 or higher. We leave this extension to future work.

5 Experiments

We perform experiments to evaluate the effectiveness of the proposed methods. All experi-
ments are conducted on a 64-bit macOS machine with Intel Core i7 CPUs and 16 GB of
RAM. All algorithms are implemented in C++ (gcc 9.1.0 with -O3 option). Experiments
are conducted both in the existing problem setting where sample size is given as input and
in the new problem setting where no sample size is given. The experiments are as follows:

• Experiments using synthetic instances with a given sample size in 5.1,
• Experiments using synthetic instances without a given sample size in 5.2,
• Experiments using real-world instances with and without a given sample size in 5.3,
• Experiments on histogram interpolation, one of the applications of MAP inference,

with synthetic instances in 5.4.

5.1 Synthetic instances with a given sample size

5.1.1 Settings

We solve randomly generated synthetic instances of the MAP inference problem (8). We
fix T to 5 and vary the values of R and M. We use two types of potential functions as
follows.

1. uniform. �tij is independently drawn from a uniform distribution on the set of integers
{1, 5, 10}.

113Machine Learning (2023) 112:99–129

1 3

2. distance. We set �tij =
1

|i−j+1| . This potential models the movement of individuals in
one-dimensional space: the state indices i and j represent coordinates in the space, and
the closer the two points are, the more likely are movements between them to occur.

The input observations y are generated by the following procedure; first, we gener-
ate independent M samples by Gibbs sampling in the graphical model (Bishop and Nas-
rabadi 2006), then we calculate the true contingency tables ntrue by aggregating the gen-
erated samples, and finally we get y according to the Gaussian observation distribution
pti(yti ∣ nti) ∝ exp

(
−

(yti−nti)
2

10

)
 . The sample size M is given as input of the algorithms.

To construct surrogate functions in the proposed method, we can choose arbitrary �(s)

ti

which satisfies the condition − log(n
(s)

ti
+ 1) ≤ �

(s)

ti
≤ − log n

(s)

ti
 (see Proposition 4). To

investigate the influence of the choice of �(s)

ti
 , we try three strategies to decide �(s)

ti
 : (1)

�
(s)

ti
= − log(n

(s)

ti
) , (2) �(s)

ti
= −

1

2
(log(n

(s)

ti
) + log(n

(s)

ti
+ 1)) , (3) �(s)

ti
= − log(n

(s)

ti
+ 1) . We call

them Proposed (L), Proposed (M), Proposed (R), respectively. Note that when the sample
size is given, the term k(M) + g(M) in the objective function of (8) can be ignored because
M is a constant, and it is not necessary to determine � (s).

As the compared method, we use Non-Linear Belief Propagation (NLBP) (Sun et al.
2015), which is a message-passing style algorithm to the solve approximate MAP infer-
ence problem derived by applying Stirling’s approximation and continuous relaxation.
Because the output of NLBP is not integer-valued and log(z!) is defined only if z is an inte-
ger, we cannot calculate the objective function of (8) directly. To address this, we calculate
it by replacing the term log(z!) by linear interpolation of log(⌊z⌋!) and log(⌈z⌉!) , which is
given by (⌈z⌉ − z) ⋅ log(⌊z⌋!) + (z − ⌊z⌋) ⋅ log(⌈z⌉!) . Note that although there are various
algorithms to solve the approximate MAP inference problem (see Sect. 2.1), the objective
function values attained by these algorithms are the same. This is because the approximate
problem is a convex optimization problem (Sheldon et al. 2013).

We also calculated and compared the error between the solution output by each algo-
rithm and the ground truth contingency table which was generated by Gibbs sampling
and aggregation. The error metric we used is normalized absolute error (NAE), which is
defined as

where ntrue
tij

 is the ground truth value of the edge contingency table and nest
tij

 is the estimated
value of the edge contingency table. Note that NAE is a metric that has been used fre-
quently in previous studies of CGM (Tanaka et al. 2018; Akagi et al. 2018; Iwata and
Shimizu 2019).

5.1.2 Results

First, we compare the attained objective values and NAEs. The results are shown in
Table 1. We generate 10 instances for each parameter setting and determined the aver-
age of attained objective function values. Because the objective function P(n) is
equal to − log Pr(n ∣ y) + const. , P(n) takes both positive and negative values, and
the difference of the objective function values is essential; when P(n1) − P(n2) = � ,
Pr(n1 ∣ y) = exp(−�) ⋅ Pr(n2 ∣ y) holds.

∑
t∈[T−1]

∑
i∈[R]

∑
j∈[R]

���n
true
tij

− nest
tij

���∑
t∈[T−1]

∑
i∈[R]

∑
j∈[R] n

true
tij

,

114 Machine Learning (2023) 112:99–129

1 3

Ta
bl

e
1

 A
tta

in
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 a
nd

 N
A

Es
 in

 sy
nt

he
tic

 in
st

an
ce

s w
ith

 a
 g

iv
en

 sa
m

pl
e

si
ze

Fo
r

ea
ch

 s
et

tin
g,

 w
e

ge
ne

ra
te

d
10

 in
st

an
ce

s
an

d
av

er
ag

e
va

lu
es

 a
re

 s
ho

w
n.

 T
he

 s
m

al
le

st
va

lu
e

is
 h

ig
hl

ig
ht

ed
 fo

r
ea

ch
 s

et
tin

g.
 T

he
 to

p
ta

bl
e

sh
ow

s
th

e
re

su
lt

of
 “

un
ifo

rm
”

po
te

nt
ia

l a
nd

 th
e

bo
tto

m
 ta

bl
e

sh
ow

s t
he

 re
su

lt
of

 “
di

st
an

ce
”

po
te

nt
ia

l.
Th

e
pr

op
os

ed
 m

et
ho

ds
 a

tta
in

 sm
al

le
r o

bj
ec

tiv
e

fu
nc

tio
n

va
lu

es
 a

nd
 N

A
Es

 in
 m

an
y

ca
se

s

M
1
0
1

1
0
2

1
0
3

R
10

20
30

10
20

30
10

20
30

O
bj

. V
al

s.
Pr

op
os

ed
 (L

)
−

 9
.1

8e
+

01
−

 7
.9

8e
+

01
−

 6
.5

1e
+

01
−

 1
.1

6e
+

03
−

 1
.2

1e
+

03
−

 1
.2

1e
+

03
−

 1
.1

6e
+

04
−

 1
.3

9e
+

04
−

 1
.4

8e
+

04
(u

ni
fo

rm
)

Pr
op

os
ed

 (M
)

−
 9

.1
3e

+
01

−
 7

.8
9e

+
01

−
 6

.4
0e

+
01

−
 1

.1
6e

+
03

−
 1

.2
1e

+
03

−
 1

.2
1e

+
03

−
 1

.1
6e

+
04

−
 1

.3
9e

+
04

−
 1

.4
8e

+
04

Pr
op

os
ed

 (R
)

−
 9

.0
7e

+
01

−
 7

.8
1e

+
01

−
 6

.2
7e

+
01

−
 1

.1
6e

+
03

−
 1

.2
1e

+
03

−
 1

.2
1e

+
03

−
 1

.1
6e

+
04

−
 1

.3
9e

+
04

−
 1

.4
8e

+
04

N
LB

P
−

 6
.1

3e
+

01
−

 3
.0

4e
+

01
−

 5
.2

6e
+

00
−

 1
.1

2e
+

03
−

 1
.0

5e
+

03
−

 9
.4

9e
+

02
−

 1
.1

6e
+

04
−

 1
.3

8e
+

04
−

 1
.4

4e
+

04
N

A
E

Pr
op

os
ed

 (L
)

1.
43

0
1.

80
0

1.
82

5
0.

61
2

1.
13

6
1.

46
1

0.
19

8
0.

42
7

0.
62

3
(u

ni
fo

rm
)

Pr
op

os
ed

 (M
)

1.
49

0
1.

82
5

1.
83

5
0.

61
4

1.
13

5
1.

45
9

0.
19

8
0.

42
8

0.
62

4
Pr

op
os

ed
 (R

)
1.

49
0

1.
82

0
1.

83
0

0.
61

3
1.

14
3

1.
45

3
0.

19
8

0.
42

7
0.

62
4

N
LB

P
1.

63
6

1.
89

7
1.

94
9

0.
65

4
1.

28
8

1.
63

0
0.

19
8

0.
43

4
0.

66
0

M
1
0
1

1
0
2

1
0
3

R
10

20
30

10
20

30
10

20
30

O
bj

. V
al

s.
Pr

op
os

ed
 (L

)
1.

72
e+

01
3.

59
e+

01
5.

29
e+

01
−

 4
.9

9e
+

01
−

 6
.4

6e
+

00
2.

70
e+

01
−

 6
.5

3e
+

02
−

 1
.3

1e
+

03
−

 1
.2

9e
+

03
(d

ist
an

ce
)

Pr
op

os
ed

 (M
)

1.
77

e+
01

3.
59

e+
01

5.
29

e+
01

−
 4

.9
8e

+
01

−
 5

.4
9e

+
00

2.
85

e+
01

−
 6

.5
3e

+
02

−
 1

.3
1e

+
03

−
 1

.2
9e

+
03

Pr
op

os
ed

 (R
)

1.
78

e+
01

3.
59

e+
01

5.
29

e+
01

−
 4

.9
7e

+
01

−
 4

.7
0e

+
00

3.
06

e+
01

−
 6

.5
3e

+
02

−
 1

.3
1e

+
03

−
 1

.2
9e

+
03

N
LB

P
5.

28
e+

01
9.

47
e+

01
1.

29
e+

02
−

 4
.2

5e
+

00
1.

96
e+

02
3.

58
e+

02
−

 6
.3

6e
+

02
−

 1
.1

9e
+

03
−

 7
.9

9e
+

02
N

A
E

Pr
op

os
ed

 (L
)

1.
49

5
1.

71
5

1.
82

5
0.

66
6

1.
14

1
1.

32
4

0.
20

9
0.

43
6

0.
64

8
(d

ist
an

ce
)

Pr
op

os
ed

 (M
)

1.
47

5
1.

71
5

1.
83

0
0.

66
7

1.
14

3
1.

32
0

0.
20

9
0.

43
6

0.
64

7
Pr

op
os

ed
 (R

)
1.

48
5

1.
71

5
1.

83
0

0.
66

7
1.

14
1

1.
32

3
0.

20
9

0.
43

6
0.

64
7

N
LB

P
1.

63
3

1.
84

5
1.

91
6

0.
67

8
1.

25
4

1.
50

1
0.

20
8

0.
43

1
0.

65
3

115Machine Learning (2023) 112:99–129

1 3

All the proposed methods consistently have smaller objective function values than the
compared method. The difference tends to be large when R is large and M is small. This
would be because small values appear in the contingency table more frequently when R is
large and M is small, and the effect of the inaccuracy of Stirling’s approximation becomes
larger. Among the proposed methods, proposed (L) achieves the smallest objective func-
tion values in most cases. This finding is considered to be an important guideline for deter-
mining hyperparameters �(s)

ti
.

Furthermore, in most cases, all the proposed methods achieve smaller NAEs than the
existing method. As with the objective function values, the differences tend to be larger
when R is large or M is small. This confirms the superior performance of the proposed
method in terms of estimation accuracy. However, NLBP achieves a slightly smaller NAE
when R = 10,M = 103 or R = 20,M = 103 with the distance potential. This may be due to
the fact that the values included in the contingency table are large enough that Stirling’s
approximation becomes accurate and NLBP is able to output a good solution. Among the
three proposed methods, there was not much difference in NAEs. This indicates that the
proposed method is robust with respect to the choice of hyperparameters �(s)

ti
 in terms of

estimation accuracy.
To compare the characteristics of solutions obtained by proposed (L) and NLBP, we

solve an instance with R = 20 , M = 102 , and uniform potential by each method. Obtained
edge contingency tables n1ij are shown in Fig. 4 as heat maps. We also show the edge con-
tingency table obtained by rounding each element of the NLBP solution to the nearest inte-
ger. We observe that the proposed method outputs sparse solutions while the solutions by
NLBP are blurred and contain a lot of non-zero elements. This difference is quantified by
“sparsity”, which is calculated by

Sparsity of the output of proposed (L) is 77%, while the sparsity of the output of NLBP is
0%. This is caused by its application of continuous relaxation and the inaccuracy of Stir-
ling’s approximation around 0. For NLBP (rounded), many near-zero values are rounded
to 0 and the solution is sparser than the Proposed (L) solution. But the constraints of the

(12)
(
1.0 −

(# of non - zero elements)

(# of elements)

)
× 100 (%).

Fig. 4 Comparison of solutions yielded by proposed method (L), NLBP, and NLBP (rounded). We solve an
instance with R = 20 , M = 102 and uniform potential. The obtained edge contingency table n1ij is presented
as a matrix heatmap with the maximum value of color map 3. Sparsity is defined by (12) and Constraints
Violation is defined by (13)

116 Machine Learning (2023) 112:99–129

1 3

problem (8) are totally violated; for example, the sum of the edge contingency table values
does not match the sample size. To quantitatively evaluate the constraints violation, we
compute

for each solution nest (we call this value “constraints violation”). Each term in this formula
corresponds to a constraint of the optimization problem (8), and this value measures the
violation of constraints of the optimization problem (8). For the solutions output by Pro-
posed (L) and NLBP, this value is 0, indicating that the constraints are not violated, but
for NLBP (rounded), the value is 82.0, indicating that the constraints are violated drasti-
cally. In additional experiments, we observed that the outputs of the three methods become
closer as M increases.

We compare the computation time of each algorithm. As explained in Sect. 4.3, we can
choose an arbitrary C-MCFP algorithm as the subroutine in the proposed method and the
time complexity varies depending on the choice. We compare proposed (L) with SSP, pro-
posed (L) with CS, and NLBP.

Figure 5 shows the relationship between input size and computation time. These results
are consistent with the complexity analysis results in Sect. 4.3; SSP is efficient when R is
large but becomes inefficient when M is large, and the converse is true for CS. The results
also suggest that it is important to choose the algorithm depending on the size parameter
of the input. The proposed method is not much worse than the existing method in terms
of computation time by choosing an appropriate C-MCFP algorithm according to the size
of the input. Figure 6 shows the relationship between running time and objective function
value of each method in instances of R = 20,M = 104 and R = 30,M = 103 with uniform
potential. These results show that the properly selected proposed method reaches smaller
objective function values more quickly than the existing method.

(13)
||||||

∑

i∈[R]

nest
1i

−M

||||||
+

∑

i∈[R]

||||||

∑

j∈[R]

nest
1ij

− nest
1i

||||||
+

∑

j∈[R]

||||||

∑

i∈[R]

nest
1ij

− nest
2j

||||||

Fig. 5 The computation time of each algorithm. The values are averages of 10 synthetic instances when
R is fixed to 20 (left) and M is fixed to 103 (right). T is set 5 and the uniform potential is used. This result
indicates a trade-off between SSP and CS in terms of computation time depending on the value of M and R

117Machine Learning (2023) 112:99–129

1 3

5.2 Synthetic instances without a given sample size

5.2.1 Settings

We compared methods for MAP inference problem without a given sample size using ran-
dom instances generated in the same way as in Sect. 5.1. Note that the sample size used to
generate random instances is not given as input to the algorithms. We use Gaussian distri-
bution pti(yti ∣ nti) ∝ exp

(
− (yti − nti)

2
)
 as the noise distribution and the uniform distribu-

tion quniform,106 (M) defined by (5) as the prior distribution of M.
We prepare two proposed methods; one is to solve the instance of C-MCFP constructed

in Proposition 5 using SSP (DCA-SSP) and the other is to solve it using CS (DCA-CS). In
both methods, we set �(s)

ti
= − log(n

(s)

ti
) , � (s) = − logM(s) when constructing the surrogate

function (see Proposition 5).
Because no methods for MAP inference of the sample size have been proposed so far,

we use a naive approach to solve the optimization problem (8) as baselines; solving the
problem for fixed M by the algorithm for the MAP inference problem with a given sample
size with a brute force search of M ∈ {0, 1,… ,Mmax} . We prepare two baseline methods,
one using SSP (BF-SSP) and the other using CS (BF-CS), for solving the problem (8) with
fixed M . We set Mmax = max(10, 2 ⋅

∑R

i=1
y1i).

5.2.2 Results

First, we compare the attained objective values and NAEs by DCA-SSP, DCA-CS, BF-
SSP, BF-CS. The results are shown in Table 2. As shown, the four methods achieve nearly
identical objective function values and NAEs in all cases. BF-SSP and BF-CS are naive
methods that conduct brute force searches of the sample size, so the objective function
value achieved by them is considered to be the smallest among the currently available
methods. The fact that the proposed methods, DCA-SSP and DCA-CS, achieve almost the
same objective function values as BF-SSP and BF-CS indicates that the optimization per-
formances of the proposed methods are sufficiently high.

Second, we compare the computation time of the four methods. Figure 7 shows the rela-
tionship between input size and computation time. It can be seen that the two proposed
methods are much faster than the two baseline methods. In particular, the difference is

Fig. 6 The relationship between running time and objective function value. The left figure shows the result
of an instance of R = 20,M = 104 and uniform potential, and right figure shows that of R = 30,M = 103
and uniform potential. This result shows that the properly selected proposed method reaches smaller objec-
tive function values more quickly than the existing method

118 Machine Learning (2023) 112:99–129

1 3

Ta
bl

e
2

 A
tta

in
ed

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 a
nd

 N
A

Es
 b

y
th

e
M

A
P

in
fe

re
nc

e
m

et
ho

ds
 w

ith
ou

t a
 g

iv
en

 sa
m

pl
e

si
ze

 in
 sy

nt
he

tic
 in

st
an

ce
s

Fo
r e

ac
h

se
tti

ng
, w

e
ge

ne
ra

te
d

10
 in

st
an

ce
s a

nd
 av

er
ag

e
va

lu
es

 a
re

 sh
ow

n
 T

he
 sm

al
le

st
va

lu
e

is
 h

ig
hl

ig
ht

ed
 fo

r e
ac

h
se

tti
ng

. T
he

 to
p

ta
bl

e
sh

ow
s t

he
 re

su
lt

of
 “

un
ifo

rm
”

po
te

nt
ia

l a
nd

 th
e

bo
tto

m
 ta

bl
e

sh
ow

s t
he

 re
su

lt
of

 “
di

st
an

ce
”

po
te

nt
ia

l.
Th

e
pr

o-
po

se
d

m
et

ho
ds

 (D
CA

-S
SP

 a
nd

 D
CA

-C
S)

 a
tta

in
 a

lm
os

t t
he

 sa
m

e
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

es
 a

nd
 N

A
Es

 a
s b

as
el

in
e

m
et

ho
ds

 (B
F-

SS
P

an
d

B
F-

C
S)

M
1
0
1

1
0
2

1
0
3

R
10

20
30

10
20

30
10

20
30

O
bj

. V
al

s.
D

CA
-S

SP
7.

33
e+

01
1.

07
e+

02
1.

41
e+

02
2.

93
e+

02
5.

94
e+

02
7.

86
e+

02
6.

81
e+

02
1.

81
e+

03
3.

00
e+

03
(u

ni
fo

rm
)

D
CA

-C
S

7.
33

e+
01

1.
07

e+
02

1.
41

e+
02

2.
93

e+
02

5.
95

e+
02

7.
86

e+
02

6.
81

e+
02

1.
81

e+
03

3.
00

e+
03

B
F-

SS
P

7.
31

e+
01

1.
07

e+
02

1.
41

e+
02

2.
93

e+
02

5.
94

e+
02

7.
84

e+
02

6.
81

e+
02

1.
81

e+
03

3.
00

e+
03

B
F-

C
S

7.
31

e+
01

1.
07

e+
02

1.
41

e+
02

2.
93

e+
02

5.
94

e+
02

7.
84

e+
02

6.
81

e+
02

1.
81

e+
03

3.
00

e+
03

N
A

E
D

CA
-S

SP
1.

02
0

1.
05

5
1.

06
5

0.
59

7
1.

06
5

1.
24

4
0.

20
5

0.
43

2
0.

61
6

(u
ni

fo
rm

)
D

CA
-C

S
1.

00
0

1.
04

5
1.

06
5

0.
58

9
1.

07
3

1.
24

4
0.

20
5

0.
43

2
0.

61
5

B
F-

SS
P

1.
02

0
1.

05
0

1.
06

5
0.

59
5

1.
07

2
1.

26
5

0.
20

5
0.

43
2

0.
61

6
B

F-
C

S
0.

97
0

1.
04

5
1.

06
0

0.
59

0
1.

07
9

1.
27

3
0.

20
5

0.
43

1
0.

61
6

M
1
0
1

1
0
2

1
0
3

R
10

20
30

10
20

30
10

20
30

O
bj

. V
al

s.
D

CA
-S

SP
7.

32
e+

01
1.

09
e+

02
1.

39
e+

02
3.

15
e+

02
5.

39
e+

02
6.

55
e+

02
7.

13
e+

02
1.

88
e+

03
2.

88
e+

03
(d

ist
an

ce
)

D
CA

-C
S

7.
32

e+
01

1.
09

e+
02

1.
39

e+
02

3.
15

e+
02

5.
39

e+
02

6.
56

e+
02

7.
13

e+
02

1.
88

e+
03

2.
88

e+
03

B
F-

SS
P

7.
29

e+
01

1.
09

e+
02

1.
39

e+
02

3.
15

e+
02

5.
38

e+
02

6.
54

e+
02

7.
13

e+
02

1.
88

e+
03

2.
88

e+
03

B
F-

C
S

7.
29

e+
01

1.
09

e+
02

1.
39

e+
02

3.
15

e+
02

5.
38

e+
02

6.
54

e+
02

7.
13

e+
02

1.
88

e+
03

2.
88

e+
03

N
A

E
D

CA
-S

SP
0.

89
0

1.
10

0
1.

08
5

0.
66

0
1.

00
7

1.
15

6
0.

21
0

0.
43

8
0.

64
2

(d
ist

an
ce

)
D

CA
-C

S
0.

89
0

1.
09

5
1.

08
5

0.
65

9
1.

00
4

1.
14

9
0.

21
0

0.
43

8
0.

64
2

B
F-

SS
P

0.
92

5
1.

11
0

1.
08

0
0.

66
1

1.
01

5
1.

17
0

0.
21

0
0.

43
8

0.
64

2
B

F-
C

S
0.

91
5

1.
11

0
1.

08
0

0.
66

0
1.

01
3

1.
17

1
0.

21
0

0.
43

8
0.

64
2

119Machine Learning (2023) 112:99–129

1 3

significantly larger when M is large. This is because the proposed method needs to apply
DCA only once, while the baseline method needs to apply it Mmax times. In the comparison
between proposed methods, DCA-CS is faster when M is large, and DCA-SSP is faster
when R is large. This result is consistent with the results of the time complexity analysis.

Overall, the proposed methods achieve almost the same objective function values and
NAEs as the baseline methods in much smaller computation times, demonstrating the
effectiveness of the proposed methods.

5.3 Real‑world Instances

We conduct experiments using real-world population datasets in both settings where a sam-
ple size is given and not given.

5.3.1 Settings

The datasets are generated from 8694 car trajectories collected by a car navigation appli-
cation in the Greater Tokyo area, Japan5. We randomly sample M (M = 100, 500, 1000)
trajectories from this data and create aggregated population data of each area at fixed
time intervals. The areas are decided by dividing the targeted geospatial space into fixed-
size grid cells. The grid size is set to 10 km × 10 km (R = 8 × 7 = 56) and 5 km × 5 km
(R = 16 × 13 = 208), and time interval is 60 min (T = 24).

Aggregated population data of humans often contain noise based on the following sce-
narios. The first scenario is that it is difficult to obtain accurate aggregate values due to
the poor performance of the sensors and equipment used to observe location information.
The second scenario is that noises are added artificially to aggregate values when pub-
lished to prevent identifying individual information. To take such a situation into account,
we assume noisy observation. As the noise distribution, we use Gaussian distribution
pti(yti ∣ nti) ∝ exp

(
−(yti − nti)

2
)
.

Fig. 7 The computation time of the MAP inference methods without a given sample size in synthetic
instances. The values are averages of 10 synthetic instances when R is fixed to 20 (left) and M is fixed to 103
(right). T is set 5 and the uniform potential is used. The result indicates the proposed methods (DCA-SSP
and DCA-CS) solve the problem much faster than baseline methods (BF-SSP and BF-CS)

5 We use the data collected by the smartphone car navigation application of NAVITIME JAPAN Co., Ltd.
(http://corporate.navitime.co.jp/en/). The data are collected with consent and appropriately anonymized.

120 Machine Learning (2023) 112:99–129

1 3

We construct the potential �tij = exp (− dist (i, j)) , where dist (i, j) is the Euclidean dis-
tance between the centers of cell i and cell j in the grid space. We create 10 instances
by random sampling and averaged the attained objective function values for each setting.
We also evaluate the estimation accuracy of the edge contingency table (ntij)t∈[T−1],i,j∈[R] by
NAE.

We solved the MAP inference problem in both problem settings where the sample size
is given and not given. In the former setting, the compared methods are proposed (L) and
NLBP. In addition, we also evaluate the estimation accuracy of NLBP (rounded), which
is a method that rounds the output of NLBP to integer values. Note that we do not evalu-
ate the objective function values of NLBP (rounded). This is because the output of NLBP
(rounded) completely violates the constraints on summation in the MAP inference prob-
lem (8) and the objective function value cannot evaluate whether the optimization problem
is successfully solved or not. In the setting where the sample size is not given, the com-
pared methods are DCA-SSP and DCA-CS, which is explained in Sect. 5.2. The surrogate
function and the prior distribution for the sample size are the same as those depicted in
Sect. 5.2.

Table 3 Attained objective function values and NAEs for real-world instances

The top table shows the results for a problem with a given sample size, and the bottom table shows the
results for a problem without a given sample size. The bottom table also shows the sample sizes estimated
by each method. For each setting, we generated 10 instances and averages are shown. The smallest values in
each table are highlighted

M 100 500 1000

R 56 208 56 208 56 208

Obj. Val. Proposed (L) − 3.02e+02 2.97e+02 − 6.61e+03 − 2.62e+03 − 1.70e+04 − 9.76e+03
NLBP 1.30e+03 3.24e+03 − 3.46+03 6.93e+03 − 1.34e+04 4.70e+03
NLBP

(rounded)
– – – – – –

NAE Proposed (L) 0.690 0.441 1.002 0.829 1.073 0.956
NLBP 1.38 1.544 1.241 1.438 1.209 1.381
NLBP

(rounded)
0.877 0.870 1.079 0.907 1.128 0.991

M 100 500 1000

R 56 208 56 208 56 208

Obj. Val. DCA-SSP 3.11e+03 3.44e+03 1.06e+04 1.67e+04 1.68e+04 2.94e+04
DCA-CS 3.11e+03 3.45e+03 1.06e+04 1.67e+04 1.68e+04 2.94e+04

NAE DCA-SSP 0.721 0.741 1.003 0.820 1.070 0.947
DCA-CS 0.719 0.745 1.003 0.821 1.070 0.948

Estimated
M

DCA-SSP 76.0 40.9 491.5 404.9 995.9 922.6
DCA-CS 76.0 40.6 491.6 404.6 995.9 922.1

121Machine Learning (2023) 112:99–129

1 3

5.3.2 Results

Table 3 shows the results. The top table shows the results for a problem with a given sam-
ple size, and the bottom table shows the results for a problem without a given sample size.
The bottom table also shows the sample sizes estimated by each method.

First, in the top table, we observe that Proposed (L) consistently attain smaller objective val-
ues and NAEs than the existing method. The superiority of the proposed method increase when
R is large and M is small, and this is the same trend as the results with synthetic data. The NAE
of NLBP is relatively large; this is due to the fact that small values are assigned to the elements
of the output that should be 0, which is the same phenomenon seen in Fig. 4. The NAE values
are improved to some extent by rounding, but the proposed method is still superior.

In the setting where the sample size is not given (the bottom table in Table 3), the two
proposed methods (DCA-SSP and DCA-CS) achieved similar objective function values
and NAEs, suggesting that the effect of the method of solving the minimum convex cost
flow problem on the estimation performance is small. For cases other than M = 100 , the
proposed method achieves the same level of NAE as the problem setting where the sample
size is given. This indicates that the proposed method can successfully estimate the sample
size even when the sample size is not given. Note that it is not very meaningful to compare
the objective function values between the setting where the sample size is given and not
because their objective functions are different. For M = 100 , NAEs are worse than in the
problem setting where the sample size is given. This may be because the estimated sample
size (the value of “estimated M” in the table) is underestimated compared to the true value.
When the problem is highly sparse (i.e., M is small and R is large), the sample size tends
to be underestimated (this tendency is also confirmed in experiments using synthetic data).
There are possible ways to get around this, such as using a probability distribution that
assigns more probability to large values as a prior distribution for sample size.

5.4 Histogram interpolation

As an application of MAP inference of CGMs on path graphs, we can interpolate the time series
of histograms. This application is useful, for example, when the population distribution can only
be observed at rough time intervals. By estimating the population distribution at fine time intervals
through interpolation, it will be possible to understand the movement of crowds in more detail.

In this section, we show experimental results on this application and discuss the differ-
ences between the output of the proposed method and that of the existing method.

5.4.1 Settings

First, we briefly explain how to realize interpolation between two histograms by MAP
inference of CGMs on path graphs. Suppose we are given histogram �1 ∶= [�11,… , �1R]
at time 1 and the histogram �T ∶= [�T1,… , �TR] at time T. The interpolated histogram �t at
time t (= 2,… , T − 1) is calculated by the following procedure.

1. Consider a CGM on a path graph with T vertices.
2. Let y1 = �1 and yT = �T.
3. yt (t = 2,… , T − 1) is treated as a missing value. This can be achieved by setting

hti(z) = 0 (t = 2,… , T − 1, i ∈ [R]) in the objective function of the problem (8).

122 Machine Learning (2023) 112:99–129

1 3

4. Find a solution n∗ to the MAP inference problem under an appropriate potential �.
5. Obtain an interpolation result by �ti = n∗

ti
(t = 2,… , T − 1, i ∈ [R]).

In our experiment, we consider a grid space of size 5 × 5 = 25 (= R) and a histogram
� ∶= [�1,… , �R] with a value �i for each cell i (= 1,… ,R) . To get interpolation results
which consider the geometric structure defined by Euclidean distance in the grid space, we
set the potential �tij = exp(−(ri − rj)

2 − (ci − cj)
2)) , where (ri, ci) is the two-dimensional

coordinate of the center of cell i in the grid space. We set T = 6 and use Gaussian distribu-
tion pti(yti ∣ nti) ∝ exp(−5(yti − nti)

2) for the noise distributions at t = 1, T . The sample size
M is given as input, and M is set to 20.

5.4.2 Results

The results are shown in Fig. 8. Note that Fig. 8 illustrates different objects from what is
shown in Figs 4; 8 illustrates the interpolated node contingency table values nti as two-
dimensional grid spaces, while Fig. 4 illustrate edge contingency table values n1ij as matri-
ces. As shown in the figure, NLBP tends to assign non-zero values to many cells, while
proposed (L) assigns non-zero values to a small number of cells, resulting in sparse solu-
tions. Moreover, the outputs of the proposed (L) are integer-valued while those of NLBP
are not. This characteristic of the proposed method is beneficial for interpretability when
the histogram values are the numbers of countable objects (e.g., the number of people in
the area). The figure also describes the objective function values achieved. In all cases, the
objective function values achieved by the proposed method are much smaller than those by
NLBP, which confirms that the proposed method is able to output interpolation results with
large posterior probabilities. Note that the sparse and sharp nature of the output of the pro-
posed method may mislead the readers to believe that there is a solution with a posteriori
probability significantly higher than the others; there are many solutions with almost iden-
tical posterior probabilities around the MAP solution in the MAP inference problem we are
solving here. Care should be taken when interpreting the output of the proposed method.

6 Conclusion

In this paper, we propose a non-approximate method to solve the MAP inference problem
for CGMs on path graphs. Our algorithm is based on an application of DCA. In the algo-
rithm, surrogate functions can be constructed in closed-form and minimized efficiently by
C-MCFP algorithms. Our method is naturally applicable to problem settings where sample
size is not given as input. Experimental results show the effectiveness of our algorithms
both in the quality of solutions and computation time.

Fig. 8 Three examples of interpolation results yielded by each method. In each example, three sequences of
histograms in the two-dimensional grid space are presented; the first row shows the input histograms �1 and
�T , the second row shows the interpolation results obtained by proposed (L), and the third row shows the
interpolation results obtained by NLBP

▸

123Machine Learning (2023) 112:99–129

1 3

124 Machine Learning (2023) 112:99–129

1 3

Appendix A Proofs

A.1 Proof of Proposition 3

Proof First, we prove two lemmas.

Lemma 6 For i = 1,… , n , let �i ∶ ℤ → ℝ be a discrete convex function. Then, the function
� ∶ ℤ

n
→ ℝ defined by

is also discrete convex.

Proof Fix z = (z1,… , zn) arbitrarily. By the assumption, we have affine functions
�̄�1,… , �̄�n ∶ ℝ → ℝ such that

By defining �̄� ∶ ℝ
n
→ ℝ by

we have an affine function that shows the discrete convexity of � . ◻

Lemma 7 Let � ∶ ℤ → ℝ be a discrete function. The function � is discrete convex if and
only if the following holds for all z ∈ ℤ:

Proof ⟹ part: Assume that � is discrete convex. Fix z ∈ ℤ arbitrarily, and we have an
affine function �̄� such that

We then obtain the desired results as follows:

where the first equality holds since �̄� is affine.
⟸ part: Assume that (A1) holds for all z ∈ ℤ . Fix x ∈ ℤ arbitrarily, and define an aff-

ine function �̄� ∶ ℝ → ℝ by

We have �̄�(x) = 𝜙(x) . To prove the discrete convexity of � , it suffices to show that
�̄�(y) ≤ 𝜙(y) for all y ∈ ℤ . For y > x , since

�(z1,… , zn) =

n∑

i=1

�i(zi)

�̄�i(zi) = 𝜙i(zi),

�̄�i(y) ≤ 𝜙i(y) (∀y ∈ ℤ).

�̄�(y1,… , yn) =

n∑

i=1

�̄�i(yi),

(A1)�(z + 1) + �(z − 1) ≥ 2�(z).

�̄�(z) = 𝜙(z),

�̄�(y) ≤ 𝜙(y) (∀y ∈ ℤ).

𝜙(z + 1) + 𝜙(z − 1) ≥ �̄�(z + 1) + �̄�(z − 1) = 2�̄�(z) = 2𝜙(z),

�̄�(z) = (𝜙(x + 1) − 𝜙(x))(z − x) + 𝜙(x).

125Machine Learning (2023) 112:99–129

1 3

by (A1), we obtain the desired inequality as follows:

For y < x , it follows from the same argument that �̄�(y) ≤ 𝜙(y) . ◻

From Lemma 6, it suffices to show that ftij(z),−g(z), hti(z), k(z) are univarite discrete con-
vex functions. From Lemma 7, the proof is completed by showing

The inequation (A2) holds because

The inequation (A3) holds because

The inequation (A4) holds because − log
[
pti(yti ∣ z)

]
 is a continuous convex function in z

from Assumption 1. The inequation (A5) holds from Assumption 2. ◻

A.2 Proof of Proposition 4

Proof First, we show that

holds for arbitrary w ∈ ℤ
≥0 , when − log(w + 1) ≤ � ≤ − logw . When z ≥ w,

�(x + 1) − �(x) ≤ �(x + 2) − �(x + 1) ≤ ⋯ ≤ �(y) − �(y − 1)

�̄�(y) = 𝜙(x) + (𝜙(x + 1) − 𝜙(x))(y − x) = 𝜙(x) +

y−1∑

i=x

(𝜙(x + 1) − 𝜙(x))

≤ 𝜙(x) +

y−1∑

i=x

(𝜙(i + 1) − 𝜙(i)) = 𝜙(y).

(A2)ftij(z + 2) + ftij(z) ≥ 2ftij(z + 1) ∀z ∈ ℤ,

(A3)−g(z + 2) − g(z) ≥ −2g(z + 1) ∀z ∈ ℤ,

(A4)hti(z + 2) + hti(z) ≥ 2hti(z + 1) ∀z ∈ ℤ,

(A5)k(z + 2) + k(z) ≥ 2k(z + 1) ∀z ∈ ℤ.

ftij(z + 2) + ftij(z) − 2ftij(z + 1)

= log(z + 2)! − (z + 2) log�tij + log z! − z log�tij − 2 log(z + 1)! + 2(z + 1) log�tij

= log(z + 2) − log(z + 1) ≥ 0.

− gtij(z + 2) − gtij(z) + 2gtij(z + 1)

= log(z + 2)! + log z! − 2 log(z + 1)!

= log(z + 2) − log(z + 1) ≥ 0.

(A6)− log(w!) + � ⋅ (z − w) ≥ − log(z!), ∀z ∈ ℤ≥0

− log(w!) + � ⋅ (z − w) + log(z!) =

z∑

k=w+1

(� + log k) ≥ 0

126 Machine Learning (2023) 112:99–129

1 3

holds because � + log(w + 1) ≥ 0 . When z < w,

holds because −� − logw ≥ 0 . Thus, inequality (A6) holds.
Substituting w = n

(s)

ti
 and w = M(s) in (A6), we get ḡ(s)

ti
(z) ≥ g(z) and ḡ(s)(z) ≥ g(z) for all

z ∈ ℤ
≥0 . This yields

Furthermore, since ḡ(s)
ti
(n

(s)

ti
) = g(n

(s)

ti
) and ḡ(s)(M(s)) = g(M(s)) from simple calculation, we

get R̄(s)
(M(s), n(s)) = R(M(s), n(s)) . ◻

A.3 Proof of Proposition 5

Proof There is a one-to-one correspondence between a feasible solution to the problem (8),
(M,n) , and a feasible solution to the MCFP instance constructed, z , under the relationship
M = zd,o, nti = zut,iwt,i

 and ntij = zwt,iut+1,j
 ; the constraint

∑
i∈[R] nti = M corresponds to the

flow conservation rule at node o and d, the constraint
∑

j∈[R] ntij = nti corresponds to the
flow conservation rule at node wt,i and the constraint

∑
i∈[R] ntij = ni+1,j corresponds to the

flow conservation rule at node ut+1,j . Moreover, corresponding (M,n) and z have the same
objective function value in problem (8) and the MCFP instance, respectively. These facts
yield that (M∗, n∗) is the optimum solution of the problem (8). Because all the cost func-
tions are discrete convex (this can be easily verified by (A2, A3, A4, A5) and definition of
ḡ
(s)

ti
(z) and ḡ(s)(z) in Proposition 4), the constructed instance belongs to C-MCFP. ◻

Funding This research is funded by the Nippon Telegraph and Telephone Corporation (NTT).

Availability of data and material The authors cannot make data public because it is the
confidential information of NTT, the company for which they work.Code availability The
authors cannot make codes public because it is the confidential information of NTT, the
company for which they work.

Declarations

Conflicts of interest All authors are employed and paid by NTT.

Ethics approval Not applicable.

Consent to participate Not applicable.

− log(w!) + � ⋅ (z − w) + log(z!)

w∑

k=z+1

(−� − log k) ≥ 0

R̄
(s)
(M, n) =

T−1∑

t=2

R∑

i=1

ḡ
(s)

ti
(nti) + ḡ(s)(M) ≥

T−1∑

t=2

R∑

i=1

g(nti) + g(M) = R(M, n).

127Machine Learning (2023) 112:99–129

1 3

Consent for publication Not applicable.

Authors’ contributions All authors contributed to the study conception. The details of the proposed methods
were developed by YA and NM. Implementation and analysis of the experimental results were conducted by
YA. The first draft of the manuscript was written by YA and all authors commented on previous versions of
the manuscript. All authors read and approved the final manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahuja, R.K., Magnanti, T.L., & Orlin, J.B. (1993). Network flows: Theory, algorithms, and applications.
Prentice-Hall Inc.

Akagi, Y., Nishimura, T., Kurashima, T., & Toda, H. (2018). A fast and accurate method for estimating peo-
ple flow from spatiotemporal population data. In Proceedings of the 27th international joint conference
on artificial intelligence and the 23rd European conference on artificial intelligence (pp. 3293–3300).

Akagi, Y., Nishimura, T., Tanaka, Y., Kurashima, T., & Toda, H. (2020). Exact and efficient inference for
collective flow diffusion model via minimum convex cost flow algorithm. In Proceedings of the 34th
AAAI conference on artificial intelligence (pp. 3163–3170).

Akagi, Y., Marumo, N., Kim, H., Kurashima, T., & Toda H. (2021). Non-approximate inference for collec-
tive graphical models on path graphs via discrete difference of convex algorithm. Advances in Neural
Information Processing Systems, 34.

Bishop, C.M., & Nasrabadi, N.M. (2006). Pattern recognition and machine learning (Vol. 4). Springer.
Du, J., Kumar, A., & Varakantham, P. (2014). On understanding diffusion dynamics of patrons at a theme

park. In Proceedings of the 13th international conference on autonomous agents and multiagent sys-
tems (pp. 1501–1502).

Iwata, T., & Shimizu, H. (2019). Neural collective graphical models for estimating spatio-temporal popula-
tion flow from aggregated data. In Proceedings of the 33rd AAAI conference on artificial intelligence
(pp. 3935–3942).

Iyer, R. & Bilmes, J. (2012). Algorithms for approximate minimization of the difference between submodu-
lar functions, with applications. In Proceedings of the 28th conference on uncertainty in artificial intel-
ligence (pp. 407–417).

Le Thi, A., Hoai, L., Minh, H., & Dinh, T.P. (2015). Feature selection in machine learning: An exact penalty
approach using a difference of convex function algorithm. Machine Learning, 101(1), 163–186.

Le Thi, H.A., & Pham Dinh, T. (2018). DC programming and DCA: Thirty years of developments. Math-
ematical Programming, 169(1), 5–68.

Maehara, T., & Murota, K. (2015). A framework of discrete DC programming by discrete convex analysis.
Mathematical Programming, 152(1–2), 435–466.

Maehara, T., Marumo, N., & Murota, K. (2018). Continuous relaxation for discrete DC programming.
Mathematical Programming, 169(1), 199–219.

Morimura, T., Osogami, T., & Idé, T. (2013). Solving inverse problem of Markov chain with partial obser-
vations. Advances in neural information processing systems, 26, 1655–1663.

Murota, K. (1998). Discrete convex analysis. Mathematical Programming, 83(1), 313–371.
Narasimhan, M., & Bilmes, J. (2005). A submodular-supermodular procedure with applications to discrimi-

native structure learning. In Proceedings of the 21th conference on uncertainty in artificial intelligence
(pp. 404–412).

Nguyen, T., Kumar, A., Lau, H.C., & Sheldon, D. (2016). Approximate inference using DC programming
for collective graphical models. In Proceedings of the 19th international conference on artificial intel-
ligence and statistics (pp. 685–693).

http://creativecommons.org/licenses/by/4.0/

128 Machine Learning (2023) 112:99–129

1 3

Nitanda, A., & Suzuki, T. (2017). Stochastic difference of convex algorithm and its application to training
deep Boltzmann machines. In Proceedings of the 20th international conference on artificial intelli-
gence and statistics (pp. 470–478).

Piot, B., Geist, M., & Pietquin, O. (2014). Difference of convex functions programming for reinforcement
learning. Advances in Neural Information Processing Systems, 27, 2519–2527.

Sheldon, D., & Dietterich, T.G. (2011). Collective graphical models. Advances in Neural Information Pro-
cessing Systems, 24, 1161–1169.

Sheldon, D., Saleh Elmohamed, M. A., & Kozen, D. (2007). Collective inference on Markov models for
modeling bird migration. Advances in Neural Information Processing Systems, 20, 1321–1328.

Sheldon, D., Sun, T., Kumar, A., & Dietterich, T. (2013). Approximate inference in collective graphical
models. In Proceedings of the 30th international conference on machine learning (pp. 1004–1012).

Singh, R., Haasler, I., Zhang, Q., Karlsson, J., & Chen, Y. (2020). Inference with aggregate data: An optimal
transport approach. CoRR. arXiv: abs/ 2003. 13933.

Sun, T., Sheldon, D., & Kumar, A. (2015). Message passing for collective graphical models. In Proceedings
of the 32nd International Conference on Machine Learning, pages 853–861.

Suzuki, T., Yamashita, M., & Terada, M. (2013). Using mobile spatial statistics in field of disaster preven-
tion planning. NTT DOCOMO Technical Journal, 14(3), 37–45.

Tanaka, Y., Iwata, T., Kurashima, T., Toda, H., & Ueda, N. (2018). Estimating latent people flow without
tracking individuals. In Proceedings of the 27th international joint conference on artificial intelligence
and the 23rd European conference on artificial intelligence (pp. 3556–3563).

Tanaka, Y., Tanaka, T., Iwata, T., Kurashima, T., Okawa, M., Akagi, Y., & Toda, H. (2019). Spatially aggre-
gated Gaussian processes with multivariate areal outputs. Advances in Neural Information Processing
Systems, 32, 3000–3031.

Tardos, É. (1985). A strongly polynomial minimum cost circulation algorithm. Combinatorica, 5(3),
247–255.

Terada, M., Nagata, T., & Kobayashi, M. (2013). Population estimation technology for mobile spatial statis-
tics. NTT DOCOMO Technical Journal, 14(3), 10–15.

Vilnis, L., Belanger, D., Sheldon, D., & McCallum, A. (2015). Bethe projections for non-local inference. In
Proceedings of the 31st conference on uncertainty in artificial intelligence (pp. 892–901).

Xu, H.-M., Xue, H., Chen, X.-H., & Wang, Y.-Y. (2017). Solving indefinite kernel support vector machine
with difference of convex functions programming. In Proceedings of the 31st AAAI conference on arti-
ficial intelligence (pp. 2782–2788).

Yuille, A.L., & Rangarajan, A. (2001). The concave-convex procedure (CCCP). Advances in Neural Infor-
mation Processing Systems, 14.

Zhang, S., Wu, G., Costeira, J.P., & Moura, J.M.F. (2017). Understanding traffic density from large-scale
web camera data. In Proceedings of the 30th IEEE conference on computer vision and pattern recogni-
tion (pp. 5898–5907).

Zhang, Y., Charoenphakdee, N., Zhenguo, W., & Sugiyama, M. (2020). Learning from aggregate observa-
tions. Advances in Neural Information Processing Systems, 33, 470–478.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Yasunori Akagi1 · Naoki Marumo2 · Hideaki Kim1 · Takeshi Kurashima1 ·
Hiroyuki Toda1

 Naoki Marumo
 naoki.marumo.ec@hco.ntt.co.jp

 Hideaki Kim
 hideaki.kin.cn@hco.ntt.co.jp

 Takeshi Kurashima
 takeshi.kurashima.uf@hco.ntt.co.jp

 Hiroyuki Toda
 hiroyuki.toda.xb@hco.ntt.co.jp

http://arxiv.org/2003.13933
http://orcid.org/0000-0001-7205-1307

129Machine Learning (2023) 112:99–129

1 3

1 NTT Human Informatics Laboratories, NTT Corporation, 1-1 Hikari-no-oka, Yokosuka-shi,
Kanagawa 239-0847, Japan

2 NTT Communication Science Laboratories, NTT Corporation, 2-2 Hikaridai, Seika-cho,
Soraku-gun, Kyoto 619-0237, Japan

	MAP inference algorithms without approximation for collective graphical models on path graphs via discrete difference of convex algorithm
	Abstract
	1 Introduction
	2 Related work
	2.1 MAP inference for CGMs
	2.2 Difference of convex algorithm (DCA)

	3 Collective graphical models
	3.1 Collective graphical models in previous studies
	3.2 Prior distribution for sample size
	3.3 CGMs on path graphs

	4 Algorithms for MAP Inference Problem for CGMs on Path Graphs
	4.1 Application of DCA
	4.2 Minimum cost flow algorithm for the subroutine
	4.3 Overall view of the proposed method and time complexity analysis
	4.4 Discussions

	5 Experiments
	5.1 Synthetic instances with a given sample size
	5.1.1 Settings
	5.1.2 Results

	5.2 Synthetic instances without a given sample size
	5.2.1 Settings
	5.2.2 Results

	5.3 Real-world Instances
	5.3.1 Settings
	5.3.2 Results

	5.4 Histogram interpolation
	5.4.1 Settings
	5.4.2 Results

	6 Conclusion
	References

