Skip to main content
Log in

Weak laws of large numbers for cooperative gamblers

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Based on a stochastic extension of Karamata’s theory of slowly varying functions, necessary and sufficient conditions are established for weak laws of large numbers for arbitrary linear combinations of independent and identically distributed nonnegative random variables. The class of applicable distributions, herein described, extends beyond that for sample means, but even for sample means our theory offers new results concerning the characterization of explicit norming sequences. The general form of the latter characterization for linear combinations also yields a surprising new result in the theory of slow variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications 27, Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  2. R. Bojanić and E. Seneta, Slowly varying functions and asymptotic relations, J. Math. Anal. Appl., 34 (1971), 302–315.

    Article  MATH  MathSciNet  Google Scholar 

  3. Y. S. Chow and H. Teicher, Almost certain summability of independent, identically distributed random variables, Ann. Math. Statist., 42 (1971), 401–404.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Cohn, Convergence in probability and almost sure with applications, Stochastic Processes Appl., 94 (2001), 135–154.

    Article  MATH  Google Scholar 

  5. H. Cohn and P. Hall, On the limit behaviour of weighted sums of random variables, Z. Wahrsch. Verw. Gebiete, 59 (1982), 319–331.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Csörgő and G. Simons, Laws of large numbers for cooperative St. Petersburg gamblers, Period. Math. Hungar., 50 (2005), 99–115.

    Article  MathSciNet  Google Scholar 

  7. S. Csörgő and G. Simons, Pooling strategies for St. Petersburg gamblers, Bernoulli, 12 (2006), 971–1002.

    Article  MathSciNet  Google Scholar 

  8. N. Etemadi, Convergence of weighted averages of random variables revisited, Proc. Amer. Math. Soc., 134 (2006), 2739–2744.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Feller, An introduction to probability theory and its applications, Volume II, Wiley, New York, 1966, 2nd edition: 1971.

    Google Scholar 

  10. B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley, Cambridge, Massachusetts, 1954.

    MATH  Google Scholar 

  11. B. Jamison, S. Orey and W. Pruitt, Convergence of weighted averages of independent random variables, Z. Wahrsch. Verw. Gebiete, 4 (1965), 40–44.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Kesten and R. A. Maller, Infinite limits and infinite limit points of random walks, and trimmed sums, Ann. Probab., 22 (1994), 1473–1513.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Kevei, Generalized n-Paul paradox, Statist. Probab. Letters, 77 (2007), 1043–1049.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Y. Khintchine, Su una legge dei grandi numeri generalizzata, Giornale dell’Istituto Italiano degli Attuari, 7 (1936), 365–377.

    Google Scholar 

  15. R. A. Maller, Relative stability and the strong law of large numbers, Z. Wahrsch. Verw. Gebiete, 43 (1978), 141–148.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. A. Maller, Relative stability, characteristic functions and stochastic compactness, J. Austral. Math. Soc. Ser. A, 28 (1979), 499–509.

    Article  MATH  MathSciNet  Google Scholar 

  17. B. A. Rogozin, The distribution of the first ladder moment and height and fluctuation of a random walk, Theory Probab. Appl., 16 (1971), 575–595.

    Article  MATH  MathSciNet  Google Scholar 

  18. E. Seneta, Regularly varying functions, Lecture Notes in Mathematics 508, Springer, Berlin, 1976.

    MATH  Google Scholar 

  19. F. T. Wright, R. D. Platt and T. Robertson, A strong law for weighted averages of independent, identically distributed random variables with arbitrary heavy tails, Ann. Probab., 5 (1977), 586–590.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Csörgő.

Additional information

Communicated by István Berkes

Work was supported in part by the Hungarian Scientific Research Fund, Grant T048360, and carried out within the Analysis and Stochastics Research Group of the Hungarian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csörgő, S., Simons, G. Weak laws of large numbers for cooperative gamblers. Period Math Hung 57, 31–60 (2008). https://doi.org/10.1007/s10998-008-7031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-008-7031-z

Mathematics subject classification number

Key words and phrases

Navigation