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Abstract

In this paper, we present several methods for construction of elliptic
curves with large torsion group and positive rank over number fields of
small degree. We also discuss potential applications of such curves in the
elliptic curve factorization method (ECM).
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1 Introduction.

Let E be an elliptic curve over Q. By the Mordell-Weil theorem, the group
E(Q) of rational points on E is a finitely generated abelian group. Hence, it is
the product of the torsion group and r ≥ 0 copies of an infinite cyclic group:
E(Q) ∼= E(Q)tors × Zr. By Mazur’s theorem, we know that E(Q)tors is one of
the following 15 groups: Z/nZ with 1 ≤ n ≤ 10 or n = 12, Z/2Z×Z/2mZ with
1 ≤ m ≤ 4.

It is well-known that elliptic curves have applications in cryptography and
also in factorization of large integers and primality proving. The main idea is
to replace the group F∗

p with (fixed) order p− 1, by the group E(Fp) with more
flexible order. Namely, by the Hasse theorem we have

p+ 1− 2
√
p < |E(Fp)| < p+ 1 + 2

√
p.

In particular, elliptic curves with large torsion and positive rank (it is nec-
essary for an elliptic curve to have positive rank for it to be used for factor-
ization) over the rationals have long been used for factorization, starting with
Montgomery, Atkin and Morain ([10, 1]). We say that an integer m is n-smooth,
for some fixed value n if all the prime divisors of m are less or equal than n.
Choosing elliptic curves E for the elliptic curve factoring method (ECM), one
wants to choose elliptic curves such that the order E(Fp) is smooth (for more
details about ECM, see [9], where the method was introduced).
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Standard heuristics say that larger torsion of E(Q) implies a greater prob-
ability that |E(Fp)| is smooth. This is because the torsion of E(Q) will inject
into E(Fp) for all primes p of good reduction, making |E(Fp)| divisible by the
order of the torsion of E(Q). But this is not necessary so straightforward, as
shown in [2], as a curve with smaller E(Q)tors can have much larger torsion over
fields of small degree, giving all together a greater probability of |E(Fp)| to be
smooth.

As we shown in Section 2 of this paper, this is especially true in some in-
stances, when for some reasons the properties of the prime factors of the num-
bers that are to be factored are known. One can then do better by choosing
elliptic curves with large torsion and positive rank over some small extension of
Q. Nice explicit examples of this approach, for factoring large numbers (Cun-
ningham numbers in this case) by using elliptic curves over number fields, have
been provided recently by Brier and Clavier [3]. They used elliptic curves over
cyclotomic fields with torsion groups Z/3Z⊕ Z/6Z and Z/4Z⊕ Z/4Z.

Also, they tried to construct elliptic curves over cyclotomic fields with torsion
Z/5Z⊕Z/5Z and Z/4Z⊕Z/8Z and positive rank, but failed. Recently, examples
of such curves have been found in [2]. In this paper we show how to construct
such curves systematically in Section 4.

It is very useful to have families of curves suitable for use in ECM, as when
one curve fails to yield a factorization, another one can be used. For the largest
torsions from Mazur’s theorem, families of elliptic curves with large torsion and
positive rank can be found in [1]. Each of these is a parameterized family of
elliptic curves, in other words there exists a surjective map from P1(Q) (minus
some points) to this family of elliptic curves. This can also be understood as a
map from a genus 0 curve to the family of elliptic curves.

This is the best possible case, but for some torsion groups, such maps are
yet unknown, and in most cases theoretically impossible. In these cases we
can instead construct a map from some curve of positive genus to the family
of elliptic curves with large torsion and positive rank. An example of such a
map was constructed in [3], where elliptic curves with torsion Z/3Z⊕Z/6Z and
positive rank were parameterized by an elliptic curve of positive rank. Note
that it is preferable for the genus of the curve to be as small as possible. In
particular if we have a map from an elliptic curve with positive rank, this again
allows us to construct infinitely many curves in such a manner. In Section 3 we
construct 2 new examples of families of elliptic curves with positive rank and
torsion isomorphic to Z/3Z⊕ Z/6Z over Q(

√
−3), that are each parameterized

by an elliptic curve of positive rank. We also construct a family of elliptic curves
with torsion Z/5Z ⊕ Z/5Z and positive rank over Q(ζ5) that is parameterized
by a genus 2 curve.

Families of elliptic curves with high rank and prescribed torsion over the ra-
tionals have been of great interest historically (see [5] for a list of references). In
recent years there has been also a great interest for such families over quadratic
fields [11, 8, 6]. In Section 3 we also construct a parameterized family of elliptic
curves with torsion Z/3Z ⊕ Z/3Z and rank 2, which was previously unknown.
The benefit of using rank 2 curves instead of rank 1 curves for ECM might be
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in the case when the reduction of one generator is not of smooth order. With a
rank 2 curve one can hope that the other generator might reduce to a point of
smooth order, although the probability for this is not very high, and thus the
algorithmical benefits of rank 2 are not clear at the moment.

When we have a map from a curve of genus > 1, then we can in this way
always construct only finitely many curves with the desired property. In these
cases it is actually more useful to have a procedure to construct such curves. In
Section 4 we give a procedure that constructs elliptic curves with torsion groups
Z/4Z ⊕ Z/8Z, Z/5Z ⊕ Z/5Z and Z/6Z ⊕ Z/6Z and positive rank over quartic
fields. We also give some examples of curves constructed in this way.

2 Choosing curves for ECM depending on the

primes

In this section, we show how the chance for an elliptic curve E over Q to be
smooth over Fp really depends on the set of primes that p runs through. The
ideas presented here expand on the arguments outlined in [2]. We will show that
knowing the splitting behavior of the primes in some extension of Q over which
E has large torsion can be used to determine how likely E is to be smooth.

Let E be an elliptic curve with torsion T1 over Q and T2 over some number
field K of relatively small degree and suppose |T1| < |T2|. Suppose for simplicity
thatK is Galois (one could make the same argument with non-Galois extensions,
but it would be a bit more messy). Then one can see if the rational prime p
splits completely in K, then the whole torsion of E(K) will inject into E(Fp)
(see [12, Proposition 3.1, pp. 176]). Thus we expect E(Fp) to be smooth more
often when p runs through the primes that split completely in K than over the
set of all primes.

We test this heuristic by choosing the following 8 elliptic curves:

E0 : y2 = x3 + 3,

E7 : y2 − 55xy − 448y = x3 − 448x2,

E9 : y2 − 47xy − 624y = x3 − 624x2,

E12 : y2 + 19/40xy− 273/400y = x3 − 273/400x2,

E2×8 : y2 = x3 + 54721/225x2 + 4096x,

E4×8 : y2 + xy + y = x3 + x2 − 52431x− 2731947,

E5×5 : y2 + y = x3 + x2 − 5092900x+ 709824595630,

E6×6 : y2 + xy + y = x3 − 371066x− 47384980.

The curves were chosen in the following way: E0, E7, E9 and E12 have trivial
torsion, 7-torsion, 9-torsion and 12-torsion over Q, respectively. The curve E2×8

has torsion Z/2Z⊕Z/8Z over Q. The curves E4×8, E5×5 and E6×6 were chosen
such that they have torsions Z/4Z⊕Z/8Z, Z/5Z⊕Z/5Z and Z/6Z⊕Z/6Z over
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some biquadratic field. Note that E4×8 has torsion Z/2Z⊕ Z/2Z over Q, E5×5

has 5-torison over Q and E6×6 has 6-torsion over Q. All the listed elliptic curves
have rank 1 over Q, so the rank should not influence the smoothness results.
The curve E5×5 is taken from [2]. Note that new curves with the same property
will be constructed in Section 3 and 4.

We now test how often the reductions of these curves |E(Fp))| have 100-
smooth order, depending on the set of primes that we choose. We will test
subsets of the set {pn|50 ≤ n ≤ 10050}, where pn denotes the n-th prime (we
choose n ≥ 50 to get rid of the primes of bad reduction). Let

A = {pn|50 ≤ n ≤ 10050},

B = {p ∈ A|
(−143

p

)

= 1},

C = {p ∈ A|
(−143

p

)

= −1},

D = {p ∈ A|p ≡ 1 (mod 5)},

E = {p ∈ A|
(−3

p

)

= 1 and

(

217

p

)

= 1},

F = {p ∈ A|
(−1

p

)

= 1 and

(−7

p

)

= 1}.

The elliptic curve E12 has torsion Z/2Z⊕Z/12Z over Q(
√
−143), and Z/12Z

over all other quadratic fields, so we expect this curve to be more likely smooth
over Fp, where p splits in Q(

√
−143), then when p does not split. We compare

this by examining the reductions over the primes from the sets B and C. The
curve E5×5 has torsion Z/5Z ⊕ Z/5Z over Q(ζ5). Recall that a rational prime
p splits completely in Q(ζ5) if and only if p ≡ 1 (mod 5). Thus we expect
|E5×5(Fp)| to be more likely smooth when p ≡ 1 (mod 5). The curves E4×8 and
E6×6 have torsions Z/4Z⊕Z/8Z, and Z/6Z⊕Z/6Z over the fields Q(

√
−1,

√
−7)

and Q(
√
−3,

√
217), so the sets E and F have been chosen in a way such that

we expect |E4×8(Fp)| and |E6×6(Fp)|, respectively, to have a greater probability
to be smooth.

In the table below we list for each set S and each curve E the number of
100-smooth values of |E(Fp)|, where p ∈ S.

el. curve A B C D E F
E0 2822 1453 1369 643 522 633
E7 4275 2115 2160 1020 1014 1066
E9 4635 2306 2329 1110 1226 1125
E12 5133 2852 2281 1290 1302 1288
E2×8 5110 2587 2523 1245 1206 1295
E4×8 4317 2141 2176 1059 1098 1440
E5×5 4376 2137 2239 1448 1047 1074
E6×6 4817 2396 2421 1201 1505 1138
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We see that when we run through all primes (the set A), then the curves
most likely to be smooth are E12 and E2×8, with them approximately being
equally likely to be smooth. In the columns with the sets B and C we see that
E12 is approximately 10% more likely to be smooth than E2×8 when reducing
modulo the primes from B, and more than 10% less likely to be smooth when
reducing modulo the primes from C. We also see that the curves E4×8, E5×5

and E6×6 are most likely to be smooth when reducing modulo the primes from
D, E and F , respectively, outperforming all the other curves quite convincingly
in each case.

These result strongly suggest that, when performing ECM, if one knows the
splitting behavior of the primes over which the curves are going to be reduced,
one can in some cases do considerably better than just choosing elliptic curves
with the largest possible torsion over Q.

3 A method for finding subfamilies with larger

rank.

In this section we will describe a method for construction of families of elliptic
curves with certain property and relative large rank. We assume that a family
of elliptic curves with that property is known, and we show how to find its
subfamily with larger generic rank.

Let K be a number field, E : y2 = f(x) an elliptic curve over K(T ) and
let ∆ be its discriminant. Assume that E has a nontrivial torsion group. We
seek congruences of the shape x ≡ x0 (mod δ), where δ is a factor of ∆, which
are satisfied by x-coordinates of some of the torsion points (and other known
points on E(K(T )) in the case of curves with positive generic rank and known
points of infinite order). Then we search for further (nontorsion) points on E
with x-coordinate of the form x = x0 + δp, where p is a polynomial over K with
small degree (say deg p ≤ 2). We insert x = x0 + δ(aT 2 + bT + c) into f(x),
get rid of the quadratic factor, and impose the condition that the discriminant
of the remaining polynomial in T is 0. This gives us several equations for
a, b, c. Substituting the obtained conditions, we repeat the procedure (getting
rid of quadratic factors and asking that the remaining polynomial in T has zero
discriminant). Finally, we get a condition of the form g(T ) = z2. If the condition
corresponds to a curve of genus 0 or 1 with a K-rational point, then we obtain
a subfamily for E with potentially larger rank. That the rank indeed increases,
can be checked by finding a suitable specialization for which the corresponding
points are independent.

A variant of this procedure has been previously successfully used for finding
generators of some high rank elliptic curves over Q with relatively large torsion
group which can be found in [4]. A motivation for this methods comes from the
Lutz-Nagell theorem which says that the torsion points, but possibly also some
other integer points, satisfy y ≡ 0 (mod δ) for a factor δ of ∆. But this implies
x ≡ x0 (mod δ) for x0 from a finite set.
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We will illustrate the above method by constructing the first known example
of an elliptic overQ(

√
−3)(T ) with torsion group Z/3Z⊕Z/3Z and rank≥ 2. We

will also apply variants of this method to curves with torsion groups Z/3Z⊕Z/6Z
and Z/5Z⊕ Z/5Z, and we will obtain results comparable to those from [3] and
[2].

Z/3Z⊕ Z/3Z

Our starting point is the curve over Q(
√
−3)(T ) with torsion group Z/3Z⊕

Z/3Z and rank ≥ 1 found by Rabarison [11]:

Y 2 = X3 + (108 + T 6)X2 + (144T 6 + 3888)X + 64T 12 + 3456T 6 + 46656.

Its discriminant is ∆ = −4096T 12(T 2 + 3)3(T 2 + 3T + 3)3(T 2 − 3T + 3)3. The
torsion points over Q(T ) are O, (−4T 4 + 12T 2 − 36,−4T 7 + 12T 5 − 36T 3),
(−4T 4 + 12T 2 − 36, 4T 7 − 12T 5 + 36T 3) (with an additional point (4/3T 6 −
36, 4

√
−3/9T 9 + 12

√
−3T 3) of order 3 over Q(

√
−3)(T )). It has positive rank,

with the point (0, 8T 6 + 216) of infinite order.
Applying the above procedure to the points with the first coordinate of the

form X = (aT + b)(T 2 + 3T + 3), leads to X = (12T − 12)(T 2 + 3T + 3)
and the condition 13T 2 − 42T + 93 = z2, which is a genus 0 curve with the
parametrization

T =
u2 − 16u− 29

u2 − 13
.

By taking u = 1, we get the curve

Y 2 = X3 + 1850293/729X2+ 28659904/81X + 205347524322304/531441

and the independent points of infinite order (0, 14329952/729) and (7904/9,
42080896/729). Hence, we have constructed a curve over Q(u) with rank ≥ 2
and with torsion group over Q(

√
−3)(u) isomorphic to Z/3Z⊕Z/3Z. Explicitly,

the curve is

y
2 = x

3 + (1116118693 + 2352294282u2 + 508999635u4
− 26095764u6 + 823995u8

− 4758u10 + 109u12 + 1969070304u + 1658452000u3
− 818496u5 + 28224u7

− 68000u9

− 96u11)x2 + 576(7u2 + 32u+ 37)(u2
− 16u+ 67)(u4

− 8u3 + 30u2 + 232u + 337)

× (u4 + 16u3 + 246u2 + 304u+ 217)(u2
− 13)6x

+ 1024(7u2 + 32u+ 37)2(u2
− 16u+ 67)2(u4

− 8u3 + 30u2 + 232u + 337)2

× (u4 + 16u3 + 246u2 + 304u+ 217)2(u2
− 13)6,

with independent points of infinite order

P1 = (0, 32(7u2 + 32u+ 37)(u2 − 16u+ 67)(u4 − 8u3 + 30u2 + 232u+ 337)

× (u4 + 16u3 + 246u2 + 304u+ 217)(u2 − 13)3),

P2 = (−192(u+ 1)(7u2 + 32u+ 37)(u2 − 16u+ 67)(u2 − 13)3, 32

(7u2 + 32u+ 37)(u2 − 16u+ 67)(u2 + 2u+ 13)(u2 − 16u− 29)3(u2 − 13)3).
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Z/3Z⊕ Z/6Z

Since in this case we have a point of order 2, we can write the curve in the
form y2 = x3 + ax2 + bx, and we get the general form of curves with torsion
group Z/3Z ⊕ Z/6Z over Q(

√
−3) by taking A = −24(3T 2 − 4)(9T 4 − 36T 3 +

72T 2 − 48T + 16), B = 144(T − 2)3(3T − 2)3(3T 2 + 4)3 (see [11, 8]). The
discriminant is ∆ = 97844723712T 3(3T 2− 6T +4)3(T − 2)6(3T − 2)6(3T 2+4)6.
We search for points on the curve such that their x-coordinate is a factor b1
of B. (A similar method was used in [6] for finding a curve over Q(i)(T ) with
torsion group Z/4Z ⊕ Z/4Z and rank ≥ 2). This leads to the condition that
b1 + A + B/b1 is a perfect square. Several such factors lead to the condition
which correspond to curve of genus 1. E.g.

(i) for b1 = −12(T − 2)3(3T 2 +4)(3T − 2) we get the genus 1 curve −27T 4+
72T 3 − 144T 2 + 96T = z2 with rank 1 (the minimal Weierstrass equation
is Y 2 + Y = X3 − 34);

(ii) for b1 = 3/2(T − 2)2(3T 2+4)2(3T − 2)3 we get the genus 1 curve 162T 3−
324T 2+216T − 1200 = z2 with rank 2 (the minimal Weierstrass equation
is Y 2 = X3 − 648);

(iii) for b1 = 4(T − 2)(3T 2 + 4)(3T − 2)3 we get −6T 3 + 12T 2 − 8T + 4 = z2

with rank 1 (the minimal Weierstrass equation is Y 2 + Y = X3 + 1).

The example (i) is equivalent to the example given in [3], while the examples
(ii) and (iii) give new examples of infinite families of curves over Q(

√
−3) with

torsion group Z/3Z⊕ Z/6Z and positive rank.

Z/5Z⊕ Z/5Z

The curve y2 = x3 + Ax + B, where A = −27(T 20 + 228T 15 + 494T 10 −
228T 5+1), B = 54(T 30−522T 25−10005T 20−10005T 10+522T 5+1) has torsion
group Z/5Z⊕Z/5Z over cyclotomic field Q(ζ5) (see [3]). Its discriminant is ∆ =
2176782336T 5(T 2−T−1)5(T 4−2T 3+4T 2−3T+1)5(T 4+3T 3+4T 2+2T+1)5.
The x-coordinates of the torsion points over Q(T ), 3T 10+36T 9+72T 8+108T 7+
180T 6 + 90T 5 + 72T 4 − 36T 3 + 36T 2 + 3 and 3T 10 + 36T 8 + 36T 7 + 72T 6 −
90T 5 + 180T 4 − 108T 3 + 72T 2 − 36T + 3, satisfy the congruence

x ≡ 33T (T 2 − T + 1)(T 5 + 2T 4 + 3T 3 − T 2 + T − 1) + 3

(mod T (T 4 − 2T 3 + 4T 2 − 3T + 1)(T 4 + 3T 3 + 4T 2 + 2T + 1)).

Searching for nontorsion points of the form x = (aT 2+bT +c)(T 4−2T 3+4T 2−
3T+1)(T 4+3T 3+4T 2+2T+1)+33T (T 2−T+1)(T 5+2T 4+3T 3−T 2+T−1)+3,
we were not able to reach the condition leading to curves of genus 0 or 1.
However, by taking aT 2 + bT + c = −6T 2 + 6T − 27, we obtain the condition
T 5− 18 = z2 which gives a curve of genus 2. By taking T = 3, we get the curve

y2 + y = x3 + x2 − 226248x− 20170186

with rank 1 and torsion Z/5Z ⊕ Z/5Z. The point (−132, 2722) is of infinite
order.
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4 Constructing individual curves with torsion

Z/4Z⊕ Z/8Z, Z/5Z⊕ Z/5Z and Z/6Z⊕ Z/6Z

As mentioned in the introduction, we often cannot construct a surjective map
from a curve of genus ≤ 1 to a family of elliptic curves over Q with prescribed
torsion and positive rank. This is exactly the case for the torsions Z/4Z⊕Z/8Z,
Z/5Z ⊕ Z/5Z and Z/6Z ⊕ Z/6Z, which are interesting for ECM, as shown in
Section 2.

Curves with torsion Z/6Z⊕Z/6Z over a biquadratic field are the easiest case
and we deal with them first. In fact one can use the elliptic curves over Q(

√
−3)

obtained in Section 3, and then for each curve construct an elliptic curve with
torsion Z/6Z⊕ Z/6Z over the quadratic extension of Q(

√
−3) obtained by ad-

joining the root of the discriminant of the elliptic curve. Each curve constructed
in this way have rank at least 2.

We are left with the torsion groups Z/4Z⊕Z/8Z and Z/5Z⊕Z/5Z. We give
a method of constructing curves with these torsion groups and positive rank. In
theory, this can give us infinitely many elliptic curves with the desired torsion
and positive rank. This method is also very useful for practical purposes, easily
generating many curves with the desired properties.

The starting point is [7], where a method of constructing infinitely many
elliptic curves with the before-mentioned torsion groups is given. We then sieve
through the constructed curves in search of elliptic curves with positive rank.
We do not test directly whether the curve has positive rank but instead use
the fact that in this construction, for all three torsion groups, all the obtained
elliptic curves are rational, and that the torsion group we desire is defined over
a biquadratic field.

We then use the fact that if K is a number field, L a quadratic extension of
K, L = K(

√
d), and E an elliptic curve defined over K, then

rank(E(L)) = rank(E(K)) + rank(E(d)(K)).

As we are interested in the rank of a rational elliptic curve E over a biquadratic
field K, one can see that the rank of E(K) is the sum of the rank of the E(Q)
and 3 of its twists.

To construct elliptic curves with torsion Z/4Z⊕ Z/8Z, we do the following:

1. Construct a rational elliptic curve with torsion Z/4Z ⊕ Z/8Z over a bi-
quadratic field using the methods from [7]. We start by taking t ∈ Q∗.
Define v = (t4 − 6t2 + 1)/(4(t2 + 1)2. Let L be obtained by adjoining the
root of t4 − 6t2 + 1 to Q(i) and let a = v2 − 1/16. Let E be the elliptic
curve defined by

E : y2 + xy − ay = x3 − ax2.

2. Check whether any of the twists of E by −1, t4 − 6t2 + 1 and −(t4 −
6t2+1) have root number -1. If they do, then the Birch-Swinnerton–Dyer
conjecture suggest that the rank is odd and hence positive.
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3. If any of the twists have root number -1, then search for points of infinite
order on it. If none of the twists have root number -1, choose another t
and start over.

4. If a point of infinite order is found then we have found an elliptic curve
with the desired properties! Note that it does not matter which twist we
choose, as they are all isomorphic over L. If a point of infinite order is
not found on any twist with odd root number, choose another t and start
over.

Using this procedure we can easily construct many elliptic curves with torsion
Z/4Z⊕Z/8Z and positive rank over a biquadratic field. For example, the value
t = 4 gives us the elliptic curve

y2 + xy + 3600/83521y = x3 + 3600/83521x2

with a point of infinite order (−30/289, 3900/83521) and torsion Z/4Z⊕ Z/8Z
over Q(i,

√
161).

The value t = 3 gives the curve

y2 = x3 − 67950603/390625x126442451898/244140625

which has a point of infinite order (−3549/625, 10584/625) and torsion Z/4Z⊕
Z/8Z over Q(i,

√
−7).

In a only slightly different way one can construct elliptic curves with torsion
Z/5Z⊕Z/5Z over Q(ζ5). We will not write the formulas explicitly as above, as
one can find them in [7].

Here the only difference is that asQ(ζ5) is not a biquadratic, but an extension
with Galois group Z/4Z, one cannot look at 3 rational twists of the constructed
elliptic curve E, but only at the twist by 5 (as Q(

√
5) is a subfield of Q(ζ5)).

Thus we look at only 2, instead of 4 curves for root number -1.
Nevertheless, we are able to easily construct the curves

y2 = x3−10605390625/10460353203x−4238740478515625/22236242266222092

with a point of infinite order (−9875/177147, 75625/3188646) and torsion Z/5Z⊕
Z/5Z over Q(ζ5) and

y2 = x3 + 147734375/50331648x+ 1010986328125/927712935936

with the point of infinite order (15625/12288, 171875/65536) and torsion Z/5Z⊕
Z/5Z over Q(ζ5). These curves were obtained by inserting the values t = 1/3
and t = −1/2, respectively in the formulas in [7].
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