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LARGE WEIGHT DOES NOT YIELD AN

IRREDUCIBLE BASE

SAHARON SHELAH

Abstract. Answering a question of Juhász, Soukup and Szent-
miklssy, we show that it is consistent that some first countable
space of uncountable weight does not contain an uncountable sub-
space which has an irreducible base.

1. Introduction

For a topological space X,w(X) is the minimal cardinality of a base
for X , χ(p,X) = min{|u| : u is a neighbourhood base of p}, and
χ(X) = sup{χ(p,X) : p ∈ X}.

In [1] the following problem was investigated: What makes a space
have weight larger than its character? The notion of irreducible base

was introduced, and it was proved [1, Lemma 2.6] that if a topological

space X has an irreducible base then w(X) = |X| ·χ(X). The following
question was formulated:

Problem 1. Does every first countable space of uncountable weight

contain an uncountable subspace which has an irreducible base?

We show that the answer is consistently NO. We thank Lajos Soukup
for actually writing the paper.

Definition 1.1. Let X be a topological space. A base U of X is called
irreducible if it has an irreducible decomposition U =

⋃

{Ux : x ∈ X},
i.e, (i) and (ii) below hold:

(i) Ux is a neighbourhood base of x in X for each x ∈ X .
(ii) for each x ∈ X the family U−

x =
⋃

y 6=x

Uy is not a base of X .

Theorem 1.2. There is a c.c.c poset P = 〈P,≤〉 of size ω1 such that in

V P there is a first countable space X = 〈ω1, τ〉 of uncountable weight

which does not contain an uncountable subspace which has an irre-

ducible base.

Proof. The elements of the poset P will be finite “approximations” of
a base {U(α, n) : α < ω1, n < ω} of X .
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We define the poset P = 〈P,≤〉 as follows. The underlying set of P
consists of the triples 〈A, n, U〉 satisfying (P1)–(P3) below:

(P1) A ∈
[

ω1

]<ω
, n ∈ ω and U is a function, U : A× n → P(A),

(P2) α ∈ U(α, i) ⊂ U(α, i− 1) for each α ∈ A and i < n,
(P3) If β ∈ U(α, i) ⊂ U(β, 0) for some i < n, then β ≤ α.

For p ∈ P write p = 〈Ap, np, Up〉. Let us remark that property (P3)
will guarantee that w(X) = ω1.

Define the order ≤ on P as follows. For p, q ∈ P we put q ≤ p if

(a) Ap ⊂ Aq,
(b) np ≤ nq,
(c) Up(α, i) = Uq(α, i) ∩Ap for each 〈α, i〉 ∈ Ap × np,
(d) for each 〈α, i〉 , 〈β, j〉 ∈ Ap × np ,

if Up(α, i) ∩ Up(β, j) = ∅ then Uq(α, i) ∩ Uq(β, j) = ∅, (d1)

if Up(α, i) ⊂ Up(β, j) then Uq(α, i) ⊂ Uq(β, j). (d2)

We say that the conditions p0 = 〈A0, n0, U0〉 and p1 = 〈A1, n1, U1〉
are twins iff n0 = n1, |A0| = |A1| and denoting by σ the unique <On-
preserving bijection between A0 and A1 we have

(I1) σ ↾ A0 ∩A1 = idA0∩A1
,

(I2) σ is an isomorphism between p0 and p1, i.e. for each α ∈ A0 and
i < n0 we have U1(σ(α), i) = σ′′U0(α, i).

We say that σ is the twin function between p0 and p1. Define the
smashing function σ of p0 and p1 as follows: σ = σ−1 ∪ idA0

. The
function σ∗ defined by the formula σ∗ = σ ∪ σ−1 is called the exchange
function of p0 and p1.

The burden of the proof is to verify the next lemma.

Amalgamation Lemma 1.3. Assume that p0 = 〈A0, n0, U0〉 and p1 =
〈A1, n1, U1〉 are twins, A0 ∩ A1 < A0 \ A1 < A1 \ A0, ξ0 ∈ A0 \ A1,

ξ1 = σ(ξ0), where σ is the twin function between p0 and p1, and let

k < m < n0. Then p0 and p1 have a common extension p = 〈A, n, U〉
in P such that

ξ0 ∈ U(ξ1, m) ⊂ U(ξ1, k) ⊂ U(ξ0, k). (∗)

Proof. Write n = n0 = n1, D = A0 ∩ A1 and A∗ = A0 ∪ A1. Unfortu-
nately we can not assume that A = A∗ because in this case we can not
guarantee (P3) for p. So we need to add further elements to A∗ to get
a large enough A as follows. Choose a set B ⊂ ω1 \ A∗ of cardinality
|A∗ × n| and fix a bijection ρ between A∗ × n and B. We will take
A = A∗∪B. To simplify the notation we will write 〈α, i〉 for ρ(α, i), for
all α ∈ A∗ and i < n, i.e. we identify the elements of B and of A∗ × n.

The idea of the proof is the following: for each 〈α, i〉 ∈ A∗ × n

we put the element 〈α, i〉 into U(α, i). On the other hand, we try to
keep U(α, i) small, so we put 〈β, j〉 into U(α, i) if and only if we can
“derive” from the property (d2) that U(β, j) ⊂ U(α, i) should hold in
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any condition p = 〈A, n, U〉 which is a common extension of p0 and p1
and which satisfies (∗).

The condition p will be constructed in two steps. First we construct
a condition p′ = 〈A, n, U ′〉 extending both p0 and p1. This p′ can
be considered as the minimal amalgamation of p0 and p1. Then, in
the second step, we carry out small modifications on the function U ′,
namely we increase its value on certain places to guarantee (∗).

Now we carry out our construction. For ε < 2 and 〈β, j〉 ∈ Aε × n

let
Vε(β, j) = {〈α, i〉 ∈ Aε × n : Uε(α, i) ⊂ Uε(β, j)} (1)

and

Wε(β, j) = {〈α, i〉 ∈A1−ε × n : ∃ 〈γ, l〉 ∈ D × n

U1−ε(α, i) ⊂ U1−ε(γ, l) ∧ Uε(γ, l) ⊂ Uε(β, j)}
(2)

If we want to define p′ in such a way that p′ ≤ p0, p1, then (d2) implies
that U ′(α, i) ⊂ U ′(β, j) should hold whenever 〈α, i〉 ∈ V (β, j)∪W (β, j).

Now we are ready to define the function U ′. For ε < 2, β ∈ Aε and
j < n let

U ′(β, j) = Uε(β, j) ∪ U1−ε(σ
∗(β), j) ∪ Vε(β, j) ∪Wε(β, j). (3)

For 〈α, i〉 ∈ A∗ × n and j < n let

U ′(〈α, i〉 , j) = {〈α, i〉}. (4)

Let us remark that U ′(δ, j) is well-defined even for δ ∈ A0∩A1. Indeed,
in this case σ∗(δ) = δ and Vε(δ, j) = W1−ε(δ, j), and so

U ′(δ, j) = U0(δ, j) ∪ U1(δ, j) ∪ V0(δ, j) ∪ V1(δ, j).

Now put
p′ = 〈A, n, U ′〉 .

Claim 1.4. If α ∈ U ′(β, j) then σ(α) ∈ U0(σ(β), j).

Indeed, if β ∈ Aε then U ′(β, j) ∩ A∗ = Uε(β, j) ∪ U1−ε(σ
∗(β), j).

Claim 1.5. If 〈α, i〉 ∈ U ′(β, j) then σ(α) ∈ U0(σ(β), j).

Proof of the Claim. Assume that β ∈ Aε. If 〈α, i〉 ∈ Vε(β, j) then α ∈
Uε(α, i) ⊂ Uε(β, j) and Uε(β, j) ⊂ U ′(β, j). So we have α ∈ U ′(β, j)
which implies σ(α) ∈ U0(σ(β), j) by Claim 1.4.

If 〈α, i〉 ∈ W1−ε(β, j) then for some 〈γ, l〉 ∈ D×n we have U1−ε(α, i) ⊂
U1−ε(γ, l) ∧ Uε(γ, l) ⊂ Uε(β, j). Thus α ∈ Uε(β, j) ⊂ U ′(β, j), which
implies σ(α) ∈ U0(σ(β), j) by Claim 1.4. �1.5

Claim 1.6. p′ ∈ P .

Proof of the claim 1.6. (P1) and (P2) clearly hold, so we need to
check only (P3).

Assume on the contrary that (P3) fails for p′. Since U ′(〈ν, s〉 , j) =
{〈ν, s〉} by (4) for each 〈ν, s〉 ∈ B and j < n, we can assume that some



4 S. SHELAH

α < β ∈ A∗ and i < n witness that (P3) fails, i.e. β ∈ U ′(α, i) ⊂
U ′(β, 0). Then σ(β) ∈ U0(σ(α), i) ⊂ U ′(σ(β), 0) by Claim 1.4. Since
p0 satisfies (P3) it follows that σ(β) ≤ σ(α), and so α ∈ A0 \ A1

and β ∈ A1 \ A0. Consider the element u = 〈α, i〉 ∈ A \ A∗. Then
u ∈ U ′(α, i) and so u ∈ U ′(β, 0) as well. By the definition of U ′(β, 0)
this means that 〈α, i〉 ∈ W1(β, 0), that is, there is 〈γ, l〉 ∈ D × n such
that U0(α, i) ⊂ U0(γ, l) and U1(γ, l) ⊂ U1(β, j). Thus

σ(β) ∈ U0(α, i) ⊂ U0(γ, l) ⊂ U0(σ(β), 0) (5)

by Claim 1.4. Thus σ(β) ∈ U0(γ, l) ⊂ U0(σ(β), 0) and so σ(β) ≤ γ

because p0 satisfies (P3). But this is a contradiction because γ ∈ D =
A0 ∩A1, σ(β) ∈ A0 \ A1 and we assumed that (A0 ∩A1) < (A0 \ A1).

�1.6

Claim 1.7. p′ ≤ p0, p1.

Proof of claim 1.7. Conditions (a) and (b) are clear.
To check (c) assume that α ∈ Aε and i ∈ n. By (3),

U ′(α, i) ∩Aε = (Uε(α, i) ∪ U1−ε(α, i)) ∩ Aε =

Uε(α, i) ∪ (U1−ε(α, i) ∩Aε) = Uε(α, i)

because U1−ε(α, i) = σ∗[Uε(α, i)].
To check (d1) assume that β, γ ∈ Aε and j, k < n such that U ′(β, j)∩

U ′(γ, k) 6= ∅. Fix x ∈ U ′(β, j) ∩ U ′(γ, k). Then

σ(α) ∈ U0(σ(β), j) ∩ U0(σ(γ), k)

by Claim 1.4 if x = α ∈ A∗, and by Claim 1.5 if x = 〈α, i〉 ∈ A \ A∗.
If ε = 0 then σ(β) = β and σ(γ) = γ, so σ(α) ∈ Uε(β, j) ∩ Uε(γ, k).
If ε = 1 then σ(β) = σ∗(β) and σ(γ) = σ∗(γ), and so σ∗(σ(α)) ∈

Uε(β, j) ∩ Uε(γ, k).
Finally to check (d2) assume that β, γ ∈ Aε and j, k < n such that

Uε(β, j) ⊂ Uε(γ, k). Then clearly

U1−ε(β, j) = σ∗[Uε(β, j)] ⊂ σ∗[Uε(γ, k)] = U1−ε(γ, k),

moreover Vε(β, j) ⊂ Vε(γ, k) by (1), and Wε(β, j) ⊂ Wε(γ, k) by (2),
and so U ′(β, j) ⊂ U ′ε(γ, k) by (4). �1.7

Now carry out the promised modification of U ′ to obtain U as follows.
If z ∈ A and j < n let

U(z, j) =

{

U ′(z, j) ∪ U ′(ξ1, k) if U0(ξ0, k) ⊂ U0(z, j),
U ′(z, j) otherwise.

Put
p = 〈A, n, U〉 .

If U0(ξ0, k) ⊂ U0(z, j) then U1(ξ1, k) ⊂ U1(σ
∗(z), j) ⊂ U ′(z, j) and

W1(ξ1, k) ⊂ V0(ξ0, k) ⊂ U ′(z, j). So

U(z, j) \ U ′(z, j) ⊂ V1(ξ, k). (6)
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Moreover

U(z, j) =

{

U ′(z, j) ∪ V1(ξ1, k) if U0(ξ0, k) ⊂ U0(z, j),
U ′(z, j) otherwise.

(7)

Claim 1.8. If 〈α, i〉 ∈ U(β, j) then σ(α) ∈ U0(σ(β), j).

Indeed, if 〈α, i〉 ∈ U(β, j) then 〈α, i〉 ∈ U ′(β, j) or 〈α, i〉 ∈ U ′(σ∗(β), j),
and now apply Claim 1.5.

Claim 1.9. p ∈ P .

Proof of claim 1.9. (P1) and (P2) clearly hold, so we need to check
(P3) only.

Assume on the contrary that (P3) fails for p. Since U(〈ν, s〉 , j) =
{〈ν, s〉} for each 〈ν, s〉 ∈ A \ A∗ and j < n we can assume that there
are α < β ∈ A∗ and i < n witness that (P3) fails, i.e.

β ∈ U(α, i) ⊂ U(β, 0). (8)

Then σ(β) ∈ U0(σ(α), i) ⊂ U(σ(β), 0). But p0 satisfies (P3) so σ(β) ≤
σ(α), and so α ∈ A0 \A1 and β ∈ A1 \A0. Thus U0(β, j) is undefined,
and so

U ′(β, 0) = U(β, 0) and U(α, i) \ U ′(α, i) ⊂ A \ A∗. (9)

by (7). So (8) yields

β ∈ U ′(α, i) ⊂ U ′(β, 0),

However this is a contradiction because p′ satisfies (P3). �1.9

Claim 1.10. p ≤ p0, p1.

Proof. (a) and (b) are trivial. (c) also holds because p′ ≤ pε and
(U(α, i) \ U ′(α, i)) ∩Aε = ∅ by (6.)

To check (d1) assume that β, γ ∈ Aε and j, k < n such that U(β, j)∩
U(γ, k) 6= ∅. Pick x ∈ U(β, j) ∩ U(γ, k). Then

σ(α) ∈ U0(σ(β), j) ∩ U0(σ(γ), k)

by Claim 1.4 if x = α ∈ A∗, and by Claim 1.8 if x = 〈α, i〉 ∈ A \ A∗.
If ε = 0 then σ(β) = β and σ(γ) = γ, so σ(α) ∈ Uε(β, j) ∩ Uε(γ, k).
If ε = 1 then σ(β) = σ∗(β) and σ(γ) = σ∗(γ), and so σ∗(σ(α)) ∈

Uε(β, j) ∩ Uε(γ, k).
Finally to check (d2) assume that β, γ ∈ Aε and i, j < n such that

Uε(β, i) ⊂ Uε(γ, j). Since p′ ≤ pε we have U ′(β, i) ⊂ U ′(γ, j). If
U(β, i) = U ′(β, i), we are done. So we can assume that U(β, i) =
U ′(β, i) ∪ V (ξ1, k). Then ε = 0 and U0(ξ0, k) ⊂ U0(β, i). But then
U0(ξ0.k) ⊂ U0(γ, j) and so U(γ, j) = U ′(γ, j)∪V (ξ1, k), and so U(β, i) ⊂
U(γ, j). �1.10

Since p satisfies (∗), the amalgamation lemma is proved. �1.3
Using the amalgamation lemma it is easy to complete the proof of

the theorem.
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By standard ∆-system argument, any uncountable set of conditions
contains two elements, p0 and p1, which are twins. So, by Lemma 1.3,
they have a common extension p. So P satisfies c.c.c.

If G is a generic filter, for α < ω1 and i < ω put

U(α, i) = ∪{Up(α, i) : p ∈ G, α ∈ Ap, i < np}, (10)

and let Uα = {U(α, i) : i < ω} be the base of the point α inX = 〈ω1, τ〉.
By (P3), a countable subfamily of {U(α, i) : α < ω1, i < ω} is not a

base of X . So w(X) = ω1.
Finally we show that X does not contain an uncountable subspace

which has an irreducible base.
Assume on the contrary that

r 
 the subspace Ẏ = {ẏξ : ξ < ω1} has an irreducible base B,

and {Ḃyξ : ξ < ω1} is an irreducible decomposition of Ḃ.

We can assume that r 
 ẏξ ≥ ξ̌.
For each ξ < ω1 pick a condition rξ and kξ ∈ ω such that

rξ 
 “if V ∈ B with ẏξ ∈ V ⊂ U(ẏξ, ǩξ) then V ∈ Byξ”. (11)

For each ξ < ω1 pick a condition pξ ≤ rξ, an ordinal αξ ≥ ξ, a name

V̇ξ and a natural number mξ < ω such that αξ ∈ Apξ and

pξ 
 ẏξ = α̌ξ, V̇ξ ∈ Ḃαξ
and U(α̌ξ, m̌ξ) ⊂ V̇ξ ⊂ U(α̌ξ, ǩξ). (12)

By standard argument find I ∈
[

ω1

]ω1 such that

(i) mξ = m and kξ = k for each ξ ∈ I,
(ii) the sequence {αξ : ξ ∈ I} is strictly increasing,
(iii) the conditions {pξ : ξ ∈ I} are pairwise twins,

(iv) σξ,η(αξ) = αη for {ξ, η} ∈
[

I
]2
, where σξ,η is the twin function.

Pick ξ < η from I. By the Amalgamation Lemma there is a common
extension p of pξ and pη such that

αξ ∈ Up(αη, m) ∧ Up(αη, k) ⊂ Up(αξ, k). (13)

Then, by (d2),

p 
 α̌ξ ∈ U(α̌η, m̌) ∧ U(α̌η, ǩ) ⊂ U(α̌ξ, ǩ). (14)

Then, by (12),

p 
 V̇η ∈ Bαη
and α̌ξ ∈ U(α̌η, m̌) ⊂ V̇η ⊂ U(α̌η, ǩ) ⊂ U(α̌ξ, ǩ), (15)

which contradicts (11).
This completes the proof of the Theorem. �
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