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ABSTRACT. In this paper we consider representations of algebraic
integers of a number field as linear combinations of units with coef-
ficients coming from a fixed small set, and as sums of elements hav-
ing small norms in absolute value. These theorems can be viewed
as results concerning a generalization of the so-called unit sum
number problem, as well. Beside these, extending previous related
results we give an upper bound for the length of arithmetic pro-
gressions of ¢-term sums of algebraic integers having small norms
in absolute value.

1. INTRODUCTION

Let K be an algebraic number field with ring of integers Og. The
problem of representing elements of O as sums of units has a long
history and a very broad literature. Instead of trying to make an
account, of the various results and research directions, we only refer
to the excellent survey paper of Barroero, Frei and Tichy [2] and the
references there. Now we mention only those results which are most
important from our viewpoint.

After several partial results due to Ashrafi and Vamos [1] and others,
Jarden and Narkiewicz [10] proved that for any number field K and
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positive integer ¢, one can find an algebraic integer @ € K which cannot
be represented as a sum of at most ¢ units of K.

Observe that if K admits an integral basis consisting of units then
clearly every integer of K can be represented as a sum of units. For
results in this direction we refer to a paper of Pethd and Ziegler [17].
Showing that (up to certain precisely described exceptions) every num-
ber field admits a basis consisting of units with small conjugates, we
prove that allowing a small, completely explicit set of (rational) coef-
ficients every integer of K can be expressed as a linear combination of
units. We would like to emphasize the interesting property that the set
of coefficients allowed depends only on the degree and the regulator of
K and that the latter dependence is made explicit.

Further, it is also well-known (see e.g. [2] again) that there are
infinitely many number fields whose rings of integers are not generated
additively by their units. In other words, in these fields one can find
algebraic integers o which cannot be represented as a sum of (finitely
many) units at all.

In this paper we extend this investigations to the case where one
would like to represent the algebraic integers of K not as a sum of
units, but as a sum of algebraic integers of small norm, i.e. using
algebraic integers with |N(3)| < m for some positive integer m. (For
precise notions and notation see the next section.) Obviously, taking
m = 1 we just get back the original question. First we prove that the
above mentioned result of Jarden and Narkiewicz extends to this case:
for any algebraic number field K and positive integers m and t one
can find an algebraic integer @« € K which cannot be obtained as a
sum of at most ¢ integers of K of norm < m in absolute value. Then
we show that in contrast with the original case, one can give a bound
mg depending only on the discriminant and degree of K, such that if
m > mg then already every integer of K can be represented as a sum
of integers of K with norm at most m in absolute value. Note that
as it is well-known, any number field K contains only finitely many
pairwise non-associated algebraic integers of given norm. Hence sums
of elements of small norm can be considered as linear combinations of
units with coefficients coming from a fixed finite set.

Finally, we also provide a result concerning arithmetic progressions
of t-term sums of algebraic integers of small norm in a number field
K. This result generalizes previous theorems of Newman (concerning

'Here and in the sequel under a unit of K we mean a unit in O.
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arithmetic progressions of units; see [14] and [15]) and of Bérczes, Haj-
du and Pethé (concerning arithmetic progressions of elements of fixed
norm; cf. [3]).

The organization of the paper is as follows. In the next section we
give our main results, together with the necessary notation, and also
with some further details. The third section contains the proofs of
Proposition 2.1 and of Theorem 2.1, which we consider the principal
results of this note. The last section is dealing with the proofs of the
other statements.

2. MAIN RESULTS

From this point on, let K be an algebraic number field of degree k,
with discriminant D(K) and regulator R(K). Write Ok for the ring
of integers of K, N(3) for the field norm of any # € K and Uk for the
group of units in Og.

The unit sum number problem can be considered as a question about
linear combinations of units with rational integers. We know that the
resulting set is sometimes a proper subset with infinite complementer of
Ok . However if we allow that the coefficients have small denominators,
then the situation becomes completely different.

At this point let us recall that the field K is called a CM-field, if it is
a totally imaginary quadratic extension of a totally real number field.

Theorem 2.1. Suppose that either K is not a CM-field, or K is a CM-
field containing a root of unity different from +1. Then there exists a
positive integer £ = e*WEE) ywhere ¢ (k) is a constant depending only
on the degree of K, such that any o € Ok can be obtained as a linear
combination of units of K with coefficients {1,1/2,1/3,...,1/(}.

Remark 2.1. The condition that K is not a CM-field or K contains
a non-real root of unity is necessary. Indeed, otherwise all units of K
are contained in some proper subfield of K, and the statement trivially

fails.

Denote by o; (i = 1,...,k) the embeddings of K into C and for
a € K put |a] = maxi<;<x(Jos(@)]). Although the next statement
does not fit completely in the main line of this paper, we present it
among the main results because it is vital for the proof of Theorem
2.1. Moreover, we think that it is interesting also on its own.

Proposition 2.1. Suppose that either K is not a CM-field, or K is a
CM-field containing a root of unity different from £1. Then there exists
a constant co = co(k) depending only on the degree of K, such that K
has a basis consisting of units ; with |e;] < e®RI) (7 =1, ... k).



4 D. DOMBEK, L. HAJDU AND A. PETHO

Now we present our results, where the summands belong to a set of
integers of small norm in K. As a motivation, we mention that Newman
proved that the length of arithmetic progressions consisting of units of
K is at most k (see [14] and [15]). This result has been generalized by
Bérczes, Hajdu and Pethé in [3] to arithmetic progressions in the set

Ny ={B €0k : N(B)=m},

where m > 0. Now we present a result concerning a further general-
ization of this problem. For m > 0 put

N, ={B €0k : |[N(B)| <m},
and write

where ¢ is a positive integer.
Our first theorem gives a bound for the lengths of arithmetic pro-
gressions in the sets t X N*.

Theorem 2.2. The length of any non-constant arithmetic progression
intx N is at most c3(m, t, k, D(K)), where cz(m,t,k, D(K)) is an ex-
plicitly computable constant depending only on m, t, and on the degree
k and discriminant D(K) of K.

Now we present results concerning the above generalization of the
unit sum number problem. Slightly modifying the notation of Gold-
smith, Pabst and Scott [6] we define the unit sum number u(Ok) as
the minimal integer ¢ such that every element of Ok is a sum of at
most ¢ units from Uk, if such an integer exists. If it does not, we put
u(Ok) = w if every element of O is a sum of units, and u(Og) = 0o
otherwise. We use the convention ¢ < w < oo for all integers t.

As we have mentioned already, Jarden and Narkiewicz [10] proved
that u(Og) > w for any number field K. Our next result yields an
extension of this nice theorem. To formulate it, we define the m-norm
sum number u,,(Ok) as an analogue to u(Of) with the exception that

instead of sums of units we consider sums of elements from N*. Clearly,
U(OK) = Uy (OK) holds.

Theorem 2.3. For every number field K and m > 0 we have u,(Of) >
w, i.e. for every m,t € N there exists an o € Ok which cannot be ob-
tained as the sum of at most t terms from N¥.

As it is well-known (see e.g. [2] and the references given there), for
infinitely many number fields K we have u(Og) = co. In contrast to
this result, our next theorem shows that u,,(Ok) = w is always valid
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if m is “large enough” with respect to the discriminant and the degree
of K. More precisely, we have the following theorem.

Theorem 2.4. For every number field K there exists a positive integer
mo = mo(D(K), k) depending only on the discriminant and the degree
of K, such that for any m > mqg we have u,,(Og) = w, i.e. anya € Ok
can be obtained as the sum of elements from N .

Observe that sums of elements of N}, can be also viewed as linear
combinations of units with coefficients coming from a fixed finite set
(see also the proofs of Theorems 2.3 and 2.4).

3. PROOFS OF PROPOSITION 2.1 AND OF THEOREM 2.1

In the proof of Proposition 2.1 we shall need the following lemmas.
The first one is due to Bugeaud and Gyéry [4].

Lemma 3.1. Let K be as earlier, with unit rank s. Then K has a

Jundamental system of units €1, ...,&s such that
(i) max |g;] < ectEE)
1<i<s
i (e <
(i) | [logla(e)]| < cs(WR(E),

with some explicitly computable constants c4(k) and cs(k), depending
only on k.

Proof. Part (i) is a simple and straightforward consequence of Lemma
1 (ii) of [4], while part (ii) follows from (i) in the standard way, using
lo1(e)| .. Jog(e;)| =1fori=1,...,s. O

The next lemma is an immediate consequence of the main theorem
of Costa and Friedman [5].

Lemma 3.2. For every positive integer k there exists a positive con-
stant cg = c¢(k) depending only on k, such that for every number field
K of degree k and for every subfield L of K we have

R(L) < c(k)R(K),
where R(L) and R(K) denote the regqulators of L and K, respectively.

Proof. If |D(K)| > 3k*, then the statement directly follows from the
main theorem in [5].

Now assume that |D(K)| < 3k*. Since there are only finitely many
number fields of discriminant bounded by a fixed constant in absolute
value (see e.g. Hasse [9], p. 619), the constant cs(k) can be effectively
calculated as the maximum of the ratios R(L)/R(K), where K runs
through the finite list of fields of degree k with |D(K)| < 3k* and L
runs through all proper subfields of K. l
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Proof of Proposition 2.1. We prove the statement by induction on k.
The statement is empty for &k = 1, while it is obvious for £ = 2. Let ¢
be a root of unity and e4,...,e, be a fundamental system of units for
K having property (i) in Lemma 3.1. If K has no proper subfield, then
we have K = Q(e;1), and our claim follows. So we may assume that
K has proper subfields. Let L’ be a proper subfield of K of maximal
degree.

At first, assume that either L’ is not a CM-field or it contains a root
of unity different from +1. Note that 2¢' < k, where ¢ is the degree
of L'. We show that ¢; ¢ L' holds for some index i € {0,1,...,s}.
Suppose that e; € L' for all i = 1,...,s. Writing s’ for the unit rank of
L', then s = s’ should be valid. Observe that s’ < ¢ — 1 with equality
if and only if L’ is totally real, and s > k/2 — 1 with equality if and
only if K is totally complex. Hence for s = s’ we must have k = 2/,
and it also follows that K is totally complex and L' is totally real. But
K is then a CM-field, which by our assumptions implies that ey ¢ L'

By induction, L’ has a basis consisting of units {n,...,ns}, with
mi| < et@RL)  Take an index i € {0,1,...,s} with &; ¢ L'. Since L'
is a subfield of K of maximal degree, we have K = L'(¢;). Hence there
is a basis of K of the form

{n,gg' clefn,.. 0, je{o,...,k/e'—1}}.

Since |g;] < e“®EU) and according to Lemma 3.2 we have R(L') <
ce(k)R(K) for some positive constant cg(k), we have

el < e @RI (=1 =1, k- 1),

with some constant ¢;(k) depending only on k, and the statement fol-
lows in this case.

Now assume that the proper subfield L' C K of maximal degree is
a CM-field with no non-real roots of unity. Let L” be its maximal real
subfield. Then the units of L” and the units of L’ coincide. If there
is any non-CM proper subfield L of K containing L”, then this L is
of maximal degree, and we can find an appropriate ¢; (i = 0,1,...,s)
such that K = L(g;) and the statement follows, just as in the previous
case.

Otherwise, by 4deg(L”) < deg(K) there exists an ¢; ¢ L" (i =
1,...,s). Further, since now L” is contained only in CM-subfields of
K, we have K = L"(g;). Thus we can use the same induction argument
as before, since L” is not a CM-field, and the theorem follows. O
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Proof of Theorem 2.1. 1t is clearly sufficient to show that the index
of the additive group generated by the units of K inside O can be
bounded in terms of R(K) and k.

By Proposition 2.1 there exists a constant cy(k) such that we can

find a basis €1, ..., e, of K consisting of units with the property H <
e2MR(E) (7 =1,... k). Further, we also have

D(ei,...,e1) = I’D(K)
(see e.g. [16], p. 58), where I is the index of the additive group
Zley, . .., ek inside the additive group of O, and

oi(e1) ... oi(en)]

D(ey, ... ex) = : :
O'k(€1> O'k(ék>

Hence, as D(K) is a rational integer, by part (i) of Lemma 3.1 we
obtain

k
[ <D o) < k! (max @) < (s (RE)

1<i<k
with some constant cg(k) depending only on k. Since Zleq, ..., e is
a subgroup of the additive group generated by the units of K, the
theorem follows. U

Remark 3.1. Note that by a result of Sprindzuk [18] there are only
finitely many number fields of given degree having regulator smaller
than a prescribed bound. From this one could prove an implicit variant
of Theorem 2.1, without specifying the dependence upon R(K).

4. PROOFS OF THE OTHER THEOREMS

In the proof of Theorem 2.2, beside Lemmas 3.1 and 3.2 we shall use
the following lemmas. The first one is an immediate consequence of a
result of Murty and Van Order [13].

Lemma 4.1. Let K be an algebraic number field of degree k and m > 1
be an integer. Then there are at most co(k, D(K))m pairwise non-
associated elements o € O with [N ()| < m, where co(k, D(K)) is an
explicitly computable constant depending only on k and D(K).

Proof. In view of part (ii) of Lemma 3.1 and a result of Landau [11]
implying that |D(K)| > ¢(k) R(K) where cg(k) is a constant depending
only on k, the statement is a simple corollary of Theorem 5 of [13]. O
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To formulate our second lemma we need some further notation. If
K is an algebraic number field, write K* for the multiplicative group
of the nonzero elements of K and let I' be a multiplicative subgroup of
K* of finite rank r > 0. Let ¢ be a positive integer and let A C K be
a finite nonempty set with n elements. Put

t
H,(T'A) = {Zaixi s(ar, . ap) €A (21,0, x) EFt}.
i=1

The next result is Theorem 1.1 of Hajdu and Luca in [8]. For the
first (non-explicit) result of this type see also [7]. Further, note that
Jarden and Narkiewicz [10] proved a similar (but also not explicit)
result, concerning the special case where the coefficients a; can take
the values —1,0, 1 only.

Lemma 4.2. The length of any non-constant arithmetic progression
in Hy(I', A) is bounded by a constant L = L(n,t,r) with
L(n,t,r) < exp ((8(n 4 t + r))30++0")

Proof of Theorem 2.2. Let s be the unit rank of K. Note that s < k—1.
It is well-known by the famous result of Dirichlet that the group of units
in Og is of the form

Uk = {77(])077{1 nis : ]l €Z (7’ = 0717"'78)}’
where 7y, ...,n, is a system of fundamental units of K and 7, is a root
of unity in K. Denote by M(m) a full set of pairwise non-associated
algebraic integers in K with norm bounded by m in absolute value.
Then Lemma 4.1 implies |M(m)| < co(k, D(K))m. Putting all this
together, we see that
t X N;;L = Ht(F,A> s
where ' = Ug isof rank r = s+ 1 < k and

(1) A={(7,....%) : e M(m) (i=1,...,t)}
has cardinality n < (co(k, D(K))m)'. Hence by Lemma 4.2 the theorem
follows. U

Proof of Theorem 2.3. We follow a similar path as in the proof of The-
orem 2.2. Since V¥ = H{(T', A) with ' = Uy and A as in (1) above,
we can easily see that the set of numbers being the sum of at most ¢
elements of N} coincides with the set Hy(Ug, M(m)).

Now suppose that for fixed m,t we can write any a € Ok as the
sum of at most ¢ elements from N}:. Then because Ok is a ring, we
can construct an arithmetic progression in Hy(T', A) of arbitrary length
and this contradicts Lemma 4.2. 0
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Remark 4.1. Note that based upon the main result of [10] a similar,
alternative proof of Theorem 2.3 could also be given.

Proof of Theorem 2.4. Any ring of integers O possesses an integral
basis aq,...,qx, i.e. Ox = aqZ + ...+ aiZ. By a result Mahler [12]
(Corollary on p. 436), there exists an integral basis satisfying | N («;)| <
(K*2\/D(K))* (i = 1,...,k). If we choose my = mo(D(K), k) =
(k*2\/D(K))*, then for any m > my, the integral basis of Ox belongs
to the set N* and the statement follows. 4

5. ACKNOWLEDGEMENT

The authors are grateful to the referee for his helpful comments.

REFERENCES

[1] N. Ashrafi, P. Vamos, On the unit sum number of some rings, Q. J. Math. 56
(2005), 1-12.

[2] F. Barroero, C. Frei, R. F. Tichy, Additive unit representations in rings over
global fields - a survey, Publ. Math. Debrecen 79 (2011), 291-307.

[3] A. Bérczes, L. Hajdu, A. Peth8, Arithmetic progressions in the solution sets of
norm form equations, Rocky Mountain Math. J. 40 (2010), 383-396.

[4] Y. Bugeaud, K. Gy6ry, Bounds for the solutions of unit equations, Acta Arith.
74 (1996), 67-80.

[5] A. Costa, E. Friedman, Ratios of regulators in totally real extensions of number
fields, J. Number Theory 37 (1991), 288-297.

[6] B. Goldsmith, S. Pabst, A. Scott, Unit sum numbers of rings and modules, Q.
J. Math. 49 (1998), 331-344.

[7] L. Hajdu, Arithmetic progressions in linear combinations of S-units, Period.
Math. Hungar. 54 (2007), 175-181.

[8] L. Hajdu, F. Luca, On the length of arithmetic progressions in linear combi-
nations of S-units, Archiv der Math. 94 (2010), 357-363.

[9] H. Hasse, Number theory. Translated from the third (1969) German edition.
Edited and with a preface by Horst Giinter Zimmer. Classics in Mathematics.
Springer-Verlag, Berlin (2002).

[10] M. Jarden, W. Narkiewicz, On sums of units, Monatsh. Math. 150 (2007),
327-332.

[11] E. Landau, Abschdtzungen von Charaktersummen, FEinheiten und Klassen-
zahlen, Nachr. Akad. Wiss. Gottingen (1918), 79-97.

[12] K. Mahler, Inequalities for ideal bases in algebraic number fields, J. Austral.
Math. Soc. 4 (1964), 425-448.

[13] M. R. Murty, J. Van Order, Counting integral ideals in a number field, Expo.
Math. 25 (2007), 53-66.

[14] M. Newman, Units in arithmetic progression in an algebraic number field, Proc.
Amer. Math. Soc. 43 (1974), 266-268.

[15] M. Newman, Consecutive units, Proc. Amer. Math. Soc. 108 (1990), 303-306.



10 D. DOMBEK, L. HAJDU AND A. PETHO

[16] W. Narkiewicz, Elementary and analytic theory of algebraic numbers. Pol-
ska Akademia Nauk., Instytut Matematyczny, Monografie matematyczne 57
(1974).

[17] A. Pethd, V. Ziegler, On biquadratic fields that admit unit power integral basis,
Acta Math. Hungar. 133 (2011), 221-241.

[18] V. G. Sprindzuk, ”Almost every” algebraic number-field has a large class-
number, Acta Arith. 25 (1973/74), 411-413.

D. DOMBEK, DEPARTMENT OF MATHEMATICS FNSPE, CZECH TECHNICAL
UNIVERSITY IN PRAGUE, TROJANOVA 13, 120 00 PrAHA 2, CZECH REPUBLIC
E-mail address: dombedan®@f jfi.cvut.cz

L. HAJDU, UNIVERSITY OF DEBRECEN, INSTITUTE OF MATHEMATICS, H-4010
DEBRECEN, P.O. Box 12., HUNGARY
E-mail address: hajdul@science.unideb.hu

A. PETHO, UNIVERSITY OF DEBRECEN, DEPARTMENT OF COMPUTER SCI-
ENCE, H-4010 DEBRECEN, P.O. Box 12., HUNGARY
FE-mail address: Petho.Attila@inf.unideb.hu



