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Abstract

Lattice tests are quality measures for assessing the intrinsic structure of
pseudorandom number generators. Recently a new lattice test has been
introduced by Niederreiter and Winterhof. In this paper, we present a
general inequality that is satisfied by any periodic sequence. Then, we
analyze the behavior of the linear congruential generators on elliptic curves
(abbr. EC-LCG) under this new lattice test and prove that the EC-LCG
passes it up to very high dimensions. We also use a result of Brandstätter
and Winterhof on the linear complexity profile related to the correlation
measure of order k to present lower bounds on the linear complexity profile
of some binary sequences derived from the EC-LCG.
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1 Introduction

1.1 Lattice tests

Lattice tests are quality measures for assessing the intrinsic structure of pseu-
dorandom generators. The following lattice test was introduced in [8, 9] and
further analyzed in [6, 7, 8, 19]. Let (ηn), n = 0, 1, . . . , be a sequence over the
finite field Fq of q elements of period T . The characteristic of the field Fq will
be p, so q = pm, for some positive integer m.

For given integers s ≥ 1 and N ≥ 2, (ηn) passes the s-dimensional N -lattice
test if the vectors {ηn − η0 : 1 ≤ n ≤ N − 1} span Fsq, where

ηn = (ηn, ηn+1, . . . , ηn+s−1), for 0 ≤ n ≤ N − 1.

The largest dimension s such that (ηn) satisfies the s-dimensional N -lattice test
is called lattice profile at N , denoted by S(ηn, N). Moreover, let

S(ηn) = sup
N≥2

S(ηn, N).

One can verify that
S(ηn) = S(ηn, T )

for any periodic sequence T of period T > 1. And clearly S(ηn) = 1 if the
period T = 1.

If additionally Fq is a finite prime field, i. e. q = p, this special lattice test
for N = T is the one which was proposed by Marsaglia in [16].

A stronger lattice test was introduced in [20] by Niederreiter and Winterhof
for inversive pseudorandom number generators, and further investigated in [21]
by the third author and Winterhof for digital explicit nonlinear and inversive
pseudorandom number generators. Let (ηn) be a T -periodic sequence over the
finite field Fq. For given integers s ≥ 1, 0 < d1 < d2 < · · · < ds−1 < T ,
and N ≥ 2, we say that (ηn) passes the s-dimensional N -lattice test with lags
d1, . . . , ds−1 if the vectors {ηn,d − η0 : 1 ≤ n ≤ N − 1} span Fsq, where

ηn,d = (ηn, ηn+d1 , . . . , ηn+ds−1), 0 ≤ n ≤ N − 1.

The largest dimension s such that (ηn) satisfies the s-dimensional N -lattice test
for all lags d1, . . . , ds−1 is denoted by S(ηn, N), i.e.,

S(ηn, N) =

max
{
s : ∀0 < d1 < · · · < ds−1 < T, 〈ηn,d − η0, 0 ≤ n ≤ N − 1〉 = Fsq

}
.

It is easy to see S(ηn, N) ≤ S(ηn, N). On the other hand, S(ηn, T ) is bounded
below by an expression depending only on S(ηn), if T is a prime. We prove the
following Lemma,which comes from [15, Lemma 1]. The residue classes modulo
T are identified with integers in the range {0, . . . , T − 1} and vice versa.
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Lemma 1. Let s ≥ 2, T a prime and 0 < d1 < · · · < ds−1 < T , then there
exists an integer r ∈ Z with gcd(r, T ) = 1 such that,

di ≡ rhi (mod T ), i = 1, . . . , s− 1

with |hi| ≤ (4sT )(s−2)/(s−1).

Proof. We start with the case d1 = 1 and, at the end of the proof, we reduce
the general case to this particular case.

First of all, let ~ei be the ith (s − 2)-dimensional unit vector. We consider
the set

S = {~e1, . . . , ~es−2, T~e1, . . . , T~es−2, (d2, . . . , ds−1)} . (1)

Applying [15, Lemma 1], there exist

h2, . . . , hs−1, j2, . . . , js−1, r
′ ≤ (4sT )(s−2)/(s−1) such that

h2~e1 + . . .+ hs−1~es−2 + j2T~e1 + . . .+ js−1T~es−2 + r′(d2, . . . , ds−1) = ~0.

Comparing components, we have

r′di ≡ hi (mod T ), i = 2, . . . , s− 1

It is easy to see that r′ is not a multiple of T so, taking r ≡ (r′)−1 (mod T ),
then we have the result for d1 = 1. The case d1 6= 1 can be reduced to the
general case, just multiplying each d1, d2, . . . , ds−1 by the inverse of d1 modulo
T . This remark finishes the proof.

We will also use Lemma 2 from [22].

Lemma 2. Consider a sequence (ηn), with S(ηn) ≤ L and period T . Then, for
any integers M ≥ 1, and 0 ≤ e0, . . . , eL there are some elements c0, . . . , cL (not
all zero) such that

L∑
j=0

cjηMb+ej = 0

for any integer b with 0 ≤ b ≤ T − 1.

The next theorem gives a general inequality that relates S(ηn, T ) with S(ηn)
for any sequence (ηn), when T is prime.

Proposition 1. Let (ηn) be any T -periodic sequence with T prime, if s satisfies
the following inequality

s ≤ log T + log s+ 2

log T + log s+ 2− logS(ηn)

then the sequence (ηn) passes the s-dimensional T -lattice test with any lags.
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Proof. We assume that the sequence (ηn) does not pass the s-dimensional T -
lattice test for some lags 0 < d1 < · · · < ds−1 < T . Put

ηn,d = (ηn, ηn+d1 , . . . , ηn+ds−1), for 0 ≤ n ≤ N − 1.

for 0 ≤ n ≤ T − 1 and let V be the subspace of Fsq spanned by all ηn,d − η0
for 0 ≤ n ≤ T − 1. Let us denote by V ⊥ = {u ∈ Fsq : u · v = 0 for all v ∈ V }
the orthogonal space of V , where · denotes the usual inner product. By our
hypothesis, dim(V ) < s and dim(V ⊥) ≥ 1, so there exists a non zero vector
α ∈ V ⊥ and

α ·
(
ηn,d − η0

)
= 0, for 0 ≤ n ≤ T − 1.

Equivalently, we write

α · ηn,d = η0 · α = δ, for 0 ≤ n ≤ T − 1.

By Lemma 1, we can rewrite as

α0ηn + α1ηn+rh1
+ . . .+ αs−1ηn+rhs−1

= δ, for 0 ≤ n ≤ T − 1

where gcd(r, T ) and 0 < h1, . . . , hs−1 ≤ (4sT )(s−2)/(s−1). We define the follow-
ing sequence (ηn)′ = (ηrn) and we obtain

α0η
′
n + α1η

′
n+h1

+ . . .+ αs−1η
′
n+hs−1

= δ, for 0 ≤ n ≤ T − 1.

This means that S(η′n, T ) ≤ (4sT )(s−2)/(s−1), so if we take,

0, r′, 2r′ . . . , hr′ where h = d(4sT )(s−2)/(s−1)e and r′r ≡ 1 mod T.

and apply Lemma 2, we also get that S(ηn, T ) ≤ (4sT )(s−2)/(s−1).
Operating with S(ηn, T ), we obtain the result.

1.2 Elliptic curves

Recent developments point towards an interest in the elliptic curve analogues of
pseudo-random number generators, which are reasonably new sources of pseudo-
random numbers based on the group structure of elliptic curves over finite fields.
These generators include the linear congruential generator on elliptic curves, the
power generator on elliptic curves and the Naor-Reingold generator on elliptic
curves, see the recent survey [23].

We first introduce some notions and basic facts of elliptic curves over finite
fields. Let E be an elliptic curve over Fq, where q = pm is a prime power and
p > 3, given by an affine Weierstrass equation of the standard form

y2 = x3 + ax+ b, (a, b ∈ Fq)

with nonzero discriminant, see [10]. It is known that the set E(Fq) of Fq-rational
points of E forms an abelian group under an appropriate composition rule de-
noted by ⊕ and with the point at infinity O as the neutral element. We recall
that

|#E(Fq)− q − 1| ≤ 2q1/2,
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where #E(Fq) is the number of Fq-rational points, including the point at infinity
O. For a given point G ∈ E(Fq), the linear congruential generator on elliptic
curves, EC-LCG, is defined as

Un = G⊕ Un−1 = nG⊕ U0, n = 0, 1, . . . , (2)

where U0 is the initial point. In this article, let G ∈ E(Fq) be a point of order T ,
that means T is the size of the cyclic group 〈G〉 generated by G. The EC-LCG
is a T -periodic sequence over Fq × Fq.

Some other important elliptic curve generators are also studied in the last
decade, such as the elliptic curve power generator and the elliptic curve Naor-
Reingold generator.

For a k-dimensional integer vector (a1, . . . , ak) ∈ ZkT , the elliptic curve Naor-
Reingold generator, EC-NRG, is defined as the sequence:

Fa(n) = an1
1 · · · a

nk

k G, n = 0, 1, · · · , (3)

where n = n1 . . . nk is the bit representation of n, 0 ≤ n ≤ 2k−1, addding zeros
until length k.

The translation map by W ∈ E(Fq) on E(Fq) is defined as

τW : E(Fq)→ E(Fq), G 7→ G⊕W.

It is obvious that (f ◦ τW )(G) = f(G⊕W ).
We conclude this section with some results on rational functions, which are

needed in our proofs. Let Fq(E) be the function field of E defined over Fq. For
any f (or f(x, y)) in Fq(E) and G ∈ E(Fq), G is called a zero (resp. a pole) of f
if f(G) = 0 (resp. f(G) = ∞). Any rational function has only a finite number
of zeros and poles. Let ordG(f) be the order of f at G. In fact,

ordG(f) : Fq(E)→ Z ∪ {∞}

is a discrete valuation of Fq(E), see [10, p.22] or [24, Definition I.1.9]. Obviously,
ordG(f) = 0 for all but finitely many G ∈ E(Fq) and ordG(f) > 0 if G is a zero
of f while ordG(f) < 0 if G is a pole of f .

Any nonconstant polynomial f ∈ Fq(E) has the only pole at O. The degree
of f is deg(f) =

∑
ordG(f)>0 ordG(f) =

∑
ordG(f)<0 |ordG(f)|. For example,

deg(x) = 2 and deg(y) = 3. We need the following results.

Lemma 3. Let f, g ∈ Fq(E) be rational functions, we have

ordG(f + g) ≥ min{ordG(f), ordG(f)}, for any G ∈ E(Fq).

The equality holds if ordG(f) 6= ordG(g).

Proof. See [10, Proposition 2.14] or [24, Lemma I.1.10].

Lemma 4. Let f, g ∈ Fq(E) be rational functions such that f+g is nonconstant.
Then we have deg(f + g) ≤ deg(f) + deg(g).
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Proof. Using the definition of deg and Lemma 3,

deg(f + g) =
∑

G with ordG(f+g)<0

|ordG(f + g)| ≤

∑
ordG(f+g)<0

|min{ordG(f), ordG(g)}|

Now, we separate the sum in two different sums, one where ordG(f) ≤ ordG(g)
and another where ordG(f) > ordG(g). It is clear∑

0>ordG(f+g)≥ordG(f)

|ordG(f)| ≤ deg(f).

In the same way, we get that the other summand is less than the degree of g,
this finishes the proof.

Lemma 5. Let f, g ∈ Fq(E) be nonconstant rational functions with disjoint pole
sets. Then f + g is nonconstant.

Proof. Suppose G is a pole of f , then G is not a pole of g, so ordG(f) <
ordG(g) = 0. Then by Lemma 3, we have

ordG(f + g) < 0

i.e., G is a pole of f + g, so function f + g is nonconstant.

Remark. The proof of Lemma 5 also indicates that the set of poles of f +g
is exactly the union of the poles of f and g with disjoint pole sets.

2 Lattice profile of EC-LCG

We will consider the lattice test with lags for sequences derived from the EC-
LCG in general fields. Using the generator (Un) defined by (2) and a function
f ∈ Fq(E) with a single pole, the linear congruential sequence with elliptic curves
is defined by

ηn = f(Un), for n = 0, 1, . . . (4)

From Proposition 1 and the result in [14] we get a lower bound for S(ηn, T ),
however, in the next Theorem, we prove a stronger lower bound.

Theorem 1. Let f be a rational function with a single pole H on E. For the
T -periodic sequence (4) with EC-LCG (Un) defined by (2), we have

S(ηn, N) ≥

{
N

1+deg(f) − 1, if U0 ∈ 〈G〉 ⊕H,
N

deg(f) − 1, in other case,
for 1 ≤ N ≤ T − 1.
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In particular,

S(ηn) = S(ηn, T ) ≥

{
T

1+deg(f) − 1, if U0 ∈ 〈G〉 ⊕H,
T

deg(f) − 1, in other case,

Proof. We assume that the sequence (ηn) does not pass the s-dimensional N -
lattice test for some lags 0 < d1 < · · · < ds−1 < T . Put

ηn,d = (ηn, ηn+d1 , . . . , ηn+ds−1
), 0 ≤ n ≤ N − 1.

for 0 ≤ n ≤ T − 1 and let V be the subspace of Fsq spanned by all ηn,d − η0
for 0 ≤ n ≤ T − 1. Let us denote by V ⊥ = {u ∈ Fsq : u · v = 0 for all v ∈ V }
the orthogonal space of V , where · denotes the usual inner product. Then
dim(V ) < s and dim(V ⊥) ≥ 1. Take 0 6= α ∈ V ⊥, then

α ·
(
ηn,d − η0

)
= 0, for 0 ≤ n ≤ T − 1.

Equivalently, we write

α · ηn,d = η0 · α = δ, for 0 ≤ n ≤ T − 1.

If α) = (α0, . . . , αs−1), then let j be the smallest index with αj 6= 0 (so 0 ≤ j <
s). Then with d0 = 0 if j = 0 and for 0 ≤ n ≤ N − 1,

αjηn+dj + αj+1ηn+dj+1
+ · · ·+ αs−1ηn+ds−1

= δ.

That is,

αjf((n+dj)G⊕U0)+αj+1f((n+dj+1)G⊕U0)+· · ·+αs−1f((n+ds−1)G⊕U0) = δ,
(5)

where 0 ≤ n ≤ N − 1. Let Q be a generic rational point and

F (Q) := (αjf ◦ τdjG⊕U0
+ αj+1f ◦ τdj+1G⊕U0

+ · · ·+
αs−1f ◦ τds−1G⊕U0

)(Q)− δ.

Since H is the single pole of f , we see that H 	 (diG⊕ U0) is the only pole of
f ◦τW (diG⊕W ). By Lemma 5 it is easy to see that F is a nonconstant rational
function since the points H 	 (diG⊕U0) are poles of F if αi 6= 0, j ≤ i ≤ s− 1,
where 	 is the inversive operation of ⊕. Furthermore, by Lemma 4 we have

deg(F ) ≤ (s− j) deg(f) ≤ sdeg(f).

According to (5), at least M points nG : 0 ≤ n ≤ N − 1 are zeros of F , where

M =

{
N − s, if U0 ∈ 〈G〉 ⊕H,
N, otherwise.

So we have
M ≤ deg(F ) ≤ sdeg(f),

which leads to the desired result.
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For f(x, y) = x, a frequently case studied, like in [11, 23] and the survey
[25], we have the following corollary.

Corollary 1. For the T -periodic sequence (ηn) = (x(Un)) with EC-LCG (Un)
defined by (2), we have

S(ηn, N) ≥

{
N
3 − 1, if U0 ∈ 〈G〉,
N
2 − 1, in other case,

for 1 ≤ N ≤ T − 1.

For Naor-Reingold sequences with elliptic curves, Proposition 1 and the re-
sults of [5] says that the sequence passes the 2-lattice test, for almost all choices
of a1, . . . , ak.

Theorem 2. For γ > 0 and the T -periodic sequence (ηn) = (x(Un)) with Naor
Reingold generator (Un) with period T prime and k ≥ 2 log T. Then this sequence
passes the 2−lattice test with any lags for almost all choices of a1, . . . , ak.

Theorem 1 can be extended to r-dimensional sequences investigated in [14].
We first define the lattice profile for r-dimensional sequences. Let

ηn = {(Σn,1,Σn,2, . . . ,Σn,r), n = 0, 1, . . . , T − 1}

be a r-dimensional sequence over the finite field Fq. Since Frq is isomorphic
to Fqr as vector space over Fq, one can view (Σn,1,Σn,2, . . . ,Σn,r) as an element
of Fqr by the relationship

ηn := Σ1γ1 + Σ2γ2 + . . .+ Σrγr ∈ Fqr

where γ1, . . . , γr is a basis of Fqr over Fq. For given integers s ≥ 1, 0 < d1 <
d2 · · · < dr, and N ≥ 2, we say that (ηn) passes the s-dimensional N -lattice test
with lags d1, . . . , ds−1 if the vectors {ηn,d − η0 : 1 ≤ n ≤ N − 1} span Fsqr ,
where

ηn,d = (ηn, ηn+d1 , . . . , ηn+ds−1
), 0 ≤ n ≤ N − 1.

The largest dimension s such that (ηn) satisfies the s-dimensional N -lattice test
for all lags d1, . . . , ds is denoted by S(ηn, N), i.e.,

S(ηn, N) = max
{
s : ∀0 < d1 < · · · < ds−1 < T, 〈ηn,d − η0, 0 ≤ n ≤ N − 1〉 = Fsqr

}
.

which is called the generalized lattice profile at N of (ηn). Now we introduce
r-dimensional elliptic curve sequences studied in [14].

Let H be a place of degree d of E and let

C = {f1, f2, . . . , fr} ⊆ Fq(E) (6)

be a set of r ≥ 1 rational functions with pole divisors of the form

div(fi)∞ = (i+ ε)[H], 1 ≤ i ≤ r
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where

ε =

{
1, if d = 1,
0, if d ≥ 2.

Since E has genus one, such functions always exist by the theorem of Riemann-
Roch.

We define ρ = r + ε. For r = 2 and H = O a natural example is given by
f1(P ) = x(P ) and f2(P ) = y(P ), where P = (x(P ), y(P )) 6= O. In this case,
d = 1, ρ = 3 (see [14]).

Then we define the k-dimensional sequence with EC-LCG in (2) and rational
functions in (6) by

(f1(Un), f2(Un), . . . , fk(Un)), n = 0, 1, . . . , T − 1. (7)

Theorem 3. For the k-dimensional sequence (ηn) with

ηn = (f1(Un), f2(Un), . . . , fk(Un)) n = 0, 1, . . . , T − 1.

we have

S(ηn, N) =

{
N

1+dρ − 1, if U0 ∈ 〈G〉 ⊕H,
N
dρ − 1, in other case,

for 1 ≤ N ≤ T − 1.

Proof. We will not distinguish between the vectors in Fkq and the elements in
Fqr . That is,

ηn = (f1(Un), f2(Un), . . . , fk(Un)) = f1(U1)γ1 + f2(Un)γ2 + · · ·+ fk(Un)γk

where γ1, . . . , γk is a basis of Fqr over Fq.
Now assume that in Fqr the sequence (ηn) does not pass the s-dimensional

N -lattice test for some lags 0 < d1 < · · · < ds−1 < T . Put

ηn,d = (ηn, ηn+d1 , . . . , ηn+ds−1
), 0 ≤ n ≤ N − 1.

Following the ideas in the proof of Theorem 2, we get

α ·
(
ηn,d − η0

)
= 0, for 0 ≤ n ≤ T − 1

Equivalently, we write

α · ηn,d = α · η0 = δ, 0 ≤ n ≤ T − 1

for α = (α0, . . . , αs−1) ∈ Fsqr . Let j be the smallest index with αj 6= 0 (so
0 ≤ j < s). Then with d0 = 0 if j = 0 and for 0 ≤ n ≤ N − 1, we get

αjηn+dj + α1ηn+dj+1
+ . . .+ αs−1ηn+ds−1

= δ.
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That is,

δ = αj(f1(Un+dj )γ1 + f2(Un+dj )γ2 + · · ·+ fr(Un+dj )γk)

+ αj+1(f1(Un+dj+1
)γ1 + f2(Un+dj+1

)γ2 + · · ·+ fr(Un+dj+1
)γk)

+ αs−1(f1(Un+ds−1
)γ1 + f2(Un+ds−1

)γ2 + · · ·+ fr(Un+ds−1
)γk)

= (αjf1(Un+dj ) + αj+1f1(Un+dj+1
) + · · ·αs−1f1(Un+ds−1

))γ1 + · · ·
+ (αjfr(Un+dj ) + αj+1fr(Un+dj+1

) + · · ·αs−1fr(Un+ds−1
))γr (8)

where 0 ≤ n ≤ N − 1. For 1 ≤ l ≤ k, we are going to define,

Fl = αjfl ◦ τdjG⊕U0
+ αj+1fl ◦ τdj+1G⊕U0

+ · · ·+ αs− 1fl ◦ τds−1G⊕U0
∈ E(Fq).

By Lemma 5 and Remark 1, the poles of Fl for all 1 ≤ l ≤ r are

H 	 (diG⊕ U0), j ≤ i ≤ s− 1 (9)

with αi 6= 0. On the other hand, using (6) we have for j ≤ l ≤ s− 1

ordH	(diG⊕U0)(F1) < ordH	(diG⊕U0)(F2) < · · · < ordH	(diG⊕U0)(Fk).

Thus Fi’s are non-constant rational functions and

deg(F1) < deg(F2) < · · · < deg(Fr) ≤ (s− j) deg(fr) ≤ sdeg(fr) ≤ sdρ.

Using (8), we have

δ = γ1F1(nG) +γ2F2(nG) + · · ·+γkFk(nG) = (γ1F1 + γ2F2 + · · ·+ γkFk) (nG)

for 0 ≤ n ≤ N − 1. At last, we have to show that this function is not constant.
Let k be the largest index with αk 6= 0 in {αj , αj+1, . . . , αs−1}. Then each

Fi has a pole at H	 (dkG⊕U0) of order d(i+ ε). So γ1F1 +γ2F2 + · · ·+γkFk is
non-constant and the degree is bounded by sdρ by Lemma 3. By Equation (9),
it has no poles in 〈G〉 if H /∈ 〈G〉 ⊕ U0, and at most s different poles in 〈G〉 if
H ∈ 〈G〉 ⊕ U0. This gives

sdρ ≥

{
N − s, if H ∈ 〈G〉 ⊕H,
N, otherwise,

which leads to the desired result.

3 Linear Complexity of some binary sequences
derived from EC-LCG

In [17], Mauduit and Sárközy introduced the notion of the correlation measure of
order k, an important measure of pseudorandomness for finite binary sequences.
Let

ET = {e0, e1, . . . , eT−1} ∈ {0, 1}T ,
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then the correlation measure of order k of ET is defined as

Ck(ET ) = max
M,D

∣∣∣∣∣
M∑
n=1

(−1)en+d1
+en+d2

+···+en+dk

∣∣∣∣∣ ,
where the maximum is taken over allD = (d1, . . . , dk) with non-negative integers
0 ≤ d1 < . . . < dk < T and M such that M + dk ≤ T − 1.

We may consider ET as an infinite sequence of period T . We recall that
the linear complexity profile L(ET , N) is the least order L of a linear recurrence
relation over F2

en+L = c0en + c1en+1 + · · ·+ cL−1en+L−1, for 0 ≤ n ≤ N − L− 1

which is satisfied by the first N terms of ET , and the linear complexity L(ET )
is defined as

L(ET ) = sup
N≥1

L(ET , N),

see [26, 25] for details on the linear complexity and also [8] for the relation with
lattice tests. In [1, Theorem 1], Brandstätter and Winterhof used the correlation
measure of order k to estimate a lower bound on the linear complexity profile
L(ET , N) for ET .

Lemma 6. For any T−periodic binary sequence ET , the following inequality
holds

L(ET , N) ≥ N − max
1≤k≤L(ET ,N)+1

Ck(ET )

where 2 ≤ N ≤ T − 1.

Below we present some binary sequences constructed using elliptic curves
over the prime field Fp in the literature. (We note that some of our references
deal actually with the corresponding sequences e′n = (−1)en over {+1,−1}.)
Here we recall some notations. Let Fp = {0, 1, . . . , p − 1} and G ∈ E(Fp) be a
rational point of order T . We write x(iG) = xi and y(iG) = yi for iG = (xi, yi).

In [3], the following five types of finite binary sequences ST = {s0, . . . , sT−1}
of length T are defined:

si =

{
1, y(iG) > p

2 ,

0, otherwise.
si =

{
1, x(iG) < y(iG),

0, otherwise.
(10)

si =

{
1, y(iG) is even,

0, otherwise.
si =

{
1, x(iG) is even,

0, otherwise.
si =

{
1, x(iG) > p

2 ,

0, otherwise.

(11)

Theorem 4. For any ST = {s0, . . . , sT−1} defined in (10) and in (11). If
k < T , we have

Ck(ST ) ≤ 2kkp1/2(1 + log p)k(1 + log T ).
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Proof. See [3] for details.

Theorem 4 and Lemma 6 yield the following result.

Corollary 2. For any ST = {s0, . . . , sT−1} in (10), we have

L(ST , N) = Ω

(
log(Np−1/2)

log log p

)
for 1 ≤ N ≤ T − 1.

In [2], taking the Legendre symbol, the first author constructed a family of
binary sequences ST = {s0, . . . , sT−1} along elliptic curves by defining

si =

 0, if
(
f(iG)
p

)
= 1 or f(iG) = 0,∞,

1, if
(
f(iG)
p

)
= −1,

(12)

where
(
·
p

)
is the Legendre symbol. Here the function f should be selected

carefully. We note that the restricted conditions of “f(x, y) ∈ Fq(E) being a

rational function with f(x, y) 6= z2(x, y) for all z(x, y) ∈ Fq(E)” in [2] are not
enough, as the example below shows.

Example . We recall that T is the order of G and suppose that m > 1 is a
divisor of T . For ANY rational function g(x, y), if we select

f(Q) = g(Q)g(Q+
N

m
G)g(Q+

2N

m
G) · · · g(Q+

(m− 1)N

m
G),

where Q is a generic rational point, we note that here f is not a square, but

f(nG)f(nG+
m

T
G) = (g(nG)g(nG+

T

m
G)g(nG+

2T

m
G) · · ·

g(nG+
(m− 1)T

m
G))2,

which leads to C2(ST ) for (12) is trivial. �
So for appropriate f , we have the following result as proved in [2, Theorem 3].

Corollary 3. For ST = {s0, . . . , sT−1} in (12), we have

L(ST , N) = Ω

(
N

p1/2 log T

)
for 1 ≤ N ≤ T − 1.

In [4], the first author, Li and Xiao defined a family of binary sequences
using discrete logarithm along elliptic curves. Let g be a fixed primitive root
modulo p. For each x ∈ F∗p, let ind(x) denote the index (discrete logarithm) of
x (to the base g) so that

gind(x) ≡ x (mod p).

12



We add the condition
1 ≤ ind(x) ≤ p− 1

to make the value of index unique. The sequence ST = {s0, . . . , sT−1} is defined
by

si :=

{
0, if 1 ≤ ind(f(iG)) ≤ (p− 1)/2,
1, if (p+ 1)/2 ≤ ind(f(iG)) ≤ p− 1 or p|f(iG).

(13)

The construction in (13) is an elliptic curve analogue of [13]. As Example above
shows, we also select f carefully in this construction.

Theorem 5 ([4]). For ST = {s0, . . . , sT−1} in (13) and k < T , we have

Ck(ST ) ≤ 4kkp1/2(1 + logp)k(1 + logT ).

Theorem 5 and Lemma 6 yield the following result.

Corollary 4. For ST = {s0, . . . , sT−1} in (13), we have

L(ST , N) = Ω

(
log(Np−3/4)

log log p

)
for 1 ≤ N ≤ T − 1.

Finally, we remark that in the recent paper [18], Mérai pointed out some
sufficient conditions for selecting appropriate f in (12) and (13) using ideas
similar to the ones in [12].
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dorandom binary lattices, Unif. Distrib. Theory, 4(2) (2009), 59-80.

[14] F. HESS and I. E. SHPARLINSKI. On the linear complexity and multidi-
mensional distribution of congruential generators over elliptic curves, Des.
Codes Cryptogr., 35(1) (2005), 111-117.

[15] A. JOUX and J. STERN. Lattice reduction: a toolbox for the cryptanalyst,
J. Cryptology, 11(3) (1998), 161-185.

14



[16] G. MARSAGLIA. The structure of linear congruential sequences, Appli-
cations of Number Theory to Numerical Analysis (Proc. Sympos., Univ.
Montreal, Montreal, Que., 1971), Academic Press, New York, 1972, 249-
285.
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