Skip to main content
Log in

Monotone hulls for \({\mathcal {N}}\cap {\mathcal {M}}\)

Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Using the method of decisive creatures [see Kellner and Shelah (J Symb Log 74:73–104, 2009)] we show the consistency of “there is no increasing \(\omega _2\)–chain of Borel sets and \(\mathrm{non}({\mathcal N})= \mathrm{non}({\mathcal M})=\mathrm{non}({\mathcal N}\cap {\mathcal M})=\omega _2=2^\omega \)”. Hence, consistently, there are no monotone Borel hulls for the ideal \({\mathcal M}\cap {\mathcal N}\). This answers Balcerzak and Filipczak (Math Log Q 57:186–193, 2011 [Questions 23, 24]). Next we use finite support iteration of ccc forcing notions to show that there may be monotone Borel hulls for the ideals \({\mathcal M},{\mathcal N}\) even if they are not generated by towers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Remember our convention that for \(x,y\in {\mathbf H}(i)\) and \({\mathfrak c}\in {\mathbf K}(i)\) we write \(x\in {\mathbf \Sigma }({\mathfrak c})\) iff \(x\in {\mathrm{val}}({\mathfrak c})\), and \(x\in {\mathbf \Sigma }(y)\) iff \(x=y\).

  2. Remember our convention that, for \(x\in {\mathbf H}(i)\), \({\mathrm{val}}(x)=\{x\}\).

  3. “mhg” stands for “monotone hull generating”.

  4. See [16, 3.1–3.7] for the order in which these should be shown.

  5. Since \({\mathbb B}^{\mathbf{V}^{{\mathbb P}^*_{a_i}}}\) is \(\sigma \)–centered we know that the product is ccc.

  6. i.e., determined in a standard way by a sequence of maximal antichains.

References

  1. M. Balcerzak, T. Filipczak, On monotone hull operations. Math. Log. Q. 57, 186–193 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Bartoszyński, H. Judah, Set Theory: On the Structure of the Real Line (A K Peters, Wellesley, 1995)

    MATH  Google Scholar 

  3. T. Bartoszyński, M. Kada, Hechler’s theorem for the meager ideal. Topol. Appl. 146(147), 429–435 (2005)

    Article  Google Scholar 

  4. J. Brendle, S. Fuchino, Coloring ordinals by reals. Fundam. Math. 196, 151–195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.R. Burke, M. Kada, Hechler’s theorem for the null ideal. Arch. Math. Log. 43, 703–722 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Elekes, K. Kunen, Transfinite sequences of continuous and Baire class 1 functions. Proc. Am. Math. Soc. 131, 2453–2457 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Elekes, A. Máthé, Can we assign the Borel hulls in a monotone way? Fundam. Math. 205, 105–115 (2009)

    Article  MATH  Google Scholar 

  8. J. Kellner, S. Shelah, Decisive creatures and large continuum. J. Symb. Log. 74, 73–104 (2009). arXiv:math.LO/0601083

  9. K. Kunen. Inaccessibility properties of cardinals. PhD thesis, Stanford University (1968).

  10. H. Mildenberger, S. Shelah, Changing cardinal characteristics without changing \(\omega \)-sequences or cofinalities. Ann. Pure Appl. Log. 106, 207–261 (2000). arXiv:math.LO/9901096

  11. A. Roslanowski, S. Shelah, Norms on possibilities I: forcing with trees and creatures. Mem. Am. Math. Soc. 141(671):xii + 167 (1999). arXiv:math.LO/9807172

  12. A. Roslanowski, S. Shelah, Around cofin. Colloq. Math. 134, 211–225 (2014). arXiv:1304.5683.

  13. S. Shelah, Covering of the null ideal may have countable cofinality. Fundam. Math. 166, 109–136 (2000). arXiv:math.LO/9810181

  14. S. Shelah, Was Sierpiński right? IV. J. Symb. Log. 65, 1031–1054 (2000). arXiv:math.LO/9712282

  15. S. Shelah, The null ideal restricted to some non-null set may be \(\aleph _1\)-saturated. Fundam. Math. 179, 97–129 (2003). arXiv:math.LO/9705213

  16. S. Shelah, S. Thomas, The cofinality spectrum of the infinite symmetric group. J. Symb. Log. 62, 902–916 (1997). arXiv:math.LO/9412230

Download references

Acknowledgments

Both authors acknowledge support from the United States-Israel Binational Science Foundation (Grant No. 2006108). This is publication 972 of the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saharon Shelah.

Additional information

Dedicated to László Fuchs for his ninetieth birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosłanowski, A., Shelah, S. Monotone hulls for \({\mathcal {N}}\cap {\mathcal {M}}\) . Period Math Hung 69, 79–95 (2014). https://doi.org/10.1007/s10998-014-0042-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0042-3

Mathematics Subject Classification

Navigation