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Abstract A simple graph G = (V,E) is said to be antimagic if there exists a
bijection f : E → [1, |E|] such that the sum of the values of f on edges incident
to a vertex takes different values on distinct vertices. The graph G is distance
antimagic if there exists a bijection f : V → [1, |V |], such that ∀x, y ∈ V,

∑
xi∈N(x)

f(xi) 6=
∑

xj∈N(y)

f(xj).

Using the polynomial method of Alon we prove that there are antimagic injections
of any graph G with n vertices and m edges in the interval [1, 2n + m − 4] and,
for trees with k inner vertices, in the interval [1,m + k]. In particular, a tree all
of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial
positive answer to a conjecture by Hartsfield and Ringel.

We also show that there are distance antimagic injections of a graph G with
order n and maximum degree ∆ in the interval [1, n + t(n − t)], where t =
min{∆, bn/2c}, and, for trees with k leaves, in the interval [1, 3n−4k]. In particu-
lar, all trees with n = 2k vertices and no pairs of leaves share their neighbour are
distance antimagic, a partial solution to a conjecture of Arumugam.
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1 Introduction

In this paper we shall consider two kinds of labelings: antimagic and distance
antimagic. The concept of an antimagic labeling of a graph was introduced by
Hartsfield and Ringel in 1990 [13].

In general, an edge labeling of a graph G = (V,E) is a bijection l : E →
{1, 2, . . . , |E|} := [1, |E|]. The weight of a vertex v, wt(v), is the sum of the labels
of all edges incident to v.

An edge labeling l of G is called antimagic if all vertex weights in G are pairwise
distinct. A graph G is said to be antimagic if it has an antimagic labeling.

Hartsfield and Ringel [13] showed that each path Pm , star Sm, cycle Cm,
complete graph Km, wheel Wm and bipartite graph K2,m, m ≥ 3, is antimagic.
They further conjectured

Conjecture 1 (Harstfield–Ringel, 1990) Every connected graph G 6= K2 is an-
timagic.
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Fig. 1 An antimagic labeling of a tree.

Over the period of more than two decades, many attempts have been made to
settle the conjecture. While in general the Hartsfield and Ringel conjecture remains
open, some partial results are known which support the conjecture. Alon et al. [3]
used probabilistic methods and some techniques from analytic number theory to
show that the conjecture is true for all graphs having minimum degree at least
Ω(log |V (G)|). They also proved that if G is a graph with order |V (G)| ≥ 4 and
maximum degree ∆(G), |V (G)| − 2 ≤ ∆(G) ≤ |V (G)| − 1, then G is antimagic,
and that all complete multipartite graphs, except K2, are antimagic. Cranston [11]
proved that every regular bipartite graph (complete or not) is antimagic. Hefetz
[14] used the Combinatorial Nullstellensatz to prove that a graph with 3k vertices,
where k is a positive integer, which admits a K3-factor is antimagic. Various
papers on the antimagicness of particular classes of graphs have been published,
for example, see [9,19–21]. For more details on antimagic labeling for particular
classes of graphs see the dynamic survey [12], see also [5].

There is now a great wealth of evidence in support of the conjecture. However
a full general proof still eludes us. Even the weaker conjecture, that every tree
different from K2, is antimagic still remains open. The most general result for
trees is due to Kaplan, Lev and Roditty [15] who proved that every tree with
at most one vertex of degree 2 is antimagic. See also [8,13] for other results on
antimagic trees.

A less known but closely related type of graph labeling known as the “distance
antimagic labeling”, or more precisely, the “1-distance vertex antimagic vertex
labeling”, has been defined as follows.
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Fig. 2 A distance antimagic labeling of a tree.

Definition 1 (Miller, Rodger, Simantujak, 2003)
A distance antimagic labeling of a graph G = (V,E) is a bijection f : V →

[1, |V |], such that for every pair x, y of distinct vertices,∑
u∈N(x)

f(u) 6=
∑

u∈N(y)

f(u).

An obvious necessary condition for G to be distance antimagic is

N(x) 6= N(y), for each x, y ∈ V (G).

Paths Pn, cycles Cn, wheels Wn6=4, regular bipartite graphs and some particu-
lar caterpillars are examples of graphs which have been proved to be distance
antimagic. Arumugam [4] has conjectured that all trees satisfying the obvious
necessary condition are distance antimagic.

Conjecture 2 (Arumugam, 2012) A tree T is distance antimagic if and only if every
vertex is adjacent to at most one leaf.

In this paper we give approximate results to the two above conjectures, that
is, we find upper bounds for the smallest integer such that there is an injection
with the corresponding rainbow property. An analogous approach has been also
considered for other kinds of labelings; see e.g., Bollobás and Pikhurko [6] or
Lladó, López and Moragas [17].

We start with distance antimagic graph labeling. For a given class X of graphs,
let DA(X , n) denote the smallest integer N such that, for each graph G ∈ X of
order n, there is an injection f : V → [1, N ] such that the sums∑

y∈N(x)

f(y), x ∈ V

are pairwise distinct. We call such a map a distance antimagic injection.
Let G be the class of all graphs which have no two vertices with the same

neighborhood and let G ∈ G with order n. For any ordering v1, . . . , vn of the
vertices of G the map f(vi) = 2i is clearly a distance antimagic injection in G.
Thus we have DA(G, n) ≤ 2n. This trivial exponential bound can be reduced for
general graphs.

Theorem 1 Let G∆ be the class of graphs in G with maximum degree ∆. Then

DA(G∆, n) ≤ n+ t(n− t), where t = min {∆, bn/2c} .
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A better bound can be obtained for trees.

Theorem 2 Let Tk be the class of trees in G which have k leaves. Then

DA(Tk, n) ≤ 3n− 4k.

In particular, all trees in Tk with n = 2k vertices are distance antimagic.

In particular, for an arbitrary tree T , the tree obtained from T by attaching
one leaf to each vertex of T is distance antimagic.

Similar definitions can be made for antimagic labelings. Let A(X ,m) denote
the smallest integer N such that, for each graph G ∈ X with m edges, there is an
injection f : E(G)→ [1, N ] such that the sums∑

yx∈E
f(y), x ∈ V

are pairwise distinct. We call such a map f an antimagic injection. As in the
distance antimagic case, if e1, . . . , em are the edges of G and m > 1 then the map
f(ei) = 2i is clearly an antimagic injection, so A(X ,m) ≤ 2m. We show

Theorem 3 Every graph G with m > 1 edges and n vertices admits an antimagic
injection on [1, 2n+m− 4].

For trees the upper bound can be reduced. Recall that the base tree of a tree
T is obtained from T by removing all its leaves. A vertex of T is said to be an
inner vertex of a subtree T ′ of T if all its neighbours in T belong to T ′.

Theorem 4 Let T ′k denote the class of trees whose base tree has k inner vertices.
For m > 1 we have A(T ′k ,m) ≤ m+ k.

In particular, a tree different from K2 whose base tree has no inner vertices is
antimagic.

It follows from the last statement in Theorem 4 that, for an arbitrary tree T ,
the tree obtained from T by attaching one leaf to each vertex of T is antimagic.

The proofs of the above theorems use the polynomial method of Alon (Com-
binatorial Nullstellensatz) which we recall next.

Theorem 5 (Combinatorial Nullstellensatz, Alon (1999) [1])
Let P (x1, . . . , xk) be a polynomial of degree d in F [x1, . . . , xk] over a field F .

Let S1, . . . , Sk be subsets of F with |Si| > di ≥ 0 such that
∑k
i=1 di = d.

If the coefficient of the monomial
∏k
i=1 xi

di in f is nonzero, then there exists

(s1, . . . , sk) ∈ S1 × · · · × Sk

such that P (s1, . . . , sk) 6= 0.

The proofs of Theorems 1 and 2 are given in Section 2, whereas Section 3
contains the proofs of Theorems 3 and 4. The last section contains some final
remarks.
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2 Distance antimagic injections

As mentioned before, the proofs use the polynomial method. For a set x1, . . . , xn,
we denote by V (x1, . . . , xn) the Vandermonde polynomial

V (x1, . . . , xn) =
∏

1≤i<j≤n

(xi − xj).

We recall that the Vandermonde polynomial has an expansion of the form

V (x1, . . . , xn) =
∑

σ∈Sym(n)

(−1)sgn(σ)xn−1
σ(1)x

n−2
σ(2) · · ·x

0
σ(n),

and V (a1, . . . , an) 6= 0 if and only if the ai’s are pairwise distinct.
The proof of Theorem 1 is a quite straightforward application of the polynomial

method and it is included to illustrate the technique.
Proof of Theorem 1. Let G ∈ G∆ with order n. Let v1, . . . , vn be the vertices

of G. Let x1, . . . , xn be variables and, for each i, define

yi =
∑

vj∈N(vi)

xj .

Consider the polynomial P ∈ R[x1, . . . , xn] defined as

P (x1, . . . , xn) = V (x1, . . . , xn)V (y1, . . . , yn).

A map f : V → N is a distance antimagic injection if and only if

P (f(v1), . . . , f(vn)) 6= 0.

Since G contains no two vertices with the same neighborhood, it admits distance
antimagic injections, so that P is not the zero polynomial.

On the other hand, considering a term (yj−yk), xi will appear in the term if it is
present in exactly one of yj , yk. Hence the variable xi appears at most t(n−t) times
in V (y1, . . . , yn), where t = min{∆, bn/2c}. Therefore, every monomial xα1

1 · · ·x
αn
n

in P with nonzero coefficient satisfies

maxαi ≤ (n− 1) + t(n− t).

It follows from the Combinatorial Nullstellensatz that, by choosing

S1 = . . . = Sn = [1, n+ t(n− t)],

there are 1 ≤ a1, . . . , an ≤ n + t(n − t) such that P (a1, . . . , an) 6= 0. Thus the
assignment f(vi) = ai gives a distance antimagic injection. ut

The proof of Theorem 2 involves a more efficient use of the polynomial method.
We recall that (V (x1, . . . , xn))2 has a term of the form

xn−1
1 · · ·xn−1

n ,

with coefficient n! up to a sign (see e.g. Alon [2].) An analogous result holds for
the fourth power of the Vandermonde polynomial. This is a consequence of the
Dyson conjecture of which we next reproduce the statement from Karasev and
Petrov [16], where a simple proof with the Combinatorial Nullstellensatz can be
found.
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D(Ti)

D−(Ti)

I(Ti)

w1 w2

v1 v2

Fig. 3 Illustration of the notation in the proof of Theorem 2.

Theorem 6 ([16]) Let α1, . . . , αn be positive integers and α =
∑
i αi. Denote by

c be the coefficient of
xα−α1
1 · · ·xα−αn

n

in the polynomial ∏
1≤i<j≤n

(−1)aj (xj − xi)ai+aj .

Then
c =

α

α1! · · ·αn!
.

By choosing α1 = · · · = αn = 2 in Theorem 6 we get

Corollary 1 The coefficient of x
2(n−1)
1 · · ·x2(n−1)

n in (V (x1, . . . , xn))4 is,

(2n)!

2n
.

Using Corollary 1 we next prove Theorem 2.
Proof of Theorem 2. Let T be a tree in Tk. For a subtree T ′ ⊆ T we denote by

I(T ′) = {v ∈ V (T ′) : N(v) ⊆ V (T ′)}

the set of inner vertices in T ′ (its full neighborhood in T is contained in V (T ′))
and by

D(T ′) = {v ∈ V (T ′) : |NT ′(v)| = 1},

the set of leaves of T ′. We also let

D−(T ′) = {NT ′(v) : v ∈ D(T ′)}

denote the set of vertices in T ′ which are adjacent to some leaf of T ′. Let T0 = T
and for i ≥ 1 let Ti = Ti−1 −D(Ti−1) be the subtree of T obtained from Ti−1 by
deleting its leaves. In this way we obtain a monotone decreasing chain

T = T0 ⊃ T1 ⊃ T2 ⊃ · · · ⊃ Tl,

where V (Ti) = V (Ti+1) ∪ D(Ti) and Tl is the center of T consisting of a single
vertex or a single edge. Figure 3 illustrates the notation.
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We will define a distance antimagic injection of T level by level starting from
Tl. We label the vertices in Tl with {1} (if Tl consists of one vertex) or with {1, 2}
(if it consists of two vertices.)

Suppose that f has been defined on V (Ti+1) satisfying the following three
properties:

(i) f is an injection on V (Ti+1);
(ii) With the convention S(v) =

∑
u∈N(v) f(u), the neighbour sums in

S(I(Ti+1)) = {S(v) : v ∈ I(Ti+1)}

of the inner vertices in Ti+1 are pairwise distinct;
(iii) if v ∈ D−(T ) ∩ V (Ti+1) then f(v) 6∈ S(I(Ti+1)).

These three properties are trivially satisfied if i + 1 = l. We will extend f to
Ti in two steps by preserving the three above properties.

Let w1, . . . , wr be the vertices in I(Ti) \ I(Ti+1), the new inner vertices in Ti,
which do have neighbors in D(Ti). Then, since T has no pair of leaves adjacent to
the same vertex,

r ≤ |D(Ti)| ≤ |D(T )| = k.

For each wj choose one neighbor vj ∈ N(wj)∩D(Ti). Label the vertices in D(Ti)\
{v1, . . . , vr} with pairwise distinct numbers in the set

[1, N ′i ] \ (f(V (Ti+1)) ∪ S(I(Ti+1))), (1)

where N ′i = |V (Ti)| + |I(Ti+1)| (this is possible since this set contains at least
|D(Ti)| elements.) Therefore, f is still injective and no vertex in D−(T ) has re-
ceived a value in S(I(Ti+1)).

If r = 0 then f has been extended to Ti as desired. Suppose that r > 0. Let

S′(wj) =
∑

u∈N(wj)\vj

f(u), j = 1, . . . , r,

and consider the following polynomials in R[x1, . . . , xk]:

Q1,i = V (x1, . . . , xr)
r∏
j=1

∏
u∈V (Ti)\{v1,...,vr}

(xj − f(u));

Q2,i = V (x1 + S′(w1), . . . , xr + S′(wr))
r∏
j=1

∏
u∈I(Ti+1)

(xj + S′(wj)− S(u));

Q3,i =
∏

1≤i<j≤r

(xi − (S′(wj) + xj))
k∏
j=1

∏
u∈I(Ti+1)

(xj − S(u)).

We observe that

V (x1 + S′(w1), . . . , xr + S′(wr)) = V (x1, . . . , xr) + terms of lower degree; and∏
1≤i<j≤r

(xi − (S′(wj) + xj)) = V (x1, . . . , xr) + terms of lower degree.
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Hence, the polynomial Pi = Q1,iQ2,iQ3,i can be written as

Pi = (V (x1, . . . , xr))
3

r∏
j=1

xmi
j + terms of lower degree,

where

mi = (|V (Ti)| − r) + 2|I(Ti+1)|.

It follows from Corollary 1 that (V (x1, . . . , xr))
3 has a monomial with nonzero

coefficient whose largest exponent is at most 2(r − 1). Hence our polynomial Pi
has a term with largest exponent at most

Ni = |V (Ti)|+ 2|I(Ti+1)|+ r − 2, (2)

whose coefficient is nonzero.
By Theorem 5 there are 1 ≤ a1, . . . , ar ≤ Ni + 1 such that Pi takes a nonzero

value on (a1, . . . , ak). Define f(ui) = ai, i = 1, . . . , r. Let us check that in this way
we have extended f to V (Ti) by preserving properties (i)–(iii).

The way f has been defined on V (Ti) \ {v1, . . . , vr} and the fact that Q1,i

is nonzero on (a1, . . . , ar) ensure that f is injective on V (Ti), yielding property
(i). Since no vertex in D(Ti) \ {v1, . . . , vr} is an inner vertex of Ti, the fact that
Q2,i(a1, . . . , ak) 6= 0 ensures that the values S(wj) = S′(wj) + aj , 1 ≤ j ≤ r, are
pairwise distinct and different from the values of S(u) for u ∈ I(Ti+1). Moreover,
if i = 0, then the values S(vj) = f(wj) are pairwise distinct (by property (i) of
f on V (T1)) and different from the values {S(u) : u ∈ I(T1)} (by property (iii)
of f on T1), which gives property (ii). Finally, the fact that Q3,i(a1, . . . , ar) 6= 0
ensures that {f(vj), 1 ≤ j ≤ r} is disjoint with

{S(u) : u ∈ I(Ti+1)} ∪ {S(w1), . . . , S(wk)} = {S(u) : u ∈ I(Ti) \D}.

Together with the way f has been defined on V (Ti) \ {v1, . . . , vr}, this ensures
that the label of every vertex in D−(T ) does not coincide with any neighbor sum,
providing property (iii).

We note that Ni is larger than the N ′i (1) defined in the first part of the i–th
step, unless r = 1 and |I(Ti+1)| = 0, in which case we define Ni = N ′i = |V (Ti)|.
In either case, f can be defined on Ti by using elements in [1, Ni].

For i ≥ 1, the above procedure produces an injection f on [1, Ni + 1], where
Ni is defined in (2). We observe that in the last step, when i = 0, by using the
notation as in the above procedure, we have r = k, {w1, . . . , wk} = D−(T ) and
{v1, . . . , vk} = D(T ). In this case the polynomial Q3,0 which ensures that the
labels given to vertices of D−(T ) do not coincide with neighbor sums, is no longer
required since none of the new vertices v1, . . . , vk belongs to D−(T ). Hence the
last step can be simplified to just consider the polynomial

Q0 = Q1,0Q2,0 = (V (x1, . . . , xk))2
k∏
j=1

xm0
j ,

where m0 = |V (T )|−k+ |I(T1)| = n−k+(n−2k) = 2n−3k (we here recall that,
since T ∈ Tk, we have |I(T1)| = |I(T2)| = n−2k.) Moreover, the polynomial Q0 has
a term with nonzero coefficient and all the exponents equal to N0 = (k−1)+m0 =
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2(n− k)− 1. Therefore the last extension of f to V (T0) = V (T ) can be performed
in the interval [1, 2(n− k)].

When the process finishes at i = 0, the properties (i)–(iii) ensure that f is a
distance antimagic injection taking values in the interval [1,maxiNi + 1]. Since
maxiNi = max{N1, N0} and

N1 ≤ |V (T1)|+ 2|I(T2)|+ k − 2 ≤ (n− k) + 2(n− 2k) + k − 2 = 3n− 4k − 2,

we have max{N1, N0} ≤ 3n− 4k − 1. It follows that f can be defined in all cases
in the interval [1, 3n− 4k]. This completes the proof. ut

3 Antimagic injections

The proofs of Theorems 3 and 4 are analogous to the proofs of Theorems 1 and 2
respectively, but they are somewhat simpler.

Proof of Theorem 3. Let G be a graph with order n and m edges. Let v1, . . . , vn
be the vertices of G and let e1, ..., em be the edges of G. For each vertex vi denote
by e(vi) the set of edges incident with vi. Let x1, . . . , xm be variables and, for each
i = 1, . . . ,m, define

yi =
∑

ej∈e(vi)

xj .

Consider the polynomial P ∈ R[x1, . . . , xm] defined as

P (x1, . . . , xm) = V (x1, . . . , xm)V (y1, . . . , yn).

A map f : E → N is an antimagic injection if and only if

P (f(e1), . . . , f(em)) 6= 0.

Since G admits antimagic injections, P is not the zero polynomial. We observe
that every variable xi appears in at most two different variables yj (the two leaves
of the corresponding edge). By looking at the expansion of the Vandermonde
polynomials, we see that every monomial

xα1
1 · · ·x

αm
m

in P with nonzero coefficient satisfies maxαi ≤ (m− 1) + 2(n− 2). It follows from
the Combinatorial Nullstellenstaz that there are 1 ≤ a1, . . . , an ≤ 2n + m − 4
such that P (a1, . . . , am) 6= 0. Thus the assignment f(ei) = ai gives an antimagic
injection. ut

We finally prove Theorem 4.
Proof of Theorem 4. As mentioned before the proof follows the same lines as

the proof of Theorem 2. We use the same notation concerning the set I(T ′) of
inner vertices, the set D(T ′) of leaves and D−(T ′) the set of vertices adjacent to
leaves of a subtree T ′ ⊆ T . We again define

T0 = T ⊃ T1 ⊃ · · · ⊃ Tl.

where Ti+1 = Ti \D(Ti) and now Tl is an edge. Suppose that f has been defined
on E(Ti+1) injectively and such that the edgesums S(v) =

∑
u∈N(v) f(uv) of the
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inner vertices of Ti+1 are pairwise distinct. This is certainly possible when i+1 = l
since T 6= K2, so at most one vertex in Tl is inner. We next extend f to Ti such that
it is still injective and the edgesums of inner vertices of Ti are pairwise distinct.

Let w1, . . . , wr be the vertices in I(Ti) \ I(Ti+1) and, for each wj choose one
neighbor vj ∈ N(wj)∩D(Ti) . Label the edges in {uwj : j = 1, . . . , r, u ∈ N(wj) ∩D(Ti)}\
{vj} with pairwise distinct numbers in

[1, N ′i ] \ (f(E(Ti+1)) ∪ S(I(Ti+1))),

where N ′i = (|E(Ti)| − r) + |I(Ti+1)| (this is possible since this set contains at
least |D(Ti)| − r elements.) In this way, f is still injective. If r = 0 this provides
the desired extension of f to Ti. Suppose r > 0.

Let

S′(wj) =
∑

u∈N(wj)\vj

f(uwj), j = 1, . . . , r,

and consider the following polynomials in R[x1, . . . , xr]:

Q1,i = V (x1, . . . , xr)

r∏
j=1

∏
e∈E(Ti)\{v1w1,...vrwr}

(xj − f(e));

Q2,i = V (x1 + S′(w1), . . . , xr + S′(wr))
r∏
j=1

∏
u∈I(Ti+1)

(xj + S′(wj)− S(u)).

We can write

Pi = Q1,iQ2,i = (V (x1, . . . , xr))
2

r∏
j=1

xmi + terms of lower degree,

where mi = |E(Ti)| − r + |I(Ti+1)|. Hence Pi has a term

xmi+r−1
1 · · ·xmi+r−1

r

with nonzero coefficient. We observe that Ni = |E(Ti)| + |I(Ti+1)| − 1 ≥ N ′i . By
the Combinatorial Nullstellensatz, there are 1 ≤ a1, . . . , ar ≤ Ni + 1 such that Pi
does not vanish in (a1, . . . , ar). By defining f(vjwj) = aj for j = 1, . . . , r we have
extended f to E(Ti) injectively and such that the edgesums of inner vertices of
Ti are pairwise distinct. When i = 0 we have completed our definition of f taking
values on [1, N0 + 1], where

N0 = |E(T )|+ |I(T1)| − 1 = m+ k − 1.

This completes the proof. ut
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4 Final Remarks

Alon’s polynomial method is a useful tool for proving the existence of labelings of
graphs with some prescribed properties. It has however some limitations and its
straight application cannot provide, for instance, a proof of the antimagic conjec-
ture, even for trees.

As mentioned in the proof of Theorem 3, a labeling f : E(T ) → N of a graph
G with vertex set {v1, . . . , vn} and m edges is antimagic if and only if the polyno-
mial P (x1, . . . , xm) = V (x1, . . . , xm)V (y1, . . . , yn) is nonzero in (f(v1), . . . , f(vn)),
where the variables yi are defined as in the proof. For the simple path P3 with
three vertices, this polynomial reduces to P (x1, x2) = −x31x2 + 2x21x

2
2 − x1x

3
2.

Direct application of the Combinatorial Nullstellensatz to this polynomial only
ensures that there is an antimagic injection in {1, 2, 3}, although this path admits
an obvious antimagic labeling. The reason is that the method provides the stronger
result that every set with three elements can be used as values of a labeling, and
for this stronger statement the minimum cardinality for P3 is indeed 3. However
one can exploit the generality of the results obtained with the method in other
directions. One example is the modular version of Theorem 4. Let us define a
modular antimagic injection f : E(G) → Zn of a graph as an injection such that
the edge sums  ∑

u∈N(v)

f(uv) : v ∈ V (G)


are pairwise distinct modulo n. In this case we say that T is n–antimagic. It is
proved in [15] that every tree with m edges and at most one vertex of degree 2
is (m + 1)–antimagic whenever m is even. The proof of Theorem 4 provides the
following modular version.

Theorem 7 Let T be a tree with p edges, p a prime, whose base tree has no inner
vertices. Then T is p–antimagic.

Proof Replacing the field R in the proof of Theorem 4 by the finite field Fp, p a
prime, the coefficient of the monomials which appear in the applications of the
Combinatorial Nullsetellensatz is r! with r < p, which is clearly nonzero in Fp.

We finish by noting that there are simple direct arguments which provide ap-
proximate results. For instance, it can be proved by simple induction and the
pigeonhole principle that every tree with m ≥ 2 edges admits an antimagic in-
jection in [1, 3m − 2]. Indeed, by assuming that T − e admits such an antimagic
injection for a leave e of T , there are m− 1 values already taken by the labels of
the edges in T − e, and m− 1 edgesums which should be avoided for the edgesum
of the vertex incident to e in T − e and for the leaf of e. Thus, if 3m− 2 values are
available, at least one of them must lead to an antimagic labeling of T . Such an
inductive argument, however, cannot be applied to distance antimagic labelings.

Acknowledgements We are grateful to one of the referees for helpful comments and sugges-
tions.
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A final word

Mirka Miller passed away in January 2016. This paper was written during suc-
cessive meetings with Mirka in Jakarta, Bandung, Barcelona and Vientiane. After
a long friendship full of mathematical discussions, this is the only mathematical
paper that the two of us wrote together, not knowing that it would also be the
last one. It is with a mixing of happiness and sorrow that I can eventually see it
in print.
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