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Abstract

A graph G is called C4-free if it does not contain the cycle C4 as an induced
subgraph. Hubenko, Solymosi and the first author proved (answering a question
of Erdős) a peculiar property of C4-free graphs: C4 graphs with n vertices and
average degree at least cn contain a complete subgraph (clique) of size at least

c′n (with c′ = 0.1c2n). We prove here better bounds ( c
2n

2+c
in general and

(c − 1/3)n when c ≤ 0.733) from the stronger assumption that the C4-free
graphs have minimum degree at least cn. Our main result is a theorem for
regular graphs, conjectured in the paper mentioned above: 2k-regular C4-free
graphs on 4k + 1 vertices contain a clique of size k + 1. This is best possible
shown by the k-th power of the cycle C4k+1.

1 Introduction

A graph is called here C4-free, if it does not contain cycles on four vertices as an
induced subgraph. The class of C4-free graphs have been studied from many points
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of view, for example they appear in the theory of perfect graphs (as families containing
chordal graphs). Sometimes the complements of C4-free graphs are investigated, they
are the graphs that do not contain 2K2 as an induced subgraph, sometimes called a
strong matching of size two. Extremal properties of these graphs emerged in works
of Bermond, Bond, Pauli and Peck [1], [2] on interconnection networks, popularized
by Erdős and Nesetril, and generated extremal results, many on the strong chromatic
index, for example [3, 4, 5, 6, 7].

In this paper we revisit [5] where the the following problem (raised by Erdős) was
investigated: how large is ω(G), the size of the largest complete subgraph (clique) in
a dense C4-free graph G? It was proved in [5] that in a C4-free graph with n vertices
and at least cn2 edges, ω(G) ≥ c′n, where c′ depends on c only. The interest in this
result is that as shown in [5], C4 is the only graph with this property (apart from
subgraphs of C4). Let f(c) denote the largest c′ for which every C4-free graph with
n vertices and at least cn2 edges contains a clique of size at least c′n. There is no
conjecture on f(c), apart from the question in [5] whether f(1/4) = 1/4 which is still
open. Our main result, Theorem 1 gives a positive answer to the the special case of
this question for regular graphs (asked also in [5]).

Theorem 1. Every 2k-regular C4-free graph on 4k + 1 vertices contains a clique of
size k + 1.

As shown in [5], Theorem 1 is sharp, the cycle on 4k+1 vertices with all diagonals
of length at most k is a 2k-regular C4-free graph where the largest clique is of size
k + 1. The proof of Theorem 1 follows from understanding the work of Paoli, Peck,
Trotter and West [7] on regular 2K2-free graphs.

Our other results are improvements over the estimates of [5] under the stronger
assumption that the minimum degree δ(G) is given instead of the average degree.

Theorem 2. For C4-free graphs ω(G) ≥ δ2(G)
2n+δ(G)

.

Theorem 2 improves the estimate ω(G) ≥ 0.1a2

n
in [5] where a is the average degree

of G. For a certain range of δ(G), one can do better.

Theorem 3. Suppose that G is a C4-free graph with δ(G) ≤ 11n
15

≈ 0.733n. Then
ω(G) ≥ δ(G)− n

3
.

Note that for δ(G) ≥ n/2, Theorem 2 gives ω(G) ≥ n/12 while Theorem 3 gives
ω(G) ≥ n/6. It seems that the remark “the best estimate we know is n/6” in [5]
comes from this and it seems an open problem whether ω(G) ≥ n/6 follows from
|E(G)| ≥ n2/4. We also note that for 0.382n ≈ 2n

3+
√
5
≤ δ(G) the bound of Theorem

3 is better than that of Theorem 2.
Our last estimate of ω(G) is for the case when G has a large independent set.
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Theorem 4. For every ε > 0 the following holds. Let G be a C4-free graph on n
vertices with minimum degree at least δ. Furthermore, let us assume that G contains
an independent set of size t ≥ n2−δ2

εd2
+ 1. Then G contains a clique of size at least

(1− ε)δ2/n.

Thus we get the following corollary for Dirac graphs (graphs with minimum degree
at least n/2).

Corollary 5. For every ε > 0 the following holds. Let G be a C4-free graph on
n vertices with minimum degree at least n/2. Furthermore, let us assume that G
contains an independent set of size t ≥ 3

ε
+ 1. Then G contains a clique of size at

least (1− ε)n/4.

Corollary 5 probably holds in a stronger form: C4-free graphs with n vertices and
with minimum degree at least n/2 contain cliques of size at least n/4.

2 Properties of C4-free graphs

The following easy lemma can be essentially found in [3, 4, 7] but we prove it to be
self contained. Let W5 denote the 5-wheel, the graph obtained from a five-cycle by
adding a new vertex adjacent to all vertices. A clique substitution into a graph G
is the replacement of cliques into vertices of G so that between substituted vertices
all or none of the edges are placed, depending whether they were adjacent or not
in G. Substituting an empty clique is accepted as a deletion of the vertex. Clique
substitutions into C4-free graphs result in C4-free graphs.

Lemma 6. Suppose that G is a C4-free graph with α(G) ≤ 2. Then one of the
following possibilities holds.

• the complement of G is bipartite

• G can be obtained from W5 by clique substitution

Proof. If G, the complement of G is not bipartite then we can find an odd cycle
C in G. Since C cannot be a triangle, |C| ≥ 5. However, |C| ≥ 7 is impossible
since G is C4-free. Thus |C| = 5. Since G is C4-free and α(G) = 2, any vertex not
on C must be adjacent to exactly three consecutive vertices of C or to all vertices
of C. This procedure naturally allows to place all vertices not on C into one of six
groups and one can easily check that the groups must be cliques forming the claimed
structure. �
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Corollary 7. Suppose that G is a C4-free graph with α(G) ≤ 2. Then ω(G) ≥ 2n
5
.

In the proof of Theorem 1 we shall use the following result which is a special case
of a more general result on regular C4-free graphs (in [7] Theorem 4 and Lemma 7).
A set S ⊂ V (G) is dominating if every vertex of V (G) \ S is adjacent to some vertex
of S.

Theorem 8. (Paoli, Peck, Trotter, West [7], (1992)) Suppose that G is a 2k-regular
C4-free graph on 4k + 1 vertices with α(G) ≥ 3. Then G contains a pair (u, w) of
non-adjacent vertices forming a dominating set.

3 Proofs

Proof of Theorem 1. The proof comes from Theorem 8 and the analysis of Theorem
3 in [7]. We may suppose that α(G) ≥ 3, otherwise Corollary 7 gives a clique of size
8k+2
5

≥ k+1. Theorem 8 ensures a dominating non-adjacent pair (u, w) in G. Let X
be the set of common neighbors of u, v. Then

4k − |X| = d(u) + d(w)− |X| = |V (G)| − 2 = 4k − 1,

implying that |X| = 1. Set X = {x}, U = N(u) − {x}, W = N(w) − {x}, U1 =
N(x) ∩ U , W1 = N(x) ∩W , U2 = U − U1, W2 = W −W1.
Claim. U1,W1 span cliques in G.
Proof of Claim. By symmetry, it is enough to prove the claim for U1. Note that for
w2 ∈ W2, u1 ∈ U1 we have (w2, u1) /∈ E(G) otherwise (w2, u1, x, w, w2) would be an
induced C4.

Suppose that y, z ∈ U1 and (y, z) /∈ E(G). Let N be the number of non-adjacent
pairs (p, q) such that p ∈ {y, z}, q /∈ U1.

• every w1 ∈ W1 contributes at least one to N , otherwise (w1, y, u, z, w1) is a C4

• every u2 ∈ U2 contributes at least one to N , otherwise (u2, y, x, z, u2) is a C4

• every w2 ∈ W2 contributes two to N since (w2, u1) /∈ E(G) for every u1 ∈ U1

• w contributes two to N

Therefore we have

N ≥ |W1|+|U2|+2|W2|+2 = (|W1|+|W2|)+(|U2|+|W2|)+2 = (2k−1)+2k+2 = 4k+1.

However, since (y, z) /∈ E(G), N ≤ 2(dG(y)−1) = 2(2k−1) = 4k−2, a contradiction,
proving that U1 spans a clique in G and the claim is proved. �
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Now the two cliques U1 ∪ {u, x} and W1 ∪ {w, x} cover A = V (G) \ (U2 ∪ W2).
Since |A| = 4k + 1 − 2k = 2k + 1 and the two cliques intersect in {x}, one of the
cliques has size at least k + 1, finishing the proof. �

Proof of Theorem 2. Here we follow the proof of the corresponding theorem in
[5] with replacing average degree by minimum degree. Fix an independent set S =
{x1, x2, . . . , xt}. Let Ai be the set of neighbors of xi in G and set m = maxi 6=j |Ai∩Aj |.
Since G is C4-free, all the subgraphs G(Ai ∩ Aj) are complete graphs, and thus
m ≤ ω(G). Using that |Ai| ≥ δ, we get

tδ ≤
t

∑

i=1

|Ai| < n +
∑

1≤i<j≤t

|Ai ∩ Aj|,

implying that

ω(G) ≥ m ≥
tδ − n
(

t

2

) .

If α(G) ≥ 2n
δ
then set t = ⌈2n

δ
⌉ and we get

ω(G) ≥
⌈2n

δ
⌉δ − n

(⌈ 2n
δ
⌉

2

)

≥
n

(⌊ 2n
δ
⌋+1
2

)

.

If α(G) ≤ 2n
δ
then of course α(G) ≤ ⌊2n

δ
⌋ as well. Now we shall use the following

claim: ω(G) ≥ n

(α(G)+1
2 )

. This follows by selecting an independent set S with |S| =

α(G) = α. Using the notation introduced above, the
(

α

2

)

sets Ai ∩ Aj and the α sets
{xi} ∪ Bi cover the vertex set of G where Bi denotes the set of vertices whose only
neighbor in S is xi. All of these sets span complete subgraphs because G is C4-free
and S is maximal. Now we have

ω(G) ≥
n

(

α(G)+1
2

) ≥
n

(⌊ 2n
δ
⌋+1
2

)

.

Therefore in both cases we have

ω(G) ≥
n

(⌊ 2n
δ
⌋+1
2

)

≥
n

( 2n
δ
+1
2

)

=
δ2

2n+ δ
.

�

Proof of Theorem 3. If α(G) ≤ 2 then by Lemma 6 and by the upper bound on
δ(G),

ω(G) ≥
2n

5
≥ δ(G)−

n

3
.
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If α(G) ≥ 3, then select an independent set {v1, v2, v3} and let Ai denote the set of
neighbors of xi. Then

3δ(G) ≤

3
∑

i=1

|Ai| < n+
∑

1≤i<j≤3

|Ai ∩ Aj|,

implying that for some 1 ≤ i < j ≤ 3, the clique induced by Ai ∩ Aj is larger than
δ(G)− n

3
. �

Proof of Theorem 4. Let S = {x1, x2, . . . , xt} be an independent set in G of size
t ≥ n2−d2

εd2
+ 1. Let Ai be the set of neighbors of xi in G. Note that being induced

C4-free implies that for every i, j, i 6= j the set Ai ∩Aj induces a clique in G. Thus if
we show that there are i, j, i 6= j such that |Ai ∩Aj | ≥ (1− ε)d2/n, then we are done.
Assume indirectly, that for every i, j, i 6= j we have |Ai ∩Aj| < (1− ε)d2/n and from
this we will get a contradiction.

Consider an auxiliary bipartite graph Gb between the sets S and V = V (G),
where we connect each xi with its neighbors in G. We will give both a lower and an
upper bound for the quantity

∑

v∈V degGb
(v)2. To get a lower bound we apply the

Cauchy-Schwarz inequality and the minimum degree condition:

∑

v∈V
degGb

(v)2 ≥ n

(
∑

v∈V degGb
(v)

n

)2

= n

(∑t

i=1 |Ai|

n

)2

≥ n

(

td

n

)2

=
t2d2

n
.

To get the upper bound we use the indirect assumption:

∑

v∈V
degGb

(v)2 =
t

∑

i=1

t
∑

j=1

|Ai ∩Aj | =
t

∑

i=1

|Ai|+
∑

i 6=j

|Ai ∩Aj | <

< nt + (1− ε)
d2t(t− 1)

n
=

t2d2

n
+ nt−

d2t

n
− ε

d2t(t− 1)

n
≤

t2d2

n

(using t ≥ n2−d2

εd2
+ 1), a contradiction. �
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