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Abstract

A graph G is called Cy-free if it does not contain the cycle Cy as an induced
subgraph. Hubenko, Solymosi and the first author proved (answering a question
of Erdés) a peculiar property of Cy-free graphs: C4 graphs with n vertices and
average degree at least cn contain a complete subgraph (clique) of size at least

dn (with ¢ = 0.1¢?n). We prove here better bounds (202—+”c in general and
(¢ = 1/3)n when ¢ < 0.733) from the stronger assumption that the Cjy-free
graphs have minimum degree at least ¢cn. Our main result is a theorem for
regular graphs, conjectured in the paper mentioned above: 2k-regular Cy-free
graphs on 4k + 1 vertices contain a clique of size k + 1. This is best possible
shown by the k-th power of the cycle Cyg11.

1 Introduction

A graph is called here Cy-free, if it does not contain cycles on four vertices as an
induced subgraph. The class of Cy-free graphs have been studied from many points
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of view, for example they appear in the theory of perfect graphs (as families containing
chordal graphs). Sometimes the complements of Cy-free graphs are investigated, they
are the graphs that do not contain 2K, as an induced subgraph, sometimes called a
strong matching of size two. Extremal properties of these graphs emerged in works
of Bermond, Bond, Pauli and Peck [I], [2] on interconnection networks, popularized
by Erdés and Nesetril, and generated extremal results, many on the strong chromatic
index, for example [3], 4], 5 6] [7].

In this paper we revisit [5] where the the following problem (raised by Erdés) was
investigated: how large is w(G), the size of the largest complete subgraph (clique) in
a dense Cy-free graph G? It was proved in [5] that in a Cy-free graph with n vertices
and at least cn? edges, w(G) > ¢'n, where ¢’ depends on ¢ only. The interest in this
result is that as shown in [5], Cy is the only graph with this property (apart from
subgraphs of Cy). Let f(c) denote the largest ¢’ for which every Cy-free graph with
n vertices and at least cn? edges contains a clique of size at least ¢'n. There is no
conjecture on f(c), apart from the question in [5] whether f(1/4) = 1/4 which is still
open. Our main result, Theorem [I] gives a positive answer to the the special case of
this question for regular graphs (asked also in [5]).

Theorem 1. Every 2k-reqular Cy-free graph on 4k + 1 vertices contains a clique of
size k + 1.

As shown in [5], Theorem [lis sharp, the cycle on 4k + 1 vertices with all diagonals
of length at most k is a 2k-regular Cy-free graph where the largest clique is of size
k + 1. The proof of Theorem [ follows from understanding the work of Paoli, Peck,
Trotter and West [7] on regular 2K,-free graphs.

Our other results are improvements over the estimates of [5] under the stronger
assumption that the minimum degree §(G) is given instead of the average degree.

5(G)
Theorem 2. For Cy-free graphs w(G) > 150
Theorem 2 improves the estimate w(G) > % in [5] where a is the average degree
of G. For a certain range of §(G), one can do better.

Theorem 3. Suppose that G is a Cy-free graph with 6(G) < 111—5” ~ 0.733n. Then
w(G) > 0(G) — 2.
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Note that for 6(G) > n/2, Theorem 2l gives w(G) > n/12 while Theorem [3 gives
w(G) > n/6. It seems that the remark “the best estimate we know is n/6” in [5]
comes from this and it seems an open problem whether w(G) > n/6 follows from
|E(G)| > n?/4. We also note that for 0.382n ~ ?jr\b/g < §(G) the bound of Theorem
is better than that of Theorem

Our last estimate of w(G) is for the case when G has a large independent set.
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Theorem 4. For every € > 0 the following holds. Let G be a Cy-free graph on n

vertices with minimum degree at least &. Furthermore, let us assume that G contains
2 2
an independent set of size t > ng;g(s + 1. Then G contains a clique of size at least

(1—£)8%/n.

Thus we get the following corollary for Dirac graphs (graphs with minimum degree
at least n/2).

Corollary 5. For every € > 0 the following holds. Let G be a Cy-free graph on
n vertices with minimum degree at least n/2. Furthermore, let us assume that G
contains an independent set of size t > % + 1. Then G contains a clique of size at
least (1 —e)n/4.

Corollary [B] probably holds in a stronger form: Cy-free graphs with n vertices and
with minimum degree at least n/2 contain cliques of size at least n/4.

2 Properties of C,-free graphs

The following easy lemma can be essentially found in [3| 4} [7] but we prove it to be
self contained. Let W5 denote the 5-wheel, the graph obtained from a five-cycle by
adding a new vertex adjacent to all vertices. A clique substitution into a graph G
is the replacement of cliques into vertices of GG so that between substituted vertices
all or none of the edges are placed, depending whether they were adjacent or not
in GG. Substituting an empty clique is accepted as a deletion of the vertex. Clique
substitutions into C-free graphs result in Cy-free graphs.

Lemma 6. Suppose that G is a Cy-free graph with o(G) < 2. Then one of the
following possibilities holds.

e the complement of G is bipartite

e (G can be obtained from Wy by clique substitution

Proof. If G, the complement of G is not bipartite then we can find an odd cycle
C in G. Since C' cannot be a triangle, |C| > 5. However, |C| > 7 is impossible
since G is Cy-free. Thus |C| = 5. Since G is Cy-free and a(G) = 2, any vertex not
on C' must be adjacent to exactly three consecutive vertices of C' or to all vertices
of C. This procedure naturally allows to place all vertices not on C into one of six
groups and one can easily check that the groups must be cliques forming the claimed
structure. [



Corollary 7. Suppose that G is a Cy-free graph with o(G) < 2. Then w(G) > 2?"

In the proof of Theorem [I] we shall use the following result which is a special case
of a more general result on regular Cy-free graphs (in [7] Theorem 4 and Lemma 7).
A set S C V(G) is dominating if every vertex of V(G) \ S is adjacent to some vertex
of S.

Theorem 8. (Paoli, Peck, Trotter, West [7], (1992)) Suppose that G is a 2k-reqular
Cy-free graph on 4k + 1 vertices with a(G) > 3. Then G contains a pair (u,w) of
non-adjacent vertices forming a dominating set.

3 Proofs

Proof of Theorem [l The proof comes from Theorem [§ and the analysis of Theorem
3 in [7]. We may suppose that a(G) > 3, otherwise Corollary [7 gives a clique of size
%TH > k+ 1. Theorem [§ ensures a dominating non-adjacent pair (u,w) in G. Let X
be the set of common neighbors of u,v. Then

4k — | X| = d(u) + d(w) — |X| = [V(G)| — 2 = 4k — 1,

implying that | X| = 1. Set X = {2z}, U = N(u) — {2}, W = N(w) — {z}, U, =
N(LL’)QU, W1 :N(LL’)QW, UQIU—Ul, WQIW—Wl.
Claim. U;, W) span cliques in G.
Proof of Claim. By symmetry, it is enough to prove the claim for U;. Note that for
wy € Wo,uy € Uy we have (ws,u1) ¢ E(G) otherwise (ws, uy, z, w, ws) would be an
induced C4.

Suppose that y,z € Uy and (y, z) ¢ E(G). Let N be the number of non-adjacent

pairs (p, q) such that p € {y, z},q ¢ U;.

e every wy € Wj contributes at least one to N, otherwise (wy,y, u, z,w) is a Cy
e every uy € Uy contributes at least one to N, otherwise (us,y, x, z,us) is a Cy
e cvery wy € Wy contributes two to N since (wa,u1) ¢ E(G) for every uy € Uy
e w contributes two to N

Therefore we have
N > [Wh|+|Us|+2|Wa|+2 = (|Wr |4+ |Wa|)+(|Us|+|Wa|)+2 = (2k—1)+2k+2 = 4k+1.

However, since (y, z) ¢ E(G), N < 2(dg(y)—1) = 2(2k—1) = 4k —2, a contradiction,
proving that U; spans a clique in GG and the claim is proved. [
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Now the two cliques U; U {u,z} and W; U {w,z} cover A = V(G) \ (Uy U Wy).
Since |A| = 4k + 1 — 2k = 2k + 1 and the two cliques intersect in {z}, one of the
cliques has size at least k + 1, finishing the proof. [

Proof of Theorem [2l Here we follow the proof of the corresponding theorem in
[5] with replacing average degree by minimum degree. Fix an independent set S =
{x1,22,...,2¢}. Let A; be the set of neighbors of z; in G and set m = max;; |A;NA;]|.
Since G is Cy-free, all the subgraphs G(A; N A;) are complete graphs, and thus
m < w(G). Using that |A;] > 9, we get

t5<Z\A|<n+ > AN A4,

1<i<j<t

implying that

w(G)>m > té(t—)n‘
2
If a(G) > 22 then set ¢t = [22] and we get

6
2n Z T on :
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If a(G) < 22 then of course a(G) < |2] as well. Now we shall use the following

claim: w(G) 2 W This follows by selecting an independent set S with |S| =
2

W(G)ZP—”W—H> n

a(G) = a. Using the notation introduced above, the (§) sets A; N A; and the a sets
{z;} U B; cover the vertex set of G where B; denotes the set of vertices whose only
neighbor in S is ;. All of these sets span complete subgraphs because G is Cy-free
and S is maximal. Now we have

w(G@) >

n n

> — .
("9 (5

Therefore in both cases we have

n n 52
> = .
wl@) 2 (FFY T (B T 2040
2 2
U
Proof of Theorem Bl If a(G) < 2 then by Lemma [l and by the upper bound on
0(G),
2n n
G)> —>6(G)— —.
w(@) 2 2 > 5(0) -

ot



If a(G) > 3, then select an independent set {v1,v9,v3} and let A; denote the set of
neighbors of x;. Then

<Z|A\<n+ > AN A,

1<i<j<3

implying that for some 1 <14 < j < 3, the clique induced by A; N A; is larger than
6(G)—%. O

Proof of Theorem M. Let S = {x1,x2,...,2;} be an independent set in G of size
t > "2_d + 1. Let A; be the set of nelghbors of z; in G. Note that being induced
04—free 1mphes that for every i, j, 7 # j the set A; N A; induces a clique in G. Thus if
we show that there are i, 7,7 # j such that |A4; N A;]| 2 (1 —¢)d?/n, then we are done.
Assume indirectly, that for every 4, j,i # j we have |4; N A;| < (1 —¢)d*/n and from
this we will get a contradiction.

Consider an auxiliary bipartite graph G, between the sets S and V = V(G),
where we connect each x; with its neighbors in G. We will give both a lower and an
upper bound for the quantity > . degeq, (v)2. To get a lower bound we apply the
Cauchy-Schwarz inequality and the minimum degree condition:

d 2 AN 2 2 72
Zdeng(v)2 >n (Zve\/ eng(U)> =n (@) >n <t_d) — i
n n n n

veV

To get the upper bound we use the indirect assumption:

> " dege, (v)* ZZ|A mA|_Z|A|+Z|A NA;| <

veV i=1 j=1 i#j

d*t(t—1) 3> d*t Pttt —1)  t3d?
= +nt—— —¢ <
n n n n n

<nt+(1—¢)

(using t > =2 1 1), a contradiction. [

Acknowledgment. The authors are grateful to Jézsef Solymosi for conversations
and to Xing Peng for his interest in the subject.



References

1]

J. C. Bermond, J. Bond, M. Paoli, C. Peyrat, Graphs and interconnection net-
works: diameter and vulnerability, Surveys in Combinatorics, London Math. Soc.
Lecture Notes 82 (1983) 1-29

J. C. Bermond, J. Bond, C. Peyrat, Bus interconnection networks with each
station on two buses, Proc. Coll. Int. Alg. et Arch. Paralleles (Marseilles) (North
Holland, 1986) 155-167

F. R. K. Chung, A. Gyarfas, W. T. Trotter, Zs. Tuza, The maximum number
of edges in 2Ks-free graphs of bounded degree, Discrete Mathematics 81 (1990)
129-135

R. J. Faudree, A. Gyarfas, R. H. Schelp, Zs. Tuza, The strong chromatic index
of graphs, Ars Combinatoria 29 B (1990) 205-211

A. Gyarfas, A. Hubenko, J. Solymosi, Large cliques in Cy-free graphs, Combina-
torica 22 (2002) 269-274

M. Molloy, B. Reed, A Bound on the Strong Chromatic Index of a Graphs,
Journal of Combinatorial Theory, Series B 69 (1997), 103-109

M. Paoli, G. W. Peck, W. T. Trotter, D. B. West, Large regular graphs with no
induced 2K5, Graphs and Combinatorics 8 (1992) 165-192



	1 Introduction
	2 Properties of C4-free graphs
	3 Proofs

