Cliques in C_{4}-free graphs of large minimum degree

András Gyárfás*
Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary, H-1364
gyarfas.andras@renyi.mta.hu

Gábor N. Sárközy ${ }^{\dagger}$
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary, H-1364
and
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu

September 22, 2015

Abstract

A graph G is called C_{4}-free if it does not contain the cycle C_{4} as an induced subgraph. Hubenko, Solymosi and the first author proved (answering a question of Erdős) a peculiar property of C_{4}-free graphs: C_{4} graphs with n vertices and average degree at least $c n$ contain a complete subgraph (clique) of size at least $c^{\prime} n$ (with $c^{\prime}=0.1 c^{2} n$). We prove here better bounds $\left(\frac{c^{2} n}{2+c}\right.$ in general and $(c-1 / 3) n$ when $c \leq 0.733)$ from the stronger assumption that the C_{4}-free graphs have minimum degree at least $c n$. Our main result is a theorem for regular graphs, conjectured in the paper mentioned above: $2 k$-regular C_{4}-free graphs on $4 k+1$ vertices contain a clique of size $k+1$. This is best possible shown by the k-th power of the cycle $C_{4 k+1}$.

1 Introduction

A graph is called here C_{4}-free, if it does not contain cycles on four vertices as an induced subgraph. The class of C_{4}-free graphs have been studied from many points

[^0]of view, for example they appear in the theory of perfect graphs (as families containing chordal graphs). Sometimes the complements of C_{4}-free graphs are investigated, they are the graphs that do not contain $2 K_{2}$ as an induced subgraph, sometimes called a strong matching of size two. Extremal properties of these graphs emerged in works of Bermond, Bond, Pauli and Peck [1], [2] on interconnection networks, popularized by Erdős and Nesetril, and generated extremal results, many on the strong chromatic index, for example [3, 4, 5, 6, 6, 7].

In this paper we revisit [5] where the the following problem (raised by Erdős) was investigated: how large is $\omega(G)$, the size of the largest complete subgraph (clique) in a dense C_{4}-free graph G ? It was proved in 5 that in a C_{4}-free graph with n vertices and at least $c n^{2}$ edges, $\omega(G) \geq c^{\prime} n$, where c^{\prime} depends on c only. The interest in this result is that as shown in [5], C_{4} is the only graph with this property (apart from subgraphs of C_{4}). Let $f(c)$ denote the largest c^{\prime} for which every C_{4}-free graph with n vertices and at least $c n^{2}$ edges contains a clique of size at least $c^{\prime} n$. There is no conjecture on $f(c)$, apart from the question in [5] whether $f(1 / 4)=1 / 4$ which is still open. Our main result, Theorem 1 gives a positive answer to the the special case of this question for regular graphs (asked also in [5]).

Theorem 1. Every $2 k$-regular C_{4}-free graph on $4 k+1$ vertices contains a clique of size $k+1$.

As shown in [5], Theorem 1 is sharp, the cycle on $4 k+1$ vertices with all diagonals of length at most k is a $2 k$-regular C_{4}-free graph where the largest clique is of size $k+1$. The proof of Theorem 1 follows from understanding the work of Paoli, Peck, Trotter and West [7] on regular $2 K_{2}$-free graphs.

Our other results are improvements over the estimates of [5] under the stronger assumption that the minimum degree $\delta(G)$ is given instead of the average degree.

Theorem 2. For C_{4}-free graphs $\omega(G) \geq \frac{\delta^{2}(G)}{2 n+\delta(G)}$.
Theorem [2] improves the estimate $\omega(G) \geq \frac{0.1 a^{2}}{n}$ in [5] where a is the average degree of G. For a certain range of $\delta(G)$, one can do better.

Theorem 3. Suppose that G is a C_{4}-free graph with $\delta(G) \leq \frac{11 n}{15} \approx 0.733 n$. Then $\omega(G) \geq \delta(G)-\frac{n}{3}$.

Note that for $\delta(G) \geq n / 2$, Theorem 2 gives $\omega(G) \geq n / 12$ while Theorem 3 gives $\omega(G) \geq n / 6$. It seems that the remark "the best estimate we know is $n / 6$ " in [5] comes from this and it seems an open problem whether $\omega(G) \geq n / 6$ follows from $|E(G)| \geq n^{2} / 4$. We also note that for $0.382 n \approx \frac{2 n}{3+\sqrt{5}} \leq \delta(G)$ the bound of Theorem 3 is better than that of Theorem 2.

Our last estimate of $\omega(G)$ is for the case when G has a large independent set.

Theorem 4. For every $\varepsilon>0$ the following holds. Let G be a C_{4}-free graph on n vertices with minimum degree at least δ. Furthermore, let us assume that G contains an independent set of size $t \geq \frac{n^{2}-\delta^{2}}{\varepsilon d^{2}}+1$. Then G contains a clique of size at least $(1-\varepsilon) \delta^{2} / n$.

Thus we get the following corollary for Dirac graphs (graphs with minimum degree at least $n / 2$).

Corollary 5. For every $\varepsilon>0$ the following holds. Let G be a C_{4}-free graph on n vertices with minimum degree at least $n / 2$. Furthermore, let us assume that G contains an independent set of size $t \geq \frac{3}{\varepsilon}+1$. Then G contains a clique of size at least $(1-\varepsilon) n / 4$.

Corollary 5 probably holds in a stronger form: C_{4}-free graphs with n vertices and with minimum degree at least $n / 2$ contain cliques of size at least $n / 4$.

2 Properties of C_{4}-free graphs

The following easy lemma can be essentially found in [3, 4, 7] but we prove it to be self contained. Let W_{5} denote the 5 -wheel, the graph obtained from a five-cycle by adding a new vertex adjacent to all vertices. A clique substitution into a graph G is the replacement of cliques into vertices of G so that between substituted vertices all or none of the edges are placed, depending whether they were adjacent or not in G. Substituting an empty clique is accepted as a deletion of the vertex. Clique substitutions into C_{4}-free graphs result in C_{4}-free graphs.

Lemma 6. Suppose that G is a C_{4}-free graph with $\alpha(G) \leq 2$. Then one of the following possibilities holds.

- the complement of G is bipartite
- G can be obtained from W_{5} by clique substitution

Proof. If \bar{G}, the complement of G is not bipartite then we can find an odd cycle C in \bar{G}. Since C cannot be a triangle, $|C| \geq 5$. However, $|C| \geq 7$ is impossible since G is C_{4}-free. Thus $|C|=5$. Since G is C_{4}-free and $\alpha(G)=2$, any vertex not on C must be adjacent to exactly three consecutive vertices of C or to all vertices of C. This procedure naturally allows to place all vertices not on C into one of six groups and one can easily check that the groups must be cliques forming the claimed structure.

Corollary 7. Suppose that G is a C_{4}-free graph with $\alpha(G) \leq 2$. Then $\omega(G) \geq \frac{2 n}{5}$.
In the proof of Theorem 1 we shall use the following result which is a special case of a more general result on regular C_{4}-free graphs (in [7] Theorem 4 and Lemma 7). A set $S \subset V(G)$ is dominating if every vertex of $V(G) \backslash S$ is adjacent to some vertex of S.

Theorem 8. (Paoli, Peck, Trotter, West [7], (1992)) Suppose that G is a $2 k$-regular C_{4}-free graph on $4 k+1$ vertices with $\alpha(G) \geq 3$. Then G contains a pair (u, w) of non-adjacent vertices forming a dominating set.

3 Proofs

Proof of Theorem 1. The proof comes from Theorem 8 and the analysis of Theorem 3 in [7]. We may suppose that $\alpha(G) \geq 3$, otherwise Corollary 7 gives a clique of size $\frac{8 k+2}{5} \geq k+1$. Theorem 8 ensures a dominating non-adjacent pair (u, w) in G. Let X be the set of common neighbors of u, v. Then

$$
4 k-|X|=d(u)+d(w)-|X|=|V(G)|-2=4 k-1,
$$

implying that $|X|=1$. Set $X=\{x\}, U=N(u)-\{x\}, W=N(w)-\{x\}, U_{1}=$ $N(x) \cap U, W_{1}=N(x) \cap W, U_{2}=U-U_{1}, W_{2}=W-W_{1}$.
Claim. $\quad U_{1}, W_{1}$ span cliques in G.
Proof of Claim. By symmetry, it is enough to prove the claim for U_{1}. Note that for $w_{2} \in W_{2}, u_{1} \in U_{1}$ we have $\left(w_{2}, u_{1}\right) \notin E(G)$ otherwise ($w_{2}, u_{1}, x, w, w_{2}$) would be an induced C_{4}.

Suppose that $y, z \in U_{1}$ and $(y, z) \notin E(G)$. Let N be the number of non-adjacent pairs (p, q) such that $p \in\{y, z\}, q \notin U_{1}$.

- every $w_{1} \in W_{1}$ contributes at least one to N, otherwise $\left(w_{1}, y, u, z, w_{1}\right)$ is a C_{4}
- every $u_{2} \in U_{2}$ contributes at least one to N, otherwise $\left(u_{2}, y, x, z, u_{2}\right)$ is a C_{4}
- every $w_{2} \in W_{2}$ contributes two to N since $\left(w_{2}, u_{1}\right) \notin E(G)$ for every $u_{1} \in U_{1}$
- w contributes two to N

Therefore we have
$N \geq\left|W_{1}\right|+\left|U_{2}\right|+2\left|W_{2}\right|+2=\left(\left|W_{1}\right|+\left|W_{2}\right|\right)+\left(\left|U_{2}\right|+\left|W_{2}\right|\right)+2=(2 k-1)+2 k+2=4 k+1$.
However, since $(y, z) \notin E(G), N \leq 2\left(d_{\bar{G}}(y)-1\right)=2(2 k-1)=4 k-2$, a contradiction, proving that U_{1} spans a clique in G and the claim is proved.

Now the two cliques $U_{1} \cup\{u, x\}$ and $W_{1} \cup\{w, x\}$ cover $A=V(G) \backslash\left(U_{2} \cup W_{2}\right)$. Since $|A|=4 k+1-2 k=2 k+1$ and the two cliques intersect in $\{x\}$, one of the cliques has size at least $k+1$, finishing the proof.

Proof of Theorem 2. Here we follow the proof of the corresponding theorem in [5] with replacing average degree by minimum degree. Fix an independent set $S=$ $\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$. Let A_{i} be the set of neighbors of x_{i} in G and set $m=\max _{i \neq j}\left|A_{i} \cap A_{j}\right|$. Since G is C_{4}-free, all the subgraphs $G\left(A_{i} \cap A_{j}\right)$ are complete graphs, and thus $m \leq \omega(G)$. Using that $\left|A_{i}\right| \geq \delta$, we get

$$
t \delta \leq \sum_{i=1}^{t}\left|A_{i}\right|<n+\sum_{1 \leq i<j \leq t}\left|A_{i} \cap A_{j}\right|,
$$

implying that

$$
\omega(G) \geq m \geq \frac{t \delta-n}{\binom{t}{2}}
$$

If $\alpha(G) \geq \frac{2 n}{\delta}$ then set $t=\left\lceil\frac{2 n}{\delta}\right\rceil$ and we get

$$
\left.\omega(G) \geq \frac{\left\lceil\frac{2 n}{\delta}\right\rceil \delta-n}{\binom{\left[\frac{2 n}{\delta}\right\rceil}{ 2}} \geq \frac{n}{\left(\left\lfloor\frac{2 n}{\delta}\right\rfloor+1\right.}\right)
$$

If $\alpha(G) \leq \frac{2 n}{\delta}$ then of course $\alpha(G) \leq\left\lfloor\frac{2 n}{\delta}\right\rfloor$ as well. Now we shall use the following claim: $\omega(G) \geq \frac{n}{\binom{\alpha(G)+1}{2}}$. This follows by selecting an independent set S with $|S|=$ $\alpha(G)=\alpha$. Using the notation introduced above, the $\binom{\alpha}{2}$ sets $A_{i} \cap A_{j}$ and the α sets $\left\{x_{i}\right\} \cup B_{i}$ cover the vertex set of G where B_{i} denotes the set of vertices whose only neighbor in S is x_{i}. All of these sets span complete subgraphs because G is C_{4}-free and S is maximal. Now we have

$$
\omega(G) \geq \frac{n}{\binom{\alpha(G)+1}{2}} \geq \frac{n}{\binom{\left.\frac{2 n}{\delta}\right\rfloor+1}{2}} .
$$

Therefore in both cases we have

$$
\omega(G) \geq \frac{n}{\binom{\left.\frac{2 n}{\delta}\right\rfloor+1}{2}} \geq \frac{n}{\left(\frac{2 n}{\delta}+1\right)}=\frac{\delta^{2}}{2 n+\delta} .
$$

Proof of Theorem 3. If $\alpha(G) \leq 2$ then by Lemma 6 and by the upper bound on $\delta(G)$,

$$
\omega(G) \geq \frac{2 n}{5} \geq \delta(G)-\frac{n}{3}
$$

If $\alpha(G) \geq 3$, then select an independent set $\left\{v_{1}, v_{2}, v_{3}\right\}$ and let A_{i} denote the set of neighbors of x_{i}. Then

$$
3 \delta(G) \leq \sum_{i=1}^{3}\left|A_{i}\right|<n+\sum_{1 \leq i<j \leq 3}\left|A_{i} \cap A_{j}\right|,
$$

implying that for some $1 \leq i<j \leq 3$, the clique induced by $A_{i} \cap A_{j}$ is larger than $\delta(G)-\frac{n}{3}$.

Proof of Theorem 4. Let $S=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ be an independent set in G of size $t \geq \frac{n^{2}-d^{2}}{\varepsilon d^{2}}+1$. Let A_{i} be the set of neighbors of x_{i} in G. Note that being induced C_{4}-free implies that for every $i, j, i \neq j$ the set $A_{i} \cap A_{j}$ induces a clique in G. Thus if we show that there are $i, j, i \neq j$ such that $\left|A_{i} \cap A_{j}\right| \geq(1-\varepsilon) d^{2} / n$, then we are done. Assume indirectly, that for every $i, j, i \neq j$ we have $\left|A_{i} \cap A_{j}\right|<(1-\varepsilon) d^{2} / n$ and from this we will get a contradiction.

Consider an auxiliary bipartite graph G_{b} between the sets S and $V=V(G)$, where we connect each x_{i} with its neighbors in G. We will give both a lower and an upper bound for the quantity $\sum_{v \in V} \operatorname{deg}_{G_{b}}(v)^{2}$. To get a lower bound we apply the Cauchy-Schwarz inequality and the minimum degree condition:

$$
\sum_{v \in V} \operatorname{deg}_{G_{b}}(v)^{2} \geq n\left(\frac{\sum_{v \in V} \operatorname{deg}_{G_{b}}(v)}{n}\right)^{2}=n\left(\frac{\sum_{i=1}^{t}\left|A_{i}\right|}{n}\right)^{2} \geq n\left(\frac{t d}{n}\right)^{2}=\frac{t^{2} d^{2}}{n}
$$

To get the upper bound we use the indirect assumption:

$$
\begin{aligned}
& \quad \sum_{v \in V} d e g_{G_{b}}(v)^{2}=\sum_{i=1}^{t} \sum_{j=1}^{t}\left|A_{i} \cap A_{j}\right|=\sum_{i=1}^{t}\left|A_{i}\right|+\sum_{i \neq j}\left|A_{i} \cap A_{j}\right|< \\
& <n t+(1-\varepsilon) \frac{d^{2} t(t-1)}{n}=\frac{t^{2} d^{2}}{n}+n t-\frac{d^{2} t}{n}-\varepsilon \frac{d^{2} t(t-1)}{n} \leq \frac{t^{2} d^{2}}{n}
\end{aligned}
$$

(using $t \geq \frac{n^{2}-d^{2}}{\varepsilon d^{2}}+1$), a contradiction.
Acknowledgment. The authors are grateful to József Solymosi for conversations and to Xing Peng for his interest in the subject.

References

[1] J. C. Bermond, J. Bond, M. Paoli, C. Peyrat, Graphs and interconnection networks: diameter and vulnerability, Surveys in Combinatorics, London Math. Soc. Lecture Notes 82 (1983) 1-29
[2] J. C. Bermond, J. Bond, C. Peyrat, Bus interconnection networks with each station on two buses, Proc. Coll. Int. Alg. et Arch. Paralleles (Marseilles) (North Holland, 1986) 155-167
[3] F. R. K. Chung, A. Gyárfás, W. T. Trotter, Zs. Tuza, The maximum number of edges in $2 K_{2}$-free graphs of bounded degree, Discrete Mathematics 81 (1990) 129-135
[4] R. J. Faudree, A. Gyárfás, R. H. Schelp, Zs. Tuza, The strong chromatic index of graphs, Ars Combinatoria 29 B (1990) 205-211
[5] A. Gyárfás, A. Hubenko, J. Solymosi, Large cliques in C_{4}-free graphs, Combinatorica 22 (2002) 269-274
[6] M. Molloy, B. Reed, A Bound on the Strong Chromatic Index of a Graphs, Journal of Combinatorial Theory, Series B 69 (1997), 103-109
[7] M. Paoli, G. W. Peck, W. T. Trotter, D. B. West, Large regular graphs with no induced $2 K_{2}$, Graphs and Combinatorics 8 (1992) 165-192

[^0]: *Research supported in part by the OTKA Grant No. K104343.
 ${ }^{\dagger}$ Research supported in part by the National Science Foundation under Grant No. DMS-0968699 and by OTKA Grant No. K104343.

