Rainbow matchings in bipartite multigraphs

János Barát
MTA-ELTE Geometric and Algebraic Combinatorics Research Group
barat@cs.elte.hu

András Gyárfás*
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary, H-1364
gyarfas.andras@renyi.mta.hu

Gábor N. Sárközy ${ }^{\dagger}$

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
Budapest, P.O. Box 127
Budapest, Hungary, H-1364
sarkozy.gabor@renyi.mta.hu
and
Computer Science Department
Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu
January 11, 2016

Abstract

Suppose that k is a non-negative integer and a bipartite multigraph G is the union of $$
N=\left\lfloor\frac{k+2}{k+1} n\right\rfloor-(k+1)
$$ matchings M_{1}, \ldots, M_{N}, each of size n. We show that G has a rainbow matching of size $n-k$, i.e. a matching of size $n-k$ with all edges coming from different M_{i} 's. Several choices of the parameter k relate to known results and conjectures.

Suppose that a multigraph G is given with a proper N-edge coloring, i.e. the edge set of G is the union of N matchings M_{1}, \ldots, M_{N}. A rainbow matching is a matching whose edges are from different M_{i} 's.

A well-known conjecture of Ryser [10] states that for odd n every 1 -factorization of $K_{n, n}$ has a rainbow matching of size n. The companion conjecture, attributed to Brualdi [4] and Stein [12] states that for every n, every 1 -factorization of $K_{n, n}$ has a rainbow matching of size at least $n-1$. These conjectures are known to be true in an asymptotic sense, i.e. every 1 -factorization of $K_{n, n}$ has a rainbow matching containing $n-o(n)$ edges. For the $o(n)$ term, Woolbright [13] and independently Brouwer et al. [5 proved \sqrt{n}. Shor [11] improved this to $5.518(\log n)^{2}$, an error was corrected in [8].

[^0]There are several results for the case when $K_{n, n}$ is replaced by an arbitrary bipartite multigraph. The following conjecture of Aharoni et al. [3] strengthens the Brualdi-Stein conjecture.

Conjecture 1. If a bipartite multigraph G is the union of n matchings of size n, then G contains a rainbow matching of size $n-1$.

As a relaxation, Kotlar and Ziv [9] noticed that the union of n matchings of size $\frac{3}{2} n$ contains a rainbow matching of size $n-1$. Conjecture would follow from another one posed by Aharoni and Berger:

Conjecture 2. If a bipartite multigraph G is the union of n matchings of size $n+1$, then G contains a rainbow matching of size n.

Recently, there has been gradual progress on this question. Aharoni et al. proved that matchings of size $\frac{7}{4} n$ suffice [3]. Kotlar and Ziv [9] improved it to $\frac{5}{3} n$ and Clemens and Ehrenmüller to $\left(\frac{3}{2}+\varepsilon\right) n$.

One needs a lot more matchings of size n to guarantee a rainbow matching of size n. Aharoni and Berger [2] and (in a slightly weaker form) Drisko [7] proved the following.

Theorem 1. If a bipartite multigraph G is the union of $2 n-1$ matchings of size n, then G contains a rainbow matching of size n.

The (unique) factorization of a cycle on $2 n$ vertices with edges of multiplicity $n-1$ shows that in the statement $2 n-1$ cannot be replaced by $2 n-2$ (see [7]). We merge Conjecture 1 and Theorem 1 into a unified context and ask the following. (We note that this question was also raised independently in [6].)

Question 1. For integers $0 \leq k<n$, what is the smallest $N=N(n, k)$ such that any bipartite multigraph G that is the union of N matchings of size n, contains a rainbow matching of size $n-k$?

Conjecture 1 claims that $N(n, 1)=n$ and Theorem 1 states that $N(n, 0)=2 n-1$. In this note we give the following upper bound on $N(n, k)$.

Theorem 2. For $0 \leq k<n, N(n, k) \leq\left\lfloor\frac{k+2}{k+1} n\right\rfloor-(k+1)$.
In the range $\lfloor n / 2\rfloor \leq k<n$ Theorem 2 gives $N(n, k) \leq n-k$ which is obviously best possible, therefore $N(n, k)=n-k$. When $k=0$ it gives $N(n, 0) \leq 2 n-1$, the bound of Theorem [1, so this is best possible as well. The case $k=1$ gives a result towards Conjecture 1 if a bipartite multigraph is the union of $\left\lfloor\frac{3}{2} n\right\rfloor-2$ matchings of size n, then there is a rainbow matching of size $n-1$. As far as we know this is the best result in this direction. If $N=\lfloor(1+\epsilon) n\rfloor$ for some $\epsilon>0$, we get a partial rainbow matching of size $n-c$ where c is a constant depending on $\epsilon(c=\lfloor 1 / \epsilon\rfloor)$, this goes beyond the best error term known for Ryser's conjecture ([8]), but the price is the increment in the number of colors. Also, when $k=\lfloor\sqrt{n}\rfloor$, Theorem 2 extends (from factorizations of $K_{n, n}$ to colorings of bipartite multigraphs) Woolbright's result [13], namely that a factorization of $K_{n, n}$ contains a rainbow matching of size at least $n-\sqrt{n}$.

Proof of Theorem 2. We use Woolbright's argument [13]. Set $N=\left\lfloor\frac{k+2}{k+1} n\right\rfloor-(k+1)$. Let the edge set of a bipartite multigraph $G=[A, B]$ be the union of matchings M_{1}, \ldots, M_{N} each of size n and let R_{1} be a maximum rainbow matching of G with t edges. Suppose to the contrary that $t \leq n-k-1$.

We assume the edges of M_{1}, \ldots, M_{N-t} are not used in R_{1}. For any subset $S \subset B$, define

$$
f(S)=\left\{v \in A:(v, w) \in R_{1} \text { for some } w \in S\right\}
$$

Set $B_{0}=B \backslash V\left(R_{1}\right), A_{0}=A \backslash V\left(R_{1}\right)$. For every $j \in\{1, \ldots, N-t\}$ a matching $F_{j} \subset M_{j}$ of size $j(n-t)$ will be defined with the following property.

- Property 1: $V\left(F_{j}\right) \cap B_{0}=\emptyset$.

Let $F_{1} \subset M_{1}$ be a matching of size $n-t$ such that $V\left(F_{1}\right) \cap A \subseteq A_{0}$, since $\left|M_{1}\right|-\left|R_{1}\right|=$ $n-t$, such F_{1} exists. Set $B_{1}=V\left(F_{1}\right) \cap B$. Since R_{1} is a maximum rainbow matching, $V\left(F_{1}\right) \cap B_{0}=\emptyset$, so Property 1 holds and $\left|F_{1}\right|=1 \times(n-t)$. Set $A_{1}=f\left(B_{1}\right)$.

Suppose that for some $i \geq 1$ the matchings F_{i}, R_{i} and the pairwise disjoint $(n-t)$ element sets $A_{1}, \ldots, A_{i}, B_{1}, \ldots, B_{i}$ have already been defined, where $\left|F_{i}\right|=i(n-t)$. Define the rainbow matching R_{i+1} by removing from R_{i} the edges that go from B_{i} to A_{i}.

To define $F_{i+1} \subset M_{i+1}$, take $(i+1)(n-t)$ edges of M_{i+1} incident to $A \backslash V\left(R_{i+1}\right)$. There exist sufficiently many edges in M_{i+1} since

$$
\left|M_{i+1}\right|-\left|R_{i+1}\right|=n-\left(t-\sum_{j=1}^{i}\left|B_{j}\right|\right)=(i+1)(n-t) .
$$

We show that Property 1 is maintained. Suppose to the contrary that we find $\left(a_{0}, b_{0}\right) \in F_{i+1}, a_{0} \in A_{j}$ for some $1 \leq j \leq i, b_{0} \in B_{0}$ (clearly $j \neq 0$). Then $b_{1}=f^{-1}\left(a_{0}\right) \in$ B_{j}, and there exists an a_{1} such that $\left(a_{1}, b_{1}\right) \in F_{j}$ and this generates an alternating path

$$
Q=\left(b_{0}, a_{0}\right),\left(a_{0}, f^{-1}\left(a_{0}\right)\right),\left(f^{-1}\left(a_{0}\right), a_{1}\right),\left(a_{1}, f^{-1}\left(a_{1}\right)\right),\left(f^{-1}\left(a_{1}\right), a_{2}\right), \ldots
$$

ending in A_{0} allowing us to replace all edges of $R_{1} \cap E(Q)$ by edges in different $F_{j} \mathrm{~s}$ $(j \leq i+1)$ contradicting the choice of t. Note that Q is a simple path, since with some $j>j_{1}>\cdots>j_{k}>0$, its edges go between the disjoint sets

$$
\left(B_{0}, A_{j}\right),\left(A_{j}, B_{j}\right),\left(B_{j}, A_{j_{1}}\right),\left(A_{j_{1}}, B_{j_{1}}\right),\left(B_{j_{1}}, A_{j_{2}}\right), \ldots,\left(A_{j_{k}}, B_{j_{k}}\right),\left(B_{j_{k}}, A_{0}\right)
$$

Now F_{i+1} is defined and by Property 1

$$
\left|V\left(F_{i+1}\right) \cap\left(B \backslash\left(\cup_{k=0}^{i} B_{k}\right)\right)\right| \geq n-t,
$$

therefore we can define B_{i+1} as an $(n-t)$-element subset of $V\left(F_{i+1}\right) \cap\left(B \backslash\left(\cup_{k=0}^{i} B_{k}\right)\right)$. Finally, set $A_{i+1}=f\left(B_{i+1}\right)$.

Since $V\left(F_{N-t}\right) \cap B \subseteq B \backslash B_{0}$, we get

$$
(N-t)(n-t) \leq t .
$$

Dividing by $n-t$ (using $t \leq n-k-1<n$) this can be rewritten as

$$
N-t \leq \frac{t}{n-t}=\frac{n-n+t}{n-t}=\frac{n}{n-t}-1
$$

or

$$
N \leq \frac{n}{n-t}+t-1
$$

Using this，the definition of N and $t \leq n-k-1$ ，we get

$$
\left\lfloor\frac{k+2}{k+1} n\right\rfloor-(k+1)=N \leq \frac{n}{n-t}+t-1 \leq \frac{n}{k+1}+n-k-1-1
$$

and this leads to

$$
\left\lfloor\frac{n}{k+1}\right\rfloor \leq \frac{n}{k+1}-1,
$$

a contradiction，finishing the proof．
Remark．A natural variant of Question $⿴ 囗 十 ⺝$ is to allow arbitrary multigraphs（instead of bipartite ones）．Denote the corresponding function by $N^{\prime}(n, k)$ ．For $k=0$ we have an example showing $N^{\prime}(n, 0)>2 n-1$ and recently Aharoni informed us［1］that they proved $N^{\prime}(n, 0) \leq 3 n-2$ ．Indeed，our example is the following．Let the vertices be denoted as $1,2, \ldots, 4 k$ ，where $2 n=4 k$ ．Let $M_{1}=\cdots=M_{n-1}=\{12,34, \ldots,(2 n-1) 2 n\}, M_{n}=\cdots=$ $M_{2 n-2}=\{23,45, \ldots,(2 n) 1\}$ and $M_{2 n-1}=\{13,24,57,68, \ldots,(2 n-3)(2 n-1),(2 n-2) 2 n\}$ ． As it was remarked before，there is no full rainbow matching without using an edge of $M_{2 n-1}$ ．We may assume that we use the edge 24 ．Now any edge of M_{i} that covers the vertex 3 ，where $1 \leq i \leq 2 n-2$ ，uses either vertex 2 or 4 ．Therefore，there is no full rainbow matching．

References

［1］R．Aharoni，personal communication．
［2］R．Aharoni，E．Berger，Rainbow matchings in r－partite r－graphs．Electron．J．Com－ bin． 16 （2009），no．1，Research Paper 119， 9 pp．
［3］R．Aharoni，P．Charbit and D．Howard．On a generalization of the Ryser－Brualdi－ Stein conjecture，J Graph Theory 78 Issue 2 （2015），143－156．
［4］R．A．Brualdi and H．J．Ryser，Combinatorial Matrix theory，Cambridge University Press，Cambridge，UK， 1991.
［5］A．E．Brouwer，A．J．de Vries，R．M．A．Wieringa，A lower bound for the length of partial transversals in a Latin square，Nieuw Arch．Wisk．（3） 24 （1978），330－332．
［6］D．Clemens，J．Ehrenmüller，An improved bound on the sizes of matchings guaran－ teeing a rainbow matching，arXiv：1503．00438
［7］A．A．Drisko，Transversals in row－latin rectangles，J．Combin．Theory Ser．A 84 （1998），181－195．
［8］P．Hatami and P．W．Shor，A lower bound for the length of a partial transversal in a Latin square，J．Combin．Theory Ser．A 115 （2008），1103－1113．
［9］D．Kotlar，R．Ziv，Large matchings in bipartite graphs have a rainbow matching． European J．Combin． 38 （2014），97－101．
[10] H.J. Ryser, Neuere probleme der kombinatorik, Vorträge über Kombinatorik Oberwolfach, Mathematisches Forschungsinstitut Oberwolfach, July 1967.
[11] P.W. Shor, A lower bound for the length of a partial transversal in a Latin square, J. Combin. Theory Ser. A 33 (1982), 1-8.
[12] S. K. Stein. Transversals of latin squares and their generalizations. Pacific J. Math. 59 (1975), 567-575.
[13] D.E. Woolbright, An $n \times n$ Latin square has a transversal with at least $n-\sqrt{n}$ distinct symbols, J. Combin. Theory Ser. A 24 (1978), 235-237.

[^0]: *Research was supported in part by OTKA K104343.
 ${ }^{\dagger}$ Research was supported in part by OTKA K104343.

