
ar
X

iv
:1

50
3.

08
00

4v
1 

 [
m

at
h.

C
O

] 
 2

7 
M

ar
 2

01
5

RESIDUES AND THE COMBINATORIAL NULLSTELLENSATZ

ROMAN KARASEV

Abstract. We interpret the Combinatorial Nullstellensatz of Noga Alon as a multidi-
mensional residue formula, describe some consequences of this interpretation and related
open problems.

1. Introduction

The Combinatorial Nullstellensatz of Noga Alon [2] turned out to be an efficient tool
to obtain results in combinatorics and discrete geometry. This is an almost elementary
algebraic statement, but it has not so elementary consequences and generalizations.
In the recent papers [14, 11] a version of the Combinatorial Nullstellensatz was expressed

as a certain formula, which turned out to be useful in several problems (see [13, 12], for
example):

Theorem 1.1 (The Combinatorial Nullstellensatz). Suppose a multivariate polynomial

f(x1, x2, . . . , xn) over a field F has degree at most c1 + c2 + · · · + cn, where ci are non-

negative integers. Denote by C the coefficient at xc1
1 . . . xcn

n in f . Let A1, A2, . . . , An be

arbitrary subsets of F such that |Ai| = ci + 1 for any i. Put ϕi(x) =
∏

α∈Ai
(x− α). Then

(1.1) C =
∑

αi∈Ai

f(α1, . . . , αn)

ϕ′

1(α1) . . . ϕ′
n(αn)

.

In particular, if C 6= 0, then there exists a system of representatives αi ∈ Ai such that

f(α1, α2, . . . , αn) 6= 0.

The general way to apply this theorem, developed by Fedor Petrov in [11], is as follows:
Express a combinatorial statement in the from that a certain polynomial f of appropriate
degree attains a nonzero value on the product A1 × · · · × An. In order to prove this, by
the theorem, we need to show that C is nonzero. Then we try to modify the polynomial
f without changing C, usually it corresponds to a special choice of the parameters of the
initial combinatorial problem, and obtain another polynomial g such that the right hand
side of (1.1) contains one (or slightly more) summands that are easy to calculate.
In [11] a simple proof of this theorem was given, using the Lagrange interpolation

formula, see the review [7] for more information about interpolation.
The emphasis of this note is that this formula can be viewed, less elementary, as a

multidimensional residue formula. In what follows we explain the meaning of this and try
to show other situations when this point of view may be useful. In principle, this allows,
with some care, to consider the case when the sets Ai are multisets (sets with some
multiplicities). We also show the relation between the Combinatorial Nullstellensatz and
the old Cayley–Bacharach theorem about incidence of intersection of hypersufraces.
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2. Residues on the product of projective lines

Let us interpret the Combinatorial Nullstellensatz (Theorem 1.1) as a corollary of the
residue theorem [10, Ch. 5, § 1]:

Theorem 2.1 (The residue theorem). Let D1, . . . , Dn be a set of divisors on a compact

analytic n-dimensional manifold M , having a zero-dimensional intersection. Then for

any holomorphic ω ∈ Ωn(M \
⋃n

i=1Di) we have:
∑

x∈D1∩···∩Dn

Resx ω = 0.

Remark 2.2. Note that the value Resx ω actually depends on the set of divisors (D1, . . . , Dn).
In particular it changes sign if the divisors are permuted by an odd permutation. To keep
the things clear, we restrict ourselves to “geometric” divisors, that is combinations of
prime divisors with unit coefficients.

Remark 2.3. The algebraic version of Theorem 2.1 is valid for any algebraically closed
field of coefficients, but let us restrict ourselves to C here.

Now we deduce Theorem 1.1 from the residue theorem. Take the product of projective
lines M = CP 1 × · · · × CP 1

︸ ︷︷ ︸

n

. Consider a grid subset:

X = X1 × · · · ×Xn ⊆ C× · · · × C
︸ ︷︷ ︸

n

,

where |Xi| = ki, and a polynomial f ∈ C[z1, . . . , zn]. Denote

gi(z) =
∏

x∈Xi

(z − x),

and apply the residue theorem to the differential form

ω =
f(z1, . . . , zn)dz1 ∧ · · · ∧ dzn

g1(z1) . . . gn(zn)
.

The singularities of this differential form are at sets

Di = {(z1, . . . , zn) ∈ (CP 1)×n : zi ∈ Xi or zi = ∞},

that we consider as divisors. The intersection of these divisors is

D1 ∩ · · · ∩Dn = (X1 ∪ {∞})× · · · × (Xn ∪ {∞}),

and applying the residue formula yields:

(2.1)
∑

(z1,...,zn)∈D1∩···∩Dn

Res(z1,...,zn)

(
ω

D1D2 . . .Dn

)

= 0.

The residue at (∞, . . . ,∞) with respect to t1 =
1
z1
, . . . , tn = 1

zn
is

Res(∞,...,∞) ω = (−1)n Res(0,...,0)
f( 1

t1
, . . . , 1

tn
)dt1 ∧ · · · ∧ dtn

t21g1(
1
t1
) . . . t2ngn(

1
tn
)

=

= (−1)nRes(0,...,0) f

(
1

t1
, . . . ,

1

tn

)

dt1 ∧ · · · ∧ dtn

n∏

i=1

(

tni−2
i

∏

x∈Xi

1

1− tix
)

)

,

if the total degree deg f ≤
∑n

i=1(ki − 1), then we have a simple formula

Res(∞,...,∞)

(
ω

D1D2 . . .Dn

)

= (−1)nck1−1,...,kn−1,
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where ck1−1,...,kn−1 is a coefficient at zk1−1
1 . . . zkn−1

n in f(z1, . . . , zn).
The equation 2.1 would give the desired result (up to sign), but the intersection D1 ∩

· · · ∩Dn has points with some coordinates ∞, and some finite. Fortunately, this issue is
resolved by considering “rearranged” divisors

D′

i = {(z1, . . . , zn) ∈ (CP 1)×n : zi ∈ Xi or zi+1 = ∞},

where the indexes of zi are taken modulo n. Now the intersection of divisors becomes
what we want:

D′

1 ∩ · · · ∩D′

n = (X1 × · · · ×Xn) ∪ {(∞,∞, . . . ,∞)},

and the result follows. Because of the cyclic shift the residue at infinity becomes−ck1−1,...,kn−1

and the formula is correct.

3. Observation on the residue formula for two sets of divisors

The trick with rearranging the divisors may be replaced by the following version of the
residue formula:

Theorem 3.1 (Gelfond–Khovanskii, 2002). Let D1, . . . , Dn and D′

1, . . . , D
′

n be two sets of

divisors on a compact analytic n-dimensional manifold M , each having a zero-dimensional

intersection. Assume Di ∩D′

i = ∅ for every i and put Z =
⋃n

i=1Di ∪
⋃n

i=1D
′

i. Then for

any holomorphic ω ∈ Ωn(M \ Z) we have:

∑

p∈D1∩···∩Dn

Resp ω = (−1)n
∑

q∈D′

1
∩···∩D′

n

Resq ω.

Here the residues on the left are considered with respect to the set of divisors (D1, . . . , Dn)
and the residues on the right use the set of divisors (D′

1, . . . , D
′

n).

This theorem in the analytic case was established by Gelfond and Khovanskii in [8,
Theorem 2]. The algebraic analogue of this theorem for algebraically closed fields follows
from the ordinary residue theorem (like Theorem 2.1) by the same rearranging trick:
put D′′

i = Di ∪ D′

i+1 (the indices understood mod n) and note that the points of the
intersection D′′

1 ∩ · · · ∩D′′

n split into two subsets D1 ∩ · · · ∩Dn and D′

1 ∩ · · · ∩D′

n.
In view of Theorem 3.1 the Combinatorial Nullstellensatz is easily obtained by taking

M = CP 1 × · · · × CP 1

︸ ︷︷ ︸

n

,

ω =
f(z1, . . . , zn)dz1 ∧ · · · ∧ dzn

g1(z1) . . . gn(zn)
,

Di = {(z1, . . . , zn) : zi ∈ Xi} and D′

i = {(z1, . . . , zn) : zi = ∞}.

Again, the sum of residues at finite points turns out to be equal up to sign to the residue
at (∞, . . . ,∞).

Remark 3.2. Another observation is that the assumption that the degree of f is at most
c1 + c2 + · · · + cn in Theorem 1.1 is not actually needed. What is really needed is that
besides the monomial Czc11 . . . zcnn all other monomials C ′zd11 . . . zdnn of f have di < ci for
at least one index i.
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4. Toric version of the Combinatorial Nullstellensatz

Continuing to follow the results of [8], we observe that Theorem 1.1 can also be viewed
as a very particular case of the toric residue formula in [8]. Let us show this in more detail.
We are going to deal with Laurent polynomials f ∈ C[z1, . . . , zn, z

−1
1 , . . . , z−1

n ] and their
Newton polytopes N(f) ∈ Zn, that is convex hulls of the degrees of nonzero monomials
in f .
Take some n Laurent polynomials g1, . . . , gn, the Newton polynomial of their product

N(g1 . . . gn) equals the Minkowski sum N(g1) + · · · + N(gn). Following Gelfond and
Khovanskii [8] the system N(g1), . . . , N(gn) is called unfolded if in their Minkowski sum
every face F of positive codimension in its unique decomposition F = F1+. . .+Fn into the
sum of faces of the polytopes N(g1), . . . , N(gn) has at least one zero-dimensional Fi. This
is a certain requirement of general position and it is easy to check that for polynomials
g1(z1), . . . , gn(zn) each depending on its respective one variable (as in Theorem 1.1) this
assumption is satisfied.

Theorem 4.1 (Gelfond–Khovanskii, 2002). Consider a differential form

ω =
f

g1 . . . gn
dz1 ∧ · · · ∧ dzn

where the system of Newton polytopes N(g1), . . . , N(gn) is unfolded. Let Z be the set

of common zeros of g1, . . . , gn in T = C∗n and V be the set of vertices of the polytope

N = N(g1) + · · ·+N(gn), then

(4.1)
∑

z∈Z

Resz ω = (−1)n
∑

v∈V

kv Resv ω.

Definitely, this formula needs some explanations. The left hand side of (4.1) is the
ordinary sum of residues over the “finite” points of the toric variety, that is points lying
in T . The right hand side is the sum of residues in the “infinite” points of the compactifi-
cation of T that gives the toric variety. The coefficients kv are integers depending on the
combinatorial structure of N near its vertex v and the value Resv ω is calculated explicitly

as the constant term in the Laurent series expansion of
z
v1

1
...z

vn
n

g1...gn
multiplied by the Laurent

polynomial f

z
v1−1

1
...z

vn−1
n

. Here it is convenient to denote zv11 . . . zvnn by zv for z = (z1, . . . , zn)

and v = (v1, . . . , vn); also denote by e = (1, . . . , 1) ∈ Zn the all-unit vector.
Let us describe a particular case when everything has a very explicit form. We make

the important assumption: For every vertex v ∈ V there exists an outer support halfspace
H to N at v such that H ∩N = {v} and the polytope N(f) + e does not intersect intH
(in Theorem 1.1 this corresponds to the degree upper bound).
The set of vertices of N thus splits into two parts V = V+ ∪ V0 depending on whether

they are outside N(f) + e or on its boundary. It is easy to see that for v ∈ V+ the value
Resv ω is zero and for v ∈ V0 it equals the coefficient at zv−e in f , divided by the product
of coefficients in gi at the monomials corresponding to the unique representation of v as
a sum of vertices of N(g1), . . . , N(gn). Finally we obtain:

Corollary 4.2. Under above assumptions
∑

z∈Z Resz ω equals a linear combination of the

coefficients of f at monomials zv−e for v ∈ V0 with integer coefficients kv.

Remark 4.3. In some cases one may guarantee that the coefficient kv for v ∈ V0 is nonzero.
For example, this is the case when exactly n facets of N meet at v. It is easy to check
that this is the case in Theorem 1.1.
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Remark 4.4. As it was already discussed, when all zeros in Z are simple then on the left
hand side of (4.1) we have a sum of values of f in the points of Z with certain nonzero
coefficients.

Remark 4.5. Corollary 4.2 formally requires the points of Z to have only nonzero coor-
dinates (they have to lie in T ), but it is easy to see that Theorem 1.1 follows in its full
generality by a translation of the sets Ai so that they avoid zero.

5. Residues on CP n and the Cayley–Bacharach theorem

Another version of the proof for Combinatorial Nullstellensatz arises if we consider the
form

ω =
f(z1, . . . , zn)dz1 ∧ · · · ∧ dzn

g1(z1) . . . gn(zn)
.

over the projective space CP n. Compared to the previous section, this approach allows
to make the results more flexible and independent on the Newton polynomials of f and
gi.
Suppose first that deg f ≤

∑n

i=1 ki − n − 1. In this case a simple calculation shows
that ω has no singularity over the hyperplane at infinity, and we obtain the equality (the
residues are with respect to the divisors corresponding to g1, . . . , gn)

∑

(z1,...,zn)∈X1×...Xn

Res(z1,...,zn) ω =
∑

(z1,...,zn)∈X1×...Xn

f(z1, . . . , zn)

g′1(z1) . . . g
′
n(zn)

= 0,

which leads to the Cayley–Bacharach theorem (see [3, 5] and the textbook [10, Ch. 5,
§ 2]): If f is zero at all but one points of X , then it should be zero at the remaining point.
We give here the general statement of the Cayley–Bacharach theorem:

Theorem 5.1 (Cayley–Bacharach, XIXth century). If the system of equations

g1(x) = 0

. . .

gn(x) = 0

of degrees k1, . . . , kn has k = k1k2 . . . kn isolated solutions X = {x1, . . . , xk}, then there

exists a linear dependence with nonzero coefficients:

(5.1)
k∑

i=1

αif(xi) = 0

between values of every polynomial of degree deg f ≤
∑n

i=1 ki − n− 1. In particular, the

polynomial should be zero on X if and only if it is zero on all but one points of X.

This theorem holds over arbitrary field if all the points of X are defined over this field.
Let us list some recent nontrivial uses of this theorem:

• An interesting application of the Cayley–Bacharach relations (5.1) is distinguishing
between nonnegative polynomials and sums of squares, see [4] for further details.

• The least nontrivial case of the Caylet–Bacharach theorem, for intersection of two
triples of lines, was used in the recent paper [9] about Sylvester type problems.

It is curious that different particular cases of the Cayley–Bacharach theorem have their
own names. For example, Miquel’s six circle theorem [1] asserts that if 7 out of 8 vertices
of a combinatorial cube C in R3 lie on a quadratic surface S then the remaining vertex
of C also must lie on S. Another particular case of the Cayley–Bacharach theorem is the
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result about cutting the integer points in a cube by hyperplanes (see [2, Theorem 6.3] and
Problem 6 at IMO 2007), which we state in a bit more general, than usual, form here:

Corollary 5.2. Suppose we have n families of hyperplanes H1, . . . ,Hn in CP n with re-

spective cardinalities k1, . . . , kn. Define the intersection set

X = {H1 ∩ · · · ∩Hn : H1 ∈ H1, . . . , Hn ∈ Hn}

and assume that it is discrete and has the maximum possible cardinality k = k1k2 . . . kn.

If x ∈ X is any point, then the set X \ x cannot be covered by less than
∑n

i=1 ki − n

hyperplanes that do not pass through x.

Using the projective duality we obtain another consequence:

Corollary 5.3. Let n finite point sets X1, . . . , Xn ⊂ CP n have cardinalities k1, . . . , kn.

Assume that any system of representatives xi ∈ Xi defines a unique hyperplaneH(x1, . . . , xn)
containing {xi}

n
i=1 and all these hyperplanes are distinct. Then one needs at least

∑n

i=1 ki−
n points to pierce all such hyperplanes H(x1, . . . , xn) but one H(x0

1, . . . , x
0
n) without touch-

ing this one.

Now return to the original statement of the Combinatorial Nullstellensatz, where deg f =
∑n

i=1 ki−n. In this case ω has the singularity at the hyperplane at infinity, and we should
include this hyperplane to a divisor in the definition of the residues. Finite singularity
hyperplanes are

Hi = {H : H = {zi = x}, x ∈ Xi}.

The hyperplane at infinity can be added to the first family of hyperplanes H1 for example,
to give H∗

1. The corresponding set

X∗ = {H1 ∩ · · · ∩Hn : H1 ∈ H∗

1, H2 ∈ H2, . . . , Hn ∈ Hn}

will contain all the points of X , and the point x∗ at the infinite direction of (1, 0, . . . , 0)
axis. Note that the form ω has a bad singularity in x∗, and the residue formula is hard to
apply at this point. But this can be corrected, if we perturb the families Hi (i = 2, . . . , n)
so that the point x∗ becomes a set of k2 . . . kn points with simple singularities, lying on
the hyperplane at infinity. For these points the formula can be proved by induction,
by putting the sum of residues to the hyperplane at infinity and applying the inductive
assumption.
This proof is good, but it is much longer than the original proof without residues. In

order to justify this we may generalize the Combinatorial Nullstellensatz in some way, for
example:

Theorem 5.4. Suppose we have n hypersurfaces S1, . . . , Sn ⊂ Cn with respective degrees

k1, . . . , kn, and their equations have the form

gi(z1, . . . , zn) = zkii + terms of less degree.

Assume that they intersect in a discrete set X of cardinality k = k1k2 . . . kn. If a polyno-

mial f(z1, . . . , zn) has degree ≤
∑n

i=1 ki − n and a nonzero coefficient at zk1−1
1 . . . zkn−1

n ,

then its zero set cannot contain X.

It seems that for arbitrary gi(z1, . . . , zn) the condition “coefficient at zk1−1
1 . . . zkn−1

n is
nonzero” should be replaced by some other condition, depending on the maximal degree
parts of f, g1, . . . , gn.

http://www.imo-official.org/
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6. Further similar problems

The first question is: Does the two-dimensional case of Theorem 5.2 admit a simpler
proof? Its elementary statement reads as follows:

Problem 6.1. Suppose n red andm blues lines in the plane have nm points of transversal
red-blue intersection, denote this intersection set by X . Prove that if a family of green
lines covers all points of X but one then there are at least n+m− 2 green lines.

Another question is related to some algebraic constructions of hypergraphs in [6]. We
believe that the residues may help to answer it, but cannot tell anything particular at the
moment.

Problem 6.2. Suppose n red and n blue lines in the plane have n2 points of transversal
red-blue intersection, again denote this intersection set by X . Describe all cases when X

can be covered by n green lines, distinct from the original blue and red lines.

There are nontrivial examples for Problem 6.2: In Fp × Fp we may consider all vertical
lines red, all horizontal lines blue, and all lines with a fixed slope green. Here n = p is
the characteristic of the field.
Another example is: Let U ⊂ F∗ be a finite multiplicative subgroup of order n, which

necessarily coincides with the n-th roots of unity. Consider the blue lines {x − uy}u∈U ,
the red lines {y = u}u∈U , and the green lines {x = u}u∈U . This is a valid configuration
in Problem 6.2 and an important observation is that all three color families of lines are
concurrent.
Actually, the case of interest in [6] is when n < p (in Fp) and the green lines form the

(concurrent) family of vertical lines x = 0, x = 1, . . . , x = n − 1. In [6, Lemma 2.9] it
is shown that no such configurations (with vertical green lines) exists for n > 3 over the
field R, the proof using combinatorics of pseudolines. The case of finite characteristic
with this selection of vertical lines is reduced to the real case (see [6]) for p > n4n using
the Dirichlet theorem on approximation by rational numbers.
We have a couple of observations on Problem 6.2, with no use of residues, considering

concurrent families of lines:

Claim 6.3. In terms of Problem 6.2, let ri(x) = 0 be the equations of the red lines,

let bi(x) = 0 and gi(x) = 0 be the equations of blues and green lines respectively. If

all the green lines are concurrent then there is a linear dependence between the products

R(x) =
∏

i ri(x), B(x) =
∏

i bi(x), and G(x) =
∏

i gi(x).

Proof. We denote by the same letter the straight line and its corresponding linear function.
Let x0 be the common point of the green lines. Note that on every line gi there must
be at most n points of X , because it meets at most n red lines. Hence every gi contains
exactly n points of X and these n-tuples are pairwise disjoint. Hence the common point
x0 cannot be in X .
Now choose coefficients α and β so that Z(x) = αR(x) + βB(x) vanishes on x0; it

also vanishes on X . For every line gi the function Z(x) vanishes on gi at x0 and at n

intersection points X ∩ gi. Since Z(x) has degree ≤ n it must vanish on every gi and
therefore it must be proportional to the product G(x). �

Claim 6.4. If we assume in Problem 6.2 that the red lines are concurrent and the green

lines are concurrent, and also assume that n is coprime with the characteristic of F, then

the example with roots of unity becomes unique up to projective transformation.

Proof. After a projective transformation we assume that the red lines are {x = u}u∈U and
the blue lines are {y = v}v∈V . Then every green line gi is a graph of a linear bijection
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U → V . Hence we have a set of linear transforms g−1
j gi for the set U . These linear

transforms must preserve the mass center 1
n
(u1+ · · ·+un) of U , and after another shift of

the coordinates we assume that this mass center is zero and all the transforms g−1
j gi are

multiplications by a constant cji. Let us also rescale so that U contains 1. Then every
cji is contained in U , and since there must be at least n distinct constants corresponding
to g−1

1 g1, g
−1
2 g1, . . . , g

−1
n g1 then we conclude that U is a multiplicative subgroup and the

transforms are multiplications by elements of this groups. After an appropriate shift and
rescaling of the y axis the set V becomes equal to U . �

Finally we mention a problem from [7] related to the polynomial interpolation, which
is in the spirit of the present discussion:

Problem 6.5. Suppose X is a set of
(
n+2
2

)
points in the plane such that for any x ∈ X

there exist n lines covering X \ {x} and not touching x. Describe such sets X or, at least,
prove that some n + 1 points of X lie on a single line.
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