
ON A HELLY-TYPE QUESTION FOR CENTRAL SYMMETRY

ALEXEY GARBER AND EDGARDO ROLDÁN-PENSADO

Abstract. We study a certain Helly-type question by Konrad Swanepoel.
Assume that X is a set of points such that every k-subset of X is in centrally

symmetric convex position, is it true that X must also be in centrally symmetric

convex position? It is easy to see that this is false if k ≤ 5, but it may be
true for sufficiently large k. We investigate this question and give some partial

results.

Dedicated to Imre Bárány on his 70th birthday.

1. Introduction

The classical Carathéodory theorem in dimension 2 can be stated in the following
equivalent way: Let X be a set of points in the plane, if any 4 points from X are
in convex positions then X is in convex position. In 2010, Konrad Swanepoel [5]
asked the following Helly-type question which was inspired by this formulation of
Carathéodory’s theorem.

For brevity, we say that a set of points is in c.s.c. position (short for centrally
symmetric convex position) if it is contained in the boundary of a centrally symmetric
convex body.

Question. Does there exist a number k such that for any planar set X the following
holds: If any k points from X are in c.s.c position, then the whole set X is in c.s.c.
position.

It is clear from Carathéodory’s theorem that X should be in convex position. One
can also see that k ≥ 6 since any 5 points in convex position are in c.s.c. position.
This follows from the fact that any 5 points pass through a quadric curve. Since the
points must be in convex position, the points lie on an ellipse, parabola, a branch of
a hyperbola or a union of two lines and in each of these cases there is a centrally
symmetric convex body containing these points on its boundary.

It is not clear that such a k exists although we suspect that it does. In this short
note, we prove the following two results in Sections 3 and 4.

Theorem 1.1. There is a set X consisting of 9 points that is not in c.s.c. position
such that any 8 of its points are in c.s.c. position. This implies that, if k exists,
then k ≥ 9.

Theorem 1.2. Let Γ be a closed curve such that any 6 points of Γ are in c.s.c.
position, then Γ bounds a centrally symmetric convex region.

Before proving these theorems, we describe a way to decide whether a finite set
X is in c.s.c. position or not. For more information on Carathéodory’s theorem and
Helly-type theorems we recommend [2] and [3].

1

ar
X

iv
:1

80
1.

07
23

8v
1 

 [
m

at
h.

M
G

] 
 2

2 
Ja

n 
20

18



2 ALEXEY GARBER AND EDGARDO ROLDÁN-PENSADO

2. Centrally symmetric convex position

We start with a useful definition.

Definition 2.1. Let X be a point set and O be a point. The set XO denotes the
reflection of X with respect to O, i.e., XO = 2O − X. If X ∪ XO is in convex
position then we say that O is an admissible center for X, the set of all admissible
centers is denoted by MX .

Swanepoel’s question can be reformulated in terms of admissible centers, since X
is in c.s.c. position if and only ifMX is non-empty. The main goal of this section is
to give a simple way of constructing MX . We start with the simplest possible case.
The description of the set of admissible center for a finite set X can be obtained
from the following simple lemmas.

Lemma 2.2. Let 4 = {a, b, c} be three non-collinear points. The three lines passing
through the midpoints of the sides of conv(4) divide the plane into 7 regions. The
set M4, shown in Figure 1, is the union of the closed components of this division
that do not intersect 4.

The set M4 is naturally represented as the union of 4 convex subsets. We call
these subsets the center-part, a-part, b-part and c-part as in Figure 1.

a

b c

c-part b-part

a-part

center-part

Figure 1. Set of admissible centers for a triangle.

Lemma 2.3. For a given set X in convex position we have that

MX =
⋂
{MY : Y ⊂ X,#(Y ) = 3} .

These last two lemmas provide us with a way to construct the set of admissible
centers of a set with n points in convex position as the intersection of

(
n
3

)
sets, each

of which is the union of four convex sets. We see below how we can achieve the
same thing using fewer sets.

Definition 2.4. Assume X is a finite set of points in convex position such that X
is not contained in a line. Let ab be a side of conv(X) and let c ∈ X be a farthest
point from the line ab. We call the triangle abc a tallest triangle of X with respect
to side ab.

The tallest triangle has appeared before, at least as source of interesting questions
for mathematical Olympiads (see e.g. [4] or [1]).
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Theorem 2.5. If X is a finite set of points in convex position, then the set of
admissible centers for X is the intersection of the sets of admissible centers of the
tallest triangles of X, i.e.,

MX =
⋂{
M{a,b,c} : abc is a tallest triangle of X

}
.

Proof. The set MX is included in the intersection on the right-hand side of the
formula, so we only need to prove that any point from the intersection is in MX .

Let O be any point from the intersection and let a be any point from X. We will
show that it is possible to find a supporting line of conv(X ∪XO) at a.

Let b be one of the neighbors of a on the boundary of conv(X), say in the counter-
clockwise direction. Let abc be a tallest triangle of X with respect to ab. If O lies
in a-part or b-part of the admissible set for triangle abc, then ab is a supporting line
for conv(X ∪XO). Therefore O lies in the c-part or in the central part of M{a,b,c}.

Similarly, if d is the other neighbor of a on the boundary of X (in the clockwise
direction), and ade is a tallest triangle of X with respect to ad, then O lies in the
central part or in the e-part of M{a,d,e}, otherwise we are done.

There are two possibilities for the positions of c and e. Either they coincide, or e
is in the clockwise direction from c. In the case c = e, the only admissible point
from M{a,b,c} is the midpoint of ac, which also belongs to the b-part of M{a,b,c}.
So, the line ab is a supporting line of conv(X ∪XO) as we have shown before.

O

a b

d

e

c
p

q

Figure 2. A supporting line of conv(X ∪XO) at a.

In the latter case, as shown in Figure 2, the point O ∈ abc∩ ade, and c and e are
connected by a sequence of sides of X. Then there is a side pq of X in the angle
∠cae such that O is inside triangle apq. It is not difficult to see that apq is a tallest
triangle of X. Since O is inside apq and in M{a,p,q}, it is in the central part of this
set of admissible centers. It follows that the line parallel to pq through a is also a
supporting line of conv(X ∪XO). �

3. Example showing k ≥ 9

In this section we prove Theorem 1.1 by giving an explicit example of a set X
with 9 points such that MX = ∅, but MY 6= ∅ for every Y ⊂ X with 8 points.

Proof of Theorem 1.1. Start with a regular 9-gon with center O and label its vertices
as a1, b1, c1, a2, b2, c2, a3, b3, c3 in counter-clockwise order. Now, take the triangle
a1a2a3 and, with center O, scale it down by a factor of 0.93. Then we are left with
an almost regular 9-gon such as the one shown in Figure 3. This will be the set X.

A subset Y of X with 8 points can be of two types, depending on whether or
not it is missing a point ai from X. For each of these, a point of MY close to O
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a1

b1

c1
a2

b2

c2

a3 b3

c3

O

Figure 3. The 9-gon for Theorem 1.1.

will serve as an admissible center. If we choose coordinates so that O = (0, 0) and
b1 = (1, 0), then points in MY corresponding to Y = X \ {a1} and Y = X \ {b2}
are (0.04, 0) and (0.02, 0), respectively (see Figure 4).

b1

c1a2

b2

c2

a3 b3

c3

a1

c1a2

c2

a3 b3

c3b1

c1 a2

b2

c2

a3b3
c3 b1

a1

c1 a2

c2

a3b3
c3

b1

Figure 4. The original and reflected 8-gons with their respective centers.

All that is left is to show thatMX = ∅. By Lemma 2.3, we only need to consider
the triangles determined by X. Let us consider first the triangle a1b2c2, it is not
hard to see that MX must be a subset of the center part of M{a1,b2,c2}. By the
threefold symmetry of X, the same is true for the triangles a2b3c3 and a3b1c1.
However, the center parts of these sets are triangles that do not intersect, so MX

must be empty. �

4. The case of convex curves

In this section we show that for a convex curve Γ the answer for Swanepoel’s
question is the least possible, i.e. k = 6. For the remaining part of the section we
assume that every 6 points of Γ are in c.s.c.

The proof of Theorem 1.2 is based on the following simple fact, which can be
proved easily using Lemma 2.3.
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Lemma 4.1. The set of admissible centers for the vertex-set of a parallelogram P
is the union the two lines passing through the center of P and each parallel to a side
of P .

First we establish a few facts for Γ. Since Γ is convex, then every point x of Γ
has correctly defined one-sided tangents which are the best linear approximations
of Γ at x in clockwise and counter-clockwise directions. If these lines coincide, then
Γ has a tangent at x and we will call x a smooth point of Γ. Due to the convexity of
Γ, it may contain at most countably many non-smooth points.

Lemma 4.2. If ` and `′ are two parallel supporting lines of Γ, then the lengths of
the segments ` ∩ Γ and `′ ∩ Γ are equal.

Remark. We say that a point is a segment of length zero.

Proof. Suppose that the length of ` ∩ Γ is strictly greater than the length of `′ ∩ Γ.
We choose six points a, b, c, d, e, f ∈ Γ in counter-clockwise order such that a and c
are the endpoints of ` ∩ Γ, b is the midpoint of ` ∩ Γ, e is a point on `′ ∩ Γ, and df
is a segment parallel to ` such that its length is strictly between lengths of ` ∩ Γ
and `′ ∩ Γ, see Figure 5.

`

`′

abc

d

e

f

Figure 5. Parallel supporting lines cannot intersect Γ at segments
of different lengths.

It is easy to see that these 6 points are not in c.s.c. which is a contradiction.
Therefore the intersections ` ∩ Γ and `′ ∩ Γ have equal length. �

Lemma 4.3. Let a be a smooth point of Γ with tangent `, and let b, c, d ∈ Γ be
points such that abcd is a parallelogram with sides not parallel to `. Then the line
through c parallel to ` supports Γ.

Proof. Let `′ be the line parallel to ` through c. Suppose `′ doesn’t support Γ. We
may assume that points a, b, c, d determine a counter-clockwise orientation of Γ and
`′ intersects the arc bc of Γ, see Figure 6 for more details. Let `+ be the tangent of
the arc bc of Γ at c and let `′+ be the line parallel to `+ through a (see Figure 6).

We can choose a point x on the arc ab that is closer to ` than to `′+, indeed,
the line ` is the best linear approximation of Γ at a, so each point of Γ in a small
neighborhood of a is closer to ` than to `′+. Similarly we can find a point y on the
arc bc closer to `+ than to `′.

For the set X = {a, b, c, d, x, y} the set of admissible centers may consist only
of the center O of the parallelogram abcd. Indeed, according to the Lemma 4.1
MX is contained in the union of two lines through O parallel to ab and ad. The
point x does not allow us to take any point in the line parallel to ab except O as an
admissible center, and y does not allow to take any point in the line parallel to ad
except O. If y′ is the reflection of y with respect to O, then a is strictly inside the
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`

`′
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c

d

Figure 6. A curve with an inscribed parallelogram at a smooth
point a.

triangle cxy′ as shown in Figure 7. Thus we have found 6 points of Γ which are not
in c.s.c. position which is a contradiction. �

a

b

c

d
O

y′ x

y

Figure 7. Six points in Γ that are not in c.s.c position.

Now we proceed to the proof of the main result of this section.

Proof of Theorem 1.2. The convexity of Γ is trivial. There are two cases possible,
either each supporting line of Γ intersects Γ at exactly one point (case 1), or there
is a supporting line of Γ that intersects Γ in a segment of non-zero length (case 2).
Case 1. Let a be any smooth point of Γ, and let ` be the tangent of Γ at a. Let a′

be the other point of Γ with supporting line parallel to `.
Let b be any point of Γ other than a and a′. The segment ab is not an affine

diameter of Γ, therefore there are points c, d ∈ Γ such that abcd is a parallelogram.
From Lemma 4.3 we get that the line through c parallel to ` supports Γ and therefore
c = a′. Thus the central symmetry with the center at the midpoint of aa′ takes b to
another point of Γ (the point d), and Γ is centrally symmetric.
Case 2. Let ab be the intersection of Γ with a support line `. From Lemma
4.2 we know that the other supporting line `′ of Γ parallel to ` intersects Γ in a
segment cd equal in length to ab. We may assume that the points a, b, c, d are in
counter-clockwise orientation, see Figure 8.
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axb
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c y d

O

`

`′

p

Figure 8. A curve with two equal parallel segments on the boundary.

Let p be a point in the interior of the arc da of Γ and x be a point in the interior
of the segment ab. Since px is not an affine diameter of Γ, we can find two more
points q, y ∈ Γ (both depending on x and p) such that pxqy is a parallelogram.
Using Lemma 4.3 for the parallelogram pxqy treating x as the smooth vertex we
conclude that the tangent to Γ at x is the line `, therefore the line parallel to `
through y supports Γ, and y belongs to the segment cd. Also, q must be contained
in the arc bc of Γ.

The center of the parallelogram pxqy is equidistant from the lines ` and `′,
therefore the distance from q to ` is equal to the distance from p to `′ and does not
depend on x. This means that q only depends on p and not on x and the same is
true for the center O of the parallelogram pxqy.

If for a fixed p we vary x in the open segment ab, then y varies in the interior of
cd which has the same length as ab. This means that cd is symmetric to ab with
respect to O and O is also the center of the parallelogram abcd. Thus O does not
depend on p.

Summarizing, we have shown that for every point p on the arc da of Γ we can find
another point q of Γ symmetric to p with respect to the center of the parallelogram
abcd. Therefore O is the center of symmetry of Γ. �
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