Skip to main content
Log in

A note on the Goormaghtigh equation

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

Let p be an odd prime. By using a lower bound for linear forms in logarithms of two algebraic numbers, we prove that if \(p>10^{24}\), 2 is a primitive root module p and the least solution \((u_1,\ v_1)\) of Pell’s equation \(u^2-2(p-1)(p-2)v^2=1\) satisfies \(\log \left( u_1+v_1\sqrt{2(p-1)(p-2)}\right) <p^{\frac{2}{3}}\), then the equation \(\frac{x^m-1}{x-1}=\frac{y^n-1}{y-1}\) has no positive integer solutions \((x,\ y,\ m,\ n)\) with \(x=2,\ y=p\) and \(m>n>2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Bugeaud, T.N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation. J. Reine Angew. Math. 539, 55–74 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Y. Bugeaud, T.N. Shorey, On the diophantine equation $\frac{x^m-1}{x-1}=\frac{y^n-1}{y-1}$. Pac. J. Math. 207(1), 61–75 (2002)

    Article  MATH  Google Scholar 

  3. H. Davenport, D.J. Lewis, A. Schinzel, Equation of the form $f(x)=g(y)$. Q. J. Math. Oxford II 12(3), 304–312 (1961)

    Article  MATH  Google Scholar 

  4. B. He, A remark on the diophantine equation $\frac{x^3-1}{x-1}=\frac{y^n-1}{y-1}$. Glas. Math. III 44(1), 1–6 (2009)

    Article  MathSciNet  Google Scholar 

  5. M. Laurent, M. Mignotte, Y.V. Nesterenko, Formes linéaires en deux logrithmes et déterminants d’interpolation. J. Number Theory 55(2), 285–321 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.H. Le, Some exponential diophantine equations I: the equation $D_1x^2-D_2y^2=\lambda k^z$. J. Number Theory 55(2), 209–221 (1995)

    Article  MathSciNet  Google Scholar 

  7. M.H. Le, On the diophantine equations $\frac{(x^3-1)}{(x-1)}=\frac{(y^n-1)}{(y-1)}$. Trans. Am. Math. Soc. 351(3), 1063–1074 (1999)

    Article  MATH  Google Scholar 

  8. M.H. Le, Exponential solutions of the exponential diophantine equation $\frac{(x^3-1)}{(x-1)}=\frac{(y^n-1)}{(y-1)}$. J. Reine Angew. Math. 543, 187–192 (2002)

    MathSciNet  MATH  Google Scholar 

  9. K.H. Leung, S.L. Ma, B. Schmidt, Proper partial geometries with Singer group and pseudogeometric partial difference sets. J. Combin. Theory Ser. A 115(1), 147–177 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. L.J. Modell, Diophantine Equations (Academic Press, London, 1969)

    Google Scholar 

  11. Y.V. Nesterenko, T.N. Shorey, On the equation of Goormaghtigh. Acta Arith. 83(4), 381–389 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Perron, Die Lehre von den Kettenbrüchen (Teubner, Leipzig, 1929)

    MATH  Google Scholar 

  13. R. Ratat, L’intermédiaire des Mthématiciens 23, 150 (1916)

    Google Scholar 

  14. J. Rose, R. Goormaghtigh, L’intermédiaire des Mthématiciens 24, 88–90 (1917)

    Google Scholar 

  15. T.N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations, in Number Theory, ed. by R.P. Bambah, et al. (Birkhäuser, Basel, 2000), pp. 463–495

    Google Scholar 

  16. T.N. Shorey, An equation of Goormaghtigh and diophantine approximations, in Current in Number Theory, ed. by S.D. Adhikari (Hindustan Book Agency, New Delhi, 2002), pp. 185–197

    Chapter  Google Scholar 

  17. H. Yang, R.Q. Fu, An upper bound for least solutions of the exponential diophantine equation $D_1x^2-D_2y^2=\lambda k^z$. Int. J. Number Theory 11(4), 1107–1114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.Z. Yuan, On the diophantine equation $\frac{(x^3-1)}{(x-1)}=\frac{(y^n-1)}{(y-1)}$. J. Number Theory 112(1), 20–25 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Yang.

Additional information

This work is supported by N.S.F. (11226038, 11371012) of P. R. China, the N.S.F. (2017JM1025) of Shaanxi Province, the Education Department Foundation of Shaanxi Province (17JK0323)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Fu, R. A note on the Goormaghtigh equation. Period Math Hung 79, 86–93 (2019). https://doi.org/10.1007/s10998-018-0265-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-018-0265-9

Keywords

Mathematics Subject Classification

Navigation