CHARACTERIZING LINEAR MAPPINGS THROUGH ZERO PRODUCTS OR ZERO JORDAN PRODUCTS

GUANGYU AN ${ }^{1}$, JUN HE² AND JIANKUI LI ${ }^{3 *}$

Abstract

Let \mathcal{A} be a $*$-algebra and \mathcal{M} be a $*$ - \mathcal{A}-bimodule, we study the local properties of $*$-derivations and $*$-Jordan derivations from \mathcal{A} into \mathcal{M} under the following orthogonality conditions on elements in $\mathcal{A}: a b^{*}=0, a b^{*}+b^{*} a=0$ and $a b^{*}=b^{*} a=0$. We characterize the mappings on zero product determined algebras and zero Jordan product determined algebras. Moreover, we give some applications on C^{*}-algebras, group algebra, matrix algebras, algebras of locally measurable operators and von Neumann algebras.

1. Introduction

Throughout this paper, let \mathcal{A} be an associative algebra over the complex field \mathbb{C} and \mathcal{M} be an \mathcal{A}-bimodule. For each a, b in \mathcal{A}, we define the Jordan product by $a \circ b=a b+b a$. A linear mapping δ from \mathcal{A} into \mathcal{M} is called a derivation if $\delta(a b)=a \delta(b)+\delta(a) b$ for each a, b in \mathcal{A}; and δ is called a Jordan derivation if $\delta(a \circ b)=a \circ \delta(b)+\delta(a) \circ b$ for each a, b in \mathcal{A}. It follows from the results in $[9,20,21]$ that every Jordan derivation from a C^{*}-algebra into its Banach bimodule is a derivation.

By an involution on an algebra \mathcal{A}, we mean a mapping $*$ from \mathcal{A} into itself, such that

$$
(\lambda a+\mu b)^{*}=\bar{\lambda} a^{*}+\bar{\mu} b^{*},(a b)^{*}=b^{*} a^{*} \text { and }\left(a^{*}\right)^{*}=a,
$$

whenever a, b in $\mathcal{A}, \lambda, \mu$ in \mathbb{C} and $\bar{\lambda}, \bar{\mu}$ denote the conjugate complex numbers. An algebra \mathcal{A} equipped with an involution is called a $*$-algebra. Moreover, let \mathcal{A} be a $*$-algebra, an \mathcal{A}-bimodule \mathcal{M} is called a $*$ - \mathcal{A}-bimodule if \mathcal{M} equipped with a $*$-mapping from \mathcal{M} into itself, such that

$$
(\lambda m+\mu n)^{*}=\bar{\lambda} m^{*}+\bar{\mu} n^{*},(a m)^{*}=m^{*} a^{*},(m a)^{*}=a^{*} m^{*} \text { and }\left(m^{*}\right)^{*}=m,
$$

whenever a in \mathcal{A}, m, n in \mathcal{M} and λ, μ in \mathbb{C}. An element a in \mathcal{A} is called self-adjoint if $a^{*}=a$; an element p in \mathcal{A} is called an idempotent if $p^{2}=p$; and p is called a projection if p is both a self-adjoint element and an idempotent.

In [24], A. Kishimoto studies the $*$-derivations on a C^{*}-algebra. Let \mathcal{A} be a *-algebra and \mathcal{M} be a $*$ - \mathcal{A}-bimodule. A derivation δ from \mathcal{A} into \mathcal{M} is called a *-derivation if $\delta\left(a^{*}\right)=\delta(a)^{*}$ for every a in \mathcal{A}. Obviously, every derivation δ is a linear combination of two $*$-derivations. In fact, we can define a linear mapping $\hat{\delta}$ from \mathcal{A} into \mathcal{M} by $\hat{\delta}(a)=\delta\left(a^{*}\right)^{*}$ for every a in \mathcal{A}, therefore $\delta=\delta_{1}+i \delta_{2}$, where

[^0]$\delta_{1}=\frac{1}{2}(\delta+\hat{\delta})$ and $\delta_{2}=\frac{1}{2 i}(\delta-\hat{\delta})$. It is easy to show that δ_{1} and δ_{2} are both *-derivations. Similarly, we can define the $*$-Jordan derivations.

For $*$-derivations and $*$-Jordan derivations, in $[3,13,17,18]$, the authors characterize the following two conditions on a linear mapping δ from a $*$-algebra \mathcal{A} into its *-bimodule \mathcal{M} :

$$
\begin{aligned}
& \left(\mathbb{D}_{1}\right) a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0 \\
& \left(\mathbb{D}_{2}\right) a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=\delta(b)^{*} a+b^{*} \delta(a)=0 ;
\end{aligned}
$$

where \mathcal{A} is a C^{*}-algebra, a zero product determined algebra or a group algebra $L^{1}(G)$.

Let \mathcal{J} be an ideal of \mathcal{A}, we say that \mathcal{J} is a right separating set or left separating set of \mathcal{M} if for every m in $\mathcal{M}, \mathcal{J} m=\{0\}$ implies $m=0$ or $m \mathcal{J}=\{0\}$ implies $m=$ 0 , respectively. We denote by $\mathfrak{J}(\mathcal{A})$ the subalgebra of \mathcal{A} generated algebraically by all idempotents in \mathcal{A}.

In Section 2, we suppose that \mathcal{A} is a $*$-algebra and \mathcal{M} is a $*$ - \mathcal{A}-bimodule that satisfy one of the following conditions:
(1) \mathcal{A} is a zero product determined Banach $*$-algebra with a bounded approximate identity and \mathcal{M} is an essential Banach $*$ - \mathcal{A}-bimodule;
(2) \mathcal{A} is a von Neumann algebra and $\mathcal{M}=\mathcal{A}$;
(3) \mathcal{A} is a unital $*$-algebra and \mathcal{M} is a unital $*$ - \mathcal{A}-bimodule with a left or right separating set $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$;
and we investigate whether the linear mappings from \mathcal{A} into \mathcal{M} satisfying the condition \mathbb{D}_{1} characterize $*$-derivations. In particular, we generalize some results in $[13,17,18]$.

An \mathcal{A}-bimodule \mathcal{M} is said to have the property \mathbb{M}, if there is an ideal $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ of \mathcal{A} such that

$$
\{m \in \mathcal{M}: x m x=0 \text { for every } x \in \mathcal{J}\}=\{0\}
$$

It is clear that if $\mathcal{A}=\mathfrak{J}(\mathcal{A})$, then \mathcal{M} has property \mathbb{M}.
For $*$-Jordan derivations, we can study the following conditions on a linear mapping δ from a $*$-algebra \mathcal{A} into its $*$ - \mathcal{A}-bimodule \mathcal{M} :

$$
\begin{aligned}
& \left(\mathbb{D}_{3}\right) a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 \\
& \left(\mathbb{D}_{4}\right) a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 .
\end{aligned}
$$

It is obvious that the condition \mathbb{D}_{2} or \mathbb{D}_{3} implies the condition \mathbb{D}_{4}.
In Section 3, we suppose that \mathcal{A} is a $*$-algebra and \mathcal{M} is a $*$ - \mathcal{A}-bimodule that satisfy one of the following conditions:
(1) \mathcal{A} is a unital zero Jordan product determined $*$-algebra and \mathcal{M} is a unital *- \mathcal{A}-bimodule;
(2) \mathcal{A} is a unital $*$-algebra and \mathcal{M} is a unital $*-\mathcal{A}$-bimodule such that the property \mathbb{M};
(3) \mathcal{A} is a C^{*}-algebra (not necessary unital) and \mathcal{M} is an essential Banach $*-\mathcal{A}$ bimodule;
and we investigate whether the linear mappings from \mathcal{A} into \mathcal{M} satisfying the condition \mathbb{D}_{3} or \mathbb{D}_{4} characterize $*$-Jordan derivations. In particular, we improve some results in $[13,17,18]$.

2. *-DERIVATIONS ON SOME ALGEBRAS

A (Banach) algebra \mathcal{A} is said to be zero product determined if every (continuous) bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into any (Banach) linear space \mathcal{X} satisfying

$$
\phi(a, b)=0, \text { whenever } a b=0
$$

can be written as $\phi(a, b)=T(a b)$, for some (continuous) linear mapping T from \mathcal{A} into \mathcal{X}. In [7], M. Brešar shows that if $\mathcal{A}=\mathfrak{J}(\mathcal{A})$, then \mathcal{A} is a zero product determined, and in [1], the authors prove that every C^{*}-algebra \mathcal{A} is zero product determined.

Let \mathcal{A} be a Banach $*$-algebra and \mathcal{M} be a Banach $*-\mathcal{A}$-bimodule. Denote by $\mathcal{M}^{\text {\#\# }}$ the second dual space of \mathcal{M}. In the following, we show that $\mathcal{M}^{\sharp \#}$ is also a Banach $*-\mathcal{A}$-bimodule.

Since \mathcal{M} is a Banach $*-\mathcal{A}$-bimodule, $\mathcal{M}^{\text {朋 }}$ turns into a dual Banach \mathcal{A}-bimodule with the operation defined by

$$
a \cdot m^{\sharp \sharp}=\lim _{\mu} a m_{\mu} \text { and } m^{\sharp \sharp} \cdot a=\lim _{\mu} m_{\mu} a
$$

for every a in \mathcal{A} and every $m^{\sharp \sharp}$ in $\mathcal{M}^{\sharp \sharp}$, where $\left(m_{\mu}\right)$ is a net in \mathcal{M} with $\left\|m_{\mu}\right\| \leqslant$ $\left\|m^{\text {\#\# }}\right\|$ and $\left(m_{\mu}\right) \rightarrow m^{\sharp \sharp}$ in the weak*-topology $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$.

We define an involution $*$ in $\mathcal{M}^{\text {\#\# }}$ by

$$
\left(m^{\text {\# }}\right)^{*}(\rho)=\overline{m^{\text {\#\# }}\left(\rho^{*}\right)}, \rho^{*}(m)=\overline{\rho\left(m^{*}\right)},
$$

where $m^{\sharp \sharp}$ in $\mathcal{M}^{\sharp \sharp}, \rho$ in \mathcal{M}^{\sharp} and m in \mathcal{M}. Moreover, if $\left(m_{\mu}\right)$ is a net in \mathcal{M} and $m^{\sharp \sharp}$ is an element in $\mathcal{M}^{\sharp \sharp}$ such that $m_{\mu} \rightarrow m^{\sharp \sharp}$ in $\sigma\left(\mathcal{M}^{\sharp \#}, \mathcal{M}^{\sharp}\right)$, then for every ρ in \mathcal{M}^{\sharp}, we have that

$$
\rho\left(m_{\mu}\right)=m_{\mu}(\rho) \rightarrow m^{\text {肺 }}(\rho) .
$$

It follows that

$$
\left(m_{\mu}^{*}\right)(\rho)=\rho\left(m_{\mu}^{*}\right)=\overline{\rho^{*}\left(m_{\mu}\right)} \rightarrow \overline{m^{\sharp \sharp}\left(\rho^{*}\right)}=\left(m^{\sharp \sharp}\right)^{*}(\rho)
$$

for every ρ in \mathcal{M}^{\sharp}. It means that the involution $*$ in $\mathcal{M}^{\sharp \#}$ is continuous in $\sigma\left(\mathcal{M}^{\sharp \#}, \mathcal{M}^{\sharp}\right)$. Thus we can obtain that

$$
\left(a \cdot m^{\sharp \sharp}\right)^{*}=\left(\lim _{\mu} a m_{\mu}\right)^{*}=\lim _{\mu} m_{\mu}^{*} a^{*}=\left(m^{\sharp \sharp}\right)^{*} \cdot a^{*},
$$

Similarly, we can show that $\left(m^{\sharp \sharp} \cdot a\right)^{*}=a^{*} \cdot\left(m^{\sharp \sharp}\right)^{*}$. It implies that $\mathcal{M}^{\sharp \sharp}$ is a Banach $*$ - \mathcal{A}-bimodule.

Let \mathcal{A} be a Banach $*$-algebra, a bounded approximate identity for \mathcal{A} is a net $\left(e_{i}\right)_{i \in \Gamma}$ of self-adjoint elements in \mathcal{A} such that $\lim _{i}\left\|a e_{i}-a\right\|=\lim _{i}\left\|e_{i} a-a\right\|=0$ for every a in \mathcal{A} and $\sup _{i \in \Gamma}\left\|e_{i}\right\| \leq k$ for some $k>0$.

In [18], H. Ghahramani and Z. Pan prove that if \mathcal{A} is a unital zero product determined $*$-algebra and a linear mapping δ from \mathcal{A} into itself satisfies the condition

$$
\left(\mathbb{D}_{1}\right) a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0
$$

then $\delta(a)=\Delta(a)+\delta(1) a$ for every a in \mathcal{A}, where Δ is a $*$-derivation.
For general zero product determined Banach $*$-algebra with a bounded approximate identity, we have the following result.

Theorem 2.1. Suppose that \mathcal{A} is a zero product determined Banach *-algebra with a bounded approximate identity, and \mathcal{M} is an essential Banach $*-\mathcal{A}$-bimodule. If δ is a continuous linear mapping from \mathcal{A} into \mathcal{M} such that

$$
a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0
$$

then there exist $a *$-derivation Δ from \mathcal{A} into $\mathcal{M}^{\sharp \#}$ and an element ξ in $\mathcal{M}^{\sharp \sharp}$ such that $\delta(a)=\Delta(a)+\xi \cdot$ a for every a in \mathcal{A}. Furthermore, ξ can be chosen in \mathcal{M} in each of the following cases:
(1) \mathcal{A} is a unital $*$-algebra.
(2) \mathcal{M} is a dual $*-\mathcal{A}$-bimodule.

Proof. Let $\left(e_{i}\right)_{i \in \Gamma}$ be a bounded approximate identity of \mathcal{A}. Since δ is continuous, the net $\left(\delta\left(e_{i}\right)\right)_{i \in \Gamma}$ is bounded and we can assume that it converges to ξ in $\mathcal{M}^{\text {䎸 }}$ with the topology $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$.

Since \mathcal{M} is an essential Banach $*$ - \mathcal{A}-bimodule, we know that the nets $\left(e_{i} m\right)_{i \in \Gamma}$ and $\left(m e_{i}\right)_{i \in \Gamma}$ converge to m with the norm topology for every m in \mathcal{M}. Thus we have that

$$
\operatorname{Ann}_{\mathcal{M}}(\mathcal{A})=\{m \in \mathcal{M}: a m b=0 \text { for each } a, b \in \mathcal{A}\}=\{0\}
$$

By the hypothesis, we can obtain that

$$
a, b, c \in \mathcal{A}, a b^{*}=b^{*} c=0 \Rightarrow a \delta(b)^{*} c=0
$$

It follows that

$$
\begin{equation*}
a, b, c \in \mathcal{A}, a b=b c=0 \Rightarrow c^{*} b^{*}=b^{*} a^{*}=0 \Rightarrow c^{*} \delta(b)^{*} a^{*}=0 \Rightarrow a \delta(b) c=0 \tag{2.1}
\end{equation*}
$$

By (2.1) and [1, Theorem 4.5], we know that

$$
\delta(a b)=\delta(a) b+a \delta(b)-a \cdot \xi \cdot b
$$

for each a, b in \mathcal{A}, and ξ can be chosen in \mathcal{M} if \mathcal{A} is a unital $*$-algebra or \mathcal{M} is a dual $*$ - \mathcal{A}-bimodule.

Define a linear mapping Δ from \mathcal{A} into \mathcal{M} by

$$
\Delta(a)=\delta(a)-\xi \cdot a
$$

for every a in \mathcal{A}. It is easy to show that Δ is a norm-continuous derivation from \mathcal{A} into $\mathcal{M}^{\sharp \sharp}$ and we only need to show that $\Delta\left(b^{*}\right)=\Delta(b)^{*}$ for every b in \mathcal{A}.

First we claim that $\Delta\left(e_{i}\right)=\delta\left(e_{i}\right)-\xi \cdot e_{i}$ converges to zero in $\mathcal{M}^{\sharp \sharp}$ with the topology $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$. In fact, since $\left(e_{i}\right)_{i \in \Gamma}$ is bounded in \mathcal{A}, we assume $\left(e_{i}\right)_{i \in \Gamma}$ converges to ζ in $\mathcal{A}^{\sharp \sharp}$ with the topology $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right)$. For every $m^{\sharp \sharp}$ in $\mathcal{M}^{\sharp \#}$, define

$$
m^{\sharp \sharp} \cdot \zeta=\lim _{i} m^{\sharp \sharp} \cdot e_{i} .
$$

Thus $m \cdot \zeta=m$ for every m in \mathcal{M}. By [10, Proposition A.3.52], we know that the mapping $m^{\sharp \sharp} \mapsto m^{\sharp \sharp} \cdot \zeta$ from $\mathcal{M}^{\sharp \sharp}$ into itself is $\sigma\left(\mathcal{M}^{\sharp \#}, \mathcal{M}^{\sharp}\right)$-continuous, and by the $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$-denseness of \mathcal{M} in $\mathcal{M}^{\sharp \#}$, we have that

$$
\begin{equation*}
m^{\sharp \sharp} \cdot \zeta=m^{\sharp \sharp} \tag{2.2}
\end{equation*}
$$

for every $m^{\text {\#\# }}$ in $\mathcal{M}^{\sharp \sharp}$. Hence $\Delta\left(e_{i}\right)=\delta\left(e_{i}\right)-\xi \cdot e_{i}$ converges to zero in $\mathcal{M}^{\text {\#\# }}$ with the topology $\sigma\left(\mathcal{M}^{\sharp \#}, \mathcal{M}^{\sharp}\right)$.

Next we prove $\Delta\left(b^{*}\right)=\Delta(b)^{*}$ for every b in \mathcal{A}. By the definition of Δ, we know that $a \Delta(b)^{*}+\Delta(a) b^{*}=0$ for each a, b in \mathcal{A} with $a b^{*}=0$. Define a bilinear mapping from $\mathcal{A} \times \mathcal{A}$ into $\mathcal{M}^{\text {\#\# }}$ by

$$
\phi(a, b)=a \Delta\left(b^{*}\right)^{*}+\Delta(a) b
$$

Thus $a b=0$ implies $\phi(a, b)=0$. Since \mathcal{A} is a zero product determined algebra, there exists a norm-continuous linear mapping T from \mathcal{A} into $\mathcal{M}^{\sharp \#}$ such that

$$
\begin{equation*}
T(a b)=\phi(a, b)=a \Delta\left(b^{*}\right)^{*}+\Delta(a) b \tag{2.3}
\end{equation*}
$$

for each a, b in \mathcal{A}. Let $b=e_{i}$ be in (2.3), we can obtain that

$$
T\left(a e_{i}\right)=a \Delta\left(e_{i}\right)^{*}+\Delta(a) e_{i}
$$

By the continuity of T and (2.2), it follows that $T(a)=\Delta(a)$ for every a in \mathcal{A}. Thus

$$
T(a b)=\Delta(a b)=a \Delta\left(b^{*}\right)^{*}+\Delta(a) b .
$$

Since Δ is a derivation, we have that $a \Delta\left(b^{*}\right)^{*}=a \Delta(b)$ and $\Delta\left(b^{*}\right) a^{*}=\Delta(b)^{*} a^{*}$. Let $a=e_{i}$ and taking $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$-limits, by (2.2), it follows that $\Delta\left(b^{*}\right)=\Delta(b)^{*}$ for every b in \mathcal{A}.

Let G be a locally compact group. The group algebra and the measure convolution algebra of G, are denoted by $L^{1}(G)$ and $M(G)$, respectively. The convolution product is denote by . and the involution is denoted by $*$. It is well known that $M(G)$ is a unital Banach *-algebra, and $L^{1}(G)$ is a closed ideal in $M(G)$ with a bounded approximate identity. By [3, Lemma 1.1], we know that $L^{1}(G)$ is zero product determined. By [10, Theorem 3.3.15(ii)], it follows that $M(G)$ with respect to convolution product is the dual of $C_{0}(G)$ as a Banach $M(G)$-bimodule.

By [26, Corollary 1.2], we know that every continuous derivation Δ from $L^{1}(G)$ into $M(G)$ is an inner derivation, that is, there exists μ in $M(G)$ such that $\Delta(f)=f \cdot \mu-\mu \cdot f$ for every f in $L^{1}(G)$. Thus by Theorem 2.1, we can prove [17, Theorem 3.1(ii)] as follows.
Corollary 2.2. Let G be a locally compact group. If δ is a continuous linear mapping from $L^{1}(G)$ into $M(G)$ such that

$$
f, g \in L^{1}(G), f \cdot g^{*}=0 \Rightarrow f \cdot \delta(g)^{*}+\delta(f) \cdot g^{*}=0
$$

then there are μ, ν in $M(G)$ such that

$$
\delta(f)=f \cdot \mu-\nu \cdot f
$$

for every f in $L^{1}(G)$ and $\operatorname{Re} \mu \in \mathcal{Z}(M(G))$.
Proof. By Theorem 2.1, we know that there exist a $*$-derivation Δ from $L^{1}(G)$ into $M(G)$ and an element ξ in $M(G)$ such that $\delta(f)=\Delta(f)+\xi \cdot f$ for every f in $L^{1}(G)$. By [26, Corollary 1.2], it follows that there exists μ in $M(G)$ such that $\Delta(f)=f \cdot \mu-\mu \cdot f$. Since $\Delta\left(f^{*}\right)=\Delta(f)^{*}$, we have that

$$
f^{*} \cdot \mu-\mu \cdot f^{*}=\mu^{*} \cdot f^{*}-f^{*} \cdot \mu^{*}
$$

for every f in $L^{1}(G)$. By [3, Lemma 1.3(ii)], we know $\operatorname{Re} \mu=\frac{1}{2}\left(\mu+\mu^{*}\right) \in$ $\mathcal{Z}(M(G))$. Let $\nu=\mu-\xi$, from the definition of Δ, we have that $\delta(f)=f \cdot \mu-\nu \cdot f$ for every f in $L^{1}(G)$.

For a general C^{*}-algebra \mathcal{A}, in [13], B. Fadaee and H. Ghahramani prove that if δ is a continuous linear mapping from \mathcal{A} into its second dual space $\mathcal{A}^{\sharp \sharp}$ such that the condition \mathbb{D}_{1}, then there exist a $*$-derivation Δ from \mathcal{A} into $\mathcal{A}^{\sharp \sharp}$ and an element ξ in $\mathcal{A}^{\sharp \sharp}$ such that $\delta(a)=\Delta(a)+\xi a$ for every a in \mathcal{A}.

In [1], the authors prove that every C^{*}-algebra \mathcal{A} is zero product determined, and it is well known that \mathcal{A} has a bounded approximate identity. Thus by Theorem 2.1, we can improve the result in [13] for any essential Banach $*$-bimodule.

Corollary 2.3. Suppose that \mathcal{A} is a C^{*}-algebra and \mathcal{M} is an essential Banach *- \mathcal{A}-bimodule. If δ is a continuous linear mapping from \mathcal{A} into \mathcal{M} such that

$$
a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0
$$

then there exist $a *$-derivation Δ from \mathcal{A} into $\mathcal{M}^{\sharp \#}$ and an element ξ in $\mathcal{M}^{\sharp \sharp}$ such that $\delta(a)=\Delta(a)+\xi \cdot$ a for every a in \mathcal{A}. Furthermore, ξ can be chosen in \mathcal{M} in each of the following cases:
(1) \mathcal{A} has an identity.
(2) \mathcal{M} is a dual $*-\mathcal{A}$-bimodule.

For von Neumann algebras, we have the following result.
Theorem 2.4. Suppose that \mathcal{A} is a von Neumann algebra. If δ is a linear mapping from \mathcal{A} into itself such that

$$
a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{A}, where Δ is $a *$-derivation. In particular, δ is a $*$-derivation when $\delta(1)=0$.

Proof. Define a linear mapping Δ from \mathcal{A} into \mathcal{M} by

$$
\Delta(a)=\delta(a)-\delta(1) a
$$

for every a in \mathcal{A}. In the following we show that Δ is a $*$-derivation. It is clear that $\Delta(1)=0$ and $a b^{*}=0$ can implies that $a \Delta(b)^{*}+\Delta(a) b^{*}=0$.

Case 1: Suppose that \mathcal{A} is an abelian von Neumann algebra. First we show that Δ satisfies that

$$
a, b \in \mathcal{A}, a b=0 \Rightarrow a \Delta(b)=0
$$

It is well known that $\mathcal{A} \cong C(X)$, where X is a compact Hausdorff space and $C(X)$ denotes the C^{*}-algebra of all continuous complex-valued functions on X. Thus we have that $a b=0$ if and only if $a b^{*}=0$ for each a, b in \mathcal{A}. Indeed, let f and g be two functions in $C(X)$ corresponding to a and b, respectively, we can obtain that

$$
a b^{*}=0 \Leftrightarrow f \cdot \bar{g}=0 \Leftrightarrow f \cdot g=0 \Leftrightarrow a b=0 .
$$

Let a and b be in \mathcal{A} with $a b^{*}=a b=0$, we have that $a \Delta(b)^{*}+\Delta(a) b^{*}=0$. Multiply a from the left side of above equation, we can obtain that $a^{2} \Delta(b)^{*}=0$. Let f and h be two functions in $C(X)$ corresponding to a and $\Delta(b)$, then we have that

$$
0=f^{2} \bar{g}=f^{2} g=f g
$$

It implies that $a \Delta(b)=0$. By [23, Theorem 3], we know that Δ is continuous. By [19, Lemma 2.5] and $\Delta(1)=0$, we know that $\Delta(a)=\Delta(1) a=0$ for every a in \mathcal{A}.

Case 2: Suppose that $\mathcal{A} \cong M_{n}(\mathcal{B})$, where \mathcal{B} is also a von Neumann algebra and $n \geqslant 2$. By $[6,7]$ we know that \mathcal{A} is a zero product determined algebra. Thus by [18, Theorem 3.1] it follows that Δ is a $*$-derivation.

Case 3: Suppose that \mathcal{A} is a general von Neumann algebra. It is well known that $\mathcal{A} \cong \sum_{i=1}^{n} \bigoplus \mathcal{A}_{i}$ (n is a finite integer or infinite), where each \mathcal{A}_{i} coincides with either Case 1 or Case 2. Denote the unit element of \mathcal{A}_{i} by 1_{i} and the restriction of Δ in \mathcal{A}_{i} by Δ_{i}. Since $1_{i}\left(1-1_{i}\right)=0$ and $\Delta(1)=0$, we have that

$$
1_{i} \Delta\left(1-1_{i}\right)^{*}+\Delta\left(1_{i}\right)\left(1-1_{i}\right)=0 .
$$

It follows that

$$
\begin{equation*}
-1_{i} \Delta\left(1_{i}\right)^{*}+\Delta\left(1_{i}\right)-\Delta\left(1_{i}\right) 1_{i}=0 . \tag{2.4}
\end{equation*}
$$

Multiplying 1_{i} from the left side of (2.4) and by $1_{i} \Delta\left(1_{i}\right)=\Delta\left(1_{i}\right) 1_{i}$, we have that $1_{i} \Delta\left(1_{i}\right)^{*}=0$. It implies that $\Delta\left(1_{i}\right)=0$. For every a in \mathcal{A}, we write $a=\sum_{i=1}^{n} a_{i}$ with a_{i} in \mathcal{A}_{i}. Since $a_{i}\left(1-1_{i}\right)=0$, we have that $\Delta\left(a_{i}\right)\left(1-1_{i}\right)=0$, which means that $\Delta\left(a_{i}\right) \in \mathcal{A}_{i}$. Let a_{i}, b_{i} be in \mathcal{A}_{i} with $a_{i} b_{i}^{*}=0$, we have that

$$
\Delta\left(a_{i}\right) b_{i}^{*}+a_{i} \Delta\left(b_{i}\right)^{*}=\Delta_{i}\left(a_{i}\right) b_{i}^{*}+a_{i} \Delta_{i}\left(b_{i}\right)^{*}=0
$$

By Cases 1 and 2, we know that every Δ_{i} is a $*$-derivation. Thus Δ is a $*-$ derivation.

In the following, we characterize a linear mapping δ satisfies the condition \mathbb{D}_{1} from a unital $*$-algebra into a unital $*$ - \mathcal{A}-bimodule with a right or left separating set $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$.

Lemma 2.5. [7, Theorem 4.1] Suppose that \mathcal{A} is a unital algebra and \mathcal{X} is a linear space. If ϕ is a bilinear mapping from $\mathcal{A} \times \mathcal{A}$ into \mathcal{X} such that

$$
a, b \in \mathcal{A}, a b=0 \Rightarrow \phi(a, b)=0
$$

then we have that

$$
\phi(a, x)=\phi(a x, 1) \text { and } \phi(x, a)=\phi(1, x a)
$$

for every a in \mathcal{A} and every x in $\mathfrak{J}(\mathcal{A})$.
Theorem 2.6. Suppose that \mathcal{A} is a unital *-algebra and \mathcal{M} is a unital $*-\mathcal{A}$ bimodule with a right or left separating set $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$. If δ is a linear mapping from \mathcal{A} into \mathcal{M} such that

$$
a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{A}, where Δ is $a *$-derivation. In particular, δ is a $*$-derivation when $\delta(1)=0$.
Proof. Since \mathcal{A} is a unital $*$-algebra and \mathcal{M} is a unital $*$ - \mathcal{A}-bimodule, we know that $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ is a right separating set of \mathcal{M} if and only if $\mathcal{J}^{*}=\left\{x^{*}: x \in\right.$ $\mathcal{J}\} \subseteq \mathfrak{J}(\mathcal{A})$ is a left separating set of \mathcal{M}. Thus without loss of generality, we can assume that \mathcal{J} is a left separating set of \mathcal{A}, otherwise, we replace \mathcal{J} by \mathcal{J}^{*}.

Define a linear mapping Δ from \mathcal{A} into \mathcal{M} by

$$
\Delta(a)=\delta(a)-\delta(1) a
$$

for every a in \mathcal{A}. In the following we show that Δ is a $*$-derivation.
It is clear that $\Delta(1)=0$ and $a b^{*}=0$ can implies that $a \Delta(b)^{*}+\Delta(a) b^{*}=0$. Define a bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into \mathcal{M} by

$$
\phi(a, b)=a \Delta\left(b^{*}\right)^{*}+\Delta(a) b
$$

for each a and b in \mathcal{A}. By the assumption we know that $a b=0$ implies $\phi(a, b)=0$.
Let a, b be in \mathcal{A} and x be in \mathcal{J}. By Lemma 2.5, we can obtain that

$$
\phi(x, 1)=\phi(1, x) \text { and } \phi(a, x)=\phi(a x, 1) .
$$

Hence we have the following two identities:

$$
\begin{equation*}
x \Delta(1)^{*}+\Delta(x)=\Delta\left(x^{*}\right)^{*}+\Delta(1) x \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a \Delta\left(x^{*}\right)^{*}+\Delta(a) x=a x \Delta(1)^{*}+\Delta(a x) . \tag{2.6}
\end{equation*}
$$

By (2.5) and $\Delta(1)=0$, we know that $\Delta(x)^{*}=\Delta\left(x^{*}\right)$. Thus by (2.6), it implies that

$$
\Delta(a x)=a \Delta(x)+\Delta(a) x .
$$

Similar to the proof of [4, Theorem 2.3], we can obtain that $\Delta(a b)=a \Delta(b)+\Delta(a) b$ for each a and b in \mathcal{A}.

It remains to show that $\Delta(a)^{*}=\Delta\left(a^{*}\right)$ for every a in \mathcal{A}. Indeed, for every a in \mathcal{A} and every x in \mathcal{J}, we have that $\Delta(a x)^{*}=\Delta\left((a x)^{*}\right)$. It implies that

$$
(\Delta(a) x+a \Delta(x))^{*}=\Delta\left(x^{*}\right) a^{*}+x^{*} \Delta\left(a^{*}\right) .
$$

Thus we can obtain that $x^{*}\left(\Delta(a)^{*}-\Delta\left(a^{*}\right)\right)=0$, hence $\left(\Delta(a)-\Delta\left(a^{*}\right)^{*}\right) x=0$. It follows that $\Delta(a)^{*}=\Delta\left(a^{*}\right)$ for every a in \mathcal{A}.

Remark 1. Let \mathcal{A} be a $*$-algebra, \mathcal{M} be a $*$ - \mathcal{A}-bimodule, and δ is a linear mapping from \mathcal{A} into \mathcal{M}. Similar to the condition \mathbb{D}_{1} which we have characterized in Section 2:

$$
\left(\mathbb{D}_{1}\right) a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+\delta(a) b^{*}=0
$$

we can consider the condition \mathbb{D}_{1}^{\prime}

$$
\left(\mathbb{D}_{1}^{\prime}\right) a, b \in \mathcal{A}, a^{*} b=0 \Rightarrow a^{*} \delta(b)+\delta(a)^{*} b=0
$$

Through the minor modifications, we can obtain the corresponding results.
Remark 2. A linear mapping δ from \mathcal{A} into \mathcal{M} is called a local derivation if for every a in \mathcal{A}, there exists a derivation δ_{a} (depending on a) from \mathcal{A} into \mathcal{M} such that $\delta(a)=\delta_{a}(a)$. It is clear that every local derivation satisfies the following condition:

$$
(\mathbb{H}) a, b, c \in \mathcal{A}, a b=b c=0 \Rightarrow a \delta(b) c=0 .
$$

In [1], the authors prove that every continuous linear mapping from a unital C^{*} algebra into its unital Banach bimodule such that the condition \mathbb{H} and $\delta(1)=0$ is a derivation.

Let \mathcal{A} be a $*$-algebra and \mathcal{M} be a $*-\mathcal{A}$-bimodule. The natural way to translate the condition \mathbb{H} to the context of $*$-derivations is to consider the following condition

$$
\left(\mathbb{H}^{\prime}\right) a, b, c \in \mathcal{A}, a b^{*}=b^{*} c=0 \Rightarrow a \delta(b)^{*} c=0 .
$$

However, the conditions \mathbb{H}^{\prime} and \mathbb{H} are equivalent. Indeed, if condition \mathbb{H}^{\prime} holds, we have that

$$
a, b, c \in \mathcal{A}, a b=b c=0 \Rightarrow c^{*} b^{*}=b^{*} a^{*}=0 \Rightarrow c^{*} \delta(b)^{*} a^{*}=0 \Rightarrow a \delta(b) c=0
$$

and if the condition \mathbb{H} holds, we have that

$$
a, b, c \in \mathcal{A}, a b^{*}=b^{*} c=0 \Rightarrow c^{*} b=b a^{*}=0 \Rightarrow c^{*} \delta(b) a^{*}=0 \Rightarrow a \delta(b)^{*} c=0
$$

It means that the condition \mathbb{H}^{\prime} and $\delta(1)=0$ can not implies that δ is a $*-$ derivation.

3. *-JORDAN DERIVATIONS ON SOME ALGEBRAS

A (Banach) algebra \mathcal{A} is said to be zero Jordan product determined if every (continuous) bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into any (Banach) linear space \mathcal{X} satisfying

$$
\phi(a, b)=0, \text { whenever } a \circ b=0
$$

can be written as $\phi(a, b)=T(a \circ b)$, for some (continuous) linear mapping T from \mathcal{A} into \mathcal{X}. In [5], we show that if \mathcal{A} is a unital algebra with $\mathcal{A}=\mathfrak{J}(\mathcal{A})$, then \mathcal{A} is a zero Jordan product determined algebra.
Theorem 3.1. Suppose that \mathcal{A} is a unital zero Jordan product determined *algebra, and \mathcal{M} is a unital $*-\mathcal{A}$-bimodule. If δ is a linear mapping from \mathcal{A} into \mathcal{M} such that

$$
a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 \text { and } \delta(1) a=a \delta(1)
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{A}, where Δ is a $*$-Jordan derivation. In particular, δ is $a *$-Jordan derivation when $\delta(1)=0$.

Proof. Define a linear mapping Δ from \mathcal{A} into \mathcal{M} by $\Delta(a)=\delta(a)-\delta(1) a$ for every a in \mathcal{A}. It is sufficient to show that Δ is a $*$-Jordan derivation.

It is clear that $\Delta(1)=0$, and by $\delta(1) a=a \delta(1)$ we have that

$$
a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \Delta(b)^{*}+\Delta(a) \circ b^{*}=0
$$

Define a bilinear mapping from $\mathcal{A} \times \mathcal{A}$ into \mathcal{M} by

$$
\phi(a, b)=a \circ \Delta\left(b^{*}\right)^{*}+\Delta(a) \circ b
$$

Thus $a \circ b=0$ implies $\phi(a, b)=0$. Since \mathcal{A} is a zero Jordan product determined algebra, we know that there exists a linear mapping T from \mathcal{A} into \mathcal{M} such that

$$
\begin{equation*}
T(a \circ b)=\phi(a, b)=a \circ \Delta\left(b^{*}\right)^{*}+\Delta(a) \circ b \tag{3.1}
\end{equation*}
$$

for each a, b in \mathcal{A}. Let $a=1$ and $b=1$ be in (3.1), respectively. By $\Delta(1)=0$, we can obtain that

$$
T(a)=\Delta(a) \text { and } T(b)=\Delta\left(b^{*}\right)^{*}
$$

It follows that $\Delta\left(a^{*}\right)=\Delta(a)^{*}$ for every a in \mathcal{A}. By (3.1), we have that

$$
T(a \circ b)=\Delta(a \circ b)=\phi(a, b)=a \circ \Delta(b)+\Delta(a) \circ b .
$$

It means that Δ is a $*$-Jordan derivation.
In [5], we prove that the matrix algebra $M_{n}(\mathcal{B})(n \geq 2)$ is zero Jordan product determined, where \mathcal{B} is a unital algebra. In [16], H. Ghahramani show that every Jordan derivation from $M_{n}(\mathcal{B})(n \geq 2)$ into its unital bimodule \mathcal{M} is a derivation. Hence we have the following result.

Corollary 3.2. Suppose that \mathcal{B} is a unital $*$-algebra, $M_{n}(\mathcal{B})$ is a matrix algebra with $n \geq 2$, and \mathcal{M} is a unital $*-M_{n}(\mathcal{B})$-bimodule. If δ is a linear mapping from $M_{n}(\mathcal{B})$ into \mathcal{M} such that

$$
a, b \in M_{n}(\mathcal{B}), a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 \text { and } \delta(1) a=a \delta(1)
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in $M_{n}(\mathcal{B})$, where Δ is $a *$-derivation. In particular, δ is $a *$-derivation when $\delta(1)=0$.

Let \mathcal{H} be a complex Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. Suppose that \mathcal{A} is a von Neumann algebra on \mathcal{H} and $L S(\mathcal{A})$ the set of all locally measurable operators affiliated with the von Neumann algebra \mathcal{A}.

In [27], M. Muratov and V. Chilin prove that $L S(\mathcal{A})$ is a unital $*$-algebra and $\mathcal{A} \subset L S(\mathcal{A})$. By [25, Proposition 21.20, Exercise 21.18], we know that if \mathcal{A} is a von Neumann algebra without direct summand of type I_{1}, and \mathcal{B} is a $*$-algebra with $\mathcal{A} \subseteq \mathcal{B} \subseteq L S(\mathcal{A})$, then $\mathcal{B} \cong \sum_{i=1}^{k} \bigoplus M_{n_{i}}\left(\mathcal{B}_{i}\right)(k$ is a finite integer or infinite $)$, where \mathcal{B}_{i} is a unital algebra. By Theorem 3.1, we have the following result.

Corollary 3.3. Suppose that \mathcal{A} is a von Neumann algebra without direct summand of type I_{1}, and \mathcal{B} is a *-algebra with $\mathcal{A} \subseteq \mathcal{B} \subseteq L S(\mathcal{A})$. If δ is a linear mapping from \mathcal{B} into $L S(\mathcal{A})$ such that

$$
a, b \in \mathcal{B}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 \text { and } \delta(1) a=a \delta(1)
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{B}, where Δ is a*-Jordan derivation. In particular, δ is a*-Jordan derivation when $\delta(1)=0$.

For von Neumann algebras, by Corollary 3.2 and similar to the proof of Theorem 2.4 , we can easily obtain the following result and we omit the proof.

Corollary 3.4. Suppose that \mathcal{A} is a von Neumann algebra. If δ is a linear mapping from \mathcal{A} into itself with such that

$$
a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 \text { and } \delta(1) a=a \delta(1)
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{A}, where Δ is $a *$-derivation. In particular, δ is a $*$-derivation when $\delta(1)=0$.

Lemma 3.5. [5, Theorem 2.1] Suppose that \mathcal{A} is a unital algebra and \mathcal{X} is a linear space. If ϕ is a bilinear mapping from $\mathcal{A} \times \mathcal{A}$ into \mathcal{X} such that

$$
a, b \in \mathcal{A}, a \circ b=0 \Rightarrow \phi(a, b)=0
$$

then we have that

$$
\phi(a, x)=\frac{1}{2} \phi(a x, 1)+\frac{1}{2} \phi(x a, 1)
$$

for every a in \mathcal{A} and every x in $\mathfrak{J}(\mathcal{A})$.
Suppose that \mathcal{A} is a unital algebra and \mathcal{M} is a unital \mathcal{A}-bimodule satisfying that

$$
\{m \in \mathcal{M}: x m x=0 \text { for every } x \in \mathcal{J}\}=\{0\}
$$

where \mathcal{J} is an ideal of \mathcal{A} linear generated by idempotents in \mathcal{A}. In [15, Theorem 4.3], H. Ghahramani studies the linear mapping δ from \mathcal{A} into \mathcal{M} satisfies

$$
a, b \in \mathcal{A}, a \circ b=0 \Rightarrow a \circ \delta(b)+\delta(a) \circ b=0
$$

and show that δ is a generalized Jordan derivation. In the following, we suppose that \mathcal{J} is an ideal of \mathcal{A} generated algebraically by all idempotents in \mathcal{A}, and have the following result.

Theorem 3.6. Suppose that \mathcal{A} is a unital $*$-algebra, \mathcal{M} is a unital $*$ - \mathcal{A}-bimodule, and $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ is an ideal of \mathcal{A} such that

$$
\{m \in \mathcal{M}: x m x=0 \text { for every } x \in \mathcal{J}\}=\{0\} .
$$

If δ is a linear mapping from \mathcal{A} into \mathcal{M} such that

$$
a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0 \text { and } \delta(1) a=a \delta(1),
$$

then $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{A}, where Δ is a *-Jordan derivation. In particular, δ is $a *$-Jordan derivation when $\delta(1)=0$.

Proof. Let $\widehat{\mathcal{J}}$ be an algebra generated algebraically by \mathcal{J} and \mathcal{J}^{*}. Since $\mathcal{J} \subseteq \mathfrak{J}(\mathcal{A})$ is an ideal of \mathcal{A}, it is easy to show that $\widehat{\mathcal{J}} \subseteq \mathfrak{J}(\mathcal{A})$ is also an ideal of \mathcal{A}, and such that

$$
\{m \in \mathcal{M}: x m x=0 \text { for every } x \in \widehat{\mathcal{J}}\}=\{0\}
$$

Thus without loss of generality, we can assume that \mathcal{J} is a self-adjoint ideal of \mathcal{A}, otherwise, we may replace \mathcal{J} by $\widehat{\mathcal{J}}$.

Define a linear mapping Δ from \mathcal{A} into \mathcal{M} by

$$
\Delta(a)=\delta(a)-\delta(1) a
$$

for every a in \mathcal{A}. In the following we show that Δ is a $*$-derivation.
It is clear that $\Delta(1)=0$, and by $\delta(1) a=a \delta(1)$ we have that $a \circ b^{*}=0$ implies that $a \circ \Delta(b)^{*}+\Delta(a) \circ b^{*}=0$.

Define a bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into \mathcal{M} by

$$
\phi(a, b)=a \circ \Delta\left(b^{*}\right)^{*}+\Delta(a) \circ b
$$

for each a and b in \mathcal{A}. By the assumption we know that $a \circ b=0$ implies $\phi(a, b)=0$.

Let a, b be in \mathcal{A} and x be in \mathcal{J}. By Lemma 3.5, we can obtain that

$$
\phi(x, 1)=\phi(1, x) .
$$

It follows that

$$
\begin{equation*}
x \circ \Delta(1)^{*}+\Delta(x) \circ 1=1 \circ \Delta\left(x^{*}\right)^{*}+\Delta(1) \circ x . \tag{3.2}
\end{equation*}
$$

By (3.2) and $\Delta(1)=0$, we know that $\Delta(x)^{*}=\Delta\left(x^{*}\right)$. Again by Lemma 3.5, it follows that

$$
\begin{equation*}
a \circ \Delta\left(x^{*}\right)^{*}+\Delta(a) \circ x=\frac{1}{2}[\Delta(a x) \circ 1+\Delta(x a) \circ 1] . \tag{3.3}
\end{equation*}
$$

By (3.3) and $\Delta(x)^{*}=\Delta\left(x^{*}\right)$, it is easy to show that

$$
\begin{equation*}
\Delta(a \circ x)=a \circ \Delta(x)+\Delta(a) \circ x \tag{3.4}
\end{equation*}
$$

Next, we prove that Δ is a Jordan derivation.
Define $\{a, m, b\}=a m b+b m a$ and $\{a, b, m\}=\{m, b, a\}=a b m+m b a$ for each a, b in \mathcal{A} and every m in \mathcal{M}. Let a be in \mathcal{A} and x, y be in \mathcal{M}.

By the technique of the proof of [15, Theorem 4.3] and (3.4), we have the following two identities:

$$
\begin{equation*}
\Delta\{x, a, y\}=\{\Delta(x), a, y\}+\{x, \Delta(a), y\}+\{x, a, \Delta(y)\}, \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta\left\{x, a^{2}, y\right\}=\left\{\Delta(x), a^{2}, y\right\}+\{x, a \circ \Delta(a), y\}+\left\{x, a^{2}, \Delta(y)\right\} \tag{3.6}
\end{equation*}
$$

On the other hand, by (3.5) we have that

$$
\begin{equation*}
\Delta\left\{x, a^{2}, x\right\}=\left\{\Delta(x), a^{2}, x\right\}+\left\{x, \Delta\left(a^{2}\right), x\right\}+\left\{x, a^{2}, \Delta(x)\right\} . \tag{3.7}
\end{equation*}
$$

By comparing (3.6) and (3.7), it follows that $\left\{x, \Delta\left(a^{2}\right), x\right\}=\{x, a \circ \Delta(a), x\}$. That is $x\left(\Delta\left(a^{2}\right)-a \circ \Delta(a)\right) x=0$. By the assumption, it implies that $\Delta\left(a^{2}\right)-a \circ \Delta(a)=0$ for every a in \mathcal{A}.

It remains to show that $\Delta(a)^{*}=\Delta\left(a^{*}\right)$ for every a in \mathcal{A}. Indeed, for every a in \mathcal{A} and every x in \mathcal{J}, we have that $\Delta(x a x)^{*}=\Delta\left((x a x)^{*}\right)$. Since Δ is a Jordan derivation, it implies that

$$
(\Delta(x) a x+x \Delta(a) x+x a \Delta(x))^{*}=\Delta\left(x^{*}\right) a^{*} x^{*}+x^{*} \Delta\left(a^{*}\right) x^{*}+x^{*} a^{*} \Delta\left(x^{*}\right)
$$

Thus we can obtain that $x^{*}\left(\Delta(a)^{*}-\Delta\left(a^{*}\right)\right) x^{*}=0$. Since \mathcal{J} is a self-adjoint ideal of \mathcal{A}, it follows that $\Delta(a)^{*}=\Delta\left(a^{*}\right)$.

Let \mathcal{A} be a C^{*}-algebra and \mathcal{M} be a Banach $*-\mathcal{A}$-bimodule. Denote by $\mathcal{A}^{\sharp म}$ and $\mathcal{M}^{\text {肺 }}$ the second dual space of \mathcal{A} and \mathcal{M}, respectively. By [11, p.26], we can define a product \diamond in $\mathcal{A}^{\sharp \sharp}$ by

$$
a^{\sharp \sharp} \diamond b^{\sharp \sharp}=\lim _{\lambda} \lim _{\mu} \alpha_{\lambda} \beta_{\mu}
$$

for each $a^{\sharp \sharp}, b^{\sharp \sharp}$ in $\mathcal{A}^{\sharp \sharp}$, where $\left(\alpha_{\lambda}\right)$ and $\left(\beta_{\mu}\right)$ are two nets in \mathcal{A} with $\left\|\alpha_{\lambda}\right\| \leqslant\left\|a^{\sharp \sharp}\right\|$ and $\left\|\beta_{\mu}\right\| \leqslant\left\|b^{\sharp \sharp}\right\|$, such that $\alpha_{\lambda} \rightarrow a^{\sharp \sharp}$ and $\beta_{\mu} \rightarrow b^{\sharp \sharp}$ in the weak*-topology $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right)$. Moreover, we can define an involution $*$ in $\mathcal{A}^{\sharp \sharp}$ by

$$
\left(a^{\sharp \sharp}\right)^{*}(\rho)=\overline{a^{\sharp \sharp}}\left(\rho^{*}\right), \quad \rho^{*}(a)=\overline{\rho\left(a^{*}\right)},
$$

where $a^{\not \sharp \sharp}$ in $\mathcal{A}^{\sharp \sharp}, \rho$ in A^{\sharp} and a in \mathcal{A}. By [22, p.726], we know that $\mathcal{A}^{\sharp \sharp}$ is a von Neumann algebra under the product \diamond and the involution $*$.

Since \mathcal{M} is a Banach \mathcal{A}-bimodule, $\mathcal{M}^{\sharp \sharp}$ turns into a dual Banach $\left(\mathcal{A}^{\sharp \#}, \diamond\right)$ bimodule with the operation defined by

$$
a^{\sharp \sharp} \cdot m^{\sharp \sharp}=\lim _{\lambda} \lim _{\mu} a_{\lambda} m_{\mu} \text { and } m^{\sharp \sharp} \cdot a^{\sharp \sharp}=\lim _{\mu} \lim _{\lambda} m_{\mu} a_{\lambda}
$$

for every $a^{\sharp \sharp}$ in $\mathcal{A}^{\text {\#\# }}$ and every $m^{\text {\#\# }}$ in $\mathcal{M}^{\sharp \sharp}$, where $\left(a_{\lambda}\right)$ is a net in \mathcal{A} with $\left\|a_{\lambda}\right\| \leqslant$ $\left\|a^{\sharp \sharp}\right\|$ and $\left(a_{\lambda}\right) \rightarrow a^{\sharp \sharp}$ in $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right),\left(m_{\mu}\right)$ is a net in \mathcal{M} with $\left\|m_{\mu}\right\| \leqslant\left\|m^{\sharp \sharp}\right\|$ and $\left(m_{\mu}\right) \rightarrow m^{\text {\#\# }}$ in $\sigma\left(\mathcal{M}^{\text {\#\# }}, \mathcal{M}^{\sharp}\right)$.

We remarked, in the discussion preceding Theorem 2.1, that $\mathcal{M}^{\sharp \#}$ has an involution $*$ and it is continuous in $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$. By [1, p.553], we know that every continuous bilinear map φ from $\mathcal{A} \times \mathcal{M}$ into \mathcal{M} is Arens regular, which means that

$$
\lim _{\lambda} \lim _{\mu} \varphi\left(a_{\lambda}, m_{\mu}\right)=\lim _{\mu} \lim _{\lambda} \varphi\left(a_{\lambda}, m_{\mu}\right)
$$

for every $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right)$-convergent net $\left(a_{\lambda}\right)$ in \mathcal{A} and every $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$-convergent net $\left(m_{\mu}\right)$ in \mathcal{M}. Thus we can obtain that
where $\left(a_{\lambda}\right)$ is a net in \mathcal{A} with $\left(a_{\lambda}\right) \rightarrow a^{\sharp \sharp}$ in $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right)$ and $\left(m_{\mu}\right)$ is a net in \mathcal{M} with $\left(m_{\mu}\right) \rightarrow m^{\sharp \sharp}$ in $\sigma\left(\mathcal{M}^{\text {朋 }}, \mathcal{M}^{\sharp}\right)$. Similarly, we can show that $\left(m^{\sharp \sharp} \cdot a^{\sharp \sharp}\right)^{*}=$ $\left(a^{\text {腤 }}\right)^{*} \cdot\left(m^{\sharp \sharp}\right)^{*}$. It implies that $\mathcal{M}^{\sharp \text { \# }}$ is a Banach $*-\mathcal{A}^{\sharp \#}$-bimodule.

A projection p in $\mathcal{A}^{\sharp \sharp}$ is called open if there exists an increasing net $\left(a_{\alpha}\right)$ of positive elements in \mathcal{A} such that $p=\lim _{\alpha} a_{\alpha}$ in the weak*-topology of $\mathcal{A}^{\sharp \sharp \text {. }}$. If p is open, we say the projection $1-p$ is closed.

For a unital C^{*}-algebra, we have the following result.
Theorem 3.7. Suppose that \mathcal{A} is a unital C^{*}-algebra and \mathcal{M} is a unital Banach *- \mathcal{A}-bimodule. If δ is a continuous linear mapping from \mathcal{A} into \mathcal{M} such that $\delta(1) a=a \delta(1)$ for every a in \mathcal{A}, then the following three statements are equivalent:
(1) $a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0$;
(2) $a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0$;
(3) $\delta(a)=\Delta(a)+\delta(1)$ a for every a in \mathcal{A}, where Δ is $a *$-derivation from \mathcal{A} into \mathcal{M}.

Proof. It is clear that $(1) \Rightarrow(2)$ and $(3) \Rightarrow(1)$. It is sufficient the prove that $(2) \Rightarrow(3)$.

Define a linear mapping Δ from \mathcal{A} into \mathcal{M} by $\Delta(a)=\delta(a)-\delta(1) a$ for every a in \mathcal{A}. It is sufficient to show that Δ is a $*$-derivation. First we prove that $\Delta\left(a^{*}\right)=\Delta(a)^{*}$ for every a in \mathcal{A}.

By assumption, we can easily to show that

$$
a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \circ \Delta(b)^{*}+\Delta(a) \circ b^{*}=0 \text { and } \Delta(1)=0,
$$

In the following, we verify $\Delta(b)=\Delta(b)^{*}$ for every self-adjoint element b in \mathcal{A}.
Since Δ is a norm continuous linear mapping form \mathcal{A} into \mathcal{M}, we know that $\Delta^{\sharp \sharp}:\left(\mathcal{A}^{\sharp \sharp}, \diamond\right) \rightarrow \mathcal{M}^{\sharp \sharp}$ is the weak*-continuous extension of Δ to the double duals of \mathcal{A} and \mathcal{M}.

Let b be a non-zero self-adjoint element in $\mathcal{A}, \sigma(b) \subseteq[-\|b\|,\|b\|]$ be the spectrum of b and $r(b) \in \mathcal{A}^{\sharp \sharp}$ be the range projection of b.

Denote by \mathcal{A}_{b} the C^{*}-subalgebra of \mathcal{A} generated by b, and by $C(\sigma(b))$ the C^{*} algebra of all continuous complex-valued functions on $\sigma(b)$. By Gelfand theory we know that there is an isometric $*$ isomorphism between \mathcal{A}_{b} and $C(\sigma(b))$.

For every n in \mathbb{N} ，let p_{n} be the projection in $\mathcal{A}_{b}^{\sharp \sharp} \subseteq \mathcal{A}^{\sharp \sharp}$ corresponding to the characteristic function $\chi_{\left(\left[-\|b\|,-\frac{1}{n}\right] \cup\left[\frac{1}{n},\|b\|\right]\right) \cap \sigma(b)}$ in $C(\sigma(b))$ ，and let b_{n} be in \mathcal{A}_{b} such that

$$
b_{n} p_{n}=p_{n} b_{n}=b_{n}=b_{n}^{*} \text { and }\left\|b_{n}-b\right\|<\frac{1}{n} .
$$

By［28，Section 1．8］，we know that $\left(p_{n}\right)$ converges to $r(b)$ in the strong＊－topology of $\mathcal{A}^{\sharp \sharp}$ ，and hence in the weak＊－topology．

It is well known that p_{n} is a closed projection in $\mathcal{A}_{b}^{\sharp \sharp} \subseteq \mathcal{A}^{\sharp \sharp}$ and $1-p_{n}$ is an open projection in $\mathcal{A}_{b}^{\sharp \sharp}$ ．Thus there exists an increasing net $\left(z_{\lambda}\right)$ of positive elements in

$$
0 \leq z_{\lambda} \leq 1-p_{n}
$$

and $\left(z_{\lambda}\right)$ converges to $1-p_{n}$ in the weak＊－topology of $\mathcal{A}^{\sharp \sharp}$ ．Since

$$
0 \leq\left(\left(1-p_{n}\right)-z_{\lambda}\right)^{2} \leq\left(1-p_{n}\right)-z_{\lambda} \leq\left(1-p_{n}\right),
$$

we have that $\left(z_{\lambda}\right)$ also converges to $1-p_{n}$ in the strong＊－topology of $\mathcal{A}^{\text {肺．}}$ ．
By $b_{n}=b_{n}^{*}$ and $z_{\lambda} b_{n}=b_{n} z_{\lambda}=0$ ，it follows that

$$
\begin{equation*}
z_{\lambda} \circ \Delta^{\text {朋 }}\left(b_{n}\right)^{*}+\Delta_{\text {叫 }}\left(z_{\lambda}\right) \circ b_{n}=0 . \tag{3.8}
\end{equation*}
$$

Taking weak＊－limits in（3．8）and since $\Delta^{\sharp \sharp}$ is weak＊－continuous，we have that

Since $\left(p_{n}\right)$ converges to $r(b)$ in the weak ${ }^{*}$－topology of $\mathcal{A}^{\sharp \sharp}$ and $\left(b_{n}\right)$ converges to b in the norm－topology of \mathcal{A} ，by（3．9），we have that

$$
\begin{equation*}
(1-r(b)) \circ \Delta^{\text {肐 }}(b)^{*}+\Delta^{\text {肺 }}(1-r(b)) \circ b=0 \text {. } \tag{3.10}
\end{equation*}
$$

Since the range projection of every power b^{m} with $m \in \mathbb{N}$ coincides with the $r(b)$ ， and by（3．10），it follows that

$$
(1-r(b)) \circ \Delta^{\text {叫 }}\left(b^{m}\right)^{*}+\Delta^{\text {吅 }}(1-r(b)) \circ b^{m}=0
$$

for every $m \in \mathbb{N}$ ，and by the linearity and norm continuity of the product we have that

$$
(1-r(b)) \circ \Delta^{\text {朋 }}(z)^{*}+\Delta^{\text {朋 }}(1-r(b)) \circ z=0
$$

for every $z=z^{*}$ in \mathcal{A}_{b} ．A standard argument involving weak＊－continuity of $\Delta^{\text {肺 }}$ gives

$$
\begin{equation*}
(1-r(b)) \circ \Delta^{\text {肕 }}(r(b))^{*}+\Delta^{\text {朋 }}(1-r(b)) \circ r(b)=0 \text {. } \tag{3.11}
\end{equation*}
$$

By（3．11），we can obtain that

$$
\left(\Delta^{\text {吚 }}(r(b))^{*}+\Delta^{\text {吚 }}(r(b))-\Delta^{\text {吚 }}(1)\right) \circ r(b)=2 \Delta^{\text {咁 }}(r(b))^{*} \text {. }
$$

By $\Delta(1)=0$ ，we have that $\Delta^{\text {肺 }}(1)=0$ ．It implies that

$$
\begin{equation*}
\Delta^{\sharp \sharp}(r(b))^{*}=\Delta^{\sharp \sharp}(r(b)) . \tag{3.12}
\end{equation*}
$$

It is clear that every characteristic function

$$
\begin{equation*}
p=\chi_{([-\|b\|,-\alpha] \cup[\alpha,\|b\|]) \cap \sigma(b)} \tag{3.13}
\end{equation*}
$$

in $C_{0}(\sigma(b))^{\text {汎 }}$ with $0<\alpha<\|b\|$ ，is the range projection of a function in $C(\sigma(b))$ ． Moreover，every projection of the form

$$
\begin{equation*}
q=\chi_{([-\beta,-\alpha] \cup[\alpha, \beta]) \cap \sigma(b)} \tag{3.14}
\end{equation*}
$$

in $C_{0}(\sigma(b))^{\sharp \sharp}$ with $0<\alpha<\beta<\|b\|$ can be written as the difference of two projections of the type in（3．13）．

Since \mathcal{A}_{b} and $C(\sigma(b))$ are isometric $*$ isomorphism，and by $\Delta^{\sharp \sharp}(r(b))^{*}=\Delta^{\text {耴 }}(r(b))$ for range projection of b in $\mathcal{A}^{\sharp \sharp}$ ，we have that $\Delta^{\sharp \sharp}(p)^{*}=\Delta^{\sharp \sharp}(p)$ for every projection p of the type in（3．13）．It follows that $\Delta^{\sharp \sharp}(q)^{*}=\Delta^{\sharp \sharp}(q)$ for every projection q of the type in（3．14）．

It is well known that b can be approximated in norm by finite linear com－ binations of mutually orthogonal projections q_{j} of the type in（3．14），and Δ is continuous，we have that $\Delta(b)^{*}=\Delta(b)$ ．Thus for every a in \mathcal{A} ，we can obtain that $\Delta(a)^{*}=\Delta(a)$ ．

By the assumption，it follows that

$$
a, b \in \mathcal{A}, a b=b a=0 \Rightarrow a \circ \Delta(b)+\Delta(a) \circ b=0 .
$$

By［2，Theorem 4．1］，we know that Δ is a $*$－derivation．
In the following we consider general C^{*}－algebras \mathcal{A} ．Let $\left(e_{i}\right)_{i \in \Gamma}$ be a bounded approximate identity of \mathcal{A}, \mathcal{M} be an essential Banach $*-\mathcal{A}$－bimodule，and δ be a continuous linear mapping from \mathcal{A} into \mathcal{M} ，then $\left(\delta\left(e_{i}\right)\right)_{i \in \Gamma}$ is bounded and we can assume that it converges to ξ in $\mathcal{M}^{\sharp \sharp}$ with the topology $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$ ．It follows the next result．

Theorem 3．8．Suppose that \mathcal{A} is a C^{*}－algebra（not necessary unital）and \mathcal{M} is an essential Banach $*-\mathcal{A}$－bimodule．If δ is a continuous linear mapping from \mathcal{A} into \mathcal{M} such that $\xi \cdot a=a \cdot \xi$ for every a in \mathcal{A} ，then the following three statements are equivalent：
（1）$a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0$ ；
（2）$a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0$ ；
（3）$\delta(a)=\Delta(a)+\xi \cdot a$ for every a in \mathcal{A} ，where Δ is a $*$－derivation from \mathcal{A} into $\mathcal{M}^{\text {\＃\＃}}$ 。

Proof．It is clear that $(1) \Rightarrow(2)$ and $(3) \Rightarrow(1)$ ．It is only need to prove that $(2) \Rightarrow(3)$ ．

Define a linear mapping Δ from \mathcal{A} into $\mathcal{M}^{\sharp \sharp}$ by

$$
\Delta(a)=\delta(a)-\xi \cdot a
$$

for every a in \mathcal{A} ．It is sufficient to show that Δ is a $*$－derivation．
By the definition of Δ and $\xi \cdot a=a \cdot \xi$ for every a in \mathcal{A} ，we can easily to show that

$$
a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \circ \Delta(b)^{*}+\Delta(a) \circ b^{*}=0 .
$$

By［10，Proposition 2．9．16］，we know that $\left(e_{i}\right)_{i \in \Gamma}$ converges to the identity 1 in $\mathcal{A}^{\sharp \sharp}$ with the topology $\sigma\left(\mathcal{A}^{\sharp \sharp}, \mathcal{A}^{\sharp}\right)$ ．By the proof of Theorem 2．1，we know that
$\Delta\left(e_{i}\right)=\delta\left(e_{i}\right)-e_{i} \cdot \xi$ converges to zero in $\mathcal{M}^{\sharp \sharp}$ with the topology $\sigma\left(\mathcal{M}^{\sharp \sharp}, \mathcal{M}^{\sharp}\right)$ ，and we can obtain that

$$
m^{\text {叫 }} \cdot 1=m^{\text {叫 }}
$$

for every $m^{\sharp \#}$ in $\mathcal{M}^{\sharp \#}$ ．Since $\mathcal{M}^{\sharp \#}$ is a Banach $*-\mathcal{A}^{\sharp \#}$＿bimodule，we have that

$$
1 \cdot m^{\text {\# }}=m^{\text {\#\# }}
$$

for every $m^{\text {即 }}$ in $\mathcal{M}^{\text {\＃\＃．}}$ ．Since Δ is a norm－continuous linear mapping form \mathcal{A} into $\mathcal{M}^{\text {肺 }}, \Delta^{\text {肺 }}:\left(\mathcal{A}^{\text {肺 }}, \diamond\right) \rightarrow \mathcal{M}^{\text {绷 }}$ is the weak＊－continuous extension of Δ to the double duals of \mathcal{A} and $\mathcal{M}^{\text {\＃\＃}}$ such that $\Delta^{\text {朋 }}(1)=0$ ．

By［10，Proposition A．3．52］，we know that the mapping $m^{\text {品\＃}} \mapsto m^{\text {明肺 }} \cdot 1$ from $\mathcal{M}^{\text {\＃\＃\＃}}$ into itself is $\sigma\left(\mathcal{M}^{\text {\＃\＃\＃}}, \mathcal{M}^{\text {\＃\＃\＃}}\right)$－continuous，and by the $\sigma\left(\mathcal{M}^{\text {\＃\＃\＃}}, \mathcal{M}^{\text {\＃\＃\＃}}\right)$－ denseness of $\mathcal{M}^{\text {\＃\＃}}$ in $\mathcal{M}^{\text {\＃\＃\＃\＃\＃，}}$ ，we have that

$$
m^{\text {\#\#\#\# }} \cdot 1=m^{\text {畀\#\# }}
$$

Finally，we use the same proof of Theorem 3.7 and show that Δ is a $*$－derivation from \mathcal{A} into $\mathcal{M}^{\text {\＃\＃}}$ ．

Remark 3．In［12］，A．Essaleh and A．Peralta introduce the concept of a triple derivation on C^{*}－algebras．Suppose that \mathcal{A} is a C^{*}－algebra．Let a, b and c be in \mathcal{A} ，define the ternary product by $\{a, b, c\}=\frac{1}{2}\left(a b^{*} c+c b^{*} a\right)$ ．A linear mapping δ from \mathcal{A} into itself is called a triple derivation if

$$
\delta\{a, b, c\}=\{\delta(a), b, c\}+\{a, \delta(b), c\}+\{a, b, \delta(c)\}
$$

for each a, b and c in \mathcal{A} ．Let z be an element in \mathcal{A} ．δ is called triple derivation at z if

$$
a, b, c \in \mathcal{A},\{a, b, c\}=z \Rightarrow \delta(z)=\{\delta(a), b, c\}+\{a, \delta(b), c\}+\{a, b, \delta(c)\} .
$$

In［12］，A．Essaleh and A．Peralta prove that every continuous linear mapping δ which is triple derivations at zero from a unital C^{*}－algebra into itself with $\delta(1)=0$ is a $*$－derivation．

On the other hand，it is apparent to show that if δ is triple derivation at zero， then δ satisfies that

$$
a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \circ \delta(b)^{*}+\delta(a) \circ b^{*}=0
$$

Thus Theorem 3.7 generalizes［12，Corollary 2．10］．
Remark 4．In［8］，M．Brešar and J．Vukman introduce the left derivations and Jordan left derivations．A linear mapping δ from an algebra \mathcal{A} into its bimodule \mathcal{M} is called a left derivation if $\delta(a b)=a \delta(b)+b \delta(a)$ for each a, b in \mathcal{A} ；and δ is called a Jordan left derivation if $\delta(a \circ b)=2 a \delta(b)+2 b \delta(a)$ for each a, b in \mathcal{A} ．

Let \mathcal{A} be a $*$－algebra and \mathcal{M} be a $*$－ \mathcal{A}－bimodule．A left derivation（Jordan left derivation）δ from \mathcal{A} into \mathcal{M} is called a $*$－left derivation（ $*$－Jordan left derivation） if $\delta\left(a^{*}\right)=\delta(a)^{*}$ for every a in \mathcal{A} ．

We also can investigate the following conditions on a linear mapping δ from \mathcal{A} into \mathcal{M} :

$$
\begin{aligned}
& \left(\mathbb{J}_{1}\right) a, b \in \mathcal{A}, a b^{*}=0 \Rightarrow a \delta(b)^{*}+b^{*} \delta(a)=0 \\
& \left(\mathbb{J}_{2}\right) a, b \in \mathcal{A}, a \circ b^{*}=0 \Rightarrow a \delta(b)^{*}+b^{*} \delta(a)=0 \\
& \left(\mathbb{J}_{3}\right) a, b \in \mathcal{A}, a b^{*}=b^{*} a=0 \Rightarrow a \delta(b)^{*}+b^{*} \delta(a)=0
\end{aligned}
$$

Acknowledgement. This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11801342, 11801005, 11871021); Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693); Scientific research plan projects of Shannxi Education Department (Grant No. 19JK0130).

References

[1] J. Alaminos, M. Brešar, J. Extremera and A. Villena. Maps preserving zero products, Studia Math., 193 (2009) 131-159.
[2] J. Alaminos, M. Brešar, J. Extremera and A. Villena. Characterizing Jordan maps on C^{*} algebras through zero products, Proc. Edinburgh Math. Soc., 53 (2010), 543-555.
[3] J. Alaminos, M. Brešar, J. Extremera and A. Villena. Orthogonality preserving linear maps on group algebras, Math. Proc. Camb. Phil. Soc., 158 (2015), 493-504.
[4] G. An and J. Li. Characterizations of linear mappings through zero products or zero Jordan products, Electron. J. Linear Algebra, 31 (2016), 408-424.
[5] G. An, J. Li and J. He. Zero Jordan product determined algebras, Linear Algebra Appl., 475 (2015), 90-93.
[6] M. Brešar. Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 9-21.
[7] M. Brešar. Multiplication algebra and maps determined by zero products, Linear Multilinear Algebra, 60 (2012), 763-768.
[8] M. Brešar and J. Vukman. On left derivations and related mappings, Proc. Amer. Math. Soc., 110 (1990), 7-16.
[9] J. Cuntz. On the continuity of Semi-Norms on operator algebras, Math. Ann., 220 (1976), 171-183.
[10] H. Dales. Banach Algebras and Automatic Continuity, London Math. Soc. Monog. Ser. 24, Oxford Univ. Press, New York, 2000.
[11] H. Dales, F. Ghahramani and N. Grønbæk. Derivations into iterated duals of Banach algebra, Studia Math., 128 (1998), 19-54.
[12] A. Essaleh and A. Peralta. Linear maps on C^{*}-algebras which are derivations or triple derivations at a point, Linear Algebra Appl., 538 (2018), 1-21.
[13] B. Fadaee and H. Ghahramani. Linear maps behaving like derivations or anti-derivations at orthogonal elements on C^{*}-algebras, arXiv: 1907.03594v1.
[14] P. Fillmore and D. Topping. Operator algebras generated by projections, Duke Math. J., 34 (1967), 333-336.
[15] H. Ghahramani. On derivations and Jordan derivations through zero products, Oper. Matrices, 8 (2014), 759-771.
[16] H. Ghahramani. Characterizing Jordan derivations of matrix rings through zero products, Math. Slovaca, 65 (2015), 1277-1290.
[17] H. Ghahramani. Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal element, Results Math., 73 (2018), no. 4, Art. 133, 14pp.
[18] H. Ghahramani and Z. Pan. Linear maps on *-algebras acting on orthogonal element like derivations or anti-derivations, Filomat, 13 (2018), 4543-4554.
[19] J. He, J. Li and W. Qian. Characterizations of centrelizers and derivations on some algebras, J. Korean Math. Soc., 54 (2017), 685-696.
[20] S. Hejazian and A. Niknam. Modules, annihilators and module derivations of JB*-algebras, Indian J. Pure Appl. Math., 27 (1996), 129-140.
[21] B. Johnson. Symmetric amenability and the nonexistence of Lie and Jordan derivations Math. Proc. Cambd. Philos. Soc., 120 (1996), 455-473.
[22] R. Kadison and J. Ringrose. Fundamentals of the Theory of Operator Algebras, I, Pure Appl. Math. 100, Academic Press, New York, 1983.
[23] R. Kantrowitz and M. Neumann. Disjointness preserving and local operators on algebras of differentiable functions, Glasgow Math. J., 43 (2001), 295-309.
[24] A. Kishimoto. Dissipations and Derivations, Commun. Math. Phys., 47 (1976), 25-32.
[25] T. Lam. A first course in noncommutative rings, Springer-Verlag, New York, 1991.
[26] V. Losert. The derivation problem for group algebras Ann. Math., 168 (2008), 221-246.
[27] M. Muratov and V. Chilin. Algebras of measurable and locally measurable operators, Kyiv, Pratse In-ty matematiki NAN ukraini., 69 (2007), 390 pp, (Russian).
[28] S. Sakai. C^{*}-Algebras and W^{*}-Algebras, Springer-Verlag, Berlin, 1971.
${ }^{1}$ Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China.

E-mail address: anguangyu310@163.com
2 Department of Mathematics, Anhui Polytechnic University, Wuhu 241000, China.

E-mail address: hejun_12@163.com
3* Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China.

E-mail address: jiankuili@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 15A86, 47A07, 47B47, 47B49.
 Key words and phrases. *-(Jordan) derivation, *-(Jordan) left derivation, zero (Jordan) product determined algebra, C^{*}-algebra, von Neumann algrbra.

 * Corresponding author.

