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CHARACTERIZING LINEAR MAPPINGS THROUGH ZERO

PRODUCTS OR ZERO JORDAN PRODUCTS

GUANGYU AN1, JUN HE2 AND JIANKUI LI3∗

Abstract. LetA be a ∗-algebra andM be a ∗-A-bimodule, we study the local
properties of ∗-derivations and ∗-Jordan derivations from A into M under the
following orthogonality conditions on elements in A: ab∗ = 0, ab∗ + b∗a = 0
and ab

∗ = b
∗
a = 0. We characterize the mappings on zero product determined

algebras and zero Jordan product determined algebras. Moreover, we give
some applications on C∗-algebras, group algebra, matrix algebras, algebras of
locally measurable operators and von Neumann algebras.

1. Introduction

Throughout this paper, let A be an associative algebra over the complex field
C and M be an A-bimodule. For each a, b in A, we define the Jordan product
by a ◦ b = ab + ba. A linear mapping δ from A into M is called a derivation
if δ(ab) = aδ(b) + δ(a)b for each a, b in A; and δ is called a Jordan derivation
if δ(a ◦ b) = a ◦ δ(b) + δ(a) ◦ b for each a, b in A. It follows from the results
in [9, 20, 21] that every Jordan derivation from a C∗-algebra into its Banach
bimodule is a derivation.

By an involution on an algebra A, we mean a mapping ∗ from A into itself,
such that

(λa+ µb)∗ = λ̄a∗ + µ̄b∗, (ab)∗ = b∗a∗ and (a∗)∗ = a,

whenever a, b in A, λ, µ in C and λ̄, µ̄ denote the conjugate complex numbers.
An algebra A equipped with an involution is called a ∗-algebra. Moreover, let A
be a ∗-algebra, an A-bimodule M is called a ∗-A-bimodule if M equipped with
a ∗-mapping from M into itself, such that

(λm+ µn)∗ = λ̄m∗ + µ̄n∗, (am)∗ = m∗a∗, (ma)∗ = a∗m∗ and (m∗)∗ = m,

whenever a in A, m,n inM and λ, µ in C. An element a in A is called self-adjoint
if a∗ = a; an element p in A is called an idempotent if p2 = p; and p is called a
projection if p is both a self-adjoint element and an idempotent.

In [24], A. Kishimoto studies the ∗-derivations on a C∗-algebra. Let A be a
∗-algebra and M be a ∗-A-bimodule. A derivation δ from A into M is called a
∗-derivation if δ(a∗) = δ(a)∗ for every a in A. Obviously, every derivation δ is a
linear combination of two ∗-derivations. In fact, we can define a linear mapping
δ̂ from A into M by δ̂(a) = δ(a∗)∗ for every a in A, therefore δ = δ1 + iδ2, where
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δ1 = 1
2
(δ + δ̂) and δ2 = 1

2i
(δ − δ̂). It is easy to show that δ1 and δ2 are both

∗-derivations. Similarly, we can define the ∗-Jordan derivations.
For ∗-derivations and ∗-Jordan derivations, in [3, 13, 17, 18], the authors char-

acterize the following two conditions on a linear mapping δ from a ∗-algebra A
into its ∗-bimodule M:

(D1) a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0;

(D2) a, b ∈ A, ab∗ = b∗a = 0 ⇒ aδ(b)∗ + δ(a)b∗ = δ(b)∗a + b∗δ(a) = 0;

where A is a C∗-algebra, a zero product determined algebra or a group algebra
L1(G).

Let J be an ideal of A, we say that J is a right separating set or left separating
set ofM if for everym inM, Jm = {0} impliesm = 0 ormJ = {0} impliesm =
0, respectively. We denote by J(A) the subalgebra of A generated algebraically
by all idempotents in A.

In Section 2, we suppose that A is a ∗-algebra and M is a ∗-A-bimodule that
satisfy one of the following conditions:
(1)A is a zero product determined Banach ∗-algebra with a bounded approximate
identity and M is an essential Banach ∗-A-bimodule;
(2) A is a von Neumann algebra and M = A;
(3) A is a unital ∗-algebra and M is a unital ∗-A-bimodule with a left or right
separating set J ⊆ J(A);
and we investigate whether the linear mappings from A into M satisfying the
condition D1 characterize ∗-derivations. In particular, we generalize some results
in [13, 17, 18].

An A-bimodule M is said to have the property M, if there is an ideal J ⊆ J(A)
of A such that

{m ∈ M : xmx = 0 for every x ∈ J } = {0}.

It is clear that if A = J(A), then M has property M.
For ∗-Jordan derivations, we can study the following conditions on a linear

mapping δ from a ∗-algebra A into its ∗-A-bimodule M:

(D3) a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0.

(D4) a, b ∈ A, ab∗ = b∗a = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0.

It is obvious that the condition D2 or D3 implies the condition D4.
In Section 3, we suppose that A is a ∗-algebra and M is a ∗-A-bimodule that

satisfy one of the following conditions:
(1) A is a unital zero Jordan product determined ∗-algebra and M is a unital
∗-A-bimodule;
(2) A is a unital ∗-algebra andM is a unital ∗-A-bimodule such that the property
M;
(3) A is a C∗-algebra (not necessary unital) and M is an essential Banach ∗-A-
bimodule;
and we investigate whether the linear mappings from A into M satisfying the
condition D3 or D4 characterize ∗-Jordan derivations. In particular, we improve
some results in [13, 17, 18].
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2. ∗-derivations on some algebras

A (Banach) algebra A is said to be zero product determined if every (continu-
ous) bilinear mapping φ from A×A into any (Banach) linear space X satisfying

φ(a, b) = 0, whenever ab = 0

can be written as φ(a, b) = T (ab), for some (continuous) linear mapping T from
A into X . In [7], M. Brešar shows that if A = J(A), then A is a zero product
determined, and in [1], the authors prove that every C∗-algebra A is zero product
determined.

Let A be a Banach ∗-algebra and M be a Banach ∗-A-bimodule. Denote by
M♯♯ the second dual space of M. In the following, we show that M♯♯ is also a
Banach ∗-A-bimodule.

Since M is a Banach ∗-A-bimodule, M♯♯ turns into a dual Banach A-bimodule
with the operation defined by

a ·m♯♯ = lim
µ

amµ and m♯♯ · a = lim
µ

mµa

for every a in A and every m♯♯ in M♯♯, where (mµ) is a net in M with ‖mµ‖ 6

‖m♯♯‖ and (mµ) → m♯♯ in the weak∗-topology σ(M♯♯,M♯).
We define an involution ∗ in M♯♯ by

(m♯♯)∗(ρ) = m♯♯(ρ∗), ρ∗(m) = ρ(m∗),

where m♯♯ in M♯♯, ρ in M♯ and m in M. Moreover, if (mµ) is a net in M and
m♯♯ is an element in M♯♯ such that mµ → m♯♯ in σ(M♯♯,M♯), then for every ρ in
M♯, we have that

ρ(mµ) = mµ(ρ) → m♯♯(ρ).

It follows that

(m∗
µ)(ρ) = ρ(m∗

µ) = ρ∗(mµ) → m♯♯(ρ∗) = (m♯♯)∗(ρ)

for every ρ in M♯. It means that the involution ∗ in M♯♯ is continuous in
σ(M♯♯,M♯). Thus we can obtain that

(a ·m♯♯)∗ = (lim
µ

amµ)
∗ = lim

µ
m∗

µa
∗ = (m♯♯)∗ · a∗,

Similarly, we can show that (m♯♯ · a)∗ = a∗ · (m♯♯)∗. It implies that M♯♯ is a
Banach ∗-A-bimodule.

Let A be a Banach ∗-algebra, a bounded approximate identity for A is a net
(ei)i∈Γ of self-adjoint elements in A such that lim

i
‖aei − a‖ = lim

i
‖eia − a‖ = 0

for every a in A and supi∈Γ‖ei‖ ≤ k for some k > 0 .
In [18], H. Ghahramani and Z. Pan prove that if A is a unital zero product

determined ∗-algebra and a linear mapping δ from A into itself satisfies the con-
dition

(D1) a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0

then δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-derivation.
For general zero product determined Banach ∗-algebra with a bounded approx-

imate identity, we have the following result.
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Theorem 2.1. Suppose that A is a zero product determined Banach ∗-algebra
with a bounded approximate identity, and M is an essential Banach ∗-A-bimodule.
If δ is a continuous linear mapping from A into M such that

a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0

then there exist a ∗-derivation ∆ from A into M♯♯ and an element ξ in M♯♯ such
that δ(a) = ∆(a) + ξ · a for every a in A. Furthermore, ξ can be chosen in M in
each of the following cases:
(1) A is a unital ∗-algebra.
(2) M is a dual ∗-A-bimodule.

Proof. Let (ei)i∈Γ be a bounded approximate identity of A. Since δ is continuous,
the net (δ(ei))i∈Γ is bounded and we can assume that it converges to ξ in M♯♯

with the topology σ(M♯♯,M♯).
Since M is an essential Banach ∗-A-bimodule, we know that the nets (eim)i∈Γ

and (mei)i∈Γ converge to m with the norm topology for every m in M. Thus we
have that

AnnM(A) = {m ∈ M : amb = 0 for each a, b ∈ A} = {0}.

By the hypothesis, we can obtain that

a, b, c ∈ A, ab∗ = b∗c = 0 ⇒ aδ(b)∗c = 0.

It follows that

a, b, c ∈ A, ab = bc = 0 ⇒ c∗b∗ = b∗a∗ = 0 ⇒ c∗δ(b)∗a∗ = 0 ⇒ aδ(b)c = 0. (2.1)

By (2.1) and [1, Theorem 4.5], we know that

δ(ab) = δ(a)b+ aδ(b)− a · ξ · b

for each a, b in A, and ξ can be chosen in M if A is a unital ∗-algebra or M is a
dual ∗-A-bimodule.

Define a linear mapping ∆ from A into M by

∆(a) = δ(a)− ξ · a

for every a in A. It is easy to show that ∆ is a norm-continuous derivation from
A into M♯♯ and we only need to show that ∆(b∗) = ∆(b)∗ for every b in A.

First we claim that ∆(ei) = δ(ei) − ξ · ei converges to zero in M♯♯ with the
topology σ(M♯♯,M♯). In fact, since (ei)i∈Γ is bounded in A, we assume (ei)i∈Γ
converges to ζ in A♯♯ with the topology σ(A♯♯,A♯). For every m♯♯ in M♯♯, define

m♯♯ · ζ = lim
i
m♯♯ · ei.

Thus m · ζ = m for every m in M. By [10, Proposition A.3.52], we know that
the mapping m♯♯ 7→ m♯♯ · ζ from M♯♯ into itself is σ(M♯♯,M♯)-continuous, and
by the σ(M♯♯,M♯)-denseness of M in M♯♯, we have that

m♯♯ · ζ = m♯♯ (2.2)

for every m♯♯ in M♯♯. Hence ∆(ei) = δ(ei)− ξ · ei converges to zero in M♯♯ with
the topology σ(M♯♯,M♯).
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Next we prove ∆(b∗) = ∆(b)∗ for every b in A. By the definition of ∆, we
know that a∆(b)∗ +∆(a)b∗ = 0 for each a, b in A with ab∗ = 0. Define a bilinear
mapping from A×A into M♯♯ by

φ(a, b) = a∆(b∗)∗ +∆(a)b.

Thus ab = 0 implies φ(a, b) = 0. Since A is a zero product determined algebra,
there exists a norm-continuous linear mapping T from A into M♯♯ such that

T (ab) = φ(a, b) = a∆(b∗)∗ +∆(a)b (2.3)

for each a, b in A. Let b = ei be in (2.3), we can obtain that

T (aei) = a∆(ei)
∗ +∆(a)ei.

By the continuity of T and (2.2), it follows that T (a) = ∆(a) for every a in A.
Thus

T (ab) = ∆(ab) = a∆(b∗)∗ +∆(a)b.

Since ∆ is a derivation, we have that a∆(b∗)∗ = a∆(b) and ∆(b∗)a∗ = ∆(b)∗a∗.
Let a = ei and taking σ(M♯♯,M♯)-limits, by (2.2), it follows that ∆(b∗) = ∆(b)∗

for every b in A. �

Let G be a locally compact group. The group algebra and the measure convolu-
tion algebra of G, are denoted by L1(G) andM(G), respectively. The convolution
product is denote by · and the involution is denoted by ∗. It is well known that
M(G) is a unital Banach ∗-algebra, and L1(G) is a closed ideal in M(G) with
a bounded approximate identity. By [3, Lemma 1.1], we know that L1(G) is
zero product determined. By [10, Theorem 3.3.15(ii)], it follows that M(G) with
respect to convolution product is the dual of C0(G) as a Banach M(G)-bimodule.

By [26, Corollary 1.2], we know that every continuous derivation ∆ from L1(G)
into M(G) is an inner derivation, that is, there exists µ in M(G) such that
∆(f) = f · µ − µ · f for every f in L1(G). Thus by Theorem 2.1, we can prove
[17, Theorem 3.1(ii)] as follows.

Corollary 2.2. Let G be a locally compact group. If δ is a continuous linear
mapping from L1(G) into M(G) such that

f, g ∈ L1(G), f · g∗ = 0 ⇒ f · δ(g)∗ + δ(f) · g∗ = 0

then there are µ, ν in M(G) such that

δ(f) = f · µ− ν · f

for every f in L1(G) and Reµ ∈ Z(M(G)).

Proof. By Theorem 2.1, we know that there exist a ∗-derivation ∆ from L1(G)
into M(G) and an element ξ in M(G) such that δ(f) = ∆(f) + ξ · f for every f

in L1(G). By [26, Corollary 1.2], it follows that there exists µ in M(G) such that
∆(f) = f · µ− µ · f . Since ∆(f ∗) = ∆(f)∗, we have that

f ∗ · µ− µ · f ∗ = µ∗ · f ∗ − f ∗ · µ∗

for every f in L1(G). By [3, Lemma 1.3(ii)], we know Reµ = 1
2
(µ + µ∗) ∈

Z(M(G)). Let ν = µ−ξ, from the definition of ∆, we have that δ(f) = f ·µ−ν ·f
for every f in L1(G). �
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For a general C∗-algebra A, in [13], B. Fadaee and H. Ghahramani prove that
if δ is a continuous linear mapping from A into its second dual space A♯♯ such
that the condition D1, then there exist a ∗-derivation ∆ from A into A♯♯ and an
element ξ in A♯♯ such that δ(a) = ∆(a) + ξa for every a in A.

In [1], the authors prove that every C∗-algebra A is zero product determined,
and it is well known that A has a bounded approximate identity. Thus by The-
orem 2.1, we can improve the result in [13] for any essential Banach ∗-bimodule.

Corollary 2.3. Suppose that A is a C∗-algebra and M is an essential Banach
∗-A-bimodule. If δ is a continuous linear mapping from A into M such that

a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0

then there exist a ∗-derivation ∆ from A into M♯♯ and an element ξ in M♯♯ such
that δ(a) = ∆(a) + ξ · a for every a in A. Furthermore, ξ can be chosen in M in
each of the following cases:
(1) A has an identity.
(2) M is a dual ∗-A-bimodule.

For von Neumann algebras, we have the following result.

Theorem 2.4. Suppose that A is a von Neumann algebra. If δ is a linear map-
ping from A into itself such that

a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0,

then δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-derivation. In partic-
ular, δ is a ∗-derivation when δ(1) = 0.

Proof. Define a linear mapping ∆ from A into M by

∆(a) = δ(a)− δ(1)a

for every a in A. In the following we show that ∆ is a ∗-derivation. It is clear
that ∆(1) = 0 and ab∗ = 0 can implies that a∆(b)∗ +∆(a)b∗ = 0.

Case 1: Suppose that A is an abelian von Neumann algebra. First we show
that ∆ satisfies that

a, b ∈ A, ab = 0 ⇒ a∆(b) = 0.

It is well known that A ∼= C(X), where X is a compact Hausdorff space and
C(X) denotes the C∗-algebra of all continuous complex-valued functions on X .
Thus we have that ab = 0 if and only if ab∗ = 0 for each a, b in A. Indeed, let f
and g be two functions in C(X) corresponding to a and b, respectively, we can
obtain that

ab∗ = 0 ⇔ f · ḡ = 0 ⇔ f · g = 0 ⇔ ab = 0.

Let a and b be in A with ab∗ = ab = 0, we have that a∆(b)∗ + ∆(a)b∗ = 0.
Multiply a from the left side of above equation, we can obtain that a2∆(b)∗ = 0.
Let f and h be two functions in C(X) corresponding to a and ∆(b), then we have
that

0 = f 2ḡ = f 2g = fg.
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It implies that a∆(b) = 0. By [23, Theorem 3], we know that ∆ is continuous.
By [19, Lemma 2.5] and ∆(1) = 0, we know that ∆(a) = ∆(1)a = 0 for every a

in A.
Case 2: Suppose that A ∼= Mn(B), where B is also a von Neumann algebra

and n > 2. By [6, 7] we know that A is a zero product determined algebra. Thus
by [18, Theorem 3.1] it follows that ∆ is a ∗-derivation.

Case 3: Suppose that A is a general von Neumann algebra. It is well known
that A ∼=

∑n
i=1

⊕
Ai (n is a finite integer or infinite), where each Ai coincides

with either Case 1 or Case 2. Denote the unit element of Ai by 1i and the
restriction of ∆ in Ai by ∆i. Since 1i(1− 1i) = 0 and ∆(1) = 0, we have that

1i∆(1− 1i)
∗ +∆(1i)(1− 1i) = 0.

It follows that

−1i∆(1i)
∗ +∆(1i)−∆(1i)1i = 0. (2.4)

Multiplying 1i from the left side of (2.4) and by 1i∆(1i) = ∆(1i)1i, we have that
1i∆(1i)

∗ = 0. It implies that ∆(1i) = 0. For every a in A, we write a =
∑n

i=1 ai
with ai in Ai. Since ai(1− 1i) = 0, we have that ∆(ai)(1− 1i) = 0, which means
that ∆(ai) ∈ Ai. Let ai, bi be in Ai with aib

∗
i = 0, we have that

∆(ai)b
∗
i + ai∆(bi)

∗ = ∆i(ai)b
∗
i + ai∆i(bi)

∗ = 0.

By Cases 1 and 2, we know that every ∆i is a ∗-derivation. Thus ∆ is a ∗-
derivation. �

In the following, we characterize a linear mapping δ satisfies the condition D1

from a unital ∗-algebra into a unital ∗-A-bimodule with a right or left separating
set J ⊆ J(A).

Lemma 2.5. [7, Theorem 4.1] Suppose that A is a unital algebra and X is a
linear space. If φ is a bilinear mapping from A×A into X such that

a, b ∈ A, ab = 0 ⇒ φ(a, b) = 0,

then we have that

φ(a, x) = φ(ax, 1) and φ(x, a) = φ(1, xa)

for every a in A and every x in J(A).

Theorem 2.6. Suppose that A is a unital ∗-algebra and M is a unital ∗-A-
bimodule with a right or left separating set J ⊆ J(A). If δ is a linear mapping
from A into M such that

a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0

then δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-derivation. In partic-
ular, δ is a ∗-derivation when δ(1) = 0.

Proof. Since A is a unital ∗-algebra and M is a unital ∗-A-bimodule, we know
that J ⊆ J(A) is a right separating set of M if and only if J ∗ = {x∗ : x ∈
J } ⊆ J(A) is a left separating set of M. Thus without loss of generality, we can
assume that J is a left separating set of A, otherwise, we replace J by J ∗.
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Define a linear mapping ∆ from A into M by

∆(a) = δ(a)− δ(1)a

for every a in A. In the following we show that ∆ is a ∗-derivation.
It is clear that ∆(1) = 0 and ab∗ = 0 can implies that a∆(b)∗ + ∆(a)b∗ = 0.

Define a bilinear mapping φ from A×A into M by

φ(a, b) = a∆(b∗)∗ +∆(a)b

for each a and b in A. By the assumption we know that ab = 0 implies φ(a, b) = 0.
Let a, b be in A and x be in J . By Lemma 2.5, we can obtain that

φ(x, 1) = φ(1, x) and φ(a, x) = φ(ax, 1).

Hence we have the following two identities:

x∆(1)∗ +∆(x) = ∆(x∗)∗ +∆(1)x (2.5)

and

a∆(x∗)∗ +∆(a)x = ax∆(1)∗ +∆(ax). (2.6)

By (2.5) and ∆(1) = 0, we know that ∆(x)∗ = ∆(x∗). Thus by (2.6), it implies
that

∆(ax) = a∆(x) + ∆(a)x.

Similar to the proof of [4, Theorem 2.3], we can obtain that ∆(ab) = a∆(b)+∆(a)b
for each a and b in A.

It remains to show that ∆(a)∗ = ∆(a∗) for every a in A. Indeed, for every a

in A and every x in J , we have that ∆(ax)∗ = ∆((ax)∗). It implies that

(∆(a)x+ a∆(x))∗ = ∆(x∗)a∗ + x∗∆(a∗).

Thus we can obtain that x∗(∆(a)∗ −∆(a∗)) = 0, hence (∆(a)−∆(a∗)∗)x = 0. It
follows that ∆(a)∗ = ∆(a∗) for every a in A. �

Remark 1. Let A be a ∗-algebra, M be a ∗-A-bimodule, and δ is a linear
mapping fromA intoM. Similar to the condition D1 which we have characterized
in Section 2:

(D1) a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + δ(a)b∗ = 0,

we can consider the condition D′
1

(D′
1) a, b ∈ A, a∗b = 0 ⇒ a∗δ(b) + δ(a)∗b = 0.

Through the minor modifications, we can obtain the corresponding results.
Remark 2. A linear mapping δ from A into M is called a local derivation

if for every a in A, there exists a derivation δa (depending on a) from A into
M such that δ(a) = δa(a). It is clear that every local derivation satisfies the
following condition:

(H) a, b, c ∈ A, ab = bc = 0 ⇒ aδ(b)c = 0.

In [1], the authors prove that every continuous linear mapping from a unital C∗-
algebra into its unital Banach bimodule such that the condition H and δ(1) = 0
is a derivation.
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Let A be a ∗-algebra and M be a ∗-A-bimodule. The natural way to trans-
late the condition H to the context of ∗-derivations is to consider the following
condition

(H′) a, b, c ∈ A, ab∗ = b∗c = 0 ⇒ aδ(b)∗c = 0.

However, the conditions H′ and H are equivalent. Indeed, if condition H′ holds,
we have that

a, b, c ∈ A, ab = bc = 0 ⇒ c∗b∗ = b∗a∗ = 0 ⇒ c∗δ(b)∗a∗ = 0 ⇒ aδ(b)c = 0,

and if the condition H holds, we have that

a, b, c ∈ A, ab∗ = b∗c = 0 ⇒ c∗b = ba∗ = 0 ⇒ c∗δ(b)a∗ = 0 ⇒ aδ(b)∗c = 0.

It means that the condition H′ and δ(1) = 0 can not implies that δ is a ∗-
derivation.

3. ∗-Jordan derivations on some algebras

A (Banach) algebra A is said to be zero Jordan product determined if every
(continuous) bilinear mapping φ from A × A into any (Banach) linear space X
satisfying

φ(a, b) = 0, whenever a ◦ b = 0

can be written as φ(a, b) = T (a◦b), for some (continuous) linear mapping T from
A into X . In [5], we show that if A is a unital algebra with A = J(A), then A is
a zero Jordan product determined algebra.

Theorem 3.1. Suppose that A is a unital zero Jordan product determined ∗-
algebra, and M is a unital ∗-A-bimodule. If δ is a linear mapping from A into
M such that

a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-Jordan derivation. In
particular, δ is a ∗-Jordan derivation when δ(1) = 0.

Proof. Define a linear mapping ∆ from A into M by ∆(a) = δ(a) − δ(1)a for
every a in A. It is sufficient to show that ∆ is a ∗-Jordan derivation.

It is clear that ∆(1) = 0, and by δ(1)a = aδ(1) we have that

a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦∆(b)∗ +∆(a) ◦ b∗ = 0.

Define a bilinear mapping from A×A into M by

φ(a, b) = a ◦∆(b∗)∗ +∆(a) ◦ b.

Thus a ◦ b = 0 implies φ(a, b) = 0. Since A is a zero Jordan product determined
algebra, we know that there exists a linear mapping T from A into M such that

T (a ◦ b) = φ(a, b) = a ◦∆(b∗)∗ +∆(a) ◦ b (3.1)

for each a, b in A. Let a = 1 and b = 1 be in (3.1), respectively. By ∆(1) = 0,
we can obtain that

T (a) = ∆(a) and T (b) = ∆(b∗)∗.
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It follows that ∆(a∗) = ∆(a)∗ for every a in A. By (3.1), we have that

T (a ◦ b) = ∆(a ◦ b) = φ(a, b) = a ◦∆(b) + ∆(a) ◦ b.

It means that ∆ is a ∗-Jordan derivation. �

In [5], we prove that the matrix algebra Mn(B)(n ≥ 2) is zero Jordan product
determined, where B is a unital algebra. In [16], H. Ghahramani show that every
Jordan derivation from Mn(B)(n ≥ 2) into its unital bimodule M is a derivation.
Hence we have the following result.

Corollary 3.2. Suppose that B is a unital ∗-algebra, Mn(B) is a matrix algebra
with n ≥ 2, and M is a unital ∗-Mn(B)-bimodule. If δ is a linear mapping from
Mn(B) into M such that

a, b ∈ Mn(B), a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = ∆(a) + δ(1)a for every a in Mn(B), where ∆ is a ∗-derivation. In
particular, δ is a ∗-derivation when δ(1) = 0.

LetH be a complex Hilbert space and B(H) be the algebra of all bounded linear
operators on H. Suppose that A is a von Neumann algebra on H and LS(A) the
set of all locally measurable operators affiliated with the von Neumann algebra
A.

In [27], M. Muratov and V. Chilin prove that LS(A) is a unital ∗-algebra and
A ⊂ LS(A). By [25, Proposition 21.20, Exercise 21.18], we know that if A is a
von Neumann algebra without direct summand of type I1, and B is a ∗-algebra
with A ⊆ B ⊆ LS(A), then B ∼=

∑k

i=1

⊕
Mni

(Bi) (k is a finite integer or infinite),
where Bi is a unital algebra. By Theorem 3.1, we have the following result.

Corollary 3.3. Suppose that A is a von Neumann algebra without direct sum-
mand of type I1, and B is a ∗-algebra with A ⊆ B ⊆ LS(A). If δ is a linear
mapping from B into LS(A) such that

a, b ∈ B, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = ∆(a) + δ(1)a for every a in B, where ∆ is a ∗-Jordan derivation. In
particular, δ is a ∗-Jordan derivation when δ(1) = 0.

For von Neumann algebras, by Corollary 3.2 and similar to the proof of Theo-
rem 2.4, we can easily obtain the following result and we omit the proof.

Corollary 3.4. Suppose that A is a von Neumann algebra. If δ is a linear
mapping from A into itself with such that

a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-derivation. In partic-
ular, δ is a ∗-derivation when δ(1) = 0.

Lemma 3.5. [5, Theorem 2.1] Suppose that A is a unital algebra and X is a
linear space. If φ is a bilinear mapping from A×A into X such that

a, b ∈ A, a ◦ b = 0 ⇒ φ(a, b) = 0,
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then we have that

φ(a, x) =
1

2
φ(ax, 1) +

1

2
φ(xa, 1)

for every a in A and every x in J(A).

Suppose that A is a unital algebra and M is a unital A-bimodule satisfying
that

{m ∈ M : xmx = 0 for every x ∈ J } = {0},

where J is an ideal of A linear generated by idempotents in A. In [15, Theorem
4.3], H. Ghahramani studies the linear mapping δ from A into M satisfies

a, b ∈ A, a ◦ b = 0 ⇒ a ◦ δ(b) + δ(a) ◦ b = 0,

and show that δ is a generalized Jordan derivation. In the following, we suppose
that J is an ideal of A generated algebraically by all idempotents in A, and have
the following result.

Theorem 3.6. Suppose that A is a unital ∗-algebra, M is a unital ∗-A-bimodule,
and J ⊆ J(A) is an ideal of A such that

{m ∈ M : xmx = 0 for every x ∈ J } = {0}.

If δ is a linear mapping from A into M such that

a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0 and δ(1)a = aδ(1),

then δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-Jordan derivation. In
particular, δ is a ∗-Jordan derivation when δ(1) = 0.

Proof. Let Ĵ be an algebra generated algebraically by J and J ∗. Since J ⊆ J(A)

is an ideal of A, it is easy to show that Ĵ ⊆ J(A) is also an ideal of A, and such
that

{m ∈ M : xmx = 0 for every x ∈ Ĵ } = {0}.

Thus without loss of generality, we can assume that J is a self-adjoint ideal of

A, otherwise, we may replace J by Ĵ .
Define a linear mapping ∆ from A into M by

∆(a) = δ(a)− δ(1)a

for every a in A. In the following we show that ∆ is a ∗-derivation.
It is clear that ∆(1) = 0, and by δ(1)a = aδ(1) we have that a ◦ b∗ = 0 implies

that a ◦∆(b)∗ +∆(a) ◦ b∗ = 0.
Define a bilinear mapping φ from A×A into M by

φ(a, b) = a ◦∆(b∗)∗ +∆(a) ◦ b

for each a and b in A. By the assumption we know that a ◦ b = 0 implies
φ(a, b) = 0.

Let a, b be in A and x be in J . By Lemma 3.5, we can obtain that

φ(x, 1) = φ(1, x).

It follows that

x ◦∆(1)∗ +∆(x) ◦ 1 = 1 ◦∆(x∗)∗ +∆(1) ◦ x. (3.2)
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By (3.2) and ∆(1) = 0, we know that ∆(x)∗ = ∆(x∗). Again by Lemma 3.5, it
follows that

a ◦∆(x∗)∗ +∆(a) ◦ x =
1

2
[∆(ax) ◦ 1 + ∆(xa) ◦ 1]. (3.3)

By (3.3) and ∆(x)∗ = ∆(x∗), it is easy to show that

∆(a ◦ x) = a ◦∆(x) + ∆(a) ◦ x. (3.4)

Next, we prove that ∆ is a Jordan derivation.
Define {a,m, b} = amb+ bma and {a, b,m} = {m, b, a} = abm+mba for each

a, b in A and every m in M. Let a be in A and x, y be in M.
By the technique of the proof of [15, Theorem 4.3] and (3.4), we have the

following two identities:

∆{x, a, y} = {∆(x), a, y}+ {x,∆(a), y}+ {x, a,∆(y)}, (3.5)

and

∆{x, a2, y} = {∆(x), a2, y}+ {x, a ◦∆(a), y}+ {x, a2,∆(y)}. (3.6)

On the other hand, by (3.5) we have that

∆{x, a2, x} = {∆(x), a2, x}+ {x,∆(a2), x}+ {x, a2,∆(x)}. (3.7)

By comparing (3.6) and (3.7), it follows that {x,∆(a2), x} = {x, a◦∆(a), x}. That
is x(∆(a2)−a◦∆(a))x = 0. By the assumption, it implies that ∆(a2)−a◦∆(a) = 0
for every a in A.

It remains to show that ∆(a)∗ = ∆(a∗) for every a in A. Indeed, for every a

in A and every x in J , we have that ∆(xax)∗ = ∆((xax)∗). Since ∆ is a Jordan
derivation, it implies that

(∆(x)ax + x∆(a)x+ xa∆(x))∗ = ∆(x∗)a∗x∗ + x∗∆(a∗)x∗ + x∗a∗∆(x∗).

Thus we can obtain that x∗(∆(a)∗−∆(a∗))x∗ = 0. Since J is a self-adjoint ideal
of A, it follows that ∆(a)∗ = ∆(a∗). �

Let A be a C∗-algebra and M be a Banach ∗-A-bimodule. Denote by A♯♯ and
M♯♯ the second dual space of A and M, respectively. By [11, p.26], we can define
a product ⋄ in A♯♯ by

a♯♯ ⋄ b♯♯ = lim
λ

lim
µ

αλβµ

for each a♯♯, b♯♯ in A♯♯, where (αλ) and (βµ) are two nets in A with ‖αλ‖ 6 ‖a♯♯‖
and ‖βµ‖ 6 ‖b♯♯‖, such that αλ → a♯♯ and βµ → b♯♯ in the weak∗-topology
σ(A♯♯,A♯). Moreover, we can define an involution ∗ in A♯♯ by

(a♯♯)∗(ρ) = a♯♯(ρ∗), ρ∗(a) = ρ(a∗),

where a♯♯ in A♯♯, ρ in A♯ and a in A. By [22, p.726], we know that A♯♯ is a von
Neumann algebra under the product ⋄ and the involution ∗.

Since M is a Banach A-bimodule, M♯♯ turns into a dual Banach (A♯♯, ⋄)-
bimodule with the operation defined by

a♯♯ ·m♯♯ = lim
λ

lim
µ

aλmµ and m♯♯ · a♯♯ = lim
µ

lim
λ

mµaλ
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for every a♯♯ in A♯♯ and every m♯♯ in M♯♯, where (aλ) is a net in A with ‖aλ‖ 6

‖a♯♯‖ and (aλ) → a♯♯ in σ(A♯♯,A♯), (mµ) is a net in M with ‖mµ‖ 6 ‖m♯♯‖ and
(mµ) → m♯♯ in σ(M♯♯,M♯).

We remarked, in the discussion preceding Theorem 2.1, that M♯♯ has an invo-
lution ∗ and it is continuous in σ(M♯♯,M♯). By [1, p.553], we know that every
continuous bilinear map ϕ from A ×M into M is Arens regular, which means
that

lim
λ

lim
µ

ϕ(aλ, mµ) = lim
µ

lim
λ

ϕ(aλ, mµ)

for every σ(A♯♯,A♯)-convergent net (aλ) in A and every σ(M♯♯,M♯)-convergent
net (mµ) in M. Thus we can obtain that

(a♯♯ ·m♯♯)∗ = (lim
λ

lim
µ

aλmµ)
∗ = lim

λ
lim
µ

m∗
µa

∗
λ = lim

µ
lim
λ

m∗
µa

∗
λ = (m♯♯)∗ · (a♯♯)∗,

where (aλ) is a net in A with (aλ) → a♯♯ in σ(A♯♯,A♯) and (mµ) is a net in M
with (mµ) → m♯♯ in σ(M♯♯,M♯). Similarly, we can show that (m♯♯ · a♯♯)∗ =
(a♯♯)∗ · (m♯♯)∗. It implies that M♯♯ is a Banach ∗-A♯♯-bimodule.

A projection p in A♯♯ is called open if there exists an increasing net (aα) of
positive elements in A such that p = lim

α
aα in the weak∗-topology of A♯♯. If p is

open, we say the projection 1− p is closed.
For a unital C∗-algebra, we have the following result.

Theorem 3.7. Suppose that A is a unital C∗-algebra and M is a unital Banach
∗-A-bimodule. If δ is a continuous linear mapping from A into M such that
δ(1)a = aδ(1) for every a in A, then the following three statements are equivalent:
(1) a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(2) a, b ∈ A, ab∗ = b∗a = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(3) δ(a) = ∆(a) + δ(1)a for every a in A, where ∆ is a ∗-derivation from A into
M.

Proof. It is clear that (1) ⇒ (2) and (3) ⇒ (1). It is sufficient the prove that
(2) ⇒ (3).

Define a linear mapping ∆ from A into M by ∆(a) = δ(a) − δ(1)a for every
a in A. It is sufficient to show that ∆ is a ∗-derivation. First we prove that
∆(a∗) = ∆(a)∗ for every a in A.

By assumption, we can easily to show that

a, b ∈ A, ab∗ = b∗a = 0 ⇒ a ◦∆(b)∗ +∆(a) ◦ b∗ = 0 and ∆(1) = 0,

In the following, we verify ∆(b) = ∆(b)∗ for every self-adjoint element b in A.
Since ∆ is a norm continuous linear mapping form A into M, we know that

∆♯♯ : (A♯♯, ⋄) → M♯♯ is the weak∗-continuous extension of ∆ to the double duals
of A and M.

Let b be a non-zero self-adjoint element in A, σ(b) ⊆ [−‖b‖, ‖b‖] be the spec-
trum of b and r(b) ∈ A♯♯ be the range projection of b.

Denote by Ab the C∗-subalgebra of A generated by b, and by C(σ(b)) the C∗-
algebra of all continuous complex-valued functions on σ(b). By Gelfand theory
we know that there is an isometric ∗ isomorphism between Ab and C(σ(b)).
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For every n in N, let pn be the projection in A♯♯
b ⊆ A♯♯ corresponding to the

characteristic function χ([−‖b‖,− 1

n
]∪[ 1

n
,‖b‖])∩σ(b) in C(σ(b)), and let bn be in Ab such

that

bnpn = pnbn = bn = b∗n and ‖bn − b‖ <
1

n
.

By [28, Section 1.8], we know that (pn) converges to r(b) in the strong∗-topology
of A♯♯, and hence in the weak∗-topology.

It is well known that pn is a closed projection in A♯♯
b ⊆ A♯♯ and 1−pn is an open

projection in A♯♯
b . Thus there exists an increasing net (zλ) of positive elements in

((1− pn)A
♯♯(1− pn)) ∩ A such that

0 ≤ zλ ≤ 1− pn

and (zλ) converges to 1− pn in the weak∗-topology of A♯♯. Since

0 ≤ ((1− pn)− zλ)
2 ≤ (1− pn)− zλ ≤ (1− pn),

we have that (zλ) also converges to 1− pn in the strong∗-topology of A♯♯.
By bn = b∗n and zλbn = bnzλ = 0, it follows that

zλ ◦∆
♯♯(bn)

∗ +∆♯♯(zλ) ◦ bn = 0. (3.8)

Taking weak∗-limits in (3.8) and since ∆♯♯ is weak∗-continuous, we have that

(1− pn) ◦∆
♯♯(bn)

∗ +∆♯♯((1− pn)) ◦ bn = 0. (3.9)

Since (pn) converges to r(b) in the weak∗-topology of A♯♯ and (bn) converges to b

in the norm-topology of A, by (3.9), we have that

(1− r(b)) ◦∆♯♯(b)∗ +∆♯♯(1− r(b)) ◦ b = 0. (3.10)

Since the range projection of every power bm with m ∈ N coincides with the r(b),
and by (3.10), it follows that

(1− r(b)) ◦∆♯♯(bm)∗ +∆♯♯(1− r(b)) ◦ bm = 0

for every m ∈ N, and by the linearity and norm continuity of the product we
have that

(1− r(b)) ◦∆♯♯(z)∗ +∆♯♯(1− r(b)) ◦ z = 0

for every z = z∗ in Ab. A standard argument involving weak∗-continuity of ∆♯♯

gives

(1− r(b)) ◦∆♯♯(r(b))∗ +∆♯♯(1− r(b)) ◦ r(b) = 0. (3.11)

By (3.11), we can obtain that

(∆♯♯(r(b))∗ +∆♯♯(r(b))−∆♯♯(1)) ◦ r(b) = 2∆♯♯(r(b))∗.

By ∆(1) = 0, we have that ∆♯♯(1) = 0. It implies that

∆♯♯(r(b))∗ = ∆♯♯(r(b)). (3.12)

It is clear that every characteristic function

p = χ([−‖b‖,−α]∪[α,‖b‖])∩σ(b) (3.13)
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in C0(σ(b))
♯♯ with 0 < α < ‖b‖, is the range projection of a function in C(σ(b)).

Moreover, every projection of the form

q = χ([−β,−α]∪[α,β])∩σ(b) (3.14)

in C0(σ(b))
♯♯ with 0 < α < β < ‖b‖ can be written as the difference of two

projections of the type in (3.13).
SinceAb and C(σ(b)) are isometric ∗ isomorphism, and by ∆♯♯(r(b))∗ = ∆♯♯(r(b))

for range projection of b in A♯♯, we have that ∆♯♯(p)∗ = ∆♯♯(p) for every projection
p of the type in (3.13). It follows that ∆♯♯(q)∗ = ∆♯♯(q) for every projection q of
the type in (3.14).

It is well known that b can be approximated in norm by finite linear com-
binations of mutually orthogonal projections qj of the type in (3.14), and ∆ is
continuous, we have that ∆(b)∗ = ∆(b). Thus for every a in A, we can obtain
that ∆(a)∗ = ∆(a).

By the assumption, it follows that

a, b ∈ A, ab = ba = 0 ⇒ a ◦∆(b) + ∆(a) ◦ b = 0.

By [2, Theorem 4.1], we know that ∆ is a ∗-derivation. �

In the following we consider general C∗-algebras A. Let (ei)i∈Γ be a bounded
approximate identity of A, M be an essential Banach ∗-A-bimodule, and δ be a
continuous linear mapping from A into M, then (δ(ei))i∈Γ is bounded and we can
assume that it converges to ξ in M♯♯ with the topology σ(M♯♯,M♯). It follows
the next result.

Theorem 3.8. Suppose that A is a C∗-algebra (not necessary unital) and M is
an essential Banach ∗-A-bimodule. If δ is a continuous linear mapping from A
into M such that ξ ·a = a ·ξ for every a in A, then the following three statements
are equivalent:
(1) a, b ∈ A, a ◦ b∗ = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(2) a, b ∈ A, ab∗ = b∗a = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0;
(3) δ(a) = ∆(a) + ξ · a for every a in A, where ∆ is a ∗-derivation from A into
M♯♯.

Proof. It is clear that (1) ⇒ (2) and (3) ⇒ (1). It is only need to prove that
(2) ⇒ (3).

Define a linear mapping ∆ from A into M♯♯ by

∆(a) = δ(a)− ξ · a

for every a in A. It is sufficient to show that ∆ is a ∗-derivation.
By the definition of ∆ and ξ · a = a · ξ for every a in A, we can easily to show

that

a, b ∈ A, ab∗ = b∗a = 0 ⇒ a ◦∆(b)∗ +∆(a) ◦ b∗ = 0.

By [10, Proposition 2.9.16], we know that (ei)i∈Γ converges to the identity 1 in
A♯♯ with the topology σ(A♯♯,A♯). By the proof of Theorem 2.1, we know that
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∆(ei) = δ(ei)−ei · ξ converges to zero in M♯♯ with the topology σ(M♯♯,M♯), and
we can obtain that

m♯♯ · 1 = m♯♯

for every m♯♯ in M♯♯. Since M♯♯ is a Banach ∗-A♯♯-bimodule, we have that

1 ·m♯♯ = m♯♯

for every m♯♯ in M♯♯. Since ∆ is a norm-continuous linear mapping form A into
M♯♯, ∆♯♯ : (A♯♯, ⋄) → M♯♯♯♯ is the weak∗-continuous extension of ∆ to the double
duals of A and M♯♯ such that ∆♯♯(1) = 0.

By [10, Proposition A.3.52], we know that the mapping m♯♯♯♯ 7→ m♯♯♯♯ · 1
from M♯♯♯♯ into itself is σ(M♯♯♯♯,M♯♯♯)-continuous, and by the σ(M♯♯♯♯,M♯♯♯)-
denseness of M♯♯ in M♯♯♯♯, we have that

m♯♯♯♯ · 1 = m♯♯♯♯

for every m♯♯♯♯ in M♯♯♯♯. Since M♯♯♯♯ is a Banach ∗-A♯♯-bimodule, we have that

1 ·m♯♯♯♯ = m♯♯♯♯

for every m♯♯♯♯ in M♯♯♯♯.
Finally, we use the same proof of Theorem 3.7 and show that ∆ is a ∗-derivation

from A into M♯♯. �

Remark 3. In [12], A. Essaleh and A. Peralta introduce the concept of a triple
derivation on C∗-algebras. Suppose that A is a C∗-algebra. Let a, b and c be in
A, define the ternary product by {a, b, c} = 1

2
(ab∗c + cb∗a). A linear mapping δ

from A into itself is called a triple derivation if

δ{a, b, c} = {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)}

for each a, b and c in A. Let z be an element in A. δ is called triple derivation
at z if

a, b, c ∈ A, {a, b, c} = z ⇒ δ(z) = {δ(a), b, c}+ {a, δ(b), c}+ {a, b, δ(c)}.

In [12], A. Essaleh and A. Peralta prove that every continuous linear mapping
δ which is triple derivations at zero from a unital C∗-algebra into itself with
δ(1) = 0 is a ∗-derivation.

On the other hand, it is apparent to show that if δ is triple derivation at zero,
then δ satisfies that

a, b ∈ A, ab∗ = b∗a = 0 ⇒ a ◦ δ(b)∗ + δ(a) ◦ b∗ = 0.

Thus Theorem 3.7 generalizes [12, Corollary 2.10].
Remark 4. In [8], M. Brešar and J. Vukman introduce the left derivations and

Jordan left derivations. A linear mapping δ from an algebra A into its bimodule
M is called a left derivation if δ(ab) = aδ(b) + bδ(a) for each a, b in A; and δ is
called a Jordan left derivation if δ(a ◦ b) = 2aδ(b) + 2bδ(a) for each a, b in A.

Let A be a ∗-algebra and M be a ∗-A-bimodule. A left derivation (Jordan left
derivation) δ fromA intoM is called a ∗-left derivation (∗-Jordan left derivation)
if δ(a∗) = δ(a)∗ for every a in A.
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We also can investigate the following conditions on a linear mapping δ from A
into M:

(J1) a, b ∈ A, ab∗ = 0 ⇒ aδ(b)∗ + b∗δ(a) = 0;

(J2) a, b ∈ A, a ◦ b∗ = 0 ⇒ aδ(b)∗ + b∗δ(a) = 0;

(J3) a, b ∈ A, ab∗ = b∗a = 0 ⇒ aδ(b)∗ + b∗δ(a) = 0.
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