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CHARACTERIZING LINEAR MAPPINGS THROUGH ZERO
PRODUCTS OR ZERO JORDAN PRODUCTS

GUANGYU AN, JUN HE? AND JIANKUT LI3*

ABSTRACT. Let A be a *-algebra and M be a *-A-bimodule, we study the local
properties of x-derivations and x-Jordan derivations from A into M under the
following orthogonality conditions on elements in A: ab* = 0, ab* + b*a = 0
and ab* = b*a = 0. We characterize the mappings on zero product determined
algebras and zero Jordan product determined algebras. Moreover, we give
some applications on C*-algebras, group algebra, matrix algebras, algebras of
locally measurable operators and von Neumann algebras.

1. INTRODUCTION

Throughout this paper, let A be an associative algebra over the complex field
C and M be an A-bimodule. For each a, b in A, we define the Jordan product
by aob = ab + ba. A linear mapping 0 from A into M is called a derivation
if 9(ab) = ad(b) + 6(a)b for each a,b in A; and 0 is called a Jordan derivation
if 0(aob) = aod(b)+ d(a) ob for each a,b in A. It follows from the results
in [9, 20, 21] that every Jordan derivation from a C*-algebra into its Banach
bimodule is a derivation.

By an involution on an algebra A, we mean a mapping * from A into itself,
such that

(Aa + pb)* = Aa* + ab*, (ab)* = b*a* and (a*)* = q,
whenever a,b in A, A\, in C and X, i denote the conjugate complex numbers.
An algebra A equipped with an involution is called a x-algebra. Moreover, let A
be a x-algebra, an A-bimodule M is called a *-.A-bimodule if M equipped with
a *-mapping from M into itself, such that
(Am + pn)* = Am* + an*, (am)* = m*a*, (ma)* = a*m* and (m*)* = m,

whenever a in A, m,n in M and A, ;4 in C. An element a in A is called self-adjoint
if a* = a; an element p in A is called an idempotent if p?> = p; and p is called a
projection if p is both a self-adjoint element and an idempotent.

In [24], A. Kishimoto studies the *-derivations on a C*-algebra. Let A be a
x-algebra and M be a *-A-bimodule. A derivation ¢ from A into M is called a
x-derivation if 6(a*) = 0(a)* for every a in A. Obviously, every derivation 0 is a
linear combination of two *-derivations. In fact, we can define a linear mapping
d from A into M by 6(a) = 6(a*)* for every a in A, therefore § = d; + id2, where
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o o= (6 + 0) and 0, = =(6 — 6). Tt is casy to show that & and &, are both
x-derivations. Similarly, we can define the x-Jordan derivations.

For s-derivations and *-Jordan derivations, in [3, 13, 17, 18], the authors char-
acterize the following two conditions on a linear mapping ¢ from a x-algebra A
into its *-bimodule M:

(Dy) a,be A, ab* =0= ad(b)" + d(a)b* =0;
(Do) a,b € A, ab® =b*a=0= ad(b)" +d(a)b” = d(b)*a +b"d(a) = 0;

where A is a C*-algebra, a zero product determined algebra or a group algebra
LYG).

Let J be an ideal of A, we say that [J is a right separating set or left separating
set of M if for every m in M, Jm = {0} implies m = 0 or mJ = {0} implies m =
0, respectively. We denote by J(.A) the subalgebra of A generated algebraically
by all idempotents in A.

In Section 2, we suppose that A is a x-algebra and M is a x-A-bimodule that
satisfy one of the following conditions:

(1) Ais a zero product determined Banach *-algebra with a bounded approximate
identity and M is an essential Banach *-A-bimodule;

(2) Ais a von Neumann algebra and M = A;

(3) A is a unital x-algebra and M is a unital *-A-bimodule with a left or right
separating set J C J(A);

and we investigate whether the linear mappings from A into M satisfying the
condition Dy characterize *-derivations. In particular, we generalize some results
in [13, 17, 18].

An A-bimodule M is said to have the property M, if there is an ideal J C J(A)
of A such that

{m € M : xmz =0 for every x € J} = {0}.

It is clear that if A = J(A), then M has property M.
For x-Jordan derivations, we can study the following conditions on a linear
mapping ¢ from a x-algebra A into its *-A-bimodule M:

(D3) a,be A, aob”=0=aod(b)"+d(a)ob” =0.
(Dy) a,be A, ab* =b"a=0=aod(b)"+d(a)ob” =0.

It is obvious that the condition Dy or D3 implies the condition Dy.

In Section 3, we suppose that A is a x-algebra and M is a x-A-bimodule that
satisfy one of the following conditions:
(1) A is a unital zero Jordan product determined %-algebra and M is a unital
x-A-bimodule;
(2) A is a unital x-algebra and M is a unital #-.A-bimodule such that the property
M
(3) A is a C*-algebra (not necessary unital) and M is an essential Banach *-.A-
bimodule;
and we investigate whether the linear mappings from A into M satisfying the
condition D3 or D, characterize x-Jordan derivations. In particular, we improve
some results in [13, 17, 18].



2. *-DERIVATIONS ON SOME ALGEBRAS

A (Banach) algebra A is said to be zero product determined if every (continu-
ous) bilinear mapping ¢ from A x A into any (Banach) linear space X’ satisfying

¢(a,b) = 0, whenever ab =0

can be written as ¢(a,b) = T'(ab), for some (continuous) linear mapping 7" from
A into X. In [7], M. Bresar shows that if A = J(A), then A is a zero product
determined, and in [1], the authors prove that every C*-algebra A is zero product
determined.

Let A be a Banach x-algebra and M be a Banach %-A-bimodule. Denote by
M the second dual space of M. In the following, we show that M is also a
Banach *-A-bimodule.

Since M is a Banach *-A-bimodule, M turns into a dual Banach .A-bimodule
with the operation defined by

a-m# = h;an am,, and m*.q = h;an my,a
for every a in A and every m# in M*, where (m,,) is a net in M with ||m,| <
|m#|| and (m,) — m* in the weak*-topology o (M M?).
We define an involution * in M# by

(m#)*(p) = m#(p*), p*(m) = p(m),
where m# in M*¥ p in M* and m in M. Moreover, if (m,,) is a net in M and
m* is an element in M* such that m, — m* in o(M?*, M¥), then for every p in
M, we have that

tiﬁ(

p(my,) =my(p) — m*(p).

It follows that

(m)(p) = p(my,) = p*(my,) — m#(p7) = (m*)*(p)
for every p in M* It means that the involution * in M is continuous in
o(MH¥,  M?). Thus we can obtain that

(CL . mw)* = (hﬁnamu)* = hinm;a'* = (mm) Qs

Similarly, we can show that (m* - a)* = a* - (m*#)*. It implies that M* is a
Banach #-.4-bimodule.

Let A be a Banach x-algebra, a bounded approximate identity for A is a net
(€;)ier of self-adjoint elements in A such that li%rn |lae; — al| = lilm |le;a —al| =0

for every a in A and sup,cp||e;|| < k for some k>0 .

In [18], H. Ghahramani and Z. Pan prove that if A is a unital zero product
determined *-algebra and a linear mapping 6 from A into itself satisfies the con-
dition

(Dy) a,be A, ab* =0=ad(b)" 4+ d(a)b*" =0
then 6(a) = A(a) + 0(1)a for every a in A, where A is a x-derivation.

For general zero product determined Banach *-algebra with a bounded approx-

imate identity, we have the following result.



4 G. AN, J. HE AND L. JI

Theorem 2.1. Suppose that A is a zero product determined Banach *-algebra
with a bounded approximate identity, and M is an essential Banach x-A-bimodule.
If 0 is a continuous linear mapping from A into M such that

a,be A, ab* =0= ad(b)* + (a)b* =0

then there exist a x-derivation A from A into M* and an element & in M* such
that 6(a) = A(a)+ & - a for every a in A. Furthermore, § can be chosen in M in
each of the following cases:

(1) A is a unital x-algebra.

(2) M is a dual *-A-bimodule.

Proof. Let (e;);er be a bounded approximate identity of .A. Since § is continuous,
the net (6(e;))ier is bounded and we can assume that it converges to & in M#
with the topology o (M MF).

Since M is an essential Banach -.4-bimodule, we know that the nets (e;m);er
and (me;);er converge to m with the norm topology for every m in M. Thus we
have that

Anny(A) = {m € M : amb = 0 for each a,b € A} = {0}.
By the hypothesis, we can obtain that
a,b,ce A, ab* =b"'c=0= ad(b)'c=0.
It follows that
a,b,ce A, ab=bc=0= c"b" =b"a"=0= c"6(b)'a" =0=ad(b)c =0. (2.1)
By (2.1) and [1, Theorem 4.5], we know that
d(ab) = d(a)b+ ad(b) —a-&-b

for each a,b in A, and ¢ can be chosen in M if A is a unital x-algebra or M is a
dual *-A-bimodule.
Define a linear mapping A from A into M by

Aa) =0(a) =€ -a

for every a in A. It is easy to show that A is a norm-continuous derivation from
A into M* and we only need to show that A(b*) = A(b)* for every b in A.
First we claim that A(e;) = 6(e;) — € - ¢; converges to zero in M* with the
topology o(M%, M*). In fact, since (e;);er is bounded in A, we assume (e;);cr
converges to ¢ in A% with the topology o (A%, A%). For every m* in M, define

m¥ . ¢ = limm# - ¢;.
Thus m - ¢ = m for every m in M. By [10, Proposition A.3.52], we know that

the mapping m® +— m# . ¢ from M* into itself is o(M*  M¥)-continuous, and
by the o(M* M#)-denseness of M in M, we have that

m# . ¢ =mH (2.2)

for every m* in M*. Hence A(e;) = 6(e;) — £ - ¢; converges to zero in M* with
the topology o (M, M?¥).
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Next we prove A(b*) = A(b)* for every b in A. By the definition of A, we
know that aA(b)* + A(a)b* = 0 for each a,b in A with ab* = 0. Define a bilinear
mapping from A x A into M* by

é(a,b) = aA(b*)* + A(a)b.

Thus ab = 0 implies ¢(a,b) = 0. Since A is a zero product determined algebra,
there exists a norm-continuous linear mapping 7" from A into M* such that

T(ab) = ¢(a,b) = aA(b*)* + A(a)b (2.3)

for each a,b in A. Let b = e; be in (2.3), we can obtain that
T(ae;) = al(e;)" + A(a)e;.

By the continuity of 7" and (2.2), it follows that T'(a) = A(a) for every a in A.
Thus

T(ab) = A(ab) = aA(b*)* + A(a)b.
Since A is a derivation, we have that aA(b*)* = aA(b) and A(b*)a* = A(b)*a™.
Let a = e; and taking o (M, M*)-limits, by (2.2), it follows that A(b*) = A(b)*
for every b in A. O

Let G be a locally compact group. The group algebra and the measure convolu-
tion algebra of G, are denoted by L'(G) and M (G), respectively. The convolution
product is denote by - and the involution is denoted by *. It is well known that
M(G) is a unital Banach x*-algebra, and L'(G) is a closed ideal in M(G) with
a bounded approximate identity. By [3, Lemma 1.1}, we know that L'(G) is
zero product determined. By [10, Theorem 3.3.15(ii)], it follows that M (G) with
respect to convolution product is the dual of Cy(G) as a Banach M (G)-bimodule.

By [206, Corollary 1.2], we know that every continuous derivation A from L'(G)
into M(G) is an inner derivation, that is, there exists p in M(G) such that
A(f)=f-pu—p- fforevery fin L'(G). Thus by Theorem 2.1, we can prove
[17, Theorem 3.1(ii)] as follows.

Corollary 2.2. Let G be a locally compact group. If 0 is a continuous linear
mapping from L'(G) into M(G) such that
f.g€ LNG), f-g"=0=f-d(9)"+d(f)-g"=0
then there are p,v in M(G) such that
0(f)=f-n-v-f

for every f in LY(G) and Rep € Z(M(Q)).
Proof. By Theorem 2.1, we know that there exist a *-derivation A from L'(G)
into M(G) and an element ¢ in M(G) such that §(f) = A(f) + & - f for every f
in L'(G). By [26, Corollary 1.2], it follows that there exists p in M(G) such that
A(f)y=f-pu—p-f. Since A(f*) = A(f)*, we have that

frop—p- fr=pt e =
for every f in L'(G). By [3, Lemma 1.3(ii)], we know Reu = % W+t

) €
Z(M(G)). Let v = p—&, from the definition of A, we have that 6(f) = f-u—v-f
for every f in L'(G). O
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For a general C*-algebra A, in [13], B. Fadaee and H. Ghahramani prove that
if § is a continuous linear mapping from A into its second dual space A% such
that the condition Dy, then there exist a *-derivation A from A into A%* and an
element ¢ in A* such that §(a) = A(a) + &a for every a in A.

In [1], the authors prove that every C*-algebra A is zero product determined,
and it is well known that 4 has a bounded approximate identity. Thus by The-
orem 2.1, we can improve the result in [13] for any essential Banach #-bimodule.

Corollary 2.3. Suppose that A is a C*-algebra and M is an essential Banach
x-A-bimodule. If § is a continuous linear mapping from A into M such that

a,be A, ab* =0= ad(b)" + (a)b* =0

then there exist a x-derivation A from A into M* and an element & in M* such
that 6(a) = A(a)+ & - a for every a in A. Furthermore, £ can be chosen in M in
each of the following cases:

(1) A has an identity.

(2) M is a dual *-A-bimodule.

For von Neumann algebras, we have the following result.

Theorem 2.4. Suppose that A is a von Neumann algebra. If 0 is a linear map-
ping from A into itself such that

a,be A, ab® =0 = ad(b)* + d(a)b* =0,

then 6(a) = A(a) 4+ 0(1)a for every a in A, where A is a x-derivation. In partic-
ular, § is a x-derivation when §(1) = 0.

Proof. Define a linear mapping A from A into M by

Aa) =6d(a) —d(1)a
for every a in A. In the following we show that A is a %-derivation. It is clear
that A(1) = 0 and ab* = 0 can implies that aA(b)* + A(a)b* = 0.

Case 1: Suppose that A is an abelian von Neumann algebra. First we show
that A satisfies that

a,be A, ab=0= aA(b) = 0.

It is well known that A = C'(X), where X is a compact Hausdorff space and
C'(X) denotes the C*-algebra of all continuous complex-valued functions on X.
Thus we have that ab = 0 if and only if ab* = 0 for each a,b in A. Indeed, let f
and g be two functions in C'(X) corresponding to a and b, respectively, we can
obtain that

ab*=0f-g=0&f-g=0<ab=0.
Let a and b be in A with ab* = ab = 0, we have that aA(b)* + A(a)b* = 0.
Multiply a from the left side of above equation, we can obtain that a*A(b)* = 0.

Let f and h be two functions in C'(X) corresponding to a and A(b), then we have
that

0= fg=f’9=fg.
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It implies that aA(b) = 0. By [23, Theorem 3|, we know that A is continuous.
By [19, Lemma 2.5] and A(1) = 0, we know that A(a) = A(1)a = 0 for every a
in A.

Case 2: Suppose that A = M, (B), where B is also a von Neumann algebra
and n > 2. By [6, 7] we know that A is a zero product determined algebra. Thus
by [18, Theorem 3.1] it follows that A is a *-derivation.

Case 3: Suppose that A is a general von Neumann algebra. It is well known
that A = > @ A; (nis a finite integer or infinite), where each A; coincides
with either Case 1 or Case 2. Denote the unit element of A; by 1; and the
restriction of A in A; by A;. Since 1;(1 — 1;) = 0 and A(1) = 0, we have that

LA(L = 1,)* + A(L)(1 - 1;) = 0.
It follows that

—LA(L)" + A(L;) — A(1;)1; = 0. (2.4)
Multiplying 1; from the left side of (2.4) and by 1;A(1;) = A(1;)1;, we have that
1,A(1;)* = 0. It implies that A(1;) = 0. For every a in A, we write a = > " | a;

with a; in A;. Since a;(1 —1;) = 0, we have that A(a;)(1 —1;) = 0, which means
that A(a;) € A;. Let a;, b; be in A; with a;b7 = 0, we have that

By Cases 1 and 2, we know that every A, is a s-derivation. Thus A is a *-
derivation. U

In the following, we characterize a linear mapping ¢ satisfies the condition D,
from a unital *-algebra into a unital *-.A-bimodule with a right or left separating
set J C J(A).

Lemma 2.5. [7, Theorem 4.1] Suppose that A is a unital algebra and X is a
linear space. If ¢ is a bilinear mapping from A x A into X such that
a,be A, ab=0= ¢(a,b) =0,
then we have that
¢(a, ) = ¢(ax,1) and ¢(z,a) = ¢(1, za)
for every a in A and every x in J(A).
Theorem 2.6. Suppose that A is a unital x-algebra and M is a unital *-A-

bimodule with a right or left separating set J C J(A). If 6 is a linear mapping
from A into M such that

a,be A, ab® =0=ad(b)* +d(a)b* =0
then 6(a) = A(a) 4+ 0(1)a for every a in A, where A is a x-derivation. In partic-

ular, § is a x-derivation when §(1) = 0.

Proof. Since A is a unital x-algebra and M is a unital *-A-bimodule, we know
that J C J(A) is a right separating set of M if and only if J* = {z* : © €
J} C J(A) is a left separating set of M. Thus without loss of generality, we can
assume that 7 is a left separating set of A, otherwise, we replace J by J*.
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Define a linear mapping A from A into M by
A(a) =d(a) —d(1)a
for every a in A. In the following we show that A is a #-derivation.
It is clear that A(1) = 0 and ab* = 0 can implies that aA(b)* + A(a)b* = 0.
Define a bilinear mapping ¢ from A x A into M by
o(a,b) = aA(b*) + A(a)b

for each a and b in A. By the assumption we know that ab = 0 implies ¢(a, b) = 0.
Let a, b be in A and x be in J. By Lemma 2.5, we can obtain that

o(x,1) = ¢(1,x) and ¢(a,x) = ¢(ax, 1).
Hence we have the following two identities:
A1)+ A(z) = A(z")" + A(1)z (2.5)
and
aA(z")* 4+ A(a)z = azA(1)" + A(ax). (2.6)

By (2.5) and A(1) = 0, we know that A(z)* = A(z*). Thus by (2.6), it implies
that

A(az) = aA(x) + A(a)x.
Similar to the proof of [4, Theorem 2.3], we can obtain that A(ab) = aA(b)+A(a)b
for each @ and b in A.

It remains to show that A(a)* = A(a*) for every a in A. Indeed, for every a
in A and every = in J, we have that A(aa:) A((az)*). It implies that
(Ala)x + aA(z))* = A(z")a" + 2" Aa”).
Thus we can obtain that *(A(a)* — A(a*)) = 0, hence (A(a) — A(a*)*)z = 0. It
follows that A(a)* = A(a*) for every a in A. O

Remark 1. Let A be a x-algebra, M be a *-A-bimodule, and § is a linear
mapping from A into M. Similar to the condition D; which we have characterized
in Section 2:

(Dy) a,be A, ab* =0=ad(b)" + d(a)b” =0,
we can consider the condition D}
(D)) a,b e A, a*b=0= a*0(b) + d(a)b = 0.

Through the minor modifications, we can obtain the corresponding results.

Remark 2. A linear mapping 6 from A into M is called a local derivation
if for every a in A, there exists a derivation ¢, (depending on a) from A into
M such that §(a) = 0,(a). It is clear that every local derivation satisfies the
following condition:

(H) a,b,c € A, ab=bc =0 = ad(b)c = 0.

In [1], the authors prove that every continuous linear mapping from a unital C*-
algebra into its unital Banach bimodule such that the condition H and 6(1) = 0
is a derivation.
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Let A be a x-algebra and M be a *-A-bimodule. The natural way to trans-
late the condition H to the context of *-derivations is to consider the following
condition

(H') a,b,c € A, ab* =b"c=0= ad(b)*c = 0.

However, the conditions H' and H are equivalent. Indeed, if condition H’ holds,
we have that

a,byce A, ab=bc=0= 0" =0b"a"=0= c"0(b)'a" =0= ad(b)c =0,
and if the condition H holds, we have that
a,byce A, ab" =b'c=0=cb=0ba"=0= c"0(b)a” =0 = ad(b)'c=0.

It means that the condition H and 6(1) = 0 can not implies that § is a *-
derivation.

3. *-JORDAN DERIVATIONS ON SOME ALGEBRAS

A (Banach) algebra A is said to be zero Jordan product determined if every
(continuous) bilinear mapping ¢ from A x A into any (Banach) linear space X
satisfying

¢(a,b) =0, whenever aob =0
can be written as ¢(a,b) = T'(aob), for some (continuous) linear mapping 7" from
A into X. In [5], we show that if A is a unital algebra with A = J(A), then A is
a zero Jordan product determined algebra.

Theorem 3.1. Suppose that A is a unital zero Jordan product determined -
algebra, and M is a unital x-A-bimodule. If 6 is a linear mapping from A into
M such that

a,be A, aob"=0=ao0d(b)*+0d(a)ob” =0 and 6(1)a = ad(1),

then 6(a) = A(a) +(1)a for every a in A, where A is a x-Jordan derivation. In
particular, 6 is a *-Jordan derivation when 6(1) = 0.

Proof. Define a linear mapping A from A into M by A(a) = d(a) — 6(1)a for
every a in A. It is sufficient to show that A is a x-Jordan derivation.
It is clear that A(1) =0, and by §(1)a = ad(1) we have that

a,be A, aob*=0=a0A(b)*+ Aa)ob* = 0.
Define a bilinear mapping from A x A into M by
o(a,b) =ao A(b*)" 4+ A(a) ob.
Thus a o b = 0 implies ¢(a,b) = 0. Since A is a zero Jordan product determined
algebra, we know that there exists a linear mapping 7" from A into M such that
T(aob) = ¢(a,b) =aoA(b*)" + A(a)ob (3.1)

for each a,bin A. Let a = 1 and b = 1 be in (3.1), respectively. By A(1) =0,
we can obtain that
T(a) = A(a) and T'(b) = A(b*)".
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It follows that A(a*) = A(a)* for every a in A. By (3.1), we have that
T(aob) =A(aob) =¢(a,b) =aoA(b) + A(a) ob.
It means that A is a -Jordan derivation. 0J

In [5], we prove that the matrix algebra M, (B)(n > 2) is zero Jordan product
determined, where B is a unital algebra. In [16], H. Ghahramani show that every
Jordan derivation from M,,(B)(n > 2) into its unital bimodule M is a derivation.
Hence we have the following result.

Corollary 3.2. Suppose that B is a unital x-algebra, M, (B) is a matriz algebra
with n > 2, and M is a unital *-M, (B)-bimodule. If 0 is a linear mapping from
M, (B) into M such that

a,be M,(B), aocb”=0=aod(b)"+d(a)ob” =0 and 6(1)a = ad(1),

then 6(a) = A(a) + 6(1)a for every a in M,(B), where A is a %-derivation. In
particular, 6 is a *-derivation when §(1) = 0.

Let H be a complex Hilbert space and B(H) be the algebra of all bounded linear
operators on H. Suppose that A is a von Neumann algebra on H and LS(.A) the
set of all locally measurable operators affiliated with the von Neumann algebra

A.

In [27], M. Muratov and V. Chilin prove that LS(.A) is a unital *-algebra and
A C LS(A). By [25, Proposition 21.20, Exercise 21.18], we know that if A is a
von Neumann algebra without direct summand of type I;, and B is a x-algebra
with A € B C LS(A), then B2 Y1 @ M,,(B:) (k is a finite integer or infinite),
where B; is a unital algebra. By Theorem 3.1, we have the following result.

Corollary 3.3. Suppose that A is a von Neumann algebra without direct sum-
mand of type 1y, and B is a *-algebra with A C B C LS(A). If ¢ is a linear
mapping from B into LS(A) such that

a,be B, aob*=0=a0d(b)"+d(a)ob” =0 and §(1)a = ad(1),

then 6(a) = A(a) + 6(1)a for every a in B, where A is a x-Jordan derivation. In
particular, 6 is a *-Jordan derivation when 6(1) = 0.

For von Neumann algebras, by Corollary 3.2 and similar to the proof of Theo-
rem 2.4, we can easily obtain the following result and we omit the proof.

Corollary 3.4. Suppose that A is a von Neumann algebra. If § is a linear
mapping from A into itself with such that

a,be A, aob"=0=ao0d(b)"+0d(a)ob" =0 and 6(1)a = ad(1),

then 0(a) = A(a) 4+ 0(1)a for every a in A, where A is a x-derivation. In partic-
ular, 6 is a x-derivation when §(1) = 0.

Lemma 3.5. [5, Theorem 2.1] Suppose that A is a unital algebra and X is a
linear space. If ¢ is a bilinear mapping from A x A into X such that

a,be A, aob=0= ¢(a,b) =0,
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then we have that ) .
(b(a? .CL’) = §¢(QI, 1) + §¢(SL’G, 1)
for every a in A and every x in J(A).

Suppose that A is a unital algebra and M is a unital A-bimodule satisfying
that
{m e M : xmz =0 for every z € J} = {0},

where J is an ideal of A linear generated by idempotents in A. In [15, Theorem
4.3], H. Ghahramani studies the linear mapping § from A into M satisfies
a,be A, aob=0=ao0d(b)+d(a)ob=0,

and show that ¢ is a generalized Jordan derivation. In the following, we suppose
that J is an ideal of A generated algebraically by all idempotents in .4, and have
the following result.

Theorem 3.6. Suppose that A is a unital x-algebra, M is a unital x-A-bimodule,
and J C J(A) is an ideal of A such that

{m € M : xmzx = 0 for every z € J} = {0}.
If 0 is a linear mapping from A into M such that
a,be A, aob*=0=ao0d(b)"+d(a)ob” =0 and §(1)a = ad(1),

then 6(a) = A(a) +d(1)a for every a in A, where A is a x-Jordan derivation. In
particular, 6 is a *-Jordan derivation when 6(1) = 0.

Proof. Let J be an algebra generated algebraically by J and J*. Since J C J(A)
is an ideal of A, it is easy to show that J C J(.A) is also an ideal of A, and such
that
{m e M : zmz =0 for every z € J} = {0}.

Thus without loss of generality, we can assume that J is a self-adjoint ideal of
A, otherwise, we may replace J by J.

Define a linear mapping A from A into M by

Aa) =6d(a) —d(1)a

for every a in A. In the following we show that A is a %-derivation.

It is clear that A(1) = 0, and by 6(1)a = ad(1) we have that a o b* = 0 implies
that a o A(b)* + A(a) o b* = 0.

Define a bilinear mapping ¢ from A x A into M by

é(a,b) =ao A(b*) + A(a)ob

for each a and b in A. By the assumption we know that a o b = 0 implies

¢(a,b) = 0.
Let a, b be in A and x be in J. By Lemma 3.5, we can obtain that

o(x,1) = o(1, x).
It follows that
ro A1)+ A(z)ol=10A(z")" + A(l) o x. (3.2)
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By (3.2) and A(1) = 0, we know that A(z)* = A(z*). Again by Lemma 3.5, it
follows that

aoA(z")" + A(a)ox = %[A(aa:) ol+ A(za)o1]. (3.3)

By (3.3) and A(z)* = A(z"), it is easy to show that
A(aoz) =aoAlx) + Afa) o z. (3.4)
Next, we prove that A is a Jordan derivation.
Define {a,m,b} = amb + bma and {a,b,m} = {m,b,a} = abm + mba for each
a, bin A and every m in M. Let a be in A and z,y be in M.

By the technique of the proof of [15, Theorem 4.3] and (3.4), we have the
following two identities:

Az, a,y} = {A(x), 0, y} +{z, Ala), y} + {2,0, Aly)}, (3.5)
and
Afz,a® y} = {A(2),a*,y} + {z,a0 Ala), y} + {z,a®, Aly)}. (3.6)
On the other hand, by (3.5) we have that
Az, a® 2} = {A(x),0* 2} + {2, Aa®), 2} + {z,0* Al2)}. (3.7)
By comparing (3.6) and (3.7), it follows that {z, A(a?),z} = {z,a0A(a), z}. That
is 2(A(a*)—aoA(a))z = 0. By the assumption, it implies that A(a?)—aoA(a) = 0
for every a in A.
It remains to show that A(a)* = A(a*) for every a in A. Indeed, for every a

in A and every z in J, we have that A(zaz)* = A((zax)*). Since A is a Jordan
derivation, it implies that

(A(z)ax + zA(a)x + zaA(z))" = A(z")a"z" + 2" A(a™)x™ + 2" a*A(z").
Thus we can obtain that z*(A(a)* — A(a*))z* = 0. Since J is a self-adjoint ideal
of A, it follows that A(a)* = A(a*). O

Let A be a C*-algebra and M be a Banach *-.4-bimodule. Denote by A* and
M the second dual space of A and M, respectively. By [11, p.26], we can define
a product ¢ in A% by

a¥ o b = li}I\n lim vy 5,
o

for each o, b* in A% where () and (8,) are two nets in A with [|a,|| < ||a®|]
and [|B,]] < ||b¥]), such that oy — @ and B, — b* in the weak*-topology
o( A% A*). Moreover, we can define an involution  in A* by

(@) (p) = a#(p), p*(a) = pla*),
where @ in A¥, p in A¥ and a in A. By [22, p.726], we know that A* is a von
Neumann algebra under the product ¢ and the involution .
Since M is a Banach A-bimodule, M* turns into a dual Banach (A%, o)-
bimodule with the operation defined by

a . mft = liin lim aym,, and mf . o¥ = lim li{ﬂ my,ax
p 7
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for every a* in A¥ and every m* in M®, where (a,) is a net in A with ||a,| <
|a%|| and (ay) — a¥ in o(A¥ A%), (m,) is a net in M with ||m,|| < [[m*|| and
(my) = m* in o(M* M?).

We remarked, in the discussion preceding Theorem 2.1, that M has an invo-
lution * and it is continuous in o(M*, M#). By [1, p.553], we know that every
continuous bilinear map ¢ from A x M into M is Arens regular, which means
that

lim lim p(ay, m,) = limlim p(ay, m,)
A noooA

for every o( A", A*)-convergent net (ay) in A and every o(M*, M*)-convergent
net (m,) in M. Thus we can obtain that

(@ - m*)* = (limlim aym,,)* = limlimm*a} = lim lim m*a} = (m#)* - (a*)*,
A A ® nooA ®

where (ay) is a net in A with (ay) — a* in o(A¥, A*) and (m,,) is a net in M
with (m,) — m* in o(M%* MF). Similarly, we can show that (m* - a%#)* =
(a®)* - (m#*)*. It implies that M* is a Banach x-A*-bimodule.

A projection p in A* is called open if there exists an increasing net (a,) of
positive elements in A such that p = lima, in the weak*-topology of A%*. If p is

open, we say the projection 1 — p is closed.
For a unital C*-algebra, we have the following result.

Theorem 3.7. Suppose that A is a unital C*-algebra and M is a unital Banach
x-A-bimodule. If 0 is a continuous linear mapping from A into M such that
d(1)a = ad(1) for every a in A, then the following three statements are equivalent:
(1) a,b e A, aob*=0=aod(b)*+d(a)ob* =0;

(2) a,be A, ab* =b'a=0=aod(b)"+d(a) ob* =0;

(3) 6(a) = A(a) +6(1)a for every a in A, where A is a *-derivation from A into
M.

Proof. 1t is clear that (1) = (2) and (3) = (1). It is sufficient the prove that
(2) = (3).

Define a linear mapping A from A into M by A(a) = §(a) — d(1)a for every
a in A. It is sufficient to show that A is a *-derivation. First we prove that
A(a*) = A(a)* for every a in A.

By assumption, we can easily to show that

a,be A, ab* =b'a=0=aoA(b)"+ A(a) ob* =0 and A(1) =0,

In the following, we verify A(b) = A(b)* for every self-adjoint element b in A.

Since A is a norm continuous linear mapping form A into M, we know that
AP (AM o) — M is the weak*-continuous extension of A to the double duals
of A and M.

Let b be a non-zero self-adjoint element in A, a(b) C [—]|b||, ||b]|] be the spec-
trum of b and 7(b) € A* be the range projection of b.

Denote by A, the C*-subalgebra of A generated by b, and by C(c(b)) the C*-
algebra of all continuous complex-valued functions on o(b). By Gelfand theory
we know that there is an isometric * isomorphism between A, and C(o(b)).
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For every n in N, let p, be the projection in Agﬁ C A" corresponding to the
characteristic function x(_ . jui2 pipno i C(o(b)), and let b, be in Ay, such
that

1
bnpn = ppbn = by, = b; and ||bn o b“ < E

By [28, Section 1.8], we know that (p,) converges to r(b) in the strong*-topology
of A¥, and hence in the weak*-topology.
It is well known that p,, is a closed projection in Aiﬁ C A% and 1—p, is an open

projection in A?;ﬁ. Thus there exists an increasing net (z,) of positive elements in
(1 — pn)A¥(1 — p,)) N A such that

and (zy) converges to 1 — p,, in the weak*-topology of A*. Since
0< ((L=pu) = 20)° < (L =pa) —2x < (1= pa),

we have that (zy) also converges to 1 — p, in the strong*-topology of A%,
By b, = b and z)b, = b,2) = 0, it follows that

Zx © Am(bn)* + AW(ZA) o bn = 0. (38)
Taking weak*-limits in (3.8) and since A" is weak*-continuous, we have that
(1 — pn) o A% (b,)* + A¥((1 = p,)) 0 b, = 0. (3.9)

Since (p,) converges to r(b) in the weak*-topology of A* and (b,) converges to b
in the norm-topology of A, by (3.9), we have that

(1 —7(b)) o A¥(D)* + A¥(1 —7(b)) o b= 0. (3.10)

Since the range projection of every power b with m € N coincides with the r(b),
and by (3.10), it follows that

(1—7(b)) o A¥(BH™)* + A¥(1 — (b)) 0 b™ =0

for every m € N, and by the linearity and norm continuity of the product we
have that

(1= r(b) o A%(2)* + A¥(1 —r(b)) oz =0

for every z = z* in A;,. A standard argument involving weak*-continuity of A%
gives

(1 —1r(D)) o A¥(r(b))* + A*(1 — r(b)) o r(b) = 0. (3.11)
By (3.11), we can obtain that
(A (r(b))" + A% (r(b)) — A%(1)) 0 r(b) = 2A%(r (D))"
By A(1) = 0, we have that A¥(1) = 0. It implies that
A¥(r(b))* = A*(r(b)). (3.12)
It is clear that every characteristic function

P = X([=|lbll,~a]Ula, b])Ne (b) (3.13)
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in Cy(o(b))* with 0 < a < ||b||, is the range projection of a function in C'(o(b)).
Moreover, every projection of the form

4 = X([-B,~a]Ula,8))"a(b) (3.14)

in Co(o(b))* with 0 < a < B < ||b]| can be written as the difference of two
projections of the type in (3.13).

Since Ay and C(o(b)) are isometric * isomorphism, and by A% (r(b))* = A% (r(b))
for range projection of b in A*, we have that A¥(p)* = A¥(p) for every projection
p of the type in (3.13). It follows that A%*(q)* = A¥(q) for every projection ¢ of
the type in (3.14).

It is well known that b can be approximated in norm by finite linear com-
binations of mutually orthogonal projections g; of the type in (3.14), and A is
continuous, we have that A(b)* = A(b). Thus for every a in A, we can obtain
that A(a)* = A(a).

By the assumption, it follows that

a,be A, ab=ba=0= aoA(b) +A(a)ob=0.
By [2, Theorem 4.1], we know that A is a x-derivation. O

In the following we consider general C*-algebras A. Let (¢;);er be a bounded
approximate identity of A, M be an essential Banach *-A-bimodule, and ¢ be a
continuous linear mapping from A into M, then (6(e;));er is bounded and we can
assume that it converges to ¢ in M# with the topology o(M®# M?). Tt follows
the next result.

Theorem 3.8. Suppose that A is a C*-algebra (not necessary unital) and M is
an essential Banach *-A-bimodule. If § is a continuous linear mapping from A
into M such that £-a = a-§ for every a in A, then the following three statements
are equivalent:

(1) a,be A, aob* =0=aod(b)*+d(a)ob* =0;

(2) a,be A, ab* =b*a=0=aod(b)"+d(a)ob* =0;

(3) 6(a) = A(a) + & - a for every a in A, where A is a *-derivation from A into
MF,

Proof. 1t is clear that (1) = (2) and (3) = (1). It is only need to prove that
(2) = (3).
Define a linear mapping A from A into M# by

Ala) =6(a) =€ - a

for every a in A. It is sufficient to show that A is a *x-derivation.
By the definition of A and £ -a = a - £ for every a in A, we can easily to show
that

a,be A, ab* =b'a=0=aoA(b)"+ A(a) o b" = 0.

By [10, Proposition 2.9.16], we know that (e;);er converges to the identity 1 in
A® with the topology o(A%*, A*). By the proof of Theorem 2.1, we know that
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A(e;) = (e;) —e; - € converges to zero in M* with the topology o(M™, M#), and
we can obtain that

mit .1 = mH
for every m* in M*. Since M* is a Banach *-A-bimodule, we have that
1-mit = it

for every m* in M*. Since A is a norm-continuous linear mapping form A into
ME AR (A% o) — MH is the weak*-continuous extension of A to the double
duals of A and M* such that A%(1) = 0.

By [10, Proposition A.3.52], we know that the mapping m®# s m### . 1
from M# into itself is o (M MH)-continuous, and by the o(M#¥# A #E)-
denseness of M# in M"# we have that

N QU

for every mf# in M®*#_ Since M™# is a Banach *-.4%-bimodule, we have that
1.l — et

for every mi# in M,
Finally, we use the same proof of Theorem 3.7 and show that A is a *-derivation
from A into M. O

Remark 3. In [12], A. Essaleh and A. Peralta introduce the concept of a triple
derivation on C*-algebras. Suppose that A is a C*-algebra. Let a, b and ¢ be in
A, define the ternary product by {a,b,c} = %(ab*c + cb*a). A linear mapping §
from A into itself is called a triple derivation if

0{a,b,c} = {d(a),b,c} +{a,d(b),c} + {a,b,é(c)}

for each a, b and ¢ in A. Let z be an element in A. § is called triple derivation
at z if

a,b,c € A, {a,b,c} =2=6(z2) ={0(a),b,c} +{a,d(b),c} + {a,b,(c)}.

In [12], A. Essaleh and A. Peralta prove that every continuous linear mapping
0 which is triple derivations at zero from a unital C*-algebra into itself with
d(1) = 0 is a *-derivation.

On the other hand, it is apparent to show that if ¢ is triple derivation at zero,
then § satisfies that

a,be A, ab"=ba=0=ao0d(b)"+d(a)ob” =0.

Thus Theorem 3.7 generalizes [12, Corollary 2.10].

Remark 4. In [8], M. Bresar and J. Vukman introduce the left derivations and
Jordan left derivations. A linear mapping ¢ from an algebra A into its bimodule
M is called a left derivation if §(ab) = ad(b) + bd(a) for each a,b in A; and ¢ is
called a Jordan left derivation if 6(a o b) = 2ad(b) + 2bd(a) for each a,b in A.

Let A be a *-algebra and M be a *-A-bimodule. A left derivation (Jordan left
derivation) ¢ from A into M is called a x-left derivation (x-Jordan left derivation)
if 0(a*) = d(a)* for every a in A.
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We also can investigate the following conditions on a linear mapping § from A

into M:
(I1) a,b e A, ab* =0 = ad(b)* + b*6(a) = 0;
(Js) a,be A, aob* = 0= ad(b)* +b*d(a) = 0;
(J3) a,b € A, ab* =b*a=0= ad(b)* +b*6(a) = 0.
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