Skip to main content
Log in

An Object-Oriented View on Problem Representation as a Search-Efficiency Facet: Minds vs. Machines

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

From an object-oriented perspective, this paper investigates the interdisciplinary aspects of problem representation as well the differences between representation of problems in the mind and that in the machine. By defining an object as a combination of a symbol-structure and its associated operations, it shows how the representation of problems can become related to control, which conducts the search in finding a solution. Different types of representation of problems in the machine are classified into four categories, and in a similar way four distinct models are distinguished for the representation of problems in the mind. The concept of layered hierarchies, as the main theme of the object-oriented paradigm, is used to examine the implications of problem representation in the mind for improving the representation of problems in the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alsuwaiyel, W. (1999). Lecture notes series on computing. New Jersey: World Science Press.

    Google Scholar 

  • Botvinnik, M. M. (1984). Computers in chess: Solving inexact search problems. New York: Springer.

    MATH  Google Scholar 

  • Brown, D. E., & White, C. C. (1990). Operations research and artificial intelligence. New York: Kluwer.

    MATH  Google Scholar 

  • Buro, M. (2002). Improving heuristic mini-max search by supervised learning. Artificial Intelligence, 134(1–2), 85–99. doi:10.1016/S0004-3702(01)00093-5.

    Article  MATH  Google Scholar 

  • Campbell, M., Hoane, A. J., & Hsu, F. H. (2002). Deep blue. Artificial Intelligence, 134(1–2), 57–83. doi:10.1016/S0004-3702(01)00129-1.

  • Chemero, A. (2007). Asking what’s inside the head: Neurophilosophy meets the extended mind. Minds and Machines, 17(3), 345–351. doi:10.1007/s11023-007-9073-3.

    Article  Google Scholar 

  • Dechter, R. (2003). Constraint processing. California: Morgan Kaufmann Publishers.

    Google Scholar 

  • Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000). A branch-and-bound algorithm for the resource-constrained project scheduling problem. Mathematical Methods of Operations Research, 52, 413–439. doi:10.1007/s001860000091.

  • Firebaugh, M. W. (1988). Artificial intelligence: A knowledge based approach. Boston: Boyd & Fraser Publishing Company.

    Google Scholar 

  • Franklin, S. (2007). Walter J. Freeman, how brains make up their minds. Minds and Machines, 17(3), 353–356. doi:10.1007/s11023-007-9074-2.

    Article  Google Scholar 

  • Freuder, E. C. (1985). A sufficient condition for backtrack-bounded search. Journal of the ACM, 32(4), 755–761. doi:10.1145/4221.4225.

    Article  MATH  MathSciNet  Google Scholar 

  • Hommad, A., & Kristian, J. (1989). Case-based planning: Viewing planning as memory task. Boston: Academic Press.

    Google Scholar 

  • Kelin, M., & Methlie, L. B. (1990). Expert Systems: A decision support approach. London: Addison-Wesley.

  • Korb, K. B. (2004). Introduction: Machine learning as philosophy of science. Minds and Machines, 14(4), 433–440. doi:10.1023/B:MIND.0000045986.90956.7f.

    Article  Google Scholar 

  • Korf, R. E. (1987). Planning as search: A quantitive approach. Artificial Intelligence, 36, 201–218.

    Google Scholar 

  • Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391–444. doi:10.1007/s11023-007-9079-x.

    Article  Google Scholar 

  • Linsary, S. (1988). Practical application of expert systems. Massachusetts: Addison-Wesley.

    Google Scholar 

  • Nilsson, N. J. (1980). Principles of artificial intelligence. San Francisco: Morgan Kaufmann.

    MATH  Google Scholar 

  • Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  • Schaeffer, J., & Herik, J. V. (2002). Games, computers, and artificial intelligence. Artificial Intelligence, 134, 1–8. doi:10.1016/S0004-3702(01)00165-5.

    Article  MATH  Google Scholar 

  • Shimansky, Y. P. (2004). The concept of a universal learning system as a basis for creating a general mathematical theory of learning. Minds and Machines, 14(4), 453–484. doi:10.1023/B:MIND.0000045988.12140.9f.

    Article  Google Scholar 

  • Simon, H. A. (1983). Why should machine learn: An artificial intelligence approach. California: Tioga- Palo.

    Google Scholar 

  • Skyttner, L. (2001). General systems theory–ideas and applications. London: World Scientific.

    Google Scholar 

  • Sowa, J. F. (2000). Knowledge representation: Logical, philosophical, and computational foundations. California: Brooks/Cole Publishing Co.

    Google Scholar 

  • Wezel, W., & Jorna, R. J. (2001). Paradoxes in planning. Engineering Applications of Artificial Intelligence, 14(3), 269–286. doi:10.1016/S0952-1976(01)00009-4.

    Article  Google Scholar 

  • Zamani, R., & Lau, S. K. (2010). Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem. European Journal of Operational Research, 201, 82–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamani, R. An Object-Oriented View on Problem Representation as a Search-Efficiency Facet: Minds vs. Machines. Minds & Machines 20, 103–117 (2010). https://doi.org/10.1007/s11023-009-9160-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-009-9160-8

Keywords

Navigation