Skip to main content
Log in

Weber-Fechner Law and the Optimality of the Logarithmic Scale

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

Weber-Fechner Law states that the perceived intensity is proportional to the logarithm of the stimulus. Recent experiments suggest that this law also holds true for perception of numerosity. Therefore, the use of a logarithmic scale for the quantification of the perceived intensity may also depend on how the cognitive apparatus processes information. If Weber-Fechner law is the result of natural selection, then the logarithmic scale should be better, in some sense, than other biologically feasible scales. We consider the minimization of the relative error as the target of natural selection and we provide a formal proof that the logarithmic scale minimizes the maximal relative error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Batschelet, E. (1979). Introduction to mathematics for life scientists. New York: Springer.

    MATH  Google Scholar 

  • Burden, R. L., Faires, J. D., & Reynolds, A. C. (1978). Numerical analysis. Boston, Mass: Prindle, Weber & Schmidt.

    MATH  Google Scholar 

  • Dehaene, S. (2003). The neural basis of the Weber-Fechner law: a logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.

    Article  MathSciNet  Google Scholar 

  • Fechner, G. T. (1860). Elemente der Psychophysik, Vol. 2. Leipzig: Breitkopf und Haertel.

    Google Scholar 

  • Higham, N. J. (1996). Accuracy and stability of numerical algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

    MATH  Google Scholar 

  • Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723–1743.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review 63(2), 81–97.

    Article  Google Scholar 

  • Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude: Compressed scaling of numerical information in the primate prefrontal cortex. Neuron, 37(1), 149–157.

    Google Scholar 

  • Ortega, J. M. (1972). Numerical analysis. A second course. New York: Academic Press. Computer Science and Applied Mathematics.

  • Stevens, S. S. (1961). To honor Fechner and repeal his law: A power function, not a log function, describes the operating characteristic of a sensory system. Science, 133(3446), 80–86.

    Article  Google Scholar 

  • Stewart, G. W. (1996). Afternotes on numerical analysis. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).

    MATH  Google Scholar 

  • Weber, E. H. (1850). Der Tastsinn und das Gemeingefuhl. In Handwörterbuch der Physiologie, Vol. 3. Braunschweig.

Download references

Acknowledgments

Partially supported by CNPq grants 303583/2008-8, 480101/2008-6 , FAPERJ grant E-26 102.821/2008 and by PRONEX-Optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Svaiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portugal, R.D., Svaiter, B.F. Weber-Fechner Law and the Optimality of the Logarithmic Scale. Minds & Machines 21, 73–81 (2011). https://doi.org/10.1007/s11023-010-9221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-010-9221-z

Keywords

Navigation